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Abstract 

On The Innervation of Salivary Glands and Treatment of Dry Mouth 
- An Experimental and Clinical Study 

Nina Khosravani 

Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Box 450, 

405 30 Gothenburg, Sweden 

 

Detailed knowledge of the innervation of the parotid gland is essential in basic studies 
on various neuroglandular phenomena as well as in various types of orofacial 
surgery. The innervation is more complex than usually depicted in Textbooks. Using 
the rat as experimental model, it was shown that not only the classical auriculo-
temporal nerve but also the facial nerve contributed to the cholinergic innervation of 
the gland, and that facial nerve-mediated impulses, reflexly elicited, evoked secretion 
of saliva. In humans, aberrant regenerating parasympathetic nerve fibres of the facial 
nerve may, therefore, be a potential contributor to Frey´s syndrome, characterized by 
sweating and redness over the parotid region. Little is known about the sensory 
innervation of salivary glands. A co-localization of the neuropeptides substance P and 
calcitonin gene-related peptide signals sensory nerve fibres in the salivary glands. 
Though the auriculo-temporal nerve trunk carries sensory fibres from the trigeminal 
ganglion, denervation experiments showed that those sensory substance P- and 
calcitonin gene-related fibres that innervate the gland use other routes. The 
comparison of a number of various types of glands in the ferret revealed large 
differences in the acetylcholine synthesis, the mucin-producing sublingual, zygomatic 
and molar glands showing a synthesizing capacity, expressed per gland weight, 3-4 
times higher than that of the serous parotid gland and the sero-mucous 
submandibular gland, implying a high cholinergic tone in the mucin-producing glands. 
The acetylcholine formation was due to the specific action of choline 
acetyltransferase, and denervation experiments showed this enzyme to be confined 
to the nerves. Thus, no support for an extra-neuronal synthesis of acetylcholine by 
the activity of choline acetyltransferase was found. Dry mouth jeopardizes the oral 
health. A new approach to the treatment of dry mouth was tested in healthy subjects 
and in patients suffering from salivary gland hypofunction. The cholinesterase 
inhibitor physostigmine prevents the breakdown of acetylcholine released from 
cholinergic nerve endings: acetylcholine accumulates and either evokes an effector 
response or enhances it. Physostigmine was applied locally on the oral mucosa 
aiming at activating hundreds of underlying, submucosal minor glands (producing 
lubricating mucin), while at the same time minimising systemic cholinergic effects. A 
dose-finding showed that it was possible to obtain a long-lasting secretion of saliva in 
the two study groups concomitant with a long-lasting relief from oral dryness (as 
revealed by Visual Analogue Scale-scoring) in the group of dry mouth patients at a 
dose level, where side-effects were absent or in the form of mild gastro-intestinal 
discomfort. The local drug application, directed towards the minor salivary glands, 
seems promising and may develop into a therapeutic option in the treatment of dry 
mouth. 
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temporal nerve, facial nerve, neuropeptides, salivary gland hypofunction, physostigmine. 
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Introduction 
 

Saliva is of outmost importance for the oral health. It lubricates oral structures, 

maintains neutral pH by its buffering capacity, remineralizes the enamel of the 

teeth, cleanses the oral cavity, exerts antimicrobial effects, stimulates wound 

healing, solutes tastants, aids in maintenance of taste buds, takes part in the 

digestion of the food and protects the oesophageal mucosa from regurgitating 

gastric secretion. Saliva is a mixture of secretion from parotid, submandibular 

and sublingual glands and hundreds of minor salivary glands located just under 

the mucosal epithelium and distributed throughout the mouth. Each type of gland 

contributes to whole saliva with specific constituencies. The daily salivary output 

is approximately one liter and the flow rate varies considerably over time (Dawes, 

1972; Kaplan & Baum, 1993; Tenovou, 1998; van Nieuw Amerongen et al., 2004; 

Flink et al., 2005).  

