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The Role of Soil Conservation on Mean Crop Yield and Variance of 

Yield: Evidence from the Ethiopian Highlands

Menale Kassie, John Pender, Mahmud Yesuf, Gunnar Köhlin, and Elias Mulugeta 

Abstract

Land degradation has been one of the major areas of concern in Ethiopia. Governments and 

development agencies have invested substantial resources to promote land management technologies 

and reduce land degradation. However, there is little understanding of the impacts that land management 

technologies have on yield and yield variability. This paper investigates the impact of stone bunds on 

mean yield and variance of yield, using multiple plot observations per household in low- and high-

rainfall areas of the Ethiopian highlands. Our analysis incorporated the propensity score matching 

method, stochastic dominance analysis, and exogenous and endogenous switching regression methods. 

We found statistically significant and positive impact of stone bunds on yield in low-rainfall areas. This 

did not hold in high-rainfall areas. We did not find a statistically significant stone-bund impact on 

production risk in either high- or low-rainfall areas. The results were robust to both parametric and non-

parametric analysis. The overall conclusion from the analysis is that the performance of stone bunds 

varies by agro-ecology type. This implies the need for designing and implementing appropriate 

technologies that enhance productivity and are better adapted to local conditions. 

 Key Words: Switching regression, stochastic dominance, propensity score matching, stone 

bunds, yield, yield risk, Ethiopia 
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The Role of Soil Conservation on Mean Crop Yield and Variance of 

Yield: Evidence from the Ethiopian Highlands

Menale Kassie, John Pender, Mahmud Yesuf, Gunnar Köhlin, and Elias Mulugeta 

Introduction

The economic development of Ethiopia is dependent on the performance of the 

agriculture sector, and the contribution of this sector depends on how the natural resources are 

managed. Unfortunately in Ethiopia, the quality and the quantity of natural resources are 

degrading due to a multitude of factors.  

Land degradation—in the form of soil erosion, depletion of nutrients, deforestation, and 

overgrazing—is one of the basic problems facing farmers in the Ethiopian highlands, and it 

limits their ability to increase agricultural production and reduce poverty and food insecurity. To 

sustain food production in Ethiopia, a number of land management technologies, such as soil and 

water conservation, have been developed and implemented over the last three decades by 

governmental and non-governmental institutions. Despite their promotion, the adoption of anti-

land degradation measures by farmers has been limited, and land degradation remains a major 

threat to agricultural production in the country. Small-scale subsistence farmers have been 

reluctant to accept these measures, most likely due to low profitability or risks associated with 

the promoted land management technologies (LMTs). 

The main emphasis of soil conservation in Ethiopia is on physical measures to reduce soil 

loss and run-off. It is not clearly known, however, if it is economically justifiable in different 
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contexts to invest in soil conservation measures. To reverse the problem of land degradation, it is 

important to understand the actual impact of LMTs on resource-poor farmers and identify 

constraints that inhibit adoption of these measures. LMTs can improve agricultural productivity 

(e.g., Shively 1998a, 1998b; Pender and Gebremedhin 2006, Roumasset et al. 1989), and also 

help decrease production risk (e.g., Shively 1998; Roumasset et al. 1989). Empirical studies 

assessing the productivity and production risk impacts of LMTs used in the Ethiopian highlands 

are quite limited. The purpose of this paper is to analyze the effects of stone bunds on mean yield 

and variance of yield in low- and high-rainfall areas of the Ethiopian highlands. 

The main contributions of this paper to the literature are threefold. First, unlike previous 

studies (e.g., Shively 1998a; Bekele 2005; Kassie and Holden 2006), we simultaneously 

controlled for possible selection bias to the regression estimates induced by observed and 

unobserved individual characteristics. Often in the literature, researchers only controlled for 

selection bias due to unobserved effects. Second, our regression and stochastic dominance 

analysis estimates were based on matched observations, unlike previous studies where all 

observations were used. This means that previous studies on conservation effects using 

regression and stochastic dominance analysis were not concerned with how similar treated 

groups (plots with conservation measures) and control groups (plots without conservation 

measures) are in the distribution of covariates. They might have compared incomparable 

observations, which would lead to incorrect conclusions on conservation effects. Third, we 

compared the performance of stone bunds on yield and production risk (as measured by the 

square of residuals from yield regression) in high-rainfall (Amhara region) and low-rainfall 

(Tigray region) areas of the Ethiopian highlands, using multiple plot-level data per household. 

This helped us understand the performances of soil conservation by agro-ecology types. 

The overall conclusion from the analysis was that the impact of stone bunds varies by 

agro-ecology type. Stone bunds are more productive in semi-arid areas than in high-rainfall 

areas. The results were robust with regard to different methods. In effect, this means that in high-

rainfall areas conserving moisture via physical structures may not be important, but choosing 

appropriate conservation measures and properly placing them (e.g., diversion ditches) could help 

protect soil during extreme rainfall. Furthermore, the results indicated that the hypothesis—that 

stone bunds reduce yield variance—was rejected in both regions. We also did not find a 

statistically significant impact of stone bunds on production risk. 

  The rest of the paper is organized as follows. Following a brief review of earlier 

empirical research in section 2, section 3 provides the theoretical framework. In section 4, we 

discuss the econometric methodology. Section 5 describes the data set, followed by empirical 
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results and discussion in section 6. Finally, section 7 summarizes the main findings and 

conclusions.

2.  Earlier Empirical Work 

Few empirical studies have directly examined the impact of soil conservation on mean 

yield using econometric and cross-sectional data (e.g., Shively 1998a, 1998b, 1999; Byiringrio 

and Reardon 1996; Bekele 2003; Kaliba and Rabele 2004). Byiringiro and Reardon (1996) used 

farm-level data in Rwanda and found that farms with greater investment in soil conservation had 

much greater land productivity than did farms without such investment. However, the authors 

did not specify the type of conservation in their article. In the Philippines, using data collected at 

the farm level, Shively (1998a; 1998b; 1999) found a positive and statistically significant impact 

on yield from contour hedgerows used for conservation. In Lesotho, Kaliba and Rabele (2004) 

found a statistically significant, positive association between wheat yield and short- and long-

term soil conservation measures. Kassie and Holden (2005) found that physical conservation 

measures (specifically fanya juu1) resulted in lower yield in a high-rainfall area of Ethiopian 

highlands, compared to plots without conservation measures. However, this study was not able to 

compare yield effects of conservation measures in low- versus high-rainfall areas and did not 

address impacts on production risk. 

With a few exceptions (e.g., Shively 1998a; Kassie and Holden 2005), previous studies 

suffered from serious methodological and inadequate data problems. First, these other studies—

except Kassie and Holden (2005)—used a single equation model that assumed that technology 

only had intercept effects and that the same set of variables equally affected farmers who 

adopted technology and those who did not. The study did not show empirically if this 

specification represented the reality. Second, with exception of Shively (1998) and Kassie and 

Holden (2005), these other studies did not take into account the endogeneity of the technology 

and self-selection problems. Third, again except for Kassie and Holden (2005), none of the 

studies accounted for unobserved household and plot heterogeneity that might affect their 

findings. The Kaliba and Rabele (2004) study was limited by its small sample size (50 

1 “Fanya juu terraces are made by digging a trench along the contour of the land and throwing the soil uphill to form 

an embankment. The embankments are stabilized with fodder grasses. The space between the embankments is 

cultivated. Over time, the fanya juu develop into bench terraces.” (IIRR n.d.) 
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households) and did not control for plot characteristics. If there was a correlation between soil 

conservation and the quality of the plot in this study, the return to conservation might be biased.  

Empirical evidence of the contribution of soil conservation to reducing yield variability 

across production seasons and in securing stable returns to farmers has received little attention in 

the agricultural economics literature.2 As discussed by Shively (1999), when yield improvements 

occurred with some delay and returns were often negative in the short run, the potential impact 

of conservation on yield variability could be a key factor influencing the value of conservation 

investment to low-income farmers. Conservation measures can reduce yield variability in at least 

two ways. First, conservation can improve moisture retention during low-rainfall periods and 

thereby reduce moisture stress and enhance plant growth (Hengsdijk et al. 2005). Second, 

conservation technology can mitigate the consequences of flooding and thus can reduce 

associated crop damage and topsoil run-off during high-rainfall periods (Shively 1999; 2001).

The available empirical econometric works on the impact of soil conservation on 

variance of yield, using parametric regression and cross-sectional data and non-parametric 

analysis (stochastic dominance analysis), include Shively (1998; 1999) in the Philippines and 

Bekele (2003) in Ethiopia. Shively found that, controlling for the sample selection process, the 

impact of contour hedgerows on variance of yield turned out to be insignificant. Bekele also 

rejected the hypothesis that physical soil conservation results in lower yield variability.

3.  Theoretical Framework 

Following Shively (1997) and Just and Pope (1978), this section describes the theoretical 

framework we used to explain farm households’ investment and production decisions. Since 

farm households in developing countries engaged in husbandry face production uncertainty and 

multifaceted market imperfection, we used an expected utility maximization framework to 

represent investment and production decisions made under uncertainty. Conservation effort )(C

is assumed to be an essential input in the production process. The farm household’s problem is 

defined as: 

                                                
2 A recent agronomic study using crop and soil modelling by Hengsdijk et al. (2005) found that farmers’ use of 

stone bunds in eastern Tigray could increase farm yields (although the optimal planting date is not known) by 

conserving soil moisture and allowing planting in sub-optimal conditions.  
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where E is the expectation operator, '  is a per-period discount factor, (  is the per-period return 

from farming, f  is the deterministic (non-stochastic) part of the output, and the function h

describes how inputs and other factors influences yield variance. X  is all other inputs, and   is a 

random variable with mean zero. Output and input prices are normalized to 1 for ease of 

exposition, and )(U  is assumed to be a concave function. The additive specification in equation 

(2) permits increasing, decreasing, or constant marginal yield risk (Just and Hope 1978). This 

functional form is also important since it permits the inputs to have different effects on the mean 

yield and variance of yield. 

