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‘’Make everything as simple as possible but not simpler’’ 

Albert Einstein 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

 



5 
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ABSTRACT 

Intestinal preservation-reperfusion injury may result in various degrees of mucosal 
injury. Interestingly, the preservation injury is similar when using the current 
preservation solutions, which are given as a intravascular flush. An extensive 
mucosal injury may ultimately preclude the use of organs that require longer 
preservation time. The intestine lacks a noninvasive rejection marker, as in the case 
of liver or kidney transplantation. Several bio-molecules have been suggested as 
biomarkers, yet their specificity is only partial. 
Methods: Using a rat intestinal transplant model we studied the pharmacologic 
donor preconditioning and the intraluminal preservation with two different 
macromolecular solutions as means to decrease the intestinal preservation-
reperfusion injury. We also investigated the impact of donor preconditioning on the 
ensuing systemic inflammatory response after transplantation.  We analyzed 
resistin levels after clinical intestinal transplantation and seek to establish its 
significance and potential as rejection marker.  
Results: Intraluminal introduction of low-sodium macromolecular solutions 
resulted in improved morphology after 8h and 14h of preservation compared with 
controls receiving only vascular flush with UW-solution. Moreover, intraluminal 
high-sodium solutions appear detrimental. These solutions also seem to influence 
differently the TJ conformation during preservation and de-localization of claudin-3 
and ZO-1 was more prominent in intraluminal high-sodium solutions.  
Following transplantation, pretreated grafts showed accelerated repair and 
improved morphology. Pretreated grafts revealed reduced NF-kappaB activation 
after reperfusion and subsequently blunted ICAM-1 expression and PMN 
sequestration. Pretreated graft recipients had milder liver injury and lower levels of 
the pro-inflammatory cytokines TNF-alpha, IL-1beta and IL-6 than recipients of 
untreated grafts. 
Resistin levels were studied in seven patients receiving intestinal grafts. Resistin 
increased in all patients compared with controls and remained increased even 
during uneventful course. Resistin did not correlate with CRP, BMI, procalcitonin or 
WBC and it varied greatly between patients.  
Conclusions: Preservation-reperfusion injury may be mitigated by the intraluminal 
introduction of macromolecular solutions or by donor pretreatment with Tacrolimus 
before graft harvesting. Tacrolimus-pretreated grafts trigger a lower remote organ 
injury and lower systemic inflammatory response. Plasma resistin levels greatly and 
were  increased in all patients. However, the increase was unspecific and varied 
between individuals. Resistin appears unsuitable as rejection marker after 
intestinal transplantation. 

Keywords: intestinal preservation, ischemia-reperfusion injury, tight junction, 
tacrolimus, resistin. 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 
Tarmen är det organ som transplanteras mest sällan, delvis pga ett välfungerande 
alternativ i form av näringsdropp delvis pga allvariga komplikationer såsom 
avstötning eller infektioner som inte sällan leder till döden. Många av dessa 
komplikationer uppkommer som följd av en skadad tarmslemhinna. Slemhinnans 
integritet är viktigt för de två huvudfunktionerna. Dessa är upptagning av 
näringsämne från tarmen och barriärfunktionen, dvs att förhindra bakterierna som 
normalt finns i tarmen att ta sig till blodet och ge upphov till livshotande 
infektioner. En av de viktigaste moment när signifikant slemhinneskada 
förekommer är under och strax efter preservationstiden, dvs mellan uttaget från 
organdonatorn tills blodet släpps på genom transplantatet i mottagaren.  Under 
preservationen förvaras organet i ett speciellt isbad efter har blivit genomspolat med 
speciella lösningar. Den låga temperaturen minskar ämnesomsättningen och 
fördröjer, men hindrar inte utvecklingen av skador under tiden organet måste 
förvaras fram till transplantationen.  

I denna avhandlig har jag studerat två metoder att minska preservationskadan och 
dess effekter efter tarmtransplantation. Den ena metoden var att fylla tarmen med 
två olika lösningar som huvudsakligen skiljer sig endast genom Natrium innehållet. 
Lösningarna är kommersiellt tillgängliga och består egentligen av de 
tarmrengöringspreparat som används rutinmässig idag. Vi har upptäckt att 
införseln av lösningar med lågt natrium innehåll kan fördröja utvecklingen av 
slemhinneskada. Däremot kan högt Natrium innehåll kan innebära 
vätskeansamlingen i vävnaden och därmed vara skadlig.  

Den andra metoden som jag har beskrivit var att framkalla skyddande proteiner i 
transplantatet genom en enkel behandling av tarmdonatorn. Läkemedlet som jag 
har studerat redan används inom transplantation, men ges vanligtvis till 
mottagaren.  

Behandlingen visade en starkt skyddande effekt, förbättrad vävnadsarkitektur och 
även stimulerande effekter på vävnadsreparationen. Samtidigt upptäckte jag  att 
behandlingen blockerar utsöndringen av vissa molekyler och faktorer som i ett 
senare skede även kan stimulera inflammation, som i sin tur kan framkalla 
organsvikt.  

Efter tarmtransplantation är man idag tvungen att ta vävnadsprover för att  
diagnosticera förekomsten av avstötning, eftersom det inte finns blodprov som kan 
hjälpa ställa diagnosen, såsom vid njur- eller levertransplantation. Jag har studerat 
om ett visst protein (resistin), som visade sig öka i blodet på patienter med skov av 
inflammatorisk tarmsjukdom, kan användas som avstötningsmarkör. Jag har 
analyserat patientprover och har upptäckt att proteinet resistin ökar som förväntat, 
men detta sker även vid andra sammanhang såsom allvarliga infektioner. Detta 
begränsar det diagnostiska värdet av resistin, men fyndet är mycket intressant och 
kan leda till en bättre förståelse av detta proteins egentliga roll i samband med 
andra sjukdomar. 
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INTRODUCTION 
The ischemic injury remains a major hurdle for a broader clinical application of the 

intestinal transplantation, since it may give rise to life-threatening infectious 

complications and triggers an intense systemic inflammatory response. The thesis 

explores two different experimental approaches intended to mitigate the 

preservation/reperfusion injury. Finally, the time-course and the significance of 

resistin after clinical intestinal transplantation is analysed. 

 

HISTORY OF INTESTINAL TRANSPLANTATION – A WORK IN PROGRESS 

Although not described in detail, the first transplantation of intestinal segments in 

dogs has been reported by Alexis Carrel in the early 1900s. Experimental work was 

re-initiated in the mid-1950s by Richard Lillehei from the University of Minnesota, 

particularly focusing on intestinal preservation and the surgical technique [1, 2]. 

The confidence regarding the technical feasibility, together with the wave of 

transplantation optimism in the early ’60s, owing to several newly available 

immunosuppressants (steroids, azathioprine) led to the first clinical attempt in 

1967 by Lillehei [3]. Alas, this was followed by fierce rejection, sepsis and patient 

death within 3 weeks.  Other sporadic cases were followed by similar catastrophic 

results and intestinal transplantation virtually ceased over 1970s and ‘80s. 

Fortunately, the introduction of total parenteral nutrition (TPN) provided a salutary 

alternative for the patients with short bowel syndrome (SBS), representing the main 

patient population candidate for intestinal transplantation [4]. 

The advent of cyclosporine in the early 1980 renewed the interest for intestinal 

transplantation.  The efficient immunosuppression and accumulating experience 

from transplanting other organs allowed the teams of Eberhard Deltz from Kiel, 

David Grant from London (Canada) and Olivier Goulet in Paris to achieve long term 

survival following combined or isolated intestinal transplantation (1989) [5-7].  

These initial successes were later taken over, expanded and consolidated at the 

University of Pittsburgh during the 1990s [8, 9]. Refined surgical techniques and 

immunosuppressive regimens as well as protocols for patient selection and 

management were implemented, finally leading to continuously improving results 

and increasing frequency of the procedure [10-12].  As of 2009, intestinal 

transplantation has been performed in about eighty transplant units worldwide.  
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However, fewer than thirty centers currently perform intestinal transplantations 

routinely (David Grant, Intestinal Transplant Registry report, Bologna 2009). 

The first two transplantations including a substantial part of the intestine in 

Sweden and in the Nordic countries were performed as cluster procedures in 

Gothenburg already in 1990. One patient survived for 11 months, while the other 

patient died at the time of surgery. A year later, the first transplantation of an 

isolated intestinal segment was attempted in a child by Staffan Meurling in 

Uppsala, but unfortunately, the recipient succumbed due to rejection and sepsis 

fifty days later. A second unsuccessful attempt was performed in Stockholm shortly 

thereafter. The first successful transplantation of an isolated intestine has been 

performed in Gothenburg by a team led by Gustaf Herlenius in 2007. The first 

combined liver-intestinal transplantation was performed in 2001 by Michael 

Olausson and Gustaf Herlenius while the first successful multivisceral 

transplantation has been performed already in the year 1998 by Michael Olausson, 

at the transplant unit in Gothenburg, Sweden [13]. 

 

INDICATIONS, SURGICAL TECHNIQUES AND RESULTS 

Parenteral nutrition has achieved extended success for the majority of patients 

requiring prolonged treatment, however, complications leading to failure of TPN 

increase with the duration of therapy. These complications range from frequent 

infectious complications originating from the catheter or progressive 

thrombocytopenia to loss of venous access due to repeated thrombosis and 

cholestatic liver disease with or without portal hypertension [14, 15]. Intestinal 

transplantation is therefore considered in irreversible intestinal failure (IIF) patients 

with impending liver failure and frequent catheter-related septic complications, 

including vanishing central venous access [16-18]. 

Irreversible intestinal failure, the permanent reduction in the functional intestinal 

mass has different etiology in adult and pediatric population. Short bowel syndrome 

(SBS), whether congenital, functional or surgical is the main cause for IIF. In 

children, the main indication for intestinal transplantation is SBS after neonatal 

abdominal catastrophes, leading to massive intestinal loss (gastroschisis, 

necrotizing enterocolitis, volvulus)[19, 20]. Another group of indications are the 

intestinal functional diseases (microvillus inclusion disease, malabsorbtion, 

secretory diarrhea) or motility disorders (Hirschprung disease, pseudoobstruction). 
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In adults, massive intestinal loss is consecutive mainly to Crohn’s disease, ischemia 

and trauma. Certain gastrointestinal tumors requiring extensive intestinal 

resections as well as radiation enteritis are also among the causes behind IIF/SBS 

in adults [19, 21]. 

As briefly mentioned above, the intestine may be transplanted using three different 

approaches, namely as an isolated intestinal segment, together with the liver  in the 

presence of liver failure (combined liver-intestinal transplantation) or as part of a 

composite graft that may contain other viscera (multivisceral transplantation) [22, 

23]. When performing an isolated intestinal transplant the arterial inflow is 

achieved by anastomosing the graft’s superior mesenteric artery (either directly or 

through arterial grafts) to the recipient aorta. The venous drainage is performed 

either directly into the inferior vena cava (systemic drainage) or by anastomosing 

the graft’s  portal vein to a branch of the  recipient portal vein, usually the superior 

mesenteric vein (portal drainage), with similar metabolic  results.  During combined 

liver-intestine and multivisceral transplantations, the continuity of the portal axis is 

maintained and the hepato-intestinal graft is drained through the liver veins [22, 

24, 25]. At the end of the transplantation, an ileostomy (terminal or lateral) is 

always performed to allow for the intestinal endoscopies, essential for rejection 

monitoring. 

According to the latest Small Bowel Transplant Registry report (Bologna, September 

2009), 2291 intestinal transplants have been performed in 2061 patients at 86 

centers worldwide.  Results are continuously improving due to increased expertise 

as well as refined patient selection and posttransplant management.  Several 

analysis performed on this material found that results are dependent on 

pretransplant patient status (hospitalized vs. waiting at home), the inclusion of the 

liver into the graft and center volume (at least ten cases performed in total)[19]. 