 

The low mucin-rich salivary flow rate during the night-time is maintained by the 

spontaneous activity of the minor glands. Depending on type and intensity of the 

reflex stimulus different types of glands are thrown into activity to various extent. 

At rest a weak reflex driven secretion, in response to mucosal dryness and 

movements of the lips and the tongue, is superimposed on the spontaneous 

secretion. In response to a meal a number of salivatory reflexes are set up by 

stimulation of mechanoreceptors, gustatory receptors, olfactory receptors and 

nociceptors, and, as a result, large volumes of saliva are secreted from the 

parotid and submandibular glands (Hector & Linden, 1999).  

 

All types of salivary glands and their secretory elements (acini, ducts and 

myoepithelial cells) seem to be supplied with parasympathetic nerve fibres. The 

extent of the sympathetic innervation of the secretory elements varies between 

species and between the glands in the same species. For instance in humans, 

the sympathetic nerve supply of the secretory cells is scarce in the labial glands 

but rich in the submandibular glands. While parasympathetic activity evokes a 
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rich flow of saliva, the response to sympathetic activity is usually small, if any. 

Though both the stimulation of the parasympathetic nerve and the stimulation of 

the sympathetic nerve give rise to protein secretion, the protein concentration will 

be less in parasympathetic saliva as a consequence of the large fluid production 

in response to the parasympathetic innervation. Under physiological conditions 

sympathetic secretory activity is thought to occur during a background of on-

going parasympathetic secretion, and positive interactions may occur with 

respect to fluid and protein output. In contrast, the two divisions of the autonomic 

nervous system have opposite effects on the blood vessels. Sympathetic 

stimulation decreases the blood flow through the gland, while parasympathetic 

stimulation increases the blood flow. However, the sympathetic vasoconstrictor 

fibres are of different origin than the sympathetic secretory fibres. They are not 

part of the alimentary reflexes but are mobilized during a profound fall in arterial 

blood pressure such as that upon massive bleeding (Emmelin, 1967, 1987; 

Garrett, 1988).  

 

Traditionally, acetylcholine is the parasympathetic transmitter and noradrenaline 

the sympathetic transmitter. However, in the late 1970s it became apparent that 

a number of transmission mechanisms besides the classical cholinergic and 

adrenergic ones are at work in the neuro-effector region of various autonomically 

innervated organs. Atropine-resistant parasympathetic vasodilatation is a well-

known phenomenon in salivary glands, first demonstrated by Heidenhain in 

1872. Retrospectively, the observation of Heidenhain is the original 

demonstration of a so called parasympathetic non-adrenergic, non-cholinergic 

effector response (Burnstock, 1986).  The phenomenon was once explained by 

the so-called “proximity-theory”, i.e. the contact between nerve-ending and 

postjunctional receptors was too tight to allow the access of atropine (see Bloom 

& Edwards, 1980). The parasympathetic atropine-resistant vasodilatation is 

presently attributed to a number of neuropeptides, notable vasoactive intestinal 

peptide, and to nitric oxide (Edwards, 1998).  
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Over more than hundred years, the parasympathetic nerve-evoked flow of saliva 

has been thought to be completely abolished by atropine, a finding that has been 

interpreted to imply that acetylcholine is the sole transmitter in parasympathetic 

nerve-evoked secretion. When shifting focus from classical laboratory animals, 

such as the cat and the dog, to the rat, an atropine-resistant parasympathetic 

salivary secretion from the submandibular gland was reported, in passing, by 

Thulin (1976a) when studying the atropine-resistant blood flow of this gland.  