The Hamiltonian for the problem, after inserting the definition of (  into (1), is:  

" #) *( , ) ( , ) ( , )H EU f C X h C X q C X+& , %  . (3) 

The maximization of the objective function above, with respect toC , results in the following 

optimality condition: 

' 0.
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A similar procedure can be followed to derive the first order conditions of other inputs. 

Considering a first order Taylor series approximation of 'U  about expected income, ( 3

' ' '' ( ) ( )U U U( ( (& , %  , (5) 

where ''' andUU  are ''' andUU  evaluated at mean income, respectively. Further, let the Arrow-

Pratt measure of absolute risk aversion be denoted by )()()( ''' ((( UUp %& , so that at mean 

income .''' UUp %& Then, using (4) in (3) and after some manipulation, the FOC is 

approximated by: 

2 ( , ) 0
f q h

p h C X
C C C

@
0 0 0. -% % &7 40 0 0> ?

 . (6) 

                                                
3 The full derivation of Taylor series approximation is available from the authors upon request. 
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Equation (6) is the marginal (marginal-benefit and marginal-cost) condition for adoption. 

For risk-neutral farmers, the term in the square bracket of (6) will disappear and adoption of 

technology will depend on the classical marginal conditions. For risk-averse farmers, this term is 

different from zero. In this case, whether farmers adopt technology will be governed by 

production risk and their attitude toward risk, in addition to adoption costs and other factors. 

Farm-specific attributes, such as plot quality and slope, may influence adoption decisions by 

influencing technology performance or adoption costs. 

A vector of household socioeconomic characteristics can parameterize risk and risk-

aversion behavior of the households (Holden et al. 1998). When market imperfections are 

important, inclusion of household characteristics and resource endowments in explaining 

investment and production decision is important (Pender and Kerr 1998; Holden et al. 2001), in 

addition to other determinants of investment and production decisions. For instance, 

imperfection in labor markets forces households to equate labor demands with family labor 

supply. Thus, families with a greater labor supply are more likely to adopt labor-intensive 

technologies. The same can be said about credit or capital market imperfections. Households 

with greater savings or productive assets will be able to invest if the technologies are capital-

intensive. Pender and Kerr (1998) found that imperfections in labor markets led to differences in 

soil and water conservation investments among farmers in India (Aurepalle village), where 

investment was greater among households that had more adult males, had fewer adult females, 

and farmed less land.  

Following the theoretical dynamic household model illustrated above and the empirical 

work of Pender and Gebremedhin (2006), we derived the following reduced form of equations 

for the empirical investigation of decisions to adopt stone bund and the resulting productivity and 

risk impacts of stone bund adoption:  

( , , , , , )hp hp h h h v hpC c NC PC HC FC X A&  , (7) 

( , , , , , )hp hp h h h v hpy y NC PC HC FC X B&  , and (8) 

2 ( , , , , , )hp hp h h h v hpNC PC HC FC X@ @ B&  , (9) 

where hpC  is a binary treatment variable for adoption 1( &hpC ) if adoption takes place by 

household h  on plot p  , and 0&hpC  otherwise); hpy  is the value of crop production by 

household h  on plot p , and 2

hp@  is the square of residuals from mean yield regressions that 

approximate production risk; hpNC  is the “natural capital” of the plot (biophysical 

characteristics); hPC  is the household’s endowments of physical capital (land, livestock, radio); 

hHC  is human capital (education, age, and gender of household head, size of household); hSC  is 
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financial capital (accumulation of savings); vX  are village-level factors that determine local 

comparative advantages (agro-ecological conditions, access to markets and infrastructure, and 

population density); and random factors are ( hpe ).

Some of the conditioning variables not included in the above equations—such as 

conventional inputs, land tenure (land rental contract), and household specific variables (credit 

access and extension contact, participation in the off-farm activities and local association)—will 

be used to estimate the propensity score. We discuss this issue further in section 4.2.3. 

4.  Methodology:  Econometric Estimation Challenges, Techniques and

Procedures

This section will thoroughly discuss the econometric estimation challenges, techniques 

and procedures. 

4.1  Econometric Estimation Challenges 

Directly measuring the impact of soil conservation on agricultural yield using farm level 

data is not an easy task, given that it is fraught with methodological problems. First, we did not 

observe the outcome of plots with conservation if they did not have physical conservation 

structures (or the reverse).  

Second, ex-post assessment of the gains with conservation versus without conservation 

was also difficult with observational data because the unobserved household and plot attributes 

were likely to influence soil-conservation (technology) adoption, input-application choices, and 

observed output. Farmers might not be randomly assigned to the two groups (adopters and non-

adopters):  they might make the adoption choice themselves or they might be systematically 

selected by development agencies based on their attributes to participate in the use of 

technologies.4 Therefore, farmers who adopt technology and farmers who do not might be 

systematically different. These differences might manifest themselves in farm performance and 

could be confounded with differences due purely to adoption. This is a self-selection problem 

where failure to account for this would lead to inconsistent estimates of the impact of technology 

adoption.

                                                
4 Farmers may also have selected plots on which to place the technology based on the attributes (observed and 

unobserved) of the plots. Failure to account for this might also lead to biased estimates of technology impact.  



Resources for the Future Kassie et al. 

8

Third, even if we could account for the self-selection process and/or there was no 

selection problem, using a pooled sample of adopters and non-adopters (a dummy regression 

model where a binary indicator is used to pick up the effect of soil conservation on yield) might 

be inappropriate. This is because pooled model estimation assumes that the estimated parameter 

has the same effect across individuals and over plots regardless of their adoption status. That is 

to say, the same sets of covariates have the same impacts on adopters as non-adopters (with 

common slope coefficients for both regimes). This implies that soil conservation has only an 

intercept effect that is always the same, irrespective of the values taken by other covariates that 

determine yield (common effect). However, a Chow test of equality of coefficients for adopters 

and non-adopters of stone terraces [chi2 (54) = 83.21 (p-level = 0.008) and chi2 (61) = 153.29 (p 

= 0.000)] for Amhara and Tigray regions, respectively) rejected the equality of the non-intercept 

coefficients between adopters and non-adopters. This required a separate estimation of revenue 

functions of adopter and non-adopters.

4.2  Econometric Estimation Techniques

The following two sub-sections discuss the econometric models and methods that 

allowed us to control for the econometrics problems mentioned above. Two estimation 

techniques were considered in this paper:  1) parametric (switching regression models) and 2) 

non-parametric (stochastic dominance analysis and matching methods). 

4.2.1  Switching yield regression model 

A two-stage econometric model using a sub-sample of adopters and non-adopters was 

specified to investigate the impact of adopting stone bunds on mean yield. The first stage of the 

switching regression model was to determine those factors influencing a farm household’s 

decision to invest in soil conservation. The adoption model (switching or selection criterion 

equation) can be described as follows (for ease of notation, subscripts were dropped):

1  ' 0

0  ' 0

i i i

i i i

C if z

C if z

C A

C A

& , D1
5

& , E:
~ (0,1)u N  , (10) 

where iz ( 0,1)i &  is a matrix of characteristics that predicts conservation adoption, C  is an 

unknown parameter, iA  is the disturbance term, and other variables are as defined above. The 

first subscript distinguishes the individual household h  and the second distinguishes the plot p .

The second stage in the switching regression model was to estimate the separate revenue 

function for the two groups of plots (adopters and non-adopters), as defined below. 
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1 1 1 1 1 1 i ( , ) ( , )  if 1 i i i i iy f X C h X C CB& , &  (11) 

0 0 0 0 0 0( , ) ( , )  if 0i i i i i iy f X C h X C CB& , &  , (12) 

where iy  denotes the value of crop production per hectare, iX  is a matrix of explanatory 

variables believed to influence yield, 1iB  and 0iB  are the disturbance terms, and other variables 

are as defined above. The non-stochastic part of the production function for adopters and non-

adopters is represented by if . The function ih  is the stochastic part, which relates explanatory 

variables to the variance of yield.  

Under the selection rule described above, and denoting ( , )f X C  by xF , we have (for 

ease of notation, subscripts were dropped): 

)'/()1/( 111 zuExCyE GBF %D,&&  (13) 

)'/()0/( 000 zuExCYE GBF %E,&&  (14) 

If the expected value of the error terms in equations (13) and (14) are non-zero, 

regressing 1),0( &iyi  on x  will yield an inconsistent estimator of iF  (Maddala 1983). The error 

terms 10 ,BB , and u  have trivariate normal distribution, with zero mean and non-singular 

covariance matrix of the following structure (Ibid.).5

4
4
4

?

-

7
7
7

>

.

1

0u

2

0

1u10

2

1

@@

@@@

 (15) 

To obtain unbiased estimators, equations (13) and (14) should be estimated 

simultaneously, using a maximum likelihood method. To simplify this estimation, however, Lee 

(1978) suggested a two-step procedure where the self selectivity is treated as a missing variable 

problem. A zero conditional mean in equations (13) and (14) can be restored by including an 

estimate of the selection bias terms, )'( 1 zuE GB %D  and )'( 0 zuE GB %E . These terms are 

proportional to the inverse mills ratios (we used H  to denote the inverse mills ratio), and depend 

only on the unknown parameters of equation (10) estimated by bivariate probit model. 