Currently, one year survival rate is around 75% and five year survival rate is just 

above 50%, with the longest surviving patient now twenty years after 

transplantation. The main causes of patient loss are the infectious complications 

(≈50%), followed by rejection (≈ 10%) [26, 27]. 
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OBSTACLES, COMPLICATIONS AND SPECIAL ISSUES IN INTESTINAL 
TRANSPLANTATION 

The limited number of intestinal transplants performed to date compared with other 

transplantable organs explains the complexity of the procedure. The transplant 

candidates are often malnourished, with frequent hospitalizations, sometimes 

presenting with growth retardation. The very long and technically challenging 

surgical procedure frequently takes place in a scarred abdomen with extensive 

adhesions and fistulae following previous abdominal surgery. Several unique issues 

further complicate the management of intestinal graft recipients. 

 

HIGH INTESTINAL SUSCEPTIBILITY TO ISCHEMIA-REPERFUSION INJURY 

The intestine safely tolerates only up to 8-10 hours of cold ischemia, as compared 

with the 14-16h affordable in the case of the liver graft or the 24h or more in the 

case of the kidney [12, 28, 29]. The intestinal graft is unique among the 

transplantable organs due to its contaminated content.  Bacteria and bacterial 

products may spread out in the recipient in case of mucosal barrier damage 

secondary to preservation-reperfusion injury, leading to early sepsis outbursts [30].  

Therefore, the critical issue of alleviating ischemia-reperfusion injury, including by 

shortening the cold ischemia time puts considerable pressure on the procurement 

team, transplant coordinators and the transplantation team [12]. 

 

HIGH INTESTINAL IMMUNOGENICITY 

Due to the expression of major histocompatibility complex (MHC) class 2 molecules 

on the enterocytes, the intestine has a very high immunogenicity [31-33]. The 

immunogenicity is further augmented by the great lymphocyte load, present within 

the mucosa, mesenteric lymph nodes and in the Peyer patches (gut-associated 

lymph tissue –GALT) [34, 35]. As a first consequence, acute rejection (AR) occurs 

and is directed against the epithelial layer of the intestinal mucosa and may lead 

very rapidly to mucosal barrier breakdown, mucosal ulcerations with subsequent 

bacterial translocation and ensuing sepsis [30]. The critical vascularization of the 

intestine, in particular at the villus level makes that any impending endothelial 

damage during AR may result in ischemia-like changes, further jeopardizing the 

mucosal barrier integrity [36]. In addition, a massive gut-associated lymphoid 

tissue (GALT) transfer may, at least theoretically, increase the risk of graft versus 

host disease (GVHD)[37, 38]. 



15 

 

 

IMMUNOSUPPRESSION AND ITS COMPLICATIONS 

The increased immunogenicity requires a more intensive immunosuppressive 

regimen compared with other organs [39, 40]. This most often includes antibody 

induction and relatively high Tacrolimus trough levels [41]. This intense 

immunosuppressive treatment renders the patient susceptible for bacterial, viral 

and fungal infections [42, 43].  Infections have a high incidence and their range is 

very broad [42]. The differential diagnosis with AR, based on the clinical findings 

and routine investigations is often impossible, particularly during enteritis [44]. 

Thus, it is often necessary to obtain endoscopic biopsies to exclude AR, since a 

wrong or delayed therapy may bear catastrophic consequences. 

Besides increasing the risk of infections, the intense immunosuppressive treatment 

greatly increases the risk of malignancy, particularly  post-transplant 

lymphoproliferative disease (PTLD) [45]. It also carries the cumulative risk, as well 

as nephrotoxicity that often leads to chronic kidney disease and even renal failure 

[46]. 

 

HIGH INCIDENCE OF ACUTE REJECTION 

Despite intensive immunosuppression,  AR is a greater hazard in intestinal than in 

any other organ transplantation, occurring in about 40-60 % of the cases [47, 48].  

The early clinical signs of AR are unspecific (fever, nausea, increased stomal output) 

and there is no universally accepted serum marker of intestinal rejection, as in the 

case of kidney and liver. The diagnosis of AR is made on biopsies obtained through 

invasive and frequent endoscopies, requiring trained personnel, involving 

supplementary costs and time. Furthermore, it submits the patient to discomfort 

and potential complications [49].  Delay in the diagnosis and treatment by just 

hours to days may result in rapid progression from mild to severe exfoliative 

rejection, which is associated with a substantial risk of graft loss (up to 93%) and 

high mortality (50–70%)[50]. 

Several non-invasive markers have been suggested to be useful in diagnosing or 

predicting the development of AR [51-54]. Unfortunately, despite high sensitivity, 

many of these markers have low specificity or kinetics that limits their use during 

the early post-transplant period, when most of AR episodes are occurring [48, 55, 

56]. 



16 

 

THE ABDOMINAL CAVITY 

Contracted abdominal cavity due to the content loss, previous stomas and fistula 

formation. This ‘’loss of domain’’ is a major challenge when closing the operative 

wound over the transplanted intestine without the risk of ,”abdominal compartment 

syndrome’’ [57, 58]. Several approaches to overcome this complication have been 

described to date, this including the use of prosthetic materials (Alloderm), vacuum-

assisted abdominal closure (VAC), staged closure or transplantation of the 

abdominal wall [59, 60]. 

 

ISCHEMIA-REPERFUSION INJURY 

Ischemia and reperfusion (IR) are unavoidable events in organ transplantation. This 

will result in complex metabolic and structural changes, whose extent mainly 

depends on the length of ischemia, surrounding temperature and type of tissue.  

Paradoxically, the reperfusion and  subsequent reoxygenation  initiate a cascade of 

biochemical and molecular changes that may lead to additional injury. 

 

BIOCHEMICAL AND MOLECULAR EVENTS DURING ISCHEMIA AND 

REPERFUSION 

Oxidative stress 

At the core of the reperfusion injury lays an event occurring during ischemia, 

namely the adenosine triphosphate (ATP) degradation [61]. Upon reoxygenation, 

hypoxantine,  an end-product of the anaerobic ATP degradation will be metabolized 

by xantine oxidase and generate oxygen free radicals  (OFR) including the hydroxyl 

radical, superoxide and nitroperoxide ions [62-65]  The oxidative stress occurs early 

(i.e., minutes) after reoxygenation and will inflict further damage to numerous 

cellular elements such as mitochondria, proteins, nucleic acids and cellular 

membranes [65]. The stress may lead either to immediate cell death (necrosis), 

controlled cell death (apoptosis) or trigger changes of the cell phenotype in response 

to the injury (activation). 

Besides local tissue injury, the oxidative stress may also act on the red blood cells 

increasing cell stiffness, reducing deformabiliry and creating conditions for lysis. 

When lysis occurs, released free heme exacerbates the oxidative process, further 

generating OFR and a harmful iron chelate, which may promote deleterious cellular 

processes such as oxidative membrane damage. 
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Figure 1. Overview of the main molecular events during ischemia and after 
reperfusion 
 

 

These events occur in all cell types of the reperfused organ, yet the vascular 

endothelium is particularly important in this setting because of its role of interface 

between the intravascular and the extravascular compartments (Figure 1). 

 

Transcription 

The oxidative stress, either directly by OFR or through lipoperoxidation products, 

may initiate gene transcription as adaptation in response to the injury. Several 

transcription factors are activated by the oxidative stress, with nuclear factor- κB 

(NF-κB) as one of the most prominent [66, 67]. NF-κB has a central role in 

inflammation and innate immunity. NF-κB exists mainly as heterodimer, retained 

inactive in the cytoplasm by an inhibitory unit (IκB) and requires a signalling 

pathway for activation [68, 69]. Following IκB phosphorylation  by IκB kinases 

(IKK), the IκB releases the heterodimer, which translocates into the nucleus, binds 

to specific DNA promoter sequences and initiates gene transcription . Among the 

numerous genes whose expression is regulated by NF-κB, there are adhesion 

molecules (vascular cell adhesion molecule (VCAM)-1, intercellular adhesion 
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molecule (ICAM)-1), matrix metalloproteinases (MMP-2, MMP-9) and other genes 

that regulate endothelial cell survival, vasodilatation and angiogenesis. In addition 

to that, NF-κB promotes the expression of various genes essential in the 

inflammatory response such as TNF-α, IL-1, IL-6, IL-8, and GM-CSF [70] (Figure 2). 

 

 

Figure 2. The key molecular events  leading to the activation of NF-κB 

 

Apoptosis 

Apoptosis is an organized, energy-dependent cascade of events leading to controlled 

DNA fragmentation and cell death, followed by removal of the debris without 

inflammatory response. Apoptosis may be triggered by signals from within the cell 

(the intrinsic pathway) or by extracellular signals (the extrinsic pathway)[71, 72]. 

 Although the initial stages of these two pathways are completely different, both 

pathways are mainly driven by a similar family of cysteine proteases (i.e., caspases) 

activated in cascade [71]. Moreover, the two apoptotic pathways converge at one 

point (caspase-3 activation) to follow a common route leading to the activation of 

endonucleases and DNA fragmentation [73]. Long time in the development of 

apoptosis the cellular membrane is maintained intact. In the final stages it 

fragments and surrounds the nuclear debris and the organelles to form the 

apoptotic bodies [74].  Recent evidence indicates that apoptotic cell death can signal 

neutrophil emigration in endotoxin shock and that blocking apoptosis with an 
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inhibitor of caspases can prevent neutrophil extravasation and hepatocyte necrosis 

[75, 76]. 

 

LEUKOCYTE-ENDOTHELIAL INTERACTIONS 

The transcriptional changes triggered by IR injury generate complex changes 

towards an inflammatory phenotype in the surviving cells of the injured tissue, a 

process called activation [77, 78]. In addition, the various cell types in the injured 

tissue release numerous biomolecules (cytokines, chemokines)  that may act as pro-

inflammatory mediators [79, 80]. Secondary to their local or systemic release, these 

mediators both activate the endothelium and act upon circulating cells (mainly 

leukocytes) and promote leukocyte recruitment and enhanced leukocyte-endothelial 

interactions [81-84]. 

 

The endothelial interface 

The leukocyte-endothelial interaction is initiated by rolling along the endothelial cell 

surface mediated  by glycoproteins belonging to the selectin family, which are found 

on the surface of both leukocytes (L-selectin), platelets (P-selectin) and endothelial 

cells (P- and E-selectins) [85]. This weak leukocyte tethering to the vessel wall 

brings the leukocytes closer to chemoattractants that include “classical” 

chemoattractants (eg, leukotriene B4, C5a, platelet activating factor (PAF) and the 

chemoattractant chemokines [86]. The tethering continues to firm adhesion, 

followed by transmigration into the tissue to remove the debris at the site of injury 

[87, 88]. The transmigration requires the expression of selectins and integrins 

(CD11a, CD11b, and CD11c/CD18 expressed on the leukocytes) and endothelial 

adhesion molecules (members of the immunoglobulin superfamily, eg, ICAM-1, -2, -

3, or VCAM-1) [89-92]. 

An essential factor for leukocyte extravasation is the chemotactic stimulus that 

attracts the leukocyte towards the site of injury. Chemokines are potent 

chemotactic factors and members of this class of mediators can have selective 

chemotactic properties for neutrophils, lymphocytes, monocytes, or eosinophils 

[93]. In addition, general cell injury may produce other chemotactic factors (i.e., 

leukotrienes)[94].  
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Tissue inflammation and phagocytosis 

Leukocyte accumulation in the tissue, i.e., the inflammation, is the final phase of 

the response to injury [95, 96]. Temporally distinct patterns of expression of 

adhesion molecules and chemokines offer some specificity to the inflammatory 

infiltrate. 

Although its primary role is the removal of tissue debris through phagocytosis, 

leukocyte infiltration paradoxically worsens the local injury [97]. It has long been 

thought that the oxidative stress upon reperfusion leads to cell death by lipid 

peroxidation. However, the early lipid peroxidation cannot entirely explain the 

prolonged and severe cell injury observed during reperfusion. The ability of 

antiproteases to reduce the late reperfusion injury revealed that polymorphonuclear 

neutrophils (PMN) themselves can cause tissue damage by releasing several 

proteolytic enzymes such as the elastase from cytoplasmic granules and by 

producing free radicals via the respiratory burst [98-101]. 