Though not immediately recognized at that time, the observation made by Thulin 

became the beginning of a paradigm shift (Ekström et al., 1983; Ekström, 

1999a).  A number of parasympathetic peptidergic transmission mechanisms 

were found to release proteins or, in addition, to evoke fluid secretion and further, 

to interact positively with each other and with acetylcholine. Moreover, 

parasympathetic non-adrenergic, non-cholinergic transmitters are involved in 

gland metabolism and gland growth. In the exploration of the field of the 

regulation of salivary glandular activities by parasympathetic non-adrenergic, 

non-cholinergic transmission mechanisms not only the rat but also the ferret 

became useful experimental animals (Ekström et al., 1988b). Like the glands of 

the rat, those of the ferret responded with secretion of saliva to neuropeptides, 

administered to the blood stream, and with an atropine-resistant flow of saliva to 

parasympathetic stimulation. Non-adrenergic, non-cholinergic mechanisms were 

also found to act in those glands of the cat and the dog, favoured by the early 

experimenters in physiology, where no overt secretion of fluid is observed after 

atropinization in response to parasympathetic nerve stimulation; here, the non-

adrenergic, non-cholinergic transmission mechanisms evoked exocytosis of 

secretory granules and protein secretion (Ekström, 1999a). 

 

The acinar cells of salivary glands are supplied with muscarinic receptors, usually 

of both muscarinic M1 and M3 subtypes (Tobin et al., 2009). The adrenergic 

receptors are also usually of two types, α1 and β1 (Baum & Wellner, 1999). In 

addition, the acinar cells may be supplied with various receptors for the 

peptidergic transmitters, involving vasoactive intestinal peptide, pituitary 
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adenylate cyclase activating peptide, substance P, neurokinin A, calcitonin gene-

related peptide and neuropeptide Y (Ekström, 1999a).   

 

Intracellularly, the various transmitters acting on the receptors of the acinar cells 

mobilize either Ca2+/Inositoltriphosphate or cAMP. For example, stimulation of 

muscarinic, α1-adrenergic and substance P-ergic receptors activate the 

Ca2+/Inositoltriphosphate- pathway, while β1-adrenergic and vasoactive intestinal 

peptide-ergic receptors activate the cAMP-pathway.  In addition, agonists 

mobilizing the cAMP-pathway do also generate nitric oxide by the activity of 

neuronal type of nitric oxide synthase (but of non-nervous origin). cAMP/nitric 

oxide causes the secretion of protein with little accompanying fluid, while 

Ca2+/Inositoltriphosphate does also cause secretion of protein but which, in this 

case, is accompanied with a large amount of fluid (Baum & Wellner, 1999; 

Ekström et al., 2007). 

 

The fluid secretion is an active, energy-dependent, process that requires an 

adequate blood flow. Upon increase in intracellular Ca2+, basolateral K+ - and 

apical Cl– -channels open and the two electrolytes move down their 

concentration gradients to the extracellular compartment.  Cl- in the acinar lumen 

will drag Na+ from the interstitium to the lumen, and the luminal increase of NaCl 

creates an osmotic gradient that causes large volumes of water to move into the 

lumen. During its passage through the ducts, the electrolyte composition of the 

primary saliva is modified and further, proteins are added but the volume of 

saliva is not affected, resulting in a hypotonic secondary saliva (Poulsen, 1998). 

Proteins of acinar and ductule cells are secreted by two main routes, the 

regulated exocytotic route, involving storage granules, and the constitutive 

vesicular route, involving a direct secretion from the Golgi (Proctor, 1998). Acini 

and ducts are embraced by myoepithelial cells, increasing - by their contraction - 

the intraluminal pressure that may be of particular importance for the flow of the 

viscous mucin-rich saliva (Garrett & Emmelin, 1979). The myoepithelial cells are 
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activated both by muscarinic and α1-adrenergic stimuli and, in addition by 

tachykinins (as shown by physalaemin, Thulin, 1976b).   