Substituting the inverse mills ratio into equations (13) and (14) yields: 

1if11111 &,,& Cxy u BH@F  (16) 

                                                
5 The normality assumption made here is conventional but not of trivial significance (Shively 1998). 
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0if00000 &,,& Cxy u BH@F  . (17) 

The term @H  is the truncated mean and H  defined as follows: 

)'(

)'(
1

z

z

C
CI

H
J

&  (for positive observations, )1&C   (16a) 

)'(1

)'(
0

z

z

C
CI

H
J%

%&  (for the zero observations, )0&C  , (17a) 

where JandI are, respectively, the probability density and cumulative distribution function, 

and other variables are as defined above. 

 Consequently, estimation of the augmented yield regression (16) and (17), which 

includes the additional term (inverse mills ratio), will produce a consistent estimator of F . These 

additional terms were labeled control functions (Heckman and Robb 1985) and eliminated the 

bias induced by the endogeneity of conservation adoption. The inverse mills ratio (H ) was 

estimated from the probit model of equation 10. The yield equations (16) and (17) required an 

exclusion restriction (identification condition) that at least one variable included in the switching 

equation (10) was excluded from the yield equations. In this paper, we assumed that the models 

would be formally identified by the non-linearity of the adoption equation.

Equations (16) and (17) were referred to as a switching regression with endogenous 

switching, when 01 K& ouu @@ , and when 01 && ouu @@ , these equations were defined as a 

switching regression with exogenous switching.

The mean yield difference between adoption and non-adoption of stone bunds is 

estimated as: 

.)()0()1( 00110101 H@H@FF uuxCyECyE %,%&&%&  (18) 

The above approach to restore the zero conditional mean of the error terms (controlled for 

selection bias) was the control function approach (Heckman and Robb 1985), assuming selection 

was on unobservables’ heterogeneity. Although this approach appeared to offer an elegant means 

of obtaining an estimate of the effect of conservation on the treated in the presence of selection, 

it had two main drawbacks. First—although in the literature it is assumed that the non-linearity 

of adoption equation (inverse mills ratio) serves as an identification condition—credible 

implementations of this approach included an instrument; that is, a variable was included in the 

estimation of the adoption equation that was excluded from the outcome (yields) equation 

(Bryson et al. 2006). However, the identification of a suitable instrument is often a significant 

practical obstacle to successful implementation. Second, the resulting estimates were entirely 
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contingent on the underlying distributional assumption relating to the unobserved variables (a 

trivariate normal distribution). Research has shown that estimates can be surprisingly sensitive to 

these assumptions not being met (Puhani 2000). 

A possible alternative approach—which made no functional form, identification 

condition, and distributional assumptions to tackle selection issues (restore zero conditional 

expectation) when the dataset is particularly rich, as in our case—was matching method. The 

basic idea was to match two observations (observations of conserved and non-conserved6 plots), 

which had approximately the same plot and household characteristics hpx  , and which might 

affect both selection equation and outcome equations (yield regression) simultaneously. This 

helped estimate the effect of conservation by comparing one plot, which had the propensity to be 

conserved and did actually conserve, with another plot or plots that had the same (or very 

similar) propensity to be conserved, but did not actually conserved. We will return to this issue in 

section 4.2.3.

 Finally, the panel nature of our data may also help to control for selection bias by 

providing the means for controlling the effects of omitted or unobserved variables. 

4.2.2  Variance regression 

In addition to impacts on productivity, agricultural technologies have also have an impact 

on production risk (e.g., Antle and Crissman 1990; Traxler et al. 1995; Kim and Chavas 2003; 

Shively 1998). Thus, consideration of risk plays a vital role in the choice and use of production 

inputs and adoption of technologies.

The square of residuals (measure of variance of yield) from the mean yield regressions is 

used as a dependent variable(s) in the variance regressions. Examples of previous studies used to 

estimate yield variability measured as the square of the residuals of yield include (Just and Pope 

1979; Antle 1983; Antle and Goodger 1984; Traxler et al. 1995; Shively 1998a, 1999; Kim and 

Chavas 2003; Koundouri et al. 2004). Shively (1998a; 1999) and Koundouri et al. (2004) used 

cross-sectional data and others used time series data.  

4.2.3  Propensity score matching method 

                                                
6 “Conserved” and “non-conserved” are shorthand for “with conservation measures” and “without conservation 

measures,” respectively. Hence, a conserved plot is a plot of land on which conservation technology is being used. 
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The propensity score matching method is one of the non-parametric estimation 

techniques that do not depend on functional form and distributional assumptions. In this paper, 

the propensity score matching method was used for two reasons. First, we needed to produce 

comparable observations of conserved and non-conserved plots with the same distribution of 

observed characteristics that serves as an input for parametric regression and stochastic 

dominance analysis. This was important because conventional regression and stochastic 

dominance analysis estimates typically are obtained without ensuring that there comparable 

treated (conserved plots) and non-treated (non-conserved plots) observations actually exist for 

every ix . That is, parametric regression and stochastic dominance analyses are not concerned 

with how similar treated groups and control groups are in the distribution of covariates. In the 

literature of evaluation, this refers to lack of common support. Using propensity score matching 

estimates the impact of conservation on yield based on common support.

Second, we used the propensity score matching method to cross-check the results 

obtained from parametric regression, since the conventional regression estimators achieve 

comparability by imposing functional form assumptions (usually linear) and extrapolating over 

regions of no support where there are no similar treated and non-treated observations. The 

evidence in Heckman et al. (1998a), Dehejia and Wahba (1999; 2002), and Smith and Todd 

(2005) suggested that avoiding functional form assumptions and imposing a common support 

condition can be important for reducing selection bias. The other advantage of using the 

propensity score matching method was that it was non-parametric where it avoided restrictions 

involved in models that require the relationship between regressors and outcomes to be specified.  

Following the literature of program evaluation, let 1Y  be the value of yield when plot p

is subject to treatment ( 1)C & , and 0Y  is the same variable when a plot is exposed to the control 

( 0).C &  Let ix  denote a set of observed variables affecting both conservation decision and 

yields.7

Our main goal was to identify the average effect of treatment (ATT—here the 

conservation investment) on the treated plots (those plots that received soil conservation 

investment), which can be defined as:  

1 0 1 0( 1) ( 1) ( 1)i i iATT E Y Y C E Y C E Y C& % & & & % & . (19) 

                                                

7 For a more detailed and technical presentation of matching methods, we referred to Heckman et al. (1998b), Smith 

and Todd (2005), Rosenbaum and Ruben (1983), and Becker and Ichino (2000). 
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The evaluation problem was that we only observed 1Y  o r 0Y , but never both. 

1( | 1)iE Y C &  could be constructed from the data. Missing was the information required to 

identify 0( 1)iE Y C & , referred to as the counterfactual outcome (what would have been the yield 

of plots with conservation had they not had conservation, or the converse). If conservation 

adoption was non-random and we substituted the unobservable 0( 1)iE Y C &  for the observable 

1( | 1)iE Y C &  when estimating ATT, we ended up with selection bias equal to 0( | 1)iE Y C & -

0( 0)iE Y C &  (Wooldridge 2002). 

The method of matching solved the evaluation problem by assuming that, conditional on 

ix , 1Y  and 0Y  are independent of :C

1 0 i,  C | .iY Y xL  (20) 

This was referred to as the conditional independence assumption (CIA).8 The intuition 

behind this crucial assumption was that it made random treatment assignment conditional on hpx ,

which, in a sense, ex post reproduced the essential feature of a randomized experiment. The CIA 

required that all sets of ix  affecting both the outcome (yield) and treatment be included in the 

matching. In the parametric regression, this was equivalent to saying that the error term in the 

probability model (probit model) used to estimate stone-bund adoption was uncorrelated with the 

outcomes of interest. When CIA held, we could therefore use the yields of non-conserved plots 

as an approximation of the counterfactual outcome. Formally expressed, we had 

0( 1)iE Y C & = 0( 0)iE Y C & , which allowed for an unbiased estimation of ATT.

 The basic idea of matching is to pair treated and non-treated observations on the basis of 

their observable characteristics. It assumes that selection can be explained purely in terms of 

observable characteristics.9 Matching on covariates is difficult to implement when the set of 

covariates is large. To overcome the curse of dimensionality, Rosenbaum and Rubin (1983) 

showed that if matching on ix  is valid, so is matching on the propensity score ( )ip x . It is more 

matching on a single index (a scalar variable) than matching on multidimensional ix  variables. 

                                                
8 This was also the identifying assumption for the simple regression estimator. Having controlled for observables, 

the adoption decision was independent of the process determining outcomes (yields). In other words, observables 

which entered the regression captured selection into the conservation adoption decision. 

9 This was a strong assumption and ignored selection bias due to unobservables. This was more a problem to the 

cross-sectional matching estimator. The problem of selection bias due to unobserved effects could be solved using  

panel data, where each unit of analysis was observed more than once (time-series cross-sectional observations or 

repeated observations per unit, as in our case).  
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Our propensity score (response probability) was defined as the conditional probability that plot 

p  received conservation treatment given covariates:  

( ) ( 1)i i ip x pr C x& &  . (21) 

Although the matching method has many desirable features, it was not without problems. 

The model depends on CIA and ignores selection bias due to unobservables. These problems are 

a function of data richness, which in our case was not a problem. We had a rich plot, household, 

and village-level dataset. 

The question raised, when applying the propensity score (pscore) matching method, is 

which estimating models and matching variables to use when estimating the pscore. Smith 

(1997) suggested that if the choice of method is not crucial, one could use a logit or probit 

model. Matching methods essentially offer no guidance as to which variables to include or 

exclude in the conditioning sets, yet the choice of which variables to include can influence 

results (Heckman et al. 1998b). Selecting covariates requires choosing a set of variables that will 

plausibly satisfy the conditional independence assumption. However, since the CIA is an 

untestable assumption, the researcher will never know whether it has been met. Knowledge of 

the empirical and theoretical literature is thus a prerequisite for analyzing the impact of program 

participation (or employing soil conservation measures) when using propensity score matching.  