Another possible mechanism through which leukocytes can aggravate the 

reperfusion injury is by plugging the capillaries and thus impairing the 

microcirculation (the ‘’no-reflow’’ phenomenon) [102, 103]. 

As a consequence and proof of these hypotheses, reduced leukocyte infiltration has 

been repeatedly associated with improved structure and function after IR injury 

[104-106]. 

 

THE STRESS RESPONSE 

The heat shock proteins- HSP 

Oxidative stress and temperature increase are major stimuli for  heat shock protein 

(HSP) induction and graft reperfusion with warm, oxygenated blood  leads  to 

massive upregulation of various HSP [107-110]. 

HSPs  are constitutive or inducible proteins mainly named according to their 

molecular weight. HPSs are primarily involved in protein homeostasis (chaperoning, 

folding and translocating proteins intracellularly). However, numerous studies 

signaled beneficial effects of preemptive HSPs overexpression in reducing IR injury 

as well as several interesting immunomodulatory roles [111, 112]. 

The molecular mechanisms behind the HSP-mediated cytoprotection certainly 

involve more than one pathway [113-116]. One mechanism suggested has been the 

HSP-mediated modulation of NF-κB activation [117-121]. HSP 60 may stimulate the 

innate immune response by acting as a ligand for several Toll-like receptors (TLR), 
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particularly TLR 4 [118, 122]. On the other hand, in macrophages submitted to 

heat stress, NF-κB DNA binding following lipopolysaccharide (LPS) exposure was 

effectively reduced, supposedly by preventing IκB degradation following its 

phosphorylation [123, 124]. 

The inhibition of NF-κB activation has been recorded when upregulating both 

members of the HSP70 and HSP32 (also known as HO-1) families. HO-1 has 

important roles in heme degradation, but previous studies also demonstrated that 

HO-1 may play many other vital functions in cellular homeostasis . It has also been 

suggested that the initial antioxidative protection conferred by the HO-1 and its  

byproducts will reset the molecular machinery of the injured cells [121, 125]. 

Hence, the response to stress leads to a protective phenotype. NF- κB pathway is 

redox sensitive and may be influenced by the antioxidant effects of HO-1 and its 

byproducts, while billiverdin may act as kinase by itself [121, 126]. Given its 

extreme pleyotropism, NF-κB inhibition by HSPs may explain many molecular 

events following heat-shock preconditioning [127-129]. Thus, HSP induction 

successfully reduced neutrophil sequestration both in models of warm ischemia 

reperfusion [129] and transplantation probably through a combination of 

cytoprotective effects, reducing the initial tissue damage as well as by interfering 

with various intracellular signaling pathways [121, 130, 131]. Several studies 

revealed that different HSP can activate dendritic cells and macrophages, making 

the HSP a large family of endogenous danger signals [132-135]. In nontransplant 

setting, this would have limited consequences; however in a transplantation setting 

these signals can prime and precipitate the alloimmune response [111, 136, 137]. 

 

Danger activated molecular patterns – DAMP 

Recently, a new group of molecules has been described and grouped under the 

terms 'alarmins' or 'endokines'. These are either released by necrotic cells or 

actively secreted by activated cells after injury or stress response [118]. The 

molecules have been collectively suggested as danger-associated molecular patterns 

(DAMPs), in close similarity with PAMPs (pathogen-associated molecular patterns), 

a system within the innate immunity that alerts the organism to intruding 

pathogens and activates several signaling pathways [138]. Conversely, the 

extracellular presence of normal cell constituents released into the extracellular 

milieu during states of cellular stress or damage and may also signal cell injury and 

subsequently activate the immune system [139]. 
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The ‘danger signal’ model proposed by Matzinger suggests that the immune system 

recognizes and reacts to damage signals in the body regardless of their origin [140]. 

The signaling cascade is initiated following the recognition of the danger molecule 

by the toll-like receptor (TLR) family, present on the membrane of numerous cell 

types [141]. After first being funneled by the myeloid differentiation primary 

response gene 88 (MyD88), the intracellular signal transduction pathways will 

ultimately lead to the activation of transcriptional factors such as NF-κB, or the 

expression of genes related to inflammatory and immune responses [142, 143]. A 

growing list of biomolecules has been proposed as DAMPs, including High mobility 

group box 1 (HMGB1), the S100 proteins, defensins, fibrinogen, soluble 

hyaluronan, hepatoma-derived growth factor (HGDF), uric acid, several HSPs, and 

IL-1α [144-149]. 

 

THE SYSTEMIC CONSEQUENCES OF ISCHEMIA-REPERFUSION 

Apart of the organ-specific systemic effects observed after advanced ischemic injury 

(renal failure after severe renal IR, liver failure after liver IR), injury and dysfunction 

may occur in organs remote from the site of IR. Hepatic IR injury may lead to 

various degrees of acute cardiac, lung or kidney injury while lower body ischemia 

encountered during abdominal aorta aneurysm repair generates a strong 

inflammatory response and frequently, multiple organ dysfunction [150-155]. 

Moreover, intestinal IR is frequently associated with signs of liver, respiratory or 

kidney failure and significant associated mortality [156-158]. The exact mechanism 

behind the impairment of distant organs is unclear, though an excessive, sepsis-

like inflammatory response is thought to underlie this phenomenon [159-161]. 

The cytokine release 

Upon reperfusion, the oxidative stress stimulates several intracellular signaling 

pathways, ultimately leading to the transcriptional activation of numerous genes, 

including various pro-inflammatory cytokines [80, 162]. The transcription products 

depend on the degree of injury and cell type and their biologic effects are 

pleiotropic, often redundant, following the interaction with the equivalent structures 

(receptors). Most of the cytokines and chemokines have pro-inflammatory effects, 

but there are also molecules with anti-inflammatory role (i.e IL-4, IL-10, IL-13) [163, 

164]. Pro-inflammatory cytokines act on mononuclear phagocytes or lymphocytes, 

modulating innate or acquired immunity [165]. 

Extensive evidence signals increases in tumor necrosis factor-alpha (TNF-α) in 
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various models of ischemia-reperfusion [166-168]. TNF-α is the prototype pro-

inflammatory cytokine and it is released by monocytes/macrophages, T 

lymphocytes, Natural killer cells (NK cells) and many other cell types found 

throughout the body.  TNF-α activates the NF-κB transcription pathway, IL-6 and 

tissue factor secretion, has direct cytotoxicity, up-regulates adhesion molecules, 

stimulates nitric oxide (NO) synthesis and release, activates neutrophils and 

induces fever [169]. TNF-α may trigger apoptosis after binding to the death 

receptors and may also promote synthesis and release of other cytokines, most 

notably IL-1 and IL-6 [168, 170, 171]. 

Interleukin-1 (IL-1) is synthesized in precursor form and secreted under two forms 

(IL-1α and IL-1β) with similar actions. IL-1 mediates its biological effects after 

binding a membrane receptor that engages signal transduction pathways activating 

NF-kB and activator protein -1 (AP-1) transcription factors. At low concentrations, 

IL-1 is a local inflammation mediator (stimulates leukocyte adhesion on 

endothelium) but at high concentrations it acts as endogenous pyrogen and induces 

the synthesis of acute phase proteins in the liver [172]. 

Interleukin 6 (IL-6) is released by monocytes/macrophages, T lymphocytes, 

endothelial cells, fibroblasts, keratinocytes following TNF-α stimulation [173]. It is a 

major inductor of the acute phase response, stimulates B cell growth and increases 

NK activity as well as T cell differentiation [172, 174]. It increases in disease states 

such as malignancy, burn injury, pancreatitis or sepsis, and it is believed to have 

the potential of a prognostic indicator for mortality [175]. This is supported by 

several studies that revealed that deceased septic patients had higher levels of IL-6. 

 

PATHOPHYSIOLOGY OF INTESTINAL ISCHEMIA-REPERFUSION INJURY 

The pathophysiology of ischemia-reperfusion injury generally follows the steps 

mentioned earlier, irrespective of organ. However, due to structural and functional 

characteristics, each organ has several specific patterns of developing the injury. 

The following briefly outline the main features and consequences  of the intestinal 

ischemia and reperfusion.  
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RELEVANT MICROSCOPIC ANATOMY 

The intestinal lumen and the intestinal mucosa 

An essential difference compared to other transplantable organs is that the 

intestine is a hollow organ, containing an epithelium with selective permeability. 

The different cell types making up the epithelium have a rapid turnover. From their 

origin in the crypts, where a self-renewing population of stem cells normally 

balances loss of effete enterocytes, the enterocytes continuously move upward 

towards the villus tip [176].  In the steady state in normal animals, around 10 new 

cells are produced in each crypt per hour. Thereafter, the enterocytes migrate from 

the crypt to the villus tip, a process that takes 2 to 3 days. At the tip, the 

enterocytes enter apoptosis and finally detach into the lumen [177]. 

 

The capillary ‘hairpin’ and the countercurrent exchange 

Another morphologic feature relevant for the development of ischemic injury, 

particularly during hypotension and shock, is the hairpin shape of the capillaries 

inside the villus. Although capillaries run along the entire length of the villus, the 

proximity of the afferent and efferent capillary loop at the villus base may allow a 

short-circuit of the oxygen between these two. Consequently, a countercurrent 

exchange, oxygen shunting and a subsequent oxygen gradient between base and tip 

of the villus may occur, generating a relative hypoxia towards the villus tip. 

 

The polarity of the intestinal epithelial cell 

The enterocyte is a polarized cell, with the apical membrane biochemically and 

functionally different from the basolateral membrane [35]. Thus, the apical 

membrane is involved in digestion, absorption and secretion while basolateral 

membrane has basically only transport roles [178]. Cells are held together by 

junctional complexes, structures with selective permeability and rest on the basal 

membrane, an acellular structure covering the connective matrix that builds up the 

villus axis (lamina propria) [179]. Besides the matrix, lamina propria contains  

various cell types (e.g, lymphocytes), capillaries and lacteals [180, 181]. 

 

 



25 

 

The junctional complex and the tight junctions 

As mentioned above, all polarized epithelial cells are held together by an intricate 

structure called the junctional complex. Besides its mechanical role the junctional 

complex fulfills a dual function: a fence function, preventing the mixing of 

membrane proteins between the apical and basolateral membranes and a gate 

function which controls the intercellular passage of ions and solutes between the 

cells, preventing them to diffuse back into the lumen through the intercellular 

space. In certain physiological circumstances, but also in disease, the tight 

junctions’ (TJ) permeability may increase, allowing an increased flow of water and 

solutes, through the paracellular pathway [182-184]. 

Cell-to-cell adhesion is also provided by the desmosomes, button-like intercellular 

contacts that attach the cells together. Desmosomes are formed by a dense 

cytoplasmic plaque, connected by intracellular filaments to the cytoskeleton. The 

firm adhesion between plaques is provided by transmembrane proteins belonging to 

the Cadherin family [185, 186]. 

 

Figure 3.The intercellular space in a polarized epithelium (adapted after [186]) 

The TJ is the most apical component of the junctional complex and functions as the 

‘‘fence’’ separating apical from basolateral domains. Several tight junction-

associated proteins have been evidenced, such as occludin, zonula occludens-1 

(ZO-1) and claudins. The protein content of this complex regulates the gate function 
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of the paracellular space [187, 188]. Thus, the majority of channels established by 

claudin interactions regulate paracellular permeability and allow the passage of 

cations. 

The junctional complex also contains the gap junctions. These mediate 

communication between cells by allowing small molecules to pass directly from 

cytoplasm to cytoplasm of adjacent cells [186]. 