 

Little is known about the sensory innervation of salivary glands. In general, 

nerves showing co-localization of substance P and calcitonin gene-related 

peptide are usually thought to be of sensory origin (Saria et al., 1985). Though 

calcitonin gene-related peptide-containing nerve fibres may occur close to acinar 

cells in the rat parotid gland, most of these fibres are found around secretory 

ducts and blood vessels and these fibres contain substance P in addition. The 

bulk of the calcitonin gene-related peptide /substance P-containing nerve fibres is 

of sensoric origin, since they are destroyed by the sensory neurotoxin capsaicin. 

Most substance P-containing nerve fibres are devoid of calcitonin gene-related 

peptide and found close to acini (Ekström et al., 1988a, 1989). Calcitonin gene-

related peptide and substance P are found in both the trigeminal ganglion and 

the otic ganglion (Ma et al., 2001; Hardebo et al., 1992). Another neuropeptide of 

the parotid gland, vasoactive intestinal peptide, which cause a small, protein rich, 

flow of saliva, is only localized in the otic ganglion (and not in the trigeminal 

ganglion, Hardebo et al., 1992). The auriculo-temporal nerve is not only 

conveying secreto-motor fibres for the parotid gland but also sensory nerve fibres 

from the trigeminal ganglion to the temporal region, auricle, external acoustic 

meatus, tympanic membrane and temporo-mandibular joint (Greene, 1955; Gray, 

1988). Thus, there is the possibility that the auriculo-temporal nerve trunk 

innervates the parotid gland not only with nerve fibres from the otic ganglion but 

also with nerve fibres of the trigeminal ganglion.  

 

Nerves do not only exert short-term regulation of the salivary glands but they also 

exert a long-term regulation of gland metabolism and gland size (Ohlin, 1966). 

Moreover, by their transmitter bombardement of the glandular receptors over 

time the nerves are of importance for the sensitivity of the glandular receptors 

(Emmelin, 1965, see below). 
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Whereas a long-term endocrine influence on salivary gland size and function is a 

well-recognized phenomenon, exemplified with the development of dry mouth in 

post-menopausal women (Johnson, 1988; Eliasson et al., 2003), hormones are 

not usually thought to take part in the immediate regulation of the secretory 

activity of the glands (Emmelin, 1967; Johnson & Gerwin, 2001; Ferguson, 

1999). Recent animal experiments do, however, show the gastro-intestinal 

peptide hormones cholecystokinin, gastrin and melatonin to secrete proteins from 

the parotid glands of rats in vivo without any accompanying overt fluid secretion 

(Çevik Aras & Ekström, 2006, 2008), in analogy to the action of some 

parasympathetic neuropeptides (Ekström, 1999a).  

 

Acetylcholine and its synthesizing enzyme, choline acetyltransferase - 

transferring the acetylgroup from acetylCoenzyme A to choline, is traditionally 

associated with nervous structures. The placenta of higher primates is the 

unambiguous example of a non-nervous synthesis of acetylcholine, since this 

tissue lacks an innervation (Hebb & Ratković, 1962). In recent years, a non-

nervous acetylcholine synthesis has come in focus (Wessler & Kirkpatrick, 2008; 

Kawashima &  Fujii, 2008). A number of epithelial, endothelial, mesenchymal and 

immune cells are reported to show immunoreactivity for choline acetyltransferase 

and to contain acetylcholine.  Among the many functions attributed to non-

neuronal acetylcholine are skin regeneration, wound healing, airway ciliary 

activity, blood flow control, antibody generation and inhibition of release of pro-

inflammatory mediators. In the context of the present Thesis, it may also be 

noted that non-neuronal acetylcholine is implied in modifying fluid and electrolyte 

movements in mucosal and glandular epithelial cells of the airways and in 

increasing paracellular permeability in the pancreas by an action on tight 

junctions. The demonstration of acetylcholine synthesis in a number of tissues 

raises the question whether in some of these tissues “contaminating” cholinergic 

nerves are present. In homogenates of denervated skeletal muscles, a capacity 

to synthesize acetylcholine of 5-8% remains. This persisting synthesis is due to 

an unspecific synthesis of acetylcholine by extraneuronal carnitine 
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acetyltransferase (Tuček, 1982). Of anatomical reasons studies on 

parasympathetically denervated structures are few. The pathways of the 

postganglionic nerves may in part be unknown or the location of the relay 

between pre- and postganglionic nerves not easily accessible. In fact, in most 

cases the ganglia are located within the organ. The urinary bladder of the male 

rat and the parotid gland belong to those structures where the respective 

ganglion is situated outside the effector organ.  