In our paper, we depended on the theoretical framework above and the adoption and yield 

determinants literature to choose a set of conditioning variables which influenced both adoption 

decision and yields (e.g., Yesuf and Pender 2005; Pender and Gebremedhin 2006). Matching 

variables for the pscore were the land management practices; the “natural capital” of the plot; the 

tenure characteristics of the plot; the household’s endowments of physical capital, human capital, 

financial capital, and social capital; the household’s participation in off-farm activities; and 

village-level factors that determine local comparative advantages.  

To estimate propensity scores, one has to split the sample into k equally spaced intervals 

of the pscore and, within each interval, test that the average pscore of treated and control units do 

not differ. If the test in one interval fails, one can split the interval further and/or include 

interaction and higher orders of covariates. This process is continued until, in all intervals, the 

average propensity score of treated (conserved plots) and control (non-conserved plots) units do 
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not differ.10 This is called balancing property in the literature of evaluation. For details on the 

algorithm of pscore matching, we referred to Dehejia and Wahba (2002). 

It is rare to find two observations with exactly the same propensity score since the 

estimated pscore is a continuous variable. Therefore, the objective is to match a treated unit to a 

control unit whose propensity score is sufficiently close that they can be regarded as 

approximately the same. That is, one must allow for the possibility of matching in the 

neighborhood of the propensity score. There are a number of possible ways of doing this, such as 

the nearest-neighbor, kernel, and stratification matching methods. We chose the nearest neighbor 

matching algorithm since it enabled us to identify those observations which were actually used 

(matched) and save these observations for further use. (Not all controls—non-conserved plots— 

were necessarily used in the computation of ATT.)

The nearest-neighbor matching method involved taking each treated plot in turn and 

identifying the non-treated plot with the closest propensity score. The resulting set of non-

treatment plots constituted the comparison group. It may be that a single non-treatment plot 

provides the closest match for a number of treatment plots. In our case, the non-treatment plot 

was featured in the comparison group more than once. The end result was that the comparison 

group was the same size as the treatment group, although the comparison group might feature 

fewer plots. That is, each treated plot had one match, but a non-treated plot might be matched to 

more than one treated plot. 

 In this paper, propensity score matching and ATT were implemented using the pscore 

and attnd procedures created by Becker and Ichino (2002). (The ATT used the nearest-neighbor 

matching option and a probit model to compute propensity scores.)  

4.2.4  Stochastic dominance analysis  

Like propensity score matching, stochastic dominance analysis (SDA) does not depend 

on functional form and distributional assumptions.  Unlike matching and linear regression 

models, the entire density of yields is examined in SDA instead of focusing on the single value 

of mean and variance of yields. Like the propensity score matching method, SDA makes no 

                                                
10 Within each interval, the means of each characteristic are tested for differences between treated and control units. 

This is a necessary condition for the balancing hypothesis (see Becker and Ichino 2002). 
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assumptions on relationship between the regressors and outcome variables, nor does it make 

distributional assumptions. 

 Two outcome distributions can be compared based on their level of return (yield) and 

dispersion of return. SDA is used to compare and rank distribution of alternative risky outcomes, 

according to their level of return (yield) and according to the dispersion (riskiness) of yield 

(Mas-Colell et al.1995). The comparison and ranking is based on cumulative density functions 

(CDF). The two dominance measures discussed below are first order stochastic dominance 

(FOSD) analysis and mean-normalized second order stochastic dominance (SOSD) analysis. The 

FOSD was used to compare the level of yields with and without conservation. The SOSD was 

used to compare the variability of yields with and without conservation (Mas-Colell et al.1995; 

Formby et al. 1999). First order stochastic dominance analysis assumes that households 

maximize expected utility and only prefer more yields to fewer yields. A sufficient condition for 

conservation with CDF ( )F y  to first order stochastically dominates without conservation, with 

CDF )(yG  if: 

yyGyF ME )()(  . (22) 

Equation (15) is graphically represented in figure 1. As can be seen from the graph, for a 

given level of yield y , the probability of yield greater than y  is higher for F  than G .

Fig 1. Graphical represenation of first-order stochastic 

dominanace analysis

Yield

C
D

F

F(y) G(y)

Assuming that the decision maker (in the farm household) prefers more yield to less, the 

farm household will choose to take the action associated with F  , as the cumulative density 

function always lies to the right of G .

The SOSD assumes that the farm household (i) prefers more to less and (ii) is risk averse. 

Given the cumulative distribution of )(yF  and )(yG  with mean-normalized yield (the 



Resources for the Future Kassie et al. 

17

distribution of yield is divided by its mean), )(yF  is less risky than (or second-order 

stochastically dominates) )(yG  if: 

,)()( yyGyF ME   where y is mean normalized yield. (23) 

  The SOSD assumes that the two distributions have the same mean. However, it is less 

likely to get two yield distributions with the same mean. This is the reason mean-normalized 

SOSD analysis is suggested to rank distributions with different means (Foster and Sen 1997).  

The idea of SOSD analysis is correspondence to mean-preserving spread. If the 

cumulative distribution of )(yG  is a mean preserving spread of )(yF , then )(yF  second-order 

stochastically dominates )(yG  (Mas-Colell et al.1995). Formby et al (1999) also showed that the 

coefficient of variation is closely related to the mean-normalized stochastic dominance. 

We assumed the most widely used Gaussian kernel-density estimate (KDE) to obtain 

estimates of the CDF. The challenge to compute the KDE is to select the appropriate smoothing 

parameter (bandwidth). There is no firm theory for choosing the bandwidth. Common 

applications typically use a bandwidth equal to some multiple of 51%n  (Green 2003). In our case, 

we used a bandwidth of 0.5 51%n  following Bekele (2005).11

The SDA assumes that the difference in the yield distribution between the two states 

(e.g., with conservation measures and without conservation measures) is due only to technology 

effects. It rules out the contribution of other inputs on yield differences. For instance, differences 

in yield distributions that arise from differences in plot and household specific characteristics 

remain embedded in the distributions being compared. To minimize this problem, the SDA was 

based on matched observations obtained from propensity-score nearest-neighbor matching 

method. This helped obtain comparable non-conserved plots with the same distribution of 

observed characteristics as conserved plots.

Previous studies on stochastic dominance analysis using non-experimental farm-level 

data include Shively (1999). He compared observed yields obtained from farmers’ fields with 

and without contour hedgerows in the Philippines. He found that the hedgerow technology did 

not constitute an unambiguously dominant production strategy, compared to plots without 

hedgerows. Bekele (2003) used a time-series Soil Conservation Research Project database from a 

low-rainfall area of eastern Ethiopian and found that physical conservation (level bunds) had an 

                                                
11 Using different bandwidths did not result in significant changes in the shape of the CDFs. 
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unambiguous dominance over the non-conservation condition. Kassie and Holden (2006) used 

cross-sectional farm-level data from a high-rainfall area in northwestern Ethiopia and found that 

yield distributions without conservation unambiguously dominated yield distributions with 

conservation (fanya juu bunds) for all yield levels.

4.3  Econometric Estimation Procedures 

For the reasons mentioned above, matched observations obtained from the propensity-

score nearest-neighbor matching method were used to estimate stone-bund adoption and the 

impacts of stone bunds on the mean yield and the variance of yield. The panel nature of our data 

(repeated plot observations per household or cluster-level data) allowed us to apply panel data 

models. The equations outlined above were modified by including individual heterogeneity 

effects or decomposing the error terms in equations (9) and (10) into two )( hhphp ue ,&B .

hphhphp euxy ,,& F , (24) 

where hpy  is value of crop production per hectare obtained by household h  on plot p  , 

depending on the conservation status of the plot; hu  is the unobserved household heterogeneity 

that captures unreported household characteristics (such as farm management ability, average 

land fertility, households’ risk preferences, time preferences, etc.) that affect productivity; hpe  is 

the random variable which summarizes the plot specific component other than the ones reported 

in the survey (such as unobserved variation in plot quality and plot specific production shocks—

for example, plot level variation in rainfall, hail, frost, floods, and pest and weed infestation; hpx

includes both plot-invariant and variant observed explanatory variables; and F  is a vector of 

parameters to be estimated. 

Linear fixed and random effects regression models are common to apply on equation 

(25). In our case, we did not use a fixed effects model as we had many households with only a 

single plot observation, which could not play a role in a fixed effects analysis. The plot 

demeaning for such observation yielded all zero, which was not used in the estimation. The 

random effects models were consistent only under the assumption that unobserved heterogeneity 

was uncorrelated with the explanatory variables. The estimates are biased (heterogeneity bias) if 

this condition does not hold. To overcome this assumption, we used a Mundlak’s (1978) 

approach. He approximated the unobserved effects ( )hu  by a linear function and included the 

mean value of plot varying explanatory variables as specified below: 

hhh xu NG ,& , )iid(0,~ 2

N@Nh  , (25) 
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where hx  is the mean of plot-varying explanatory variables (cluster mean), G  is the 

corresponding vector coefficients, and hN  are random terms and unrelated to the sx ' .

This approach is particularly important for a non-linear model (e.g., probit model), where 

differencing or the within transformation are not options for removing the individual specific 

effect in non-linear models due to the incidental parameter problem. The Mundlak approach 

relies on the assumption that the individual (unobserved) effects are correlated with the 

explanatory variables linearly. In our case, this approach was most important to capture average 

plot characteristics, such as average plot fertility, soil depth, slope, and conventional inputs use, 

which we assumed had more impact on production and the technology adoption decision. We 

had rich plot-level variables that varied over plot. 