MAIN FEATURES DURING INTESTINAL ISCHEMIA AND REPERFUSION 

The intestinal ischemic injury presents as progressive subepithelial edema that will 

ultimately lead to the breakdown of the mucosal barrier. A subepithelial cleft (the 

Gruenhagen space) appears within one hour at the villus tip and extends towards 

the villus base, cleaving the epithelium from the lamina propria [189]. 

The continuity of the epithelium is ultimately lost and lamina propria will be 

exposed to the lumen, sustaining further structural damage. Extended ischemia 

leads to changes and structural alterations in the deeper intestinal layers. This 

sequence of events has been signaled both during normothermic and hypothermic 

ischemia and forms the basis of the Park score for grading of the intestinal ischemic 

injury [190]. 

At ultrastructural level, electron microscopy revealed structural mitochondrial 

alterations, an apparent  redistribution of the intracellular organelles (lisosomes, 

endoplasmic reticulum), intracytoplasmic protein accumulations as well as 

widening of the intercellular space including proteinaceous deposits [191].  

Upon reperfusion and the initial worsening, the repair process starts with flattening 

of the villi and increased lateral migration of the enterocytes to seal the denuded 

areas [192, 193]. Villus contraction has also been reported [194]. This is followed by 

intense proliferation in the crypts and, depending on the degree of injury, complete 

structural restoration within 24-48 hours. However, if advanced crypt  damage 

(grade 6 or more on the Park scale) the complete restoration is unlikely and if the 

subject survives the reperfusion, chronic changes are likely to  occur [195]. 

Microcirculation is also significantly impaired following intestinal IR and intestinal 

transplantation. This is due to leukocyte adhesion, direct impairment of the 

endothelium [103, 196, 197] or vasoactive mediators released at reperfusion [198]. 
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REDUCING ISCHEMIA-REPERFUSION INJURY IN TRANSPLANTATION 

Experimental and clinical studies indicated that IR injury can be successfully 

mitigated using a myriad of chemical or biological compounds as well as several 

maneuvers eliciting a biologic protective response (hyperthermia, ischemic 

preconditioning) [199-201]. However, most of these studies were performed by 

clamping and unclamping vascular pedicles (so-called warm ischemia/reperfusion) 

whereas the transplant setting implies several particularities such as the removal of 

the organ from the initial milieu, a period of hypothermia, additional warm ischemia 

as well as denervation. All these features generate several essential differences at 

cellular and metabolic level and thus only several of these observations are 

applicable in transplant setting [121, 202, 203]. Below the relevant approaches 

mitigating IR injury in transplantation will be briefly reviewed. 

 

MINIMIZING THE PRESERVATION INJURY 

Shortening cold ischemia time is by far the most significant measure to alleviate IR 

injury in transplantation [28, 204]. Slowing ATP depletion and maintaining viable 

ATP stores is very important during the energetic and metabolic recovery at 

reperfusion [205].  In addition, hypothermia reduces the anaerobic cell metabolism 

and slower catabolite formation in the ischemic organ. Perfusion with special 

solutions antagonizes the electrolyte shifts secondary to membrane pump 

dysfunction (mainly the Na/K ATPase). Moreover, the preservation solutions aim to 

prevent the osmotic water shifts and subsequent cell swelling, acidosis as well as 

attenuating the oxidative stress.  All preservation solutions currently used generally 

follow these principles while sharing common characteristics and having particular 

traits [206]. 

Belzer-University of Wisconsin (UW) cold storage solution (Viaspan ®) revolutionized 

organ preservation in late 1980s and it is still considered the gold standard for 

abdominal organ preservation . It has an ‘intracellular composition’ containing a 

high potassium concentration (130 mmol/l) as well as high-molecular-weight 

impermeants (lactobionic acid and raffinose preventing intracellular edema 

secondary to ischemia), oncotic support (hydroxyethyl starch, HES), and redox 

agents (glutathione and allopurinol) mitigating the oxidative stress during 

reperfusion [207, 208]. 

An alternative preservation solution increasingly used is Histidine-triptophane-

ketoglutarate (HTK, Custodiol ®). Similar to Belzer-UW solution, it has a powerful 
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buffer system (histidine) and impermeants (ketoglutarate) but its electrolyte 

contents resemble the extracellular milieu (high sodium and low potassium). 

Increasing evidence suggests that HTK solution yields comparable short term 

results with Belzer-UW solution for the preservation of livers and kidneys and also 

proved safe for intestinal preservation [209, 210]. Recent United Network for Organ 

Sharing (UNOS) registry analyses question its long term efficacy [211-213]. 

Celsior is another preservation solution with an ‘extracellular’ composition. It 

appears like a hybrid of the previous two solutions and combines reduced 

glutathione as well as high-molecular-weight impermeants (mannitol and 

lactobionic acid) like UW solution and high sodium concentration (100 mmol/l), low 

potassium and histidine as in HTK solution. Celsior solution proved to be suitable 

for preserving livers [214], kidneys and pancreas [215]. 

IGL-1 is a newly designed preservation solution intended for the preservation of 

abdominal organs developed by the French Institute George Lopez (IGL). It has 

similar key ingredients as Belzer-UW solution, but an ‘inverse’ composition (low 

potassium, high sodium), while using a new osmotic agent (polyethylene glycol, 

PEG 35) instead of HES. A recent clinical trial found IGL-1 at least comparable with 

Belzer-UW solution in kidney transplantation while an experimental study reveals 

similar results in liver transplantation [216, 217]. 

 

DONOR PRETREATMENT 

The rationale for the interventions in the organ donor is the preemptive initiation of 

endogenous protective mechanisms within the graft that will be transferred with the 

organ and ultimately alleviate IR injury after reperfusion in the recipient. Two main 

types of interventions can be recognized, namely the ischemic and the 

pharmacologic preconditioning. 

Ischemic preconditioning (IP) is defined as a brief period of ischemia followed by 

reperfusion prior to a sustained ischemic episode. IP has been reported to attenuate 

the tissue damage observed after IR in the heart, liver, kidney and intestine [218-

220]. Moreover, the protective effect of IP has been demonstrated for normothermic 

ischemia and in transplantation setting [199, 221-223].  The mechanisms are only 

partly unraveled and appear exquisitely intricate and complex. The protective 

mechanisms behind IP include the involvement of HSP, nitric oxide, adenosine, 

inhibition of apoptosis, as well as the modulation of several kinases and signaling 

pathways [223-227]. 
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Pharmacologic preconditioning (PP) aims at triggering one or several endogenous 

protective mechanisms following the administration of a drug or chemical 

compound. Several main mechanisms are operational, encountered either alone or 

in combination, so that virtually all the cellular and molecular events occurring 

during IR may be influenced by PP. Thus, the pharmacologic induction of a heat 

shock response, either through up-regulation of HSP32 (heme oxygenase-1, HO-1) 

or HSP70 has been shown to greatly reduce both the early damage due to IR and 

the chronic changes triggered by an advanced initial ischemic insult [228-230]. 

Brief treatments with immunosuppressive drugs or receptor blockade reduced the 

IR presumably through the modulation of tissue inflammation after reperfusion 

[231, 232]. 

 

Tacrolimus/FK506 

Tacrolimus (TAC) is an immunosuppressive drug with a macrolide structure, 

currently used in liver, kidney, heart, pancreas and intestinal transplantation. Its 

immunosuppressive action is due to the inhibition of the phosphatase activity of 

calcineurin, that ultimately results in the inhibition of the nuclear factor of the 

activated T cells ( NF-AT) and suppressed production of IL-2, essential for the clonal 

expansion of the T cells [233]. 

However, besides its immunosuppressive properties, a number of other biological 

actions were signaled [234-237]. Among these, numerous reports indicated a 

protective effect of TAC against ischemia reperfusion in various settings and 

suggested a multitude of putative mechanisms [238-242]. Common mechanisms 

identified by many studies were the modulation of the early inflammation and the 

decreased oxidative stress. 

A single study explored the pretreatment the organ donor with TAC to reduce the 

ischemia/reperfusion-related changes after kidney transplantation [232]. Although 

the early reperfusion injury was only briefly analyzed, the study found improved 

morphology and long term function in animals receiving TAC pretreated renal 

grafts. 

 

Intestinal preservation 

Several standard preservation solutions have been tested for the intestinal 

preservation. Although superior to crystalloid solutions, such as Ringer or saline, 
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none provided consistently satisfactory results beyond 8-10 hours. The 

unsatisfactory results triggered intensive search for alternative solutions or 

approaches for the preservation of intestine. These included the experimental 

addition of chemicals (including gaseous compounds) mainly to the Belzer-UW 

solution that frequently resulted in some molecular and physiologic improvements. 

However, no notable prolongation of the cold storage time, while being able to 

achieve only mild ischemic injury, was reported [243, 244]. 

Another concept was represented by the intraluminal delivery of preservation 

solution or different tailored combinations [245-247]. This repeatedly resulted in 

superior morphology after extended preservation time and in some cases improved 

bioenergetics, suggesting that addressing the luminal compartment may prove 

beneficial in terms both of maintaining acceptable graft morphology and allowing 

the safe prolongation of the cold ischemia time [244, 248]. Since the cellular 

interactions maintaining the mucosal barrier, including the functioning of tight 

junction are energy-dependent processes, these approaches may definitely 

represent a particularly promising solution. A modification of the later alternative 

was represented by the intraluminal introduction of UW solution, followed by the 

immersion in continuously oxygenated perfluorodecaline (PFD) , a variation of the 

‘’two layer method’’ (TLM) previously described in pancreas transplantation [249]. 

This strategy allowed a 75% recipient survival after 24 hours of cold storage, 

otherwise leading to 100% mortality. However, the approach is cumbersome and 

demands elaborated logistics. 

 

ACUTE REJECTION 

A detailed description of the rejection mechanisms is beyond the scope of this 

chapter. Below a short outline of several circulating markers and mediators during 

rejection, including cytokines is given. 

 

MARKERS OF INTESTINAL ACUTE REJECTION 

Unlike other transplantable organs, the intestine lacks a noninvasive rejection 

marker. Several tests or bio-molecules have been suggested throughout the years, 

but they have all ultimately been refuted [52, 250]. In the recent years, the 

nonessential aminoacid citrulline has been evaluated clinically [55, 251]. Citrulline 

level is a good indicator of the enterocyte mass and low levels of citrulline have 
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correlated with rejection [252]. Despite several drawbacks, such as the low levels 

during the first month after intestinal transplantation, a period when most rejection 

episodes occur, and dependence on the renal function, citrulline is considered a 

promising candidate for a noninvasive marker of intestinal acute rejection [56]. 

An equally interesting candidate-marker is fecal calprotectin. Calprotectin is 

present in several leukocyte subsets as well as constitutively in the cytoplasm of 

enterocytes. It is usually released as a result of cell disruption and death or during 

increased enterocyte shedding and consequently, calprotectin is considered an 

endogenous  danger signal [253]. 

Increased fecal calprotectin has been reported during active inflammatory bowel 

disease [254]. A recent study identified increased calprotectin levels in the stomal 

effluent of patients with intestinal acute rejection, a finding that was later 

confirmed independently [53, 255]. However, the increase seems rather unspecific, 

hence independent investigators suggest its use as noninvasive screening marker to 

document the absence of rejection and thus reduce the need for blank endoscopies. 

Both these two markers are imperfect, and the search for a more accurate rejection 

marker continues. 

 

LYMPHOCYTES, CYTOKINES AND REJECTION 

The CD8+ and CD4+ cells and the cellular rejection 

Cellular rejection starts with the recognition of the foreign antigens by the recipient 

immune cells during the process of allorecognition [256]. After antigen presentation 

to naïve T cells, some of these become activated, proliferate by clonal expansion, 

turn into antigen-specific cytotoxic T lymphocytes (CTLs, CD8+), attack the allograft 

and destroy it. This process usually takes days to weeks [257]. T cell proliferation 

requires several soluble molecules (cytokines) such as IL-2 and interferon-gamma 

(IFN-γ). These are provided either by the CD8+ cells themselves (autocrine) or by the 

CD4+ T-helper 1 cells. 