 

Though the parotid gland has been used as neurobiological model organs since 

the days of Claude Bernard, for example to study various denervation 

phenomena such as supersensitivity, no studies have been made on the otic 

ganglionic connection with the gland. By studies of Holmberg (1971, 1972), the 

anatomical routes for the parasympathetic innervation of the dog´s parotid gland 

were shown to include not only the auriculo-temporal nerve but also nerve fibres 

reaching the gland via the internal maxillary artery. Twigs of the facial nerve 

transverse the parotid gland and in the dog´s parotid gland this nerve seems to 

contribute to the secretory response of the gland (Ekström & Holmberg, 1972).  

Knowledge of the parotid innervation is not only of interest to the experimenter 

but must also be of major interest for the oro-facial surgeon. 

 

Frey´s syndrome, also called the auriculo-temporal syndrome or gustatory 

sweating, named after the Polish neurologist Lucja Frey, who was the first to 

identify the role of the auriculo-temporal nerve (1923) in a syndrome 

characterized by sweating, redness, flushing and warming over the parotid region 

in connection with eating.  However, the first case report may be that of 

Kastremsky in 1740, describing a patient with perspiration when eating salty 

food, though the report by Duphenix in 1757 is usually considered as the first 

case of gustatory sweating (Dunbar et al., 2002). Both the patient of Duphenix 

and of Frey had been injured by a bullet penetrating the parotid gland, followed 

by chronic inflammation. Frey´s syndrome is most frequently observed after 

parotid gland surgery, the incidence varying between 3% and 98%, neck 
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dissection, blunt trauma to the cheek and chronic infection of the parotid area. It 

appears over a period of several months. Frey´s syndrome is thought to reflect 

an aberrant regeneration of postganglionic (cholinergic) parasympathetic fibres of 

the auriculo-temporal nerve innervating sweat glands and skin vessels following 

loss of the sympathetic postganglionic (cholinergic) innervation. It may also be 

noted that Frey´s syndrome has been reported in infants as sequale to forceps 

delivery (Johnson & Birchall, 1995). Medical treatment includes topical facial 

application of anticholinergics and botulinum toxin. Surgical treatments include 

division of the branches of the tympanic plexus (Sood et al., 1998; de Bree et al., 

2007). 

 

When the amount of a drug required to evoke a certain (submaximal) biological 

response diminishes the tissue is referred to as being supersensitive. 

Postjunctional supersensitivity is non-specific and develops over a period of 

some weeks. Salivary glands have been useful model organs in exploring the 

phenomenon of supersensitivity, particularly that following interference with the 

parasympathetic innervation (Emmelin, 1961, 1965). It is more marked after 

postganglionic denervation than after preganglionic denervation, since after 

postganglionic denervation the target cells has lost the transmitter 

bombardement not only of that fraction continuously released from the 

postganglionic nerve endings but also of that fraction released upon the arrival of 

the reflexly elicited nerve impulses. Sensitization may be used as a diagnostic 

test for nerve damages (Lapides et al., 1962). For experimental purposes a 

presumptive secretory nerve may be caused to degenerate to allow the 

development of supersensitivity to mark a functional influence of that nerve on 

the secretory cells. 