Equation (25) could be readily incorporated in the main regression equation (24) of 

adopters and non-adopters and yielded the following model: 

hphhphp xxy OGF ,,& , where hhphp e NO ,&  . (26) 

The test G =0 showed whether the regressors are correlated with the household fixed 

effects, and, if so, the estimation of the model redefined above allowed us to take this correlation 

into account. 

We used the panel-data sample-selection estimation approach of Wooldridge (1995) to 

estimate the endogenous SR model. The basic idea is to parameterize hu  as an explicit function 

of the explanatory variables, in the fashion proposed by Mundlak (1978), and to add these 

expressions as additional regressors to the main equation. To estimate the inverse mills ratio, 

pooled probit regression was estimated in the first step.12  In the second step, the main equation 

was estimated by pooled ordinary least squares (OLS) regression. Wooldridge showed that 

estimates obtained using this approach are consistent and asymptotically normal. For comparison 

purposes, we also estimated the pooled probit and OLS regression without unobserved effects. 

(We called this the traditional approach.) 

We tried to address the selection bias problem by using different econometrics 

approaches, as mentioned in section 6. In parametric regression, we simultaneously modeled 

both the process of adoption decision and the process of generating yields, using matched 

                                                
12 In the selection equation, the individual effect hu  is replaced by a linear combination of the means of plot-

varying explanatory variables. Including inverse mills ratio as additional regressor in equation (19) becomes an 

endogenous switching regression model.
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observations and inverse mills ratio to control for selection due to observed and unobserved 

characteristics, respectively. In addition, we also used a propensity score matching method that 

included in the log-yield equation factors that affected both the adoption decision and yield. We 

assumed that individuals/plots that are the same in the observable dimension of hpx  or )( hpxp ,

but chose a different level of conservation (adopting and not adopting) which did not differ on 

average in the unobserved dimension. As a result, estimating the effects of conservation using 

matched plots might yield unbiased estimates.  

The selectivity issue could also be captured using the panel nature of our data, as outlined 

above, if selection bias was due to plot invariant unobserved factors (household heterogeneity). 

The unobserved factor could be captured using Mundlak’s (1978) approach in the context of our 

data. The selection problem based on idiosyncratic errors (plot heterogeneity) was addressed as 

much as possible, using observed plot quality characteristics and inputs. We had a rich dataset 

from which to capture plot quality. However, there still could be unobserved variations in plot 

quality that affect productivity and that are correlated with input use or other explanatory 

variables.

5.  Data Sources and Types  

The dataset used in this study was from a farm survey conducted in 1998 and 2000 in the 

Ethiopian highlands (>1500 meters above sea level) in the Tigray and Amhara regions by 

researchers from Mekelle University (Tigray), Bureau of Agriculture (Amhara), the International 

Food Policy Research Institute, and the International Livestock Research Institute. The data 

included household-, village-, and plot-level data.  The Amhara region dataset included 435 farm 

households, 98 villages, 49 kebeles,13 and about 1365 plots after deleting missing observations 

for some variables. The Tigray region dataset included 500 farm households, 100 villages, 50 

kebeles, and 1178 plots. However, using a propensity-score nearest-neighbor matching estimator 

(see section 4) left us with a sample of 387 (232 conserved and 155 non-conserved plots) in 

Amhara and 618 (416 conserved and 202 non-conserved plots) plots in Tigray. (We could not 

compare the pscore and probit models because pscore used all sample observations, but probit 

used matched observations.).  

                                                
13 A kebele, or  neighborhood association, is a small administrative unit of local government. 
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Tables A.1A and A.1T in the appendix present the descriptive statistics by region for all 

samples before and after matching and the sub-samples of conserved and non-conserved plots. In 

Amhara, 17 percent of the sampled plots had stone bunds, versus 37 percent in Tigray. Soil 

bunds were also used in some of the plots, but there were not enough observations to run 

parametric regressions on them. (Also, we believed that these were less permanent structures 

than stone bunds.) The average annual rainfall is 1981 mm in Amhara (we rechecked this figure, 

but saw no difference, given a minimum of 934 mm and maximum of 3389 mm) and 649 mm in 

Tigray. The mean plot altitude, which is associated closely with temperature and micro-climates, 

is 2178 and 2350 meters above sea level for the Tigray and Amhara regions, respectively. [For a 

detailed study of these areas, sampling techniques, and criteria used to select sample areas, 

please see Pender and Gebremedhin (2006) and Benin and Pender (2001).]

6.  Results and Discussion 

This section presents and discuses results obtained from the different estimation 

techniques and procedure discussed above. 

6.1  Propensity-Score Nearest-Neighbor Matching Estimates  

The propensity score (pscore) estimates were not our primary interest and, as a result, we 

did not include these results here. However, results from nearest neighbor method are discussed 

briefly. The propensity score models controlled for the plot and household characteristics are 

available in tables A.2A and A.2T. The balancing property was satisfied for all variables used for 

the computation of the propensity score.  

The matching results reported in tables A.3A and A.3T are estimates of the average 

treatment effect (ATT) on the treated (conservation investment), which in our setting 

corresponded to the average effect on yield of plots from conservation. The outcome variable is 

the log of value of crop production per hectare. Our estimates demonstrated the existence of a 

positive, additional significant log-yield premium for conserved plots, compared to non-

conserved plots in low-rainfall areas (Tigray region) of the Ethiopian highlands. However, we 

could not find any significant differences in yields between conserved and non-conserved plots 

in high-rainfall areas (Amhara region) of the Ethiopian highlands. The mean difference was 

negative and statistically insignificant. 
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6.2  Stochastic Dominance Analysis Estimates 

The estimates of the SDA were based on matched observations to control for impact of 

other inputs on production, apart from stone bunds. Figures 2 and 3 show the cumulative density 

function for yields obtained on conserved and non-conserved plots. As the graph illustrates, the 

yield cumulative distribution with conservation is to the left of the without-conservation yield 

distribution for Tigray, indicating that yield with conservation first order stochastically 

dominated the yield distribution without conservation. The results implied that the chance of 

getting higher yield is higher for plots with conservation than plots without conservation, given 

the same probability. However, we did not see this dominance for the Amhara region dataset. 

These results agreed with the propensity-score nearest-neighbor matching estimates.

6.3  Estimates of the Probit Model

Although our dataset was very rich in information concerning plot-, household-, and 

village-related variables, nothing really prevented the possibility that, even after controlling for 

these characteristics and using matched observations, there might still be some other omitted 

variables responsible for some residual correlation between the error term in the probit model 

and the error term in the yield equations. The objective of probit model was to generate a 

regressor (inverse mills ratio) that took this correlation into account and which would enable us 

to obtain unbiased estimates. 

Tables A.4A and A.4T in the appendix present the parameter estimates of the stone-bund 

adoption decision equation used in the endogenous SR model. The probit models estimates were 

based on matched observations. We presented two sets of results corresponding to a pooled 

probit model using the Mundlak approach and to the standard pooled probit model without the 

Mundlak approach. (We referred to this as the traditional approach, where we did not assume 

any correlation between household fixed effects and regressors.) The probit model results were 

not of primary interest in this paper. As indicated above, we used this model to drive the 

correction factor (inverse mills ratio), and thus did not describe them extensively. There were not 

as many significant parameters as in pscore estimation in each type of specification. This was 

perhaps not a surprising result since, in the probit estimation, we considered a comparable 

sample of plot observations (similar characteristics) obtained from the propensity-score nearest-

neighbor matching method. Once we had comparable sample plots based on plot and household 

characteristics, this sample was likely to be relatively homogeneous with respect to observed 

characteristics.
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When we looked at estimates based on the Mundlak approach, we found that some of the 

coefficients of the mean values were statistically significant. We were also able to reject the null 

hypothesis that all coefficients of the mean values (the vector G ) are simultaneously equal to 

zero.14 This evidence supported the existence of correlation between explanatory variables and 

unobservable household fixed effects. This model was significant compared to the traditional 

random effects model.  

6.4  Switching Regression Estimates 

Tables A.5A and A-6A, and A.5T and A.6T present the linear random effects regression 

estimates of the treatment effect. The linear regression estimates were based on matched 

observations to control for possible bias to the regression estimates induced by observed 

household characteristics, apart from controlling for selection bias introduced by unobservables 

effects. We estimated both exogenous and endogenous switching regression models. In each 

case, the dependent variable in the analysis was the log of value of crop production per hectare. 

We used pooled cross-section OLS regression to estimate the endogenous SR model following 

Wooldridge (1995). The exogenous SR model estimated using correlated random effects models 

(Mundlak approach) and the standard random effects models (traditional approach). When we 

looked at the correlated random effects output, we found that some of the coefficients associated 

with the parameter vector G  were statistically significant. The chi-square test statistics rejected 

the null hypothesis that all coefficients of the mean values are equal to zero for all models (but 

not for model 1 of table A.5A). This confirmed the correlation between explanatory variables 

and unobservable farm-specific effects. We did not report the coefficients of each mean variable 

but they are available on request. The variance of the unobserved effects was also greater than 

zero, which confirmed the appropriateness of the use of random effects estimation instead of 

pooled OLS regressions. 

Our parameter of interest was the mean-yield gap between conserved plots and non-

conserved plots. The impact of each explanatory variable on yield was not of primary interest to 

us, so we did include the impact of each explanatory variable on mean yield.  

                                                
14 The results of mean variables were not reported; instead, we reported the joint significance of these variables to 

conserve space. Results are available from authors on request. 
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The predicted yield values from each regression were used to examine the mean yield gap 

between conserved and non-conserved plots. As indicated in table A.7A, the mean yield 

difference between conserved and non-conserved plots was not statistically significant for the 

Amhara region, although it was positive and statistically significant for the Tigray region in each 

specification.15 This result was in line with the propensity-score nearest-neighbor matching 

estimates and stochastic dominance analysis. 