The CD4+ T-helper 1 (Th1) cells constitute the other major effector limb of the T-cell 

response to an organ graft. After antigen stimulation, Th1 cells secrete cytokines, 

such as interferon-gamma (IFN-γ) and TNF-α. These cytokines have important pro-

inflammatory actions and further stimulate the synthesis of various cytokines, 

stimulate B cell growth as well as antibody production. CD4+ T-cells may also 
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activate monocytes and macrophages, cell types that feature prominently in the 

cellular infiltrate during allograft rejection. 

T-helper cells are also able to manifest anti-inflammatory effects; the subgroup is 

designated as Th2. The shift towards a pro-inflammatory or anti-inflammatory 

profile seems to depend on the cytokine environment and the original stimulus, but 

the exact circumstances that govern the shift are incompletely known [172, 257, 

258]. The cytokine network is redundant and one cytokine may sometimes exert 

often opposite effects on the same cell type, depending on the presence of other 

factors in the microenvironment.  

Two subsets of activated CD4+ T cells were primarily identified, i.e. the Th1 and 

Th2 cells. Th1 cells had IFNγ as the typical cytokine while Th2 cells produced IL-4 

[259].  This straightforward, yet oversimplified classification has been repeatedly 

challenged and new functional subsets, such as the regulatory T cells (Tregs) or the 

Th-17 cells have been recognized [260]. However, for the sake of simplicity the 

literature still refers to a group of several pro-inflammatory cytokines as to Th1 

cytokines and to some anti-inflammatory cytokines as Th2 cytokines [172].   

 

The pro-inflammatory cytokines (Th1 

IL-1β and TNF-α share a multitude of pro-inflammatory properties and appear to 

be critical to the amplification of mucosal inflammation in inflammatory bowel 

disease (IBD). Both cytokines are primarily secreted by monocytes and 

macrophages upon activation, and induce intestinal macrophages, neutrophils, 

fibroblasts, and smooth-muscle cells to elaborate prostaglandins, proteases, and 

other soluble mediators of inflammation and injury. Among the effects of TNF-α in 

the intestine are the disruption of the epithelial barrier and induction of apoptosis 

of the villous epithelial cells. TNF-α activates the endothelium and induces the 

expression of cytokines and chemokines. TNF-α also activates neutrophils and 

macrophages and stimulates the production of IFN-γ by mucosal T cells. 

IL-2 is produced by naïve T cells after activation, simultaneously with the IL-2 

receptor, in a classical autocrine and paracrine loop, promoting clonal expansion. 

IL-2 has important effects on other cells, including B cells, monocytes, and NK cells. 

IL-8 is produced and released by endothelial cells and epithelial cells and is chiefly 

involved in neutrophil chemotaxis to the site of injury (chemokine). 
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IL-12 seems important for driving Th1 responses and IFN-γ production in the initial 

phases of an immune response, but conversely IL-12 may play a subsequent 

immunoregulatory role in late-stage inflammation. 

IFN-γ has critical roles in both the innate and adaptive immunity. Among its many 

roles in the adaptive immunity are the upregulation of MHC class I and II 

expression, the endothelial activation and T cell adhesion and extravasation, as well 

as the differentiation of naïve CD4+ T cells towards a Th1 phenotype are directly 

instrumental in the development of rejection [172, 258]. 

 

The anti-inflammatory cytokines (Th2) 

Th2 cytokines are thought to reduce the severity of allograft rejection by inhibiting 

the Th1-mediated cytotoxic lymphocyte (CTL) and delayed-type hypersensitivity 

(DTH) responses.  These cytokines are IL-4, IL-5, IL-10, and IL-13. 

IL-4 is the prototypic Th2 cytokine, polarizing activated CD4+ T cells to a Th2 

phenotype. Systemic treatment with IL-4 of rat heart recipients significantly delayed 

rejection and inhibited Th1 responses within the graft, regional lymph nodes and 

spleen [261]. IL-4 also promotes the development of T-regs (CD4+CD25+Foxp3+) 

and thus the induction of transplantation tolerance [262]. 

IL-10 is produced by macrophages and inhibits macrophages and dendritic cells, 

thus creating a negative feedback loop. It inhibits the expression of MHC class II 

and diminishes Th1 cell activity by suppressing secretion of IL-2 and IFN-γ. IL-10 

also inhibits the secretion of the pro-inflammatory cytokines IL-6, IL-8, IL-12, TNF-

α, thereby attenuating mucosal inflammation [172]. The pivotal role played by IL-10 

within the mucosal immune system has been extensively studied in mice lacking IL-

10, that develop colitis due to an uncontrolled macrophage activation reacting to 

the intestinal  bacteria [263] . Interestingly, IL-10 reduced the severity of both local 

and systemic inflammation in a murine model of intestinal ischemia-reperfusion 

when given either before or after reperfusion, allegedly by blocking the local 

cytokine production and remote organ inflammation [167]. 

Recent evidence indicates that IL-13 can prolong allograft survival and modify graft 

rejection by inhibition of dendritic cell and/or macrophage function [264, 265]. 

 

RESISTIN 
Resistin is a recently described polypeptide, first identified in the adipose tissue 

(but not the leukocytes) of obese mice. Experimental evidence suggested that 
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resistin, together with adiponectin and leptin is involved in diet-induced insulin 

resistance, lipoprotein metabolism, obesity and atherosclerosis [266-268]. 

However, the clear cut conclusions from the animal studies seem only partly valid 

in humans. The protein sequences of murine and human resistin are only 

approximately 60% identical while the main resistin source in humans seems to be 

represented by the leukocytes. While a relationship between resistin and obesity 

and vascular disese is less clearly defined in humans [269-273], increasing evidence 

links resistin with inflammation and innate immunity. Thus, resistin increased 

after endotoxin challenge in healthy volunteers [274] and it was found increased in 

critically ill patients, proportional with the severity of the disease [275, 276]. 

Furthermore, resistin was normally found in the amniotic fluid and increased levels 

were reported during amniotic infection [277] and in the synovial fluid of patients 

with rheumatoid arthritis [278]. 

Two studies found increased plasma resistin in patients with inflammatory bowel 

disease [279, 280]. Resistin correlated with the activity of the disease as well as 

with C reactive protein (CRP) and white blood count (WBC). Subsequently, resistin 

has been suggested as a marker of an active intestinal inflammation. 

The pathways through which resistin manifest its pro-inflammatory effects are quite 

unclear, yet it seems resistin can bind to TLR2 and TLR4 and the downstream 

signaling may involve p38, JNK MAP and NF-κB [281, 282]. 

There are only a few studies of the adipokines in transplanted patients. All reported 

elevated resistin levels after kidney transplantation [283, 284].  Although the 

information is scarce, it seems that that resistin levels were higher in kidney graft 

recipients than in normal individuals even in the absence of complications 

(rejection, infection). 

 

CONCLUDING INTRODUCTORY REMARKS 

Considering all the issues briefly summarized herein and the actual level of 

knowledge in intestinal transplantation, it is fair to conclude that we need to 

considerably increase the available relevant information on both 

preservation/reperfusion injury and rejection to improve both short and long term 

graft and patient survival. 

 This thesis explores two different experimental approaches intended to mitigate the 

preservation/reperfusion injury. Finally, the time-course and the significance of 

resistin after clinical intestinal transplantation are analyzed. 
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AIMS OF THE THESIS 
 

 

The specific aims of this thesis were: 

 to study if intraluminal introduction of different macromolecular solutions 

has beneficial effects on the preservation injury of the rat intestine 

 to determine if donor pretreatment with a single dose of tacrolimus improves 

the preservation-reperfusion injury after rat intestinal transplantation 

 to investigate if transplantation of intestines from donors pretreated with 

tacrolimus results in a different pattern of postoperative inflammatory 

response and remote organ injury after rat intestinal transplantation 

 to analyze the adipokine resistin after clinical intestinal transplantation and 

assess its putative roles 
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MATERIALS AND METHODS 
The main methods used in this thesis are shortly described below. More detailed 

descriptions are found in the ’Materials and methods’ sections of papers I-IV 

PATIENTS 

The patient material is represented by seven adult patients receiving intestinal 

allografts at the Transplant Institute/Sahlgrenska University Hospital in 

Gothenburg. Patient characteristics (age, diagnosis, type of graft, pretransplant 

body mass index) are summarized in  Table 1. Informed consent was obtained at 

the time of the pretransplant evaluation. 

Patient  Gender  Age  BMI   Diagnosis  Graft 
type  

#1 F 67 22,3 IPO MV 

#2 M 44 24,3 NEPT MV 

#3 F 37 14,8 Crohn’s 
disease, SBS 

MV+S  

#4 F 20 20,8 IPO MV 

#5 F 22 17,8 SBS IT 

#6 M 48 25,6 Portomesenteric 
thrombosis 

MV 

#7 F 32 21 NEPT MV 

  

Table1 . Patient demographics, diagnosis, pretransplant body mass index and 

type of graft received: Abbreviations: M/F- male/female,  BMI – body mass index, 

IPO – intestinal preusoobstruction, NEPT – neuroendocrine pancreas tumor with 

liver metastasis, SBS – short bowel syndrome, MV – multivisceral graft, MV+S- 

multivisceral and spleen,  IT – isolate intestinal graft. 

The intestine was transplanted either alone (one patient) or as part of a 

multivisceral graft (six patients) or using previously described surgical techniques 

[22]. The multivisceral grafts consisted in the stomach, duodenum, liver, pancreas 

and the small intestine.  
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The immunosuppression regimen consisted of antithymocyte globulin (Fresenius) 

induction with Tacrolimus (TAC) monotherapy in a steroid-free protocol described 

previously by the Pittsburgh group [39]. Target levels of TAC were 10 ng/mL during 

the first 6 months after transplantation and tapered thereafter to approximately 5 

ng/mL by the end of the first year posttransplantation. Rejection was treated with a 

steroid bolus and thereafter the steroids were quickly tapered. Steroid resistant 

rejection episodes were treated with OKT-3 (Orthoclone). 

 

PATIENT MANAGEMENT AND SAMPLING 

Tacrolimus blood through levels, white cell blood count and CRP were obtained 

daily. Procalcitonin (PCT) was analyzed whenever clinically indicated. Rejection 

surveillance was achieved by the means of protocol ileoscopies performed twice a 

week during the first month starting at the end of the first posttransplant week, 

then weekly after the first month, 

After informed consent, heparinized blood samples were obtained weekly for 

different time intervals after transplantation. Most of the samples (40/46) were 

taken during the first 8 weeks after transplantation. Samples were immediately 

centrifuged and plasma was collected, aliquoted and stored at -70 ºC until 

analyzed. 

 

ANIMALS 

Male SD rats (190-250 grams) were purchased from B&K Universal (Sollentuna, 

Sweden) and housed in the Experimental Biomedicine department of the University 

of Gothenburg, in 12 hours light-dark cycles. The studies followed the rules and 

regulations outlined by NIH and the European Union and had the approval of the 

local committee of the Swedish Animal Welfare Agency.  

In papers I and II, TAC (Astellas, Osaka, Japan) at a dose of 0,3 mg/kg or 

equivalent volumes of saline were given intravenously to the donors six hours before 

graft harvesting (n = 30/group).  Five untreated non-operated animals served as 

reference for histological and biochemical analyses 
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EXPERIMENTAL SURGICAL PROCEDURES AND SAMPLING 

Intestinal transplantation in the rat (II, III) 

Graft procurement and transplantation were performed as previously described by 

Kellersmann et al [285]. In brief, the first half of the intestine was transplanted  

heterotopically using microvascular anastomoses and microsurgical techniques. 

The arterial inflow was supplied from recipients’ aorta while the venous drainage 

was systemic, into the inferior vena cava. Graft perfusion and preservation were 

performed  using  iced saline (Papers II and III) or Belzer-UW solution (paper I). 