 

In the clinic, salivary flow rate is categorized as resting/unstimulated (i.e. 

spontaneous secretion combined with a low-graded reflex secretion) and 

stimulated (reflexly elicited by chewing or citric acid). An unstimulated flow rate of 

whole saliva < 0.1 ml/min and a stimulated flow rate of whole saliva < 0.7 ml/min 
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are considered to reflect salivary gland hypofunction (Ericsson & Hardwick, 

1978). Xerostomia is the subjective feeling of dryness of the oral mucosa. 

Xerostomia and salivary gland hypofunction may or may not be related (Fox et 

al., 1987). The term “dry mouth” refers to the subjective feeling of dryness with or 

without demonstration of hyposalivation. The prevalence of dry mouth is 15-40%, 

and is more common among women than men and increases with age 

(Österberg et al., 1984; Nederfors et al., 1997). With a dry mouth, mastication, 

swallowing and speaking become difficult. Taste acuity weakens and oral 

mucosal infections, dental caries and halitosis are common. The quality of life is 

dramatically impaired (Ship et al., 2002; Wärnberg et al., 2005). Among known 

causes of dry mouth are chronic gland inflammation (e.g. Sjögren´s syndrome), 

diabetes, depression, head and neck radiotherapy, radioiodide therapy, 

HIV/AIDS, orofacial trauma, surgery and use of medications (Grišius & Fox, 

1988). In about 20% of those complaining of dry mouth, the cause is unknown 

(Longman et al., 1995; Field et al., 1997). 

 

The options to treat dry mouth are limited and often focused on flavored gums 

and lozenges, artificial saliva, oral rinses and oral gels. These treatments are of 

short duration. A number of drugs for systemic treatments have been suggested 

such as parasympathomimetics, cholinesterase inhibitors, anethole trithione - a 

bile-stimulating agent, bromhexine and guafensin – both mycolytic agents and 

further, the immune-enhancing substance alpha interferon, the cytoprotective 

amifostine, the antimalarial hydroxychloroquine. In many cases, definite clinical 

effects have not been established and further, the use of some of these drugs is 

associated with serious adverse effects. The parasympathomimetic drugs 

pilocarpine (Salagen®) and cevimeline (Evoxac®) are commercially available but 

a number of side effects are observed. In addition, positive results have been 

reported with the use of acupuncture but further clinical trials seem necessary 

(Fox, 2004). A device mounted on an intra-oral removable appliance to stimulate 

the lingual nerve to evoke secretion is presently under clinical trial (Strietzel et 

al., 2007). 



 

 10 

 

The amount of acetylcholine continuously released from the cholinergic nerve 

endings in the salivary glands, in the absence of nerve impulse traffic, is 

subliminal for evoking secretion of saliva. It may, however, be revealed by the 

intraductal injection of an acetycholinesterase inhibitor, which prevents the 

degradation of released acetylcholine, and thus,  accumulated acetylcholine in 

the neuro-effector region reaches suprathreshold levels for evoking secretion as 

demonstrated in parotid and submandibular glands (Emmelin et al., 1954; 

Ekström & Emmelin, 1974a,b). Likewise, during on-going nerve stimulation, the 

cholinergic secretory response will be enhanced by a cholinesterase inhibitor 

(Månsson & Ekström, 1991). 

 

Cholinesterase inhibitors may be divided into two groups, reversible and 

irreversible inhibitors. War gases and pesticides are found in the group of 

irreversible inhibitors. The classical reversible inhibitor is physostigmine, also 

called eserine. It is an alkaloid, originally extracted from the Calabar bean of a 

plant growing in West Africa. Physostigmine is a tertiary amine with lipohilic 

properties that readily passes biological barriers (Taylor, 1996). Therefore, it has 

been considered as a therapeutic option in the treatment of Alzheimer’s disease 

(Nordberg & Svensson, 1998). Synthetic congeners of physostigmine are the 

quaternary ammonium derivates neostigmine and pyridostigmine, which exert 

more long-lasting actions but are poorly absorbed. Neostigmine and 

pyridostigmine are made use of clinically, neostigmine to reverse the paralytic 

action of non-depolarising neuromuscular-blocking and to lower the intra-ocular 

pressure and pyridostigmine to enhance the neuro-muscular cholinergic 

transmission in myasthenia gravis.  