From the results obtained using the three methods above, it seems that soil and water 

conservation is more productive in low-rainfall areas than in high-rainfall areas, as a result of 

greater benefits of moisture conservation in low-rainfall areas. (In high-rainfall areas, moisture 

conservation can contribute to water logging problems, as well as weeds and pests.) This finding 

is consistent with findings of other studies of conservation impacts in the Ethiopian highlands 

(Herweg 1993; Pender and Gebremedhin 2006; Benin 2006). In high-rainfall areas, moisture 

conservation with physical structures may not be important, but choosing appropriate 

conservation measures and placing them properly (e.g., diversion ditches) could help soil 

protection during extreme rainfall. 

6.5  Variance Regressions 

We followed the same estimation procedure for variance regressions as in yield 

regressions. We estimated the yield variance impact of conservation using a sub-sample of 

farmers who adopted conservation technology and a pooled sample of matched observations—

although pooling adopters and non-adopters was rejected statistically. In each case, the 

dependent variable in the analysis was the square of residuals. Tables A.8A and A.8T, and A.9A 

and A.9T contain the results from the exogenous and endogenous switching variance regression 

models. Although some coefficients of the mean values were significant, the test for joint 

significance turned out to be insignificant in each model. We did not discuss the impact of each 

regressor on variance of yield as we did in yield regression estimates because our primary 

interest was to determine the impact of stone bunds on variance of yield. In each specification, 

the binary and continuous stone-bund indicator variables did not demonstrate that stone bund 

reduced yield variance in both regions. However, in the Amhara region, the binary variable 

                                                
15 The result was robust when potential endogenous regressors included in each specification as well as using 

random effects model for endogenous SR model. Results are available from authors on request. 
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turned out to be significant in the traditional approach (see model 4 of table A.8A). Its 

significance level, however, disappeared when selection due to unobserved effects was 

controlled for. This result should also be interpreted with caution since the impact of binary 

variable on risk was investigated using pooled matched observations (conserved and non-

conserved plots), although the Chow test statistics rejected estimation of pooling both conserved 

and non-conserved plots. 

The normalized second order stochastic dominance (NSOSD) analysis also did not 

support the hypothesis that soil conservation constituted a risk-reducing production strategy, 

compared to the situation without soil conservation (figures 4 and 5). To observe adequately risk 

effects, it may be important to have panel data (repeated observations from the same households 

and plots over time) on the impact of technologies on yield. 

7.  Summary and Conclusion 

The primary objective of this paper was to investigate the effect of stone bunds on mean 

yield and variance of yield using multiple plot observations per household in low- and high-

rainfall areas of the Ethiopian highlands. Our analysis incorporated the propensity score 

matching method, stochastic dominance analysis, and exogenous and endogenous switching 

regression methods. The switching regressions and stochastic dominance analysis were based on 

matched observations obtained from estimation of the propensity-score nearest-neighbor 

matching method. This helped compare plots with conservations measures (conserved) and plots 

without conservation measures (non-conserved) with the same distribution of observed 

characteristics. Unlike the previous studies, in this paper the impact of stone bunds on yield and 

variance of yield estimated controlling for simultaneously possible selection bias to the 

regression estimates, induced by observed and unobserved individual characteristics, using 

matched observations from propensity-score nearest-neighbor matching methods and the control 

function approach in the spirit of Heckman’s two-step approach. We also used the technique 

proposed by Wooldridge to estimate the endogenous switching regression model. In order to 

tackle the issue of potential endogeneity that arises due to the correlation between household 

fixed effects and the explanatory variables, we used Mundlak’s approach, where the unobserved 

effects were parameterized as a linear function of the mean of plot-varying explanatory variables.

The estimates from the three methods tell a consistent story. Stone bunds are productive 

in low-rainfall areas, compared to high-rainfall areas. We found statistically significant and 

positive impact of stone bunds in low-rainfall areas. However, this impact was not observed in 
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high-rainfall areas. These results were consistent across methods and specifications. In addition 

to the productivity characteristics of stone bunds, their contribution to production risk is 

important in explaining their use by farm households. The results indicated that stone bunds have 

no statistically significant impact on reducing production risk in either setting, low- or high-

rainfall areas. This result was robust to different methods and specifications. 

Our findings have the following implications. First, the productivity impact of stone 

bunds is agro-ecology-specific. This highlights the importance of developing and disseminating 

agro-ecology-specific soil conservation technologies to increase agricultural productivity, instead 

of blanket recommendations of similar conservation measures. For instance, in high-rainfall 

areas, moisture conservation using physical structures may not be important, but choosing and 

properly placing appropriate conservation measures (e.g., diversion ditches) could help protect 

soil during extreme rainfall. Second, the risk-reducing benefits of stone bunds are insignificant. 

This may affect the willingness of risk-averse farmers to make conservation investments, 

especially when yield improvements due to conservation occur in the future—i.e., with some 

delay—and returns are often negative in the short run. However, to make a robust conclusion on 

the impact of stone bunds on risk, we suggest further research based on a time-series, cross-

sectional household survey because single-cross-sectional survey data may not clearly show 

yield variability. 
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Appendices

Figures

Figures 2–5 

Figure 2. Impact of stone bunds on Crop yield in Tigray 

region
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Figure 3. Impact of stone bunds on crop yield in Amhara region
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Figure 5. Impact of stone bunds on yeild variability in Amhara 

region
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Figure 4. Impact of stone bunds on yield variability in Tigray 

Region
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Tables

Table A.1A     Descriptive Statistics of Variables for the Amhara Region 

Variables
Mean 1 

(std. error)
Mean 2 

(std. error)
Mean 3 

(std. error)
Mean 4 

(std. error)

Value of crop production per 
hectare          

636.029 

(632.525)      

620.771  

(522.673)        

594.331 

(443.078)        

660.345 

(622.603)       

Male household head                0.954          0.974          0.983          0.961 

Family size (total number of 
members)                      

6.802

(2.563)

6.571

(2.262)            

6.591

(2.156)            

6.542

(2.418)          

Age of household head 
(years)              

44.689 

(12.340)       

46.711 

(12.224)          

47.151  

(12.183)          

46.052 

(12.295)         

Livestock holding in TLU            
2.918

(2.391)

2.391

(1.777)            

2.332

(1.774)

2.479

(1.783)          

Education level (years)              
2.614

(3.378)

2.602

(3.258)            

2.603

(3.186)            

2.600

(3.372)          

Total farm land holding 
(hectares)            

1.766

(1.235)

1.389

(0.734)            

1.393

(0.717)            

1.382

(0.761)

Credit access                             0.445          0.388          0.384          0.394 

Extension frequency contact      
1.707

(1.522)

1.938

(1.536)            

1.957

(1.511)            

1.910

(1.576)          

Participation in off-farm 
activity  

0.261          0.305          0.306          0.303 

Plot size (hectares)                    
0.386

(0.351)

0.416

(0.270)            

0.431

(0.276)            

0.393

(0.260)

Plot slope (degree)                    
5.547

(5.964)              

8.114

(6.947)

8.034

(5.609)            

8.232

(8.589)

Black soil plots                          0.310          0.354          0.358          0.348

Brown soil plots                          0.274          0.333          0.362          0.290 

Gray soil plots                           0.070          0.106          0.086          0.135

Deep soil plots                           0.237          0.150          0.138          0.168 

Medium soil plots                      0.538          0.587          0.591          0.581

Moderately eroded plots            0.315          0.530          0.556          0.490 

Severely eroded plots                0.095          0.119          0.108          0.135

Clay soil plots                          0.122          0.070          0.078          0.058 

Loam soil plots                          0.431          0.372          0.362          0.387

Sandy soil plots                         0.118          0.150          0.147          0.155 
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Variables
Mean 1 

(std. error)
Mean 2 

(std. error)
Mean 3 

(std. error)
Mean 4 

(std. error)

High fertile plots                        0.104          0.041          0.039          0.045

Medium fertile plots                    0.697          0.724          0.724          0.723 

Plots in middle slope position    0.273          0.432          0.422          0.445

Plots in bottom slope position    0.147          0.196          0.207          0.181 

Plots not on slope  0.440          0.189          0.181          0.200

Waterlogged plots                      0.109          0.111          0.095          0.135 

Gully plots                               0.048          0.057          0.052          0.065

Altitude (m.a.s.l.)  2350.388       2409.912       2377.013       2459.155 

Plot distance to residence 
(minutes)

17.026         15.729         15.233         16.471 

Plot distance to main road 
(minutes)

143.274        172.437        173.534        170.794 

Plot distance to market 
(minutes)

78.438         85.817         86.224         85.206 

Population density per km
2
        0.429          0.457          0.456          0.460 

Annual rain fall (mm)                  
1981.108  

(594.800)  

1920.181  

(654.720)        

1851.093 

(601.234)        

2023.591 

717.115)      

Fertilizer use (kg per hectare  
32.940  

(71.240)       

20.512  

(54.305)          

14.769 

(40.470)          

29.107 

(69.360)       

Seed use (kg per hectare)         
40.379 

(171.389)            

55.448 

(283.770)        

61.738 

(347.515) 

46.033 

(143.310) 

Labor use (man-days per 
hectare)                

33.303  

(39.974)       

31.620  

(31.052)          

33.274  

(31.038)        

29.145 

(31.008)        

Rented-in plots                           0.108          0.057          0.052          0.065

Improved seed use dummy       0.091          0.059          0.043          0.084 

Reduced tillage plots                 0.146          0.266          0.284          0.239