 

Intestinal preservation (I) 

Immediately after in-situ perfusion, the grafts were weighed and two different 

solutions having different compositions were introduced intraluminally. The 

compositions of the solutions are given in Table 2. In the control group, 

intraluminal solutions were omitted. Each graft end was ligated and the grafts were 

stored in 80 ml ice-chilled perfusion solution, without supernatant air. After eight, 

fourteen or twenty hours of cold storage the intraluminal solution was evacuated 

and recovered and the grafts were blotted dry and weighed , then tissue pieces were 

either placed in 4% buffered formalin or snap-frozen (n=10/time-point).  

UW                HSS         LSS   

Potassium (mmol/L) 120       10  5,4 
Sodium  (mmol/L) 30      125    65   
Magnesium (mmol/L)  5        -                                - 
Chloride (mmol/L)  -                                35                              53    
Sulphate (mmol/L)   5       40                               - 
Phosphate (mmol/L) 25        -                       -
Bicarbonate (mmol/L) -       20    17 
Glutathione (mmol/L) 3        -     - 
HES (mmol/L) 50        -     - 
Raffinose  (mmol/L) 30        -     -
Lactobionate (mmol/L) 100        -     - 
PEG-3350 (g/L) -      11,38   13,125 
Allopurinol (mmol/L) 1         -     - 
Adenosine (mmol/L) 5        -     -                   

pH  7,4     7,94  8,11 

 

Table 2. Composition of the solutions used; UW-University of Wisconsin 
solution, HSS - high-sodium solution, LSS - low-sodium solution (Paper I) 
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Tissue and blood sampling (I, II, III) 

Twenty minutes after reperfusion a three-cm-long graft segment was sampled from 

the distal graft end to study the early reperfusion injury and pieces were either 

placed in formalin or snap-frozen. In Paper II the recipients of either pretreated and 

control grafts assigned for the 12 or 24h endpoints underwent blood sampling from 

the tail after one or three hours of reperfusion. 

After six, twelve or twenty-four hours, animals were reanesthetized and various 

measurements performed. Thereafter blood was collected through terminal heart 

puncture using endotoxin-free materials , spun and plasma was then stored at -

76°C until analysed. Graft and liver tissue were obtained and stored in formalin or 

snap-frozen using the same technique. 

Mean arterial pressure, heart rate and microcirculation (III) 

Mean arterial pressure was recorded six, twelve and twenty-four hours after 

reperfusion, after cannulating the right femoral artery. After allowing animal to 

stabilize for 10 minutes, blood pressure and heart rate were recorded for further 10 

minutes using a BioPac system (Harvard Apparatus, Cambridge, MA ). 

Superficial liver microcirculation was studied using laser Doppler Flowmetry (LDF). 

We used an adhesive probe connected to a Periflux 4001 base unit (Perimed, 

Järfälla, Sweden) gently applied on the liver surface. At least seven measurements 

were performed at different sites.  The median of the measurements was calculated 

for each animal and the results were expressed as arbitrary Perfusion Units (PU). 

 

HISTOLOGY AND OTHER TISSUE ANALYSES AND TESTS 

Paraffin sections were cut and stained with hematoxylin-eosin. In Paper I and Paper 

III, intestinal grafts were examined blindly and the ischemia-reperfusion injury was 

graded according to the Park  scoring system (Table 3)[190]. 

Morphometrical analyses were also performed (mucosal thickness, villus height). In 

Paper III paraffin liver sections were evaluated blindly regarding overall liver 

architecture, leukocyte adherence, inflammation and  necrosis. 
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Grade   Description 

0  - normal mucosa 

1  - subepithelial space(bleb) at the villus tip 

2   - more extended subepithelial space (upper half of the villi) 

3 - epithelial lifting down the sides of the villi 

4  - epithelial breakdown 

5  - denuded villi 

6 - crypt layer infarction 

7 - transmucosal infarction 

8  - transmural infarction 

 

Table 3 Park scoring system of the intestinal ischemic damage (Paper I, II). 

 

HISTOCHEMISTRY AND IMMUNOHISTOCHEMISTRY 

Neutrophils  

Intragraft or liver PMNs were stained using the Naphtol AS-D chloroacetate esterase 

kit (Sigma Chemicals, St.Louis, MO) on paraffinized sections. All samples were 

coded and positively stained PMNs were identified and counted in a blinded fashion  

at intermediate magnification (x200). 

 

Tight junctions (I) 

Immunofluorescence was used to study the co-localization of the two tight junction 

proteins zonula occludens-1 (ZO-1) and claudin-3 (double staining). Briefly, the 

slides were incubated overnight at 4˚C with anti-ZO-1 (1:100, Invitrogen, 

Stockholm, Sweden) and anti-claudin-3 (1:100, Abcam, UK). Slides were then 

incubated with secondary antibody conjugated with Alexa 488 and Alexa 594 

(1:100, Invitrogen), counterstained with DAPI and examined under the fluorescence 

microscope. 
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Cell proliferation.(II) 

Deparaffinized slides were incubated with Ki67 antibody (Novocastra, 

Newcastle/Tyne, UK) according to manufacturers’ instructions. Ki67 positive nuclei 

were blindly counted in fifteen randomly selected crypts sectioned transversally in 

three different sections under high magnification (x400). 

DISSACHARIDASE ASSAY (I, III) 

We measured the activity of sucrase and maltase, two dissacharidases found on the 

enterocyte brush border. Whole tissue homogenates were incubated with a 

substrate solution (2% maltose in 0.1 mol/L sodium maleate buffer, pH 6.0) for 1 h 

at 37˚C according to the method of Dahlqvist [286]. The reaction was stopped by 

submerging the samples in boiling water for 5 min. One unit of maltase was defined 

as the quantity of enzyme hydrolyzing 1 mol/L maltose to glucose in 1 minute. The 

resulting glucose was measured using the hexokinase assay and results were 

expressed as activity units/gram protein. 

WESTERN BLOT PROTEIN ANALYSIS (II, III) 

Frozen intestinal or liver tissue was homogenised in ice-cold lysis buffer (0,2 M Tris-

HCl, 0,1M NaCl, 0,1M EDTA, 0,5M DMSF, 1% Triton X-100, pH-7,4). Protein 

concentration in the supernatant was measured, and then proteins were separated 

by sodium dodecyl sulphate -polyacrylamide gel electrophoresis (SDS-PAGE). 

Following SDS-PAGE, proteins were transferred onto polyvinylidene fluoride (PVDF 

membranes) (Bio-Rad, Hercules, CA). The membranes were blocked in 5% skim 

milk and incubated for one hour with anti-HSP-72 antibody (1:3000, SPA-812, 

StressGen). Secondary antibody was added, and then blots were developed by the 

use of Advanced ECL kit (Amersham Biosciences Ltd, Buckinghamshire, UK). 

For ICAM-1 determination, protein extraction, concentration measurements and 

blotting were performed as described above. Membranes were incubated with a 

mouse monoclonal antibody against ICAM-1 (1:3000, MCA773 Serotec, Oxford, UK) 

and an adequate secondary antibody. After development, the bands from 

immunoblots were quantified using computerized densitometry (Quantity One, 

BioRad). Results were normalized to β-tubullin and reported as optical density units 

(OD). 

ELECTROPHORETIC MOBILITY SHIFT ASSAY (EMSA) (II) 

Frozen intestinal tissue was gently homogenized in 2 ml of hypotonic buffer at 4ºC. 

Following centrifugation at 4°C 14000 g for 10 minutes, the supernatant was 
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carefully removed and the pellet was resuspended in ice-cold extraction buffer and 

extracted 2 hours at 4°C on a rotator. Cell particles were sedimented at 14000g at 

4°C for 1 hour and the supernatant was collected, aliquoted and stored –80°C until 

the analysis of NF-κB was performed. EMSA was performed as described elsewhere 

[287]. Briefly, the double stranded consensus oligonucleotide (sc-2505, Santa Cruz 

Biotechnology, San Diego CA) was labeled with 32P (Amersham Pharmacia Biotech, 

Uppsala, Sweden) using T4-polynucleotide kinase (New England Biolabs, Ipswich, 

MA) and used in the binding reaction with the nuclear extracts. In some binding 

reactions 1 µl of an antibody against the p65 subunit of NF-κB (Santa Cruz 

Biotechnology, CA) was added and incubated for another 20 minutes (the 

supershift). The same mixture using unlabelled oligonucleotides were used as 

negative control. The protein-DNA complexes were resolved on a native 5 % 

polyacrylamide gel, then the gel was vacuum-dried and exposed to x-ray film for 24-

36 hours at -80°C. Band intensity was analyzed using computerized densitometry. 

CASPASE ACTIVITY ASSAYS (II, III) 

The activity of caspase-3 and caspase-9 was measured in whole tissue 

homogenates. The tissue homogenates were incubated at 37°C on a microtiter plate 

with caspase-specific substrates: Ac-DEVD-AMC for caspase-3 (Peptide Institute, 

Osaka, Japan) and Ac-LEHD-AFC (for caspase-9, Enzyme System Products, 

Livemore, CA). Caspase activity was measured using a Spectramax Gemini 

microplate fluorometer (excitation wavelength / emission wavelenght 380/ 460 nm 

for caspase-3 and 400/505 nm for caspase-9) over 2 hours and expressed as pmol 

released AMC or AFC/μg protein/min. Rat testis homogenate was used as negative 

control. 

 

CYTOKINES, RESISTIN AND ENDOTOXIN IN PLASMA 

Several techniques were used to measure the circulating cytokines. These are 

described in detail in the respective papers. In short, the following methods were 

used. 
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ASSESSMENT OF PLASMA CYTOKINES USING ELISA (III) 

Plasma levels of TNF-alpha, IL-1 beta and IL-6 at 1h, 3h, 6h, 12h and 24h 

postreperfusion were measured using commercially available, rat specific ELISA 

kits (R&D, Minneapolis, MN). The assay sensitivity for TNF-alfa, IL-1 beta and IL-6 

were 5pg/mL, 5 pg/mL and 21pg/mL respectively. 

ASSESSMENT OF PLASMA CYTOKINES USING MULTIPLEX ASSAY (IV) 

Human plasma samples were analyzed for a panel of pro-inflammatory (Th1) and 

anti-inflammatory (Th2) cytokines. Plasma concentration of IFN-γ, IL-1β, IL-2, IL-4, 

IL-5, IL-8, IL-10, IL-12p70, IL-13 and TNF-α was determined by the electro-

chemiluminescence multiplex system Sector 2400 imager from Meso Scale 

Discovery (K15010A-4, Gaithersburg, MD, USA). 

 

ASSESSMENT OF PLASMA RESISTIN (IV) 

Plasma resistin concentrations were determined in 46 plasma samples (n=5-11 

/patient using a commercial enzyme-linked immunosorbent assay (ELISA, DRSN00, 

RND systems, Minneapolis, MN) . This assay employs the quantitative sandwich 

enzyme immunoassay technique and a monoclonal antibody specific for human 

resistin. Measurements were performed using manufacturers’ instructions. Plasma 

samples from seven healthy individuals (live kidney donors) were used as controls. 

The results were correlated with CRP, WBC, immunosupression (TAC blood through 

levels), procalcitonin and BMI. 

 

ASSESSMENT OF PLASMA ENDOTOXIN (III) 

The Chromogenic Limulus Amoebocyte Lysate Assay test kit was used for duplicate 

determination of endotoxin plasma concentrations (Chromogenix, Mölndal, 

Sweden), according to manufacturers’ instruction. Escherichia coli O11B4 LPS was 

included in the test kit as standard LPS (100 pg of LPS corresponding to 1.2 

endotoxin units). To remove inhibitors, the plasma samples were diluted 1/10 in 

pyrogen-free water and heat treated for 10 min at 75°C. The interassay coefficient of 

variation was 8%. 
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STATISTICAL ANALYSES 

Nonparametric methods were used throughout the study, either due to small 

sample size or because Kolmogorov-Smirnov test showed non Normal data 

distribution. Differences between independent groups were calculated using the 

Kruskal-Wallis test followed by the Mann-Whitney U test (both non-parametric). In 

paper IV, correlations between different variables were assessed using the 

Spearman rank correlation test. P<0,05 was considered significant.  