 

As mentioned above, the pharmacological treatment of dry mouth involves the 

systemic administration of drugs aiming at activating the parotid and 

submandibular glands. Since it is the mucin-rich saliva rather than the watery 

saliva that protects the oral mucosa from dryness (Collins & Dawes, 1987; 
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Sreebny & Broich, 1988) a therapeutic approach to the treatment of dry mouth 

would be to selectively activate the mucin-producing minor glands located just 

below the oral epithelium. By local application of the drug onto the mucosa, 

followed by the diffusion of the drug through the mucosal barrier, systemic effects 

would be kept at a minimum. In the development of such a treatment, the ferret 

submucosal glands have served as model organs.  Both in humans and in the 

ferret, local application of physostigmine on the mucosa causes the underlying 

submucosal glands to secrete (Hedner et al., 2001; Ekström & Helander, 2002). 

 

The first division of this Thesis focuses on the cholinergic and peptidergic 

innervation of the rat parotid gland with special emphasis on the effect of otic 

ganglionectomy, reflex secretion, the secretory role of the facial nerve and the 

sensory innervation.  In the second division, comparisons are made between 

mucin-producing salivary glands and the serous/seromucous producing glands of 

the ferret with respect to the acetylcholine-synthesizing capacity, secretory 

capacity, cholinergic receptor populations and gland contents of some 

neuropeptides with particular focus on the zygomatic gland. The third division is 

devoted to neuronal and non-neuronal acetylcholine synthesis in salivary glands 

studied in denervation experiments and by the inhibition of choline 

acetyltransferase activity. Finally, the fourth and fifth divisions deal with the 

secretory effect of physostigmine topically applied in healthy subjects and in 

patients suffering from dry mouth including objective measurements of salivary 

secretion and subjective measurements of the feeling of mouth dryness by the 

use of a Visual Analogue Scale. 
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To summarize, the specific aims of this Thesis are to define: 

 the otic ganglionic connections with the parotid gland 

 the secretory role of the facial nerve for the parotid gland 

 the contribution of the auriculo-temporal nerve to the sensory innervation 

of the parotid gland 

 characteristic features of mucin-producing and water-producing salivary 

glands 

 neuronal and non-neuronal acetylcholine synthesis in salivary glands 

 the role of physostigmine as a potential drug for the treatment of dry 

mouth. 

 

 

Material and Methods 
 

Observations on animals 
 

Adult ferrets and Sprague-Dawley rats (B & K Universal, Sollentuna, Sweden) 

were used. The animal experiments were approved by the Local Animal Welfare 

Committee. To perform preliminary surgery the animals were anaesthetized with 

sodium pentobarbitone (25-30 mg/kg I.P.) combined with ketamine (50 mg/kg 

I.M.). Postoperatively, they were given bupvenorphine (0.015 mg/kg S.C.) as an 

analgesic. In acute experiments, the animals were anaesthetized with sodium 

pentobarbitone (50-55 mg/kg I.P. - further anaesthetic was injected I.V. as 

required). During anaesthesia the body-temperature, measured by a rectal 

probe, was maintained at 37.5- 38°C using a thermostatically controlled blanket. 