N                                                1365 387 232 155 

Notes:   Standard errors for dummy variables were not reported. 

m.a.s.l = meters above sea level 

TLU = tropical livestock units 

Mean 1 = Refers to mean and standard errors (se) of variables from total sample before matching 

Mean 2= Refers to mean and se of variables from matched sample (after matching) 

Mean 3 = Refers to mean and se of variables with conservation of matched sample 

Mean 4 = Refers to mean and se of variables without conservation of matched sample 
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Table A.1T     Descriptive Statistics of Variables for the Tigray Region 

Variables
Mean 1 

(std. error)
Mean 2 

(std. error)
Mean 3 

(std. error)
Mean 4 

(std. error)

Value of crop production per 
hectare

1774.252  

(2372.698)      

1546.902   

 (616.026) 

1634.152 

(1682.932)      

1367.216 

(1456.234) 

Plots in middle slope position    0.219             0.278 0.305             0.223 

Plots in bottom slope position    0.238             0.265 0.262             0.272

Plots not on slope  0.430             0.311             0.274             0.386 

Gently sloped plots                    0.304             0.382             0.409             0.327

Steeply sloped plots                   0.089             0.128 0.147             0.089 

Deep soil plots                           0.372             0.367 0.356             0.391

Medium soil plots                       0.421             0.477             0.493             0.446 

Brown soil plots                          0.142             0.172             0.188              0.139

Gray soil plots                           0.226             0.257             0.252             0.267 

Red soil plots                            0.393             0.387             0.382             0.396

Loam soil plots                          0.353             0.413             0.416             0.406 

Clay soil plots                          0.314             0.299 0.308             0.282

Sandy soil plots                         0.102             0.121 0.113             0.139 

Moderately eroded plots            0.285             0.332             0.358             0.277

Severely eroded plots                0.066             0.095             0.101             0.084 

Stone-covered plot                     0.236             0.322             0.351             0.262

Mildly waterlogged plots            0.083             0.070             0.065             0.079 

Severely waterlogged plots        0.030             0.019             0.019             0.020

Fenced plots                              0.048             0.052             0.060             0.035 

Gully plots                               0.035             0.042             0.046             0.035

Plot distance from residence 
(hours)

0.315             0.292             0.275             0.326 

Improved seed plots                  0.045             0.045             0.053             0.030

Rented-in plots                           0.157             0.113             0.106             0.129 

Reduced tillage plots                 0.125             0.126             0.137             0.104

Burning-to-prepare plots            0.094             0.118             0.115             0.124 

Mixed / intercropped plots          0.139             0.152             0.161             0.134

Irrigated plots                           0.037             0.011             0.010             0.015 

Participation in off-farm 
activity  

0.265             0.275             0.293             0.238

Credit access                             0.711             0.736             0.736             0.738 

Member of rural institutions       0.170             0.181             0.192             0.158 
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Variables
Mean 1 

(std. error)
Mean 2 

(std. error)
Mean 3 

(std. error)
Mean 4 

(std. error)

Extension contact                      0.177             0.181             0.195             0.153

Distance to market (hours)        2.843             3.077           3.126             2.976 

Male household head                
0.900

(12.765)         

0.896

(12.422)          

0.909

(12.182)         

0.871

(12.868)            

Household size (total number 
of  family members)                  

5.961

(2.052)          

6.061

  (1.990)          

6.091

(1.988)           

6.000

(1.998)          

Education of household head 
(1–2 grade)   

0.081             0.091             0.094             0.084

Education of household head 
(3+ grade)    

0.063             0.053             0.050             0.059 

Oxen (number)                    
1.410

(.917)              

1.341

(0.874)            

1.320

(0.876)           

1.386

(0.869)           

Other cattle (number)                 
3.585

(.686)           

3.275

(.525)              

3.221

(3.514)           

3.386

(3.553)             

Small ruminant (number)           
5.868

(9.105)          

5.531

 (8.851)          

5.750

 (8.796)          

5.079

(8.970)             

Pack animals (number)              
0.979               
(1.459)          

0.914

(1.467)            

0.923

(1.492)            

0.896

(1.419)            

Radio in household 0.190             0.194             0.197             0.188

Household savings                    0.546             0.510             0.519             0.490 

Total own farm size                    
1.067

(0.828)            

1.077

(.921)              

1.072

(1.018)           

1.087

(0.683)           

Fertilizer use (kg per hectare)    
41.187  

(95.395)        

40.449    

(103.343)        

44.300    

(112.555)       

32.518 

(80.825)            

Seed use (kg per hectare)         
154.500 

(238.414)        

125.886  

(144.042)        

125.897  

(139.368)        

125.864 

(153.580)            

Altitude (m.a.s.l.)                     
2177.611 

(340.992)        

2166.701 

(332.611)        

2176.334 

(322.351)        

2146.861 

(352.800)           

Annual rain fall (mm) 
649.318 

(101.677)        

654.642 

(98.960)          

655.720 

(95.712)          

652.422 

(105.545)            

Population density per km
2
        

140.609 

(68.925)          

147.480 

(72.718)          

150.410 

(74.535)          

141.447 

(68.611)            

N                                                1019 618 416 202

Mean 1 = Refers to mean and standard errors (se) of variables from total sample before matching 

Mean 2= Refers to mean and se of variables from matched sample (after matching) 

Mean 3 = Refers to mean and se of variables with conservation of matched sample 

Mean 4 = Refers to mean and se of variables without conservation of matched sample 

Note:  We did not report standard errors for dummy variables. 

m.a.s.l. = meters above sea level
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Table A.2A     Propensity Score Estimates of Stone Bunds Adoption in 
                       Amhara Region 

Explanatory variables
Coefficients 
(std. error)

 Explanatory variables
Coefficients 
(std. error)

Plot slope (degree)                  
0.024

(0.008)*** 
Reduced tillage plots           

0.229

(0.124)*   

Black soil plots                        
0.285

(0.135)** 
Male household head          

0.726

(0.296)** 

Brown soil plots                       
0.253

(0.133)*   

Ln (total number of family 
members)          

-0.153

(0.142)

Gray soil plots                         
0.275

(0.191)

Ln (age of household 
head)                    

0.666

(0.208)*** 

Deep soil plots                         
-0.026

(0.168)

Livestock holding (in 
TLU)                 

-0.062

(0.027)** 

Medium-deep soil plots           
0.115

(0.128)
Education level (years)       

0.012

(0.015)

Moderately eroded plots          
0.571

(0.108)*** 

Ln (total farm size in 
hectares)                

-0.444

(0.122)*** 

Severely eroded plots             
0.056

(0.177)
Ln (plot altitude in m.a.s.l)

0.279

(0.345)

Clay soil plots                         
-0.286

(0.184)
Ln (population density)        

0.029

(0.085)

Loam soil plots                        
-0.141

(0.112)

Off-farm activity 
participation           

0.027

(0.114)

Sandy soil plots                       
-0.146

(0.152)
Credit access                      

0.096

(0.104)

High fertile plots                      
-0.249

(0.242)

Extension frequency 
contact               

0.114

(0.033)*** 

Medium fertile plots                 
0.133

(0.130)
Ln (rainfall in mm)               

-1.025

(0.211)*** 

Plot distance to residence   
-0.004

(0.002)
Irrigated plots                      

-0.695

(0.303)** 

Plot distance to market     
0.001

(0.001)*   

Plot in bottom slope 
position            

-0.030

(0.164)

Plot distance to main road  
0.001

(0.000)** 
Plot not on slope  

-.472

(0.157)*** 

Ln (plot size in hectares)         
0.249

(0.170)
Waterlogged plots               

0.087

(0.156)
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Explanatory variables
Coefficients 
(std. error)

 Explanatory variables
Coefficients 
(std. error)

Plot in middle slope position    
0.016

(0.142)
Gully plots                           

-0.162

(0.227)

Rented-in plots                        
-0.210

(0.196)
Square of log of plot area    

-0.086

(0.061)

LR chi2     312.366***  Constant                             
1.524

(2.191)

Pseudo R2                              0.2545 N                                         1320    

Notes:  p<0.10, ** p<0.05, *** p<0.01 

m.a.s.l. = meters above sea level 

TLU = tropical livestock units
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Table A.2T     Propensity Score Estimates of Stone Bunds  
                       Adoption in the Tigray Region 

Explanatory 
variables

Coefficients 
(std. error)

 Explanatory 
variables

Coefficients 
(std. error)

Male household head    
0.102

(0.165)
Brown soil plots         

0.188

(0.193)

Ln (household head 
age)             

0.379

(0.165)** 
Gray soil plots            

0.051

(0.191)

Ln (total number of 
family members)            

0.223

(0.120)*   
Red soil plots             

-0.227

(0.181)

Education grade (1–2)   
0.142

(0.179)
Loam soil plots          

0.213

(0.181)

Education grade (3+)     
-0.114

(0.204)
Clay soil plots            

0.247

(0.184)

Oxen (number)            
-0.070

(0.058)
Sandy soil plots         

0.474

(0.221)** 

Other cattle (number)
-0.015

(0.017)

Moderately eroded 
plots            

0.104

(0.108)

Small ruminants 
(number)                    

-0.002

(0.005)

Severely eroded 
plots              

0.246

(0.195)

Pack animals 
(number)                    

0.006

(0.040)
Stone-covered plot    

0.390

(0.113)*** 

Radio in household       
0.094

(0.129)

Mildly waterlogged 
plots             

0.007

(0.170)

Household savings        
0.011

(0.103)

Severely 
waterlogged plots      

-0.194

(0.292)

Ln (rainfall in mm)         
1.110

(0.347)*** 

Plot distance from 
residence (hours?) 