Data were analyzed using GraphPrism 5 software. 
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RESULTS 

PAPER I 

The intestines which had low-sodium solution intraluminally had significantly 

improved preservation injury after both eight hours (median grade 2, range 1-3) and 

fourteen hours of preservation (median grade 3, range 2-5) compared both with 

grafts receiving intraluminal high-sodium solution (p<0,01) or undergoing vascular 

flush alone (p<0,05). After 20 h of cold storage, grafts in all groups had advanced 

ischemic injury consisting of complete loss of villi and injury to the deeper intestinal 

layers. After fourteen hours of cold preservation, grafts receiving intraluminal high-

sodium solution had a tendency to generate a worse average preservation injury 

(4,5 range 3-6) compared with grafts receiving only vascular flush (4, range 3-5). 

Tissue edema and water retention increased during preservation. However, there 

was always a tendency that tissue water content was highest in grafts receiving 

intraluminal high-sodium solutions. After 8 h of, the beneficial role of intraluminal 

preservation was most apparent in the group receiving intraluminal low-sodium 

macromolecular solutions, resulting in similar water retention compared with 

controls grafts. With more extended storage time, the water content gradually 

increased in all groups and all differences subsided. 

The intraluminal solutions did not affect negatively the brush border enzymes.   

The sodium content into the intraluminal solution decreased in time, irrespective of 

the intraluminal solutions, indicating sodium absorbtion. The most significant 

absorbtion occurred during the first eight hours but continued thereafter, albeit at 

a slower rate. 

In normal intestines, ZO-1 and claudin-3 co-localized in the crypts and in the villus 

epithelium mostly along the lateral surface of the enterocytes. The distribution of 

tight junction proteins changed in all three groups after cold preservation. After 

eight hours, control grafts showed signs of de-localization along the intercellular 

membrane owing to a decrease in claudin-3 expression. Co-localization was 

maintained in the region closer to the enterocyte base. Grafts receiving intraluminal 

high-sodium solution had marked de-localization on the enterocyte basolateral 

membrane and reduced claudin-3 expression. ZO-1 expression was maintained. 

Intestines receiving intraluminal low-sodium solution had maintained strong co-

localization along the lateral membrane but reduced ZO-1 expression in the basal 
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region. After fourteen hours of preservation, the changes in tight junction structure 

progressed. The staining in the intercellular area appeared broadened and ZO-1 

expression displayed a decreased, disrupted and reticular pattern.Claudin-3 was 

found greatly reduced and its pattern of expression changed from intercellular 

reticular to granular intracytoplasmic. These changes were recorded in all grafts, 

regardless of intraluminal treatment. Twenty hours of preservation generated 

advanced mucosal damage with broad areas of denuded submucosa. Despite 

frequent morphologically intact crypts, almost complete de-localization of ZO-1 and 

claudin-3 was also found in the crypts. 

 

PAPER II 

Grafts from donors pretreated with TAC had increased HSP72 expression at the 

time of harvesting. However, this did not influence preservation injury, which was 

similar between the pretreated and the control group. Pretreated grafts showed 

however a milder early reperfusion injury compared with controls. Thus, pretreated 

grafts maintained connective tissue (lamina propria) - (4,1 ± 0,1 vs. 5 ± 0,1 p<0,01). 

The significant improvement in graft morphology persisted after six and twelve 

hours post-reperfusion. Thus, pretreated grafts had improved morphological 

parameters (villus length, mucosal thickness) and milder neutrophil inflammation.  

Pretreated grafts also revealed an accelerated cell proliferation and enterocyte 

maturation, reflected by a higher proliferation index (Ki67 positive cells) in the 

crypts and by the superior dissacharidase levels. 

At the same time, we found reduced NF-κB early after reperfusion and a uniform 

and persistent inhibition of the second wave of NF-κB activation. This inhibition 

was recorded at least during the first twenty-four hours following graft reperfusion.  

The effective and enduring abrogation of the NF-κB activation was also reflected by 

the lower ICAM-1 levels found in the pretreated grafts. 

 

PAPER III 

Biochemical evidence of liver dysfunction, revealed by increased levels of alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST), was present in all 

animals receiving intestinal grafts. The dysfunction seem to be directly related to 

the presence of the graft, since non-transplanted animals had virtually no 
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variations in plasma transaminase levels compared with normal animals. However, 

recipients of pretreated grafts had a milder dysfunction compared with recipients of 

control grafts. The hepatocellular injury seems to have occurred early but appeared 

to be short lived. 

We found no morphological alterations that could have determined the transient 

liver injury, such as necrosis, or inflammation. However, we found evidence of 

ongoing apoptosis in the livers of graft recipients, revealing that the liver had been 

submitted to sublethal stress and pro-apoptotic stimuli, more intense in the 

recipients of control, untreated grafts. 

Conversely, in the recipients of control grafts we identified a biphasic pattern of 

TNF-α release and an increasing trend of two pro-inflammatory cytokines (IL-1β and 

IL-6) throughout the first twelve hours after graft reperfusion. These interesting and 

characteristic patterns were absent or less obvious in recipients of pretreated grafts. 

 

Figure 4.The proinflamatory cytokine response TNF-α (A), IL-1β (B) and IL-6 (C) 

Looking at the local ischemia or hypoperfusion as a potential mechanism behind 

the transient liver dysfunction, microvascular blood-flow measurements at the 

surface of the liver indicated that microvascular perfusion was similar in all the 

studied groups at all times.. 
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Circulating LPS had very low levels both after six and twelve hours after reperfusion 

and was found significantly increased only twenty-four hours after graft 

reperfusion, similar between the two groups. 

 

PAPER IV 

The six month and one year patient survival in the series presented herein was 

100% and 85% respectively. Five out of seven patients (75%) have had early acute 

rejection episodes and the same proportion had severe bacterial infections or sepsis 

during the first two months after transplantation. 

Resistin was detected in all healthy controls. Significantly increased resistin levels 

were found in all patients, already one week after transplantation. Resistin levels 

varied considerably between patients and remained increased throughout the first 

eight weeks after transplantation (Fig.5). 

 

Figure5. Plotted resistin levels over the first eight weeks posttransplantation  

Resistin continued to remain increased compared with controls after two and five 

years respectively, in the absence of infection or rejection. 
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Resistin levels were found increased in samples taken during acute rejection 

compared with samples taken during rejection-free course. Sepsis was also 

associated with increases in plasma resistin. 

No significant positive correlation was found between plasma resistin and six 

different Th1 (pro-inflammatory) cytokines. In one patient we identified a significant 

negative correlation between IL-1β and IL-8 and resistin. 

Several positive correlations were identified between resistin and some anti-

inflammatory Th2 cytokines. Thus, IL-4 a regulatory cytokine promoting the Th2 

phenotype positively correlated with resistin in two patients, of which one was 

rejection-free. 

The analysis of WBC, BMI, TAC trough levels, CRP  and PCT in relationship with 

plasma resistin revealed only one negative correlation with WBC in patient #7 (rs = - 

0,9, p<0,05) and one positive correlation with TAC trough levels in patient #6 (rs = 

0,68, p<0,05). No other significant correlations whatsoever were identified. 
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GENERAL DISCUSSIONS 
In contrast to previous clinical observations of harmful effects of the intraluminal 

bowel preparation solutions, the experimental results in this thesis suggest that a 

low sodium content solution may reduce the edema in the intestinal wall during 

preservation, which in its turn may have favorable effects after reperfusion. 

Furthermore, pretreatment of the donor with tacrolimus appears both to reduce the 

graft reperfusion injury and accelerate mucosal morphologic recovery after rat 

intestinal transplantation, as well as causing a milder systemic inflammatory 

response in the recipient 

The clinical study investigated the potential of resistin as an intestinal rejection 

marker. As the results in this small group indicate, despite uniformly increasing 

after intestinal transplantation, resistin is unsuitable for monitoring the acute 

rejection since the increase is present even in the absence of acute rejection. 

Ischemia reperfusion is an extremely relevant issue in intestinal transplantation, 

because of the potentially contaminated intestinal content. Mucosal barrier 

breakdown may lead to bacterial translocation and endotoxemia, similarly with 

other conditions evolving with intestinal ischemia or hypoperfusion [288-290]. The 

ability of the ischemic intestine to promote sepsis and sepsis-like systemic 

inflammatory response has long been recognized [291, 292]. Thus, an intact 

mucosal barrier in these heavily immunosuppressed patients is paramount.  

 

Throughout the 1990s procurement teams routinely performed donor bowel 

preparations using oral antibiotics and macromolecular solutions (i.e., Golytely) as 

well as luminal flush with Ringer solution (130 mmol/L NaCl) in an attempt to 

reduce the intestinal load [24, 293]. However, this approach is currently abandoned 

and most centers limit the donor preparation to intravenous antibiotics [12, 294].  

The lumen has been recognized for a long time as a potential route to deliver 

nutrients to the mucosa during intestinal preservation. Oxygen, glucose, glutamine, 

perfluorodecaline and several customized solutions have been introduced 

intraluminally in an attempt to reduce the ischemic injury and  most studies 

reported improvements [247, 248, 295, 296]. However, we believe that more 

‘unspecific’ causes such as a better control over the composition and osmolarity of 

the intraluminal content may have contributed equally as the more specific 

research interventions [297, 298]. We argue that that the low metabolic activity at 4 
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degrees (either the glutamine metabolism or ATP synthesis) is too modest to 

decisively contribute to the improvements reported. Few studies were followed by 

transplantation, further raising doubt about the relevance of the methods. 

As mentioned above, our current findings suggest that bowel preparation solutions 

may successfully be used, not only for cleansing the donor intestine but also as an 

intraluminal preservation solution, provided that a low-sodium solution is used. It 

is unknown if using HTK solution will yield similar results due to the different 

electrolyte composition UW solution. In addition, the optimal volume of solution to 

be introduced intraluminally should be further studied in large animal models or in 

the human intestine. 

The morphological improvements described herein are not dramatic but rather 

modest. However, as Paper II and other previous reports show, reperfusion leads to 

an injury advancement corresponding to one grade on the Park scale, namely from 

grade 3 (i.e. subepithelial edema) to grade 4 (villus denudation, mucosal 

breakdown) [193]. In the transplantation setting Park et al showed that increasing 

reperfusion injury from grade 3 to grade 4 increases mortality from 0% to 70% 

while Haglind et al report similar results using a warm intestinal ischemia model 

[193, 299]. Thus, minor morphological improvements may translate into significant 

differences in distant organ injury, systemic inflammatory response and ultimately 

improved clinical course in the early post-transplant period. 

Furthermore, besides the early benefits of an alleviated reperfusion injury may be 

reflected in less late changes, as chronic rejection is the new old foe the intestinal 

transplant community battles today [300]. Advanced preservation injury may 

increase graft immunogenicity and may precipitate rejection [79, 301]. Some reports 

demonstrate that alleviated reperfusion injury after donor preconditioning has also 

been followed by less chronic changes resembling rejection and improved long term 

graft function [232, 302-304]. 

The distant organ injury ensuing after intestinal ischemia has been the subject of 

extensive research [290]. Lung and liver injury have been reported after 

experimental and clinical intestinal ischemia including after surgery for abdominal 

aortic aneurysms [153, 305, 306]. The mediators of injury, initially described as 

’’toxic factors from the intestine’’ seem to circulate both through the portal vein and 

the lymphatic drainage [160, 306-308] and interrupting the mesenteric lymph 

drainage resulted in a lower remote organ injury [309, 310]. Considering that the 

liver dysfunction seen in our model was mild and transient and the inflammatory 

response was quite modest, despite the rather advanced reperfusion injury, we hint 
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that the absence of the mesenteric lymph, or perhaps the systemic drainage, may 

have been beneficial. Furthermore, since the microvascular perfusion of the liver 

surface was similar in all groups, this virtually rules out local perfusion failure or 

ischemia as a cause of liver injury. Secondly, we do not believe that endotoxins from 

the bowel play a major role in our experiments, since circulating LPS had very low 

levels both after six and twelve hours after reperfusion and was found significantly 

increased only twenty-four hours after graft reperfusion, similar between the two 

groups. Thus, LPS did not seem responsible for the systemic inflammatory 

response, since maximal pro-inflammatory cytokine levels were attained in the 

presence of very low LPS levels. 