-0.581

(0.135)*** 

Ln (altitude in m.a.s.l.)   
0.627

(0.366)*   
Distance to market  

0.058

(0.024)**   

Ln (population 
density)             

0.298

(0.110)*** 
Gully plots                  

0.173

(0.252)

Total own farm size       
-0.080

(0.059)
Rented-in plots          

-0.400

(0.134)*** 

Ln (plot size in 
hectares)                

0.386

(0.062)*** 

Participation in off-
farm activity  

0.171

(0.108)

Plots in middle slope 
position             

-0.095

(0.169)
Credit access             

0.079

(0.107)
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Explanatory 
variables

Coefficients 

(std. error)

 Explanatory 
variables

Coefficients 

(std. error)

Plots in bottom slope 
position             

-0.175

(0.168)

Member of rural 
institutions        

0.175

(0.132)

Plots not on slope          
-0.499

(0.168)*** 
Extension contact      

0.091

(0.130)

Deep soil plots               
0.133

(0.128)

Reduced tillage 
plots              

0.048

(0.146)

Medium soil plots          
0.272

(0.130)** 
Irrigated plots             

-0.704

(0.347)** 

Gently sloped plots        
0.280

(0.128)** 
Constant                    

-15.155 

(3.943)*** 

Steeply sloped plots      
0.345

(0.192)*   
LR chi2                      

278.892***    

Notes:  p<0.10, ** p<0.05, *** p<0.01 

m.a.s.l. = meters above sea level

                        

Table A.3A     Propensity-Score Nearest-Neighbor Matching Estimates of 
                      the Effects of Stone Bunds on Crop Yield in the Amhara Region 

N. conserved plots N. without conserved plots ATT Standard error t 

232 155 -0.084 0.110 -0.758 

Note: the numbers of treated (conserved) and controls (non-conserved) refer to actual nearest  
neighbor matches. Matched variables are indicated in table A.2A.

   

Table A.3T     Propensity-Score Nearest-Neighbor Matching Estimates of the 
                       Effects of Stone Bunds on Crop Yield in the Tigray Region

N. conserved plots N. without conserved plots ATT Standard error t 

416 202 0.355 0.100 3.555 

Note: the numbers of treated (conserved) and controls (non-conserved) refer to actual nearest 
neighbor matches. Matched variables are indicated in table A.2T.
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Table A.4A     Pooled Probit Estimates of Determinants of Stone Bunds Adoption 
                        in the Amhara Region

Explanatory 
variables

With 
Mundlak 
approach

 Without 
Mundlak 
approach

Explanatory 
variables 

With 
Mundlak 
approach 

Without 
Mundlak 
approach 

Plot distance to 
market                  

-0.004

(0.006)          

0.001

(0.001)

Ln (plot size in 
hectares)                   

0.052

(0.174)          

0.159

(0.125)

Plot distance to 
main road

-0.002

(0.004)          

0.000

(0.000)

Plot in middle slope 
position            

-0.278

(0.262)          

-0.119

(0.191)

Plot slope 
(degree) 

0.001

(0.019)          

-0.002

(0.012)

Plot in bottom 
slope position            

-0.308

(0.312)

-0.039

(0.222)

Black soil plots         
-0.188

(0.236)          

0.108

(0.188)
Plot not on  slope  

-0.124

(0.322)          

-0.071

(0.232)

Brown soil plots        
-0.124

(0.273)          

0.179

(0.199)
Waterlogged plots     

0.109

(0.308)          

-0.169

(0.243)

Gray soil plots          
-0.870

(0.330)***     

-0.293

(0.249)
Gully plots                 

0.051

(0.358)          

-0.142

(0.320)

Deep soil plots         
-0.071

(0.314)          

-0.236

(0.235)
Ln (rainfall in mm)     

-0.656

(0.343)*        

-0.494

(0.300)*   

Medium soil plots     
-0.094

(0.248)          

-0.066

(0.176)

Male household 
head                       

0.603

(0.642)          

0.571

(0.553)

Moderately eroded 
plots                  

-0.013

(0.213)          

0.174

(0.157)

Ln (total number of 
family members)       

-0.033

(0.216)          

-0.029

(0.200)

Severely eroded 
plots                     

0.013

(0.321)          

0.070

(0.257)

Ln (household 
head age)                  

0.397

(0.307)          

0.277

(0.288)

Clay soil plots           
-0.328

(0.362)          

0.230

(0.274)
Livestock (in TLU)     

0.003

(0.048)          

-0.031

(0.045)

Sandy soil plots        
-0.717

(0.303)**       

-0.051

(0.208)

Education level 
(continuous)            

0.017

(0.023)          

0.009

(0.022)

High fertile plots       
0.286

(0.488)          

-0.095

(0.369)

Ln (total farm size 
in hectares)               

-0.109

(0.211)          

-0.076

(0.167)

Medium fertile 
plots                      

0.205

(0.273)          

0.005

(0.188)

Ln (plot altitude in 
m.a.s.l.)                

-0.091

(1.254)          

-0.150

(0.468)

Plot distance to 
residence  

0.002

(0.005)          

-0.001

(0.004)

Ln (population 
density)                   

-0.157

(0.165)          

-0.079

(0.145)
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Explanatory 
variables

With 
Mundlak 
approach

Without 
Mundlak 
approach

Explanatory 
variables 

With 
Mundlak 
approach 

Without 
Mundlak 
approach 

Constant                  
2.443

(3.291)          

3.654

(2.953)

Model test 
(Wald chi2)                

77.748**       25.743    

Pseudo R2               0.1180          0.0400  N                               387 387 

Joint hypothesis 
test for signifi-
cance of mean 
values [chi2]       

44.06*** 

Notes:  p<0.10, ** p<0.05, *** p<0.01 

Figures in parentheses are standard errors. 

m.a.s.l. = meters above sea level 

TLU = tropical livestock units
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Table A.4T     Pooled Probit Estimates of Adoption of Stone Bunds in the Tigray 
                       Region    

Explanatory 
variables

With 
Mundlak 
approach

Without 
Mundlak 
approach

Explanatory 
variables

With 
Mundlak 
approach

Without 
Mundlak 
approach

Ln (plot size in 
hectares)                    

0.256

(0.098)***        

0.143

(0.078)*   
Distance to market  

0.012

(0.033)            

0.031

(0.034)

Plots in middle slope 
position                   

0.130

(0.238)            

-0.013

(0.188)

Male household 
head                     

0.212

(0.225)            

0.264

(0.208)

Plots in bottom slope 
position                   

0.063

(0.236)            

-0.092

(0.187)

Ln (household 
head age)                 

0.295

(0.226)            

0.305

(0.218)

Plots not on slope  
-0.200

(0.273)            

-0.200

(0.191)

Ln (total number of 
family members)       

0.058

(0.165)            

0.046

(0.158)

Deep soil plots             
-0.191

(0.183)            

-0.055

(0.162)

Education of 
household (1–2 
grade)     

0.219

(0.225)            

0.144

(0.211)

Medium soil plots         
-0.273

(0.184)            

0.040

(0.168)

 Education of 
household (3+ 
grade)     

-0.071

(0.278)            

-0.210

(0.269)

Gently sloped plot        
0.101

(0.203)            

0.190

(0.143)
Oxen (number)  

-0.015

(0.074)            

-0.072

(0.071)

Steeply sloped plot      
0.255

(0.289)            

0.249

(0.224)

 Other cattle 

(number)

-0.007

(0.021)            

-0.007

(0.020)

Brown soil plots           
-0.013

(0.319)            

0.212

(0.224)

Small ruminant 
(number)                   

0.003

(0.008)            

0.006

(0.008)

Gray soil plots              
-0.242

(0.332)            

0.055

(0.204)

Pack animals  
(number)                   

-0.023

(0.048)            

0.000

 (0.048)

Red soil plots               
-0.309

(0.286)            

-0.049

(0.183)

Radio in 
household 

-0.036

(0.168)            

0.052

(0.160)

Loam soil plots            
-0.374

(0.261)            

-0.115

(0.212)
Household savings 

0.050

(0.152)            

0.095

(0.137)

Clay soil plots              
0.058

(0.317)            

0.036

(0.223)
Ln (rainfall in mm)

0.431

(0.544)            

0.475

(0.514)

Sandy soil plots           
0.021

(0.377)            

-0.096

(0.252)

Ln (plot altitude in 
m.a.s.l.)                  

0.683

(0.534)            

0.527

(0.508)

Moderately eroded 
plots                

-0.099

(0.172)            

0.081

(0.125)

Ln (population 
density)                  

0.117

(0.160)            

0.163

(0.148)

Severely eroded 
plots                  

-0.193

(0.311)            

0.014

(0.216)

Total own farm 
size                    

-0.041

(0.072)            

-0.023

(0.073)
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Explanatory 
variables        

With 
Mundlak 
approach       

Without 
Mundlak 
approach   

Explanatory 
variables        

With 
Mundlak 
approach       

Without 
Mundlak 
approach   

Stone-covered plot      
-0.321

(0.211)            

0.164

(0.133)
Gully plots                

0.124

(0.296)            

0.189

(0.284)

Mildly waterlogged 
plots                 

-0.477

(0.275)*           

0.005

(0.214)

Plot distance from 
residence  

-0.486

(0.208)**         

-0.328

(0.163)** 

Severely 
waterlogged plots        

-0.169

(0.455)            

0.013

(0.377)
Wald chi2                 116.237***      44.223    

Constant                      
-10.358  

(6.034)*           

-8.758

(5.586)
Pseudo R2              0.1111             0.0521 

N                                  618                  618

Joint hypothesis test 
for significance of 
of mean values 
(chi2)            

51.99***      

Notes:  * p<0.10, ** p<0.05, *** p<0.01 

Figures in parentheses are standard errors. 