The dysfunction seems driven by soluble mediators since we found no evidence of 

gross morphological abnormalities or neutrophil infiltration, despite earlier reports 

suggesting a causal role for the neutrophils [311]. Moreover, when transplanting  

intestines in neutrophil depleted rats we observed a pattern liver dysfunction which 

was similar with the control group of neutrophil-sufficient animals (own 

unpublished data). Extrapolating in a clinical perspective that may imply that 

induction with polyclonal antibodies may reduce the local reperfusion injury but it 

will not directly influence the remote organ injury. 

Graft preconditioning through various pretreatment regimens applied to the organ 

donor has been increasingly explored and suggested to improve graft quality. 

Among the numerous approaches tested, pharmacological induction/upregulation 

of heme oxygenase-1 (HSP32) expression has probably been the most extensively 

investigated. The reason behind the choice of this inducible protein is the multitude 

of biological pathways and mechanisms that are presumably influenced by the 

enzyme and its byproducts [312, 313]. Some of the most interesting effects are the 

reduction of the oxidative stress and the inhibition of several transcription factors 

as well as the modulation of apoptosis. The biological potential of heme oxygenase-1 

and its byproducts is however counterweighted by the reluctance towards the 

clinical use of carbon monoxide, a highly toxic gas and the large variability of the 

biological response in humans [312, 314]. 

Herein, we showed that donor preconditioning with an accepted drug (TAC) may 

significantly improve intestinal graft morphology, possibly through the upregulation 

of the cytoprotective HSP72. Whether the upregulation of heat shock proteins is a 

safe approach in an allogeneic setting, on both short and long run, remains to be 

further explored, since numerous studies confirmed the immunostimulatory 

properties of various heat shock proteins [315, 316]. Moreover, as mentioned 
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earlier, anti-heat shock protein reactivity has been repeatedly demonstrated in 

transplant and non-transplant setting (i.e., atherosclerosis) and suggested as a 

causal factor of undesirable events such as lymphocyte and dendritic cell activation 

[136, 317, 318]. 

We also recorded a significant and long lasting NF-κB inhibition in the pretreated 

grafts. Although NF-κB inhibition by TAC is not entirely new, this feature has not 

been reported earlier in this setting. Given the multifaceted effects of NF-κB 

inhibition, it is likely this contributed to the modulation of both the local and 

systemic inflammation, due to the assumed downregulation of adhesion molecules 

and reduced cytokine release by the graft. 

 

The microenvironment is an essential factor in regulating cell proliferation [319, 

320] In the present study the favorable microenvironmental conditions could have 

been represented by the lower inflammatory activation and the reduced tissue 

inflammation observed in the pretreated grafts. Conversely, cells remain quiescent 

in the presence of unfavorable circumstances (ie, cellular stress) and proliferation 

may be blocked or delayed [321]. 

On the other hand, TAC has been shown to stimulate cell proliferation regeneration 

after liver resection or neuroraphy [322, 323] and several mechanisms have been 

suggested, including growth factors and the FK-binding proteins. The latter proteins 

are responsible for the intracytoplasmic TAC transport and are also called 

immunophilins [324]. Whether the drug itself stimulated the crypt proliferation, 

seen in our experiments, or if it was the result of a chain of biological events 

resulting in a microenvironment more favorable for proliferation remains unclear. 

As previously mentioned, TAC has been proved useful in reducing ischemia-

reperfusion injury and its long term consequences in kidney transplantation in the 

rat The same study revealed very similar results when prednisolone, a potent 

synthetic steroid able to alter numerous signaling pathways, was given to the organ 

donors [232]. 

Donor pretreatment with steroids for the reduction of the alloindependent graft 

injury is probably the strategy with the highest chance to become a clinical routine 

in the future. Experimental studies revealed improved renal graft function after 

transplantation [325] and donor pretreatment with steroids blocked the organ 

activation and increased immunogenicity induced by the brain death [326, 327]. 

Moreover, a recent clinical trial demonstrated improved results using livers from 

donors systematically receiving methylprednisolone [328]. Lastly, the fact that 
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hormonal resuscitation is already currently used in thoracic organ donors with no 

adverse effects observed in other organs may advocate for the future routine use of 

steroids in pretreating the organ donors [329, 330]. 

At the moment resistin is considered a pro-inflammatory adipo(cyto)kine. While its 

association with inflammation is supported by extensive evidence [271, 276], a 

contributory role of resistin in inflammation is less clear. Resistin increases in a 

broad array of diseases evolving with tissue injury and inflammation, such as active 

inflammatory bowel disease, cancer, asthma, type 2 diabetes, chronic kidney 

disease and infections, but has little in common regarding the pathogenesis [277, 

279, 331-333]. Hence, based on our observations showing an early rise in plasma 

resistin in the absence of rejection, in the presence of infection or even during 

uneventful course we are skeptical towards the hypothesis of a major pathogenetic 

role of resistin in inflammation as a ‘pro-inflammatory cytokine’. Instead for a role 

of ‘pro-inflammatory cytokine’ we suggest that resistin is a marker of inflammation 

or tissue injury. In the present study the increase was triggered by ischemia-

reperfusion injury and/or the alloimmune injury. 

In brief, arguments for a cytokine role of resistin are its production by leukocytes 

and its actions over several cell types, leading to changes in their phenotype. 

Arguments against a cytokine role for resistin are the very high levels, nanograms 

compared to picograms, compared with other acknowledged cytokines and that no 

specific stimulus or receptor for resistin has been identified. In addition, no 

counter-regulatory molecule or loop is yet recognized. 

One of our aims was to investigate the potential of resistin as an intestinal rejection 

marker. This hypothesis was based on previous studies reporting specific increases 

during active inflammatory bowel disease [279]. We found a large inter-individual 

variation after transplantation as well as an unspecific increase during several 

complications, of which one was rejection. Moreover, we found resistin uniformly 

increased compared to healthy controls. We did not identify correlations with 

several key Th1 and Th2 cytokines, that could have allow us to speculate on the 

factors inducing the release of resistin. In contrast with other studies we could not 

identify any correlation between resistin or CRP or WBC either. This fact may be 

due to the immunosuppression, a feature absent in studies reporting such 

correlations [280, 334]. Thus, we believe that further studies on resistin in 

immunosuppressed subjects could shed more light on the biology of this intriguing 

molecule. 
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CONCLUSIONS 
With support of the studies presented in this thesis I conclude that: 
 
 
 the intraluminal introduction of macromolecular solutions having low sodium 

content may have beneficial effects on the preservation injury of the rat 

intestine 

 donor pretreatment with a single dose of tacrolimus reduces graft reperfusion 

injury and accelerates mucosal morphologic recovery after rat intestinal 

transplantation 

 transplantation of intestines from donors pretreated with tacrolimus is followed 

by a lesser liver dysfunction and a milder systemic inflammatory response  

compared with animals receiving untreated intestinal grafts  

 resistin increases early after clinical intestinal transplantation irrespective of 

the presence of complications and has large individual variations, making it 

unsuitable as a diagnostic marker  for acute rejection 
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REFLECTIVE STATEMENTS 
 

 The lumen is an easy and obvious route to get direct access to the most 

sensitive part of the intestinal graft, i.e. the mucosa. Numerous interventions 

have been attempted over the time with various results but without a 

decisive breakthrough. Our results identified some morphological features 

underlying the permeability changes during ischemia. Moreover, the study 

suggests that intraluminal high-sodium solutions should be avoided when 

designing future intraluminal preservation solutions. Conversely, previous 

observations might have missed the importance of the right sodium content 

in the right compartment and a clinical reassessment in the setting of a 

multicenter randomized controlled trial may be beneficial 

 

 This study showed once again that targeted interventions in the organ donor 

may successfully reduce the initial ischemia/reperfusion injury. Whether the 

present methodology and the conclusions can be directly translated clinically 

is unknown, since TAC metabolism differs between rats and humans. 

However, considering the fact that: 

i TAC is a major immunosuppresant already in clinical use 

ii the graft will be submitted to the same drug shortly after 

reperfusion 

iii similar beneficial results following TAC pretreatment have been 

described in other transplantable organs and 

iv the intervention is feasible and straightforward 

 

may open the perspective for a future clinical trial. 

 Although resistin does not seem a reliable acute rejection marker in clinical 

intestinal transplantation, the need for such a tool is still a high priority. 

This first report on resistin in a field quite remote from obesity, 

atherosclerosis, chronic inflammation suggest that resistin is a versatile 

molecule that is probably involved in many biological processes. 

 

 

.  
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ABBREVIATIONS 
ALT = Alanine aminotransferase 

AP-1 = Activator Protein-1 

AR = Acute Rejection 

AST = Aspartate aminotransferase 

ATP = Adenosine Triphosphate 

CRP = C - Reactive Protein 

CTL = Cytotoxic T Lymphocytes - CD8+ cells 

DAMP = Danger-Associated Molecular 

Pattern 

DNA = Deoxyribonucleic Acid 

DTH = Delayed-type Hypersensitivity 

EMSA = Electrophoretic Mobility Shift Assay 

GALT = Gut Associated Lymph Tissue 

GVHD = Graft Versus Host Disease 

HES = Hydroxy Ethyl Starch 

HGDF = Hepatoma-Derived Growth Factor 

HSS = high sodium solution 

HMGB-1 = High Mobility Group Box-1 

HO-1 = Heme Oxygenase-1 

HSP = Heat Shock Protein 

HTK = Histidine-Triptophane-Ketoglutarate 

IBD = Inflammatory Bowel Disease 

ICAM-1 = Intercellular Adhesion Molecule-1 

IFN- γ = Interferon-Gamma 

IIF = Irreversible Intestinal Failure 

IKK = IκB Kinases 

IL = Interleukin 

IP = Ischemic Preconditioning 

IR = Ischemia and Reperfusion 

IκB = Inhibitory-unit κB 

LPS = Lipopolysaccharide 

LSS = low sodium solution 

MHC = Major Histocompatibility Complex 

MMP-2 = Matrix metalloproteinase-2 

MMP-9 = Matrix metalloproteinase-9 

NF-AT = Nuclear Factor of Activated T cells 

NF-κB = Nuclear Factor- κB 

NK cells = Natural Killer cells 

NO = Nitric Oxide 

OD = Optical Density units 

OFR = Oxygen Free Radicals 

PAF = Platelet activating factor   

PAMP = Pathogen-Associated Molecular Pattern 

PFD = Perfluorodecaline 

PMN = Polymorphonuclear cells 

PP = Pharmacologic Preconditioning 

PTLD = Post-Transplant Lymphoproliferative 

Disease 

SBS = Short Bowel Syndrome 

SDS-PAGE = Sodium Dodecylsulphate 

Polyacrylamide Gel Electrophoresis 

TAC = Tacrolimus 

Th1 =T-helper-1 CD4+ cells. Pro-

inflammatory cells 

Th2 =T-helper-2 CD4+ cells. Anti-

inflammatory cells 

TJ = Tight Junction  

TLM = Two Layer Method 

TLR = Toll-Like Receptor 

TNF-α = Tumor Necrosis Factor-Alpha 

TPN = Total Parenteral Nutrition 

Tregs = T-Regulatory cells or 

CD4+CD25+Foxp3+ 

UW = University of Wisconsin solution 

VAC = Vacuum-Assisted Closure 

VCAM-1 = Vascular Cell Adhesion Molecule-1 

WBC = White Blood cell Count 

ZO-1 = Zonula Occludens-1 



 

 

 

 

 

 

 

 