Drugs were injected intravenously. Under deep anaesthesia, the aorta was cut 

and the animals were killed by exsanguination. The glands were rapidly 

removed, cleaned, and briefly dried on filter paper, weighed and stored at -70 °C 

until analyzed.  
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Preliminary surgery 

The denervation procedures were performed 7-9 days (1,2,3) or 2-3 weeks (2,4) 

before the acute experiment. In rats, the auriculo-temporal nerve was either cut 

where it emerges from the base of the skull or avulsed by swiftly pulling out a 

hook placed under the nerve trunk (taking care to avoid damage to the chorda 

tympani nerve) aiming at parasympathetic (postganglionic) denervation. The 

parasympathetic otic ganglion, located in the oval foramen (Al-Hadithi & Mitchell, 

1987), was extirpated. The facial nerve was cut at the level of the stylomastoid 

foramen and the great auricular nerve was cut where it emerges along the 

posterior border of the sternocleidomastoid muscle. The various types of surgery 

were combined in some series of experiments (1,3). In ferrets, the auriculo-

temporal nerve was avulsed, where it emerges from the base of the skull. The 

buccal branch of the mandibular nerve was approached from the mouth and cut 

as it appears between the pterygoid muscles. Following surgery the wounds 

were sutured. 

 

Duct preparation 

The parotid duct was exposed by a skin incision in the cheek close to the mouth 

in rats (1,2) and ferrets (4). In ferrets, the submandibular duct was exposed in the 

neck (Ekström et al., 1988b).  The lateral duct of the zygomatic gland, draining 

80% of the gland (Ekström & Helander, 2002), was cannulated from the mouth. 

The ducts were cannulated with polyethylene tubes.  

 

Stimulation of nerves 

In rats (1), the facial nerve was exposed at the level of the stylomastoid foramen, 

ligated and cut. The great auricular nerve was exposed as it emerged at the 

posterior border of the sternocleidomastoid muscle, ligated as far from the gland 

as possible and cut. The peripheral end of each nerve was passed trough a ring 

electrode and stimulated at high frequency (40 Hz) using varying voltage (2-8 Hz) 

and time periods of stimulation (2-10 min).  In ferrets (4), the buccal nerve was 

dissected as it appears between the ptergoid muscles. The auriculotemporal 
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nerve was dissected medial of the mandible. The chorda-lingual nerve was 

dissected as far as possible from the submandibular duct. Each nerve was 

ligated and cut. The peripheral nerve end was stimulated with a ring electrode at 

20 Hz (6-8V) either intermittently in periods or continuously up to 80 min.  

 
Reflex secretion 

In rats, the parotid ducts on both sides were cannulated with a fine polyethylene 

catheter (1). About 2-3 hours after surgery, when the animal was awakening and 

licking could be evoked, ascorbic acid was applied on the apex of the tongue 

every 30 s for 10 min, followed by a pause of 10 min and then, a new stimulation 

period of 10 min. Before the start of the application of ascorbic acid, the α-

adrenoceptor blocker phentolamine and the β-adrenoceptor blocker propranolol 

were administered via the cannulated tail vein. When appropriate, the second 

stimulation period was, in addition, performed in the presence of the muscarinic 

receptor blocker metylscopolamine. 

 

Collection of saliva 

Saliva secreted was collected on preweighed filter paper or in ice-chilled 

preweighed tubes, which were then reweighed. The amount of saliva secreted 

was expressed in µl; the specific density was taken to be 1.0 g/ml.  In some 

experiments the amount secreted was related to unit time per gland weight.  

 

Acetylcholine synthesis 

Usually tissues were homogenized in 1 ml of ice-chilled Na-phosphate buffer 

0,05 M, PH 6,5, containing NaCl 200 mM, dithiotreitol 1,2 mM and 0,5% Triton, 

100-X using an Ultra-Turrax homogenizer for 20 s at high speed. In case of 

nervous tissue a Potter-Elvehjem all-glass homogenizer was used. The 

homogenates were frozen and thawed before they were centrifuged (5min, 3000 

x g). The supernatant were transferred to Eppendorf®-tubes and stored at -20 °C 

before being analysed. Briefly, the incubation occurred under optimal conditions, 

and the medium was that of Banns et al. (1979) but dithiotreitol was omitted; the 
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control incubation contained acetylcholinesterase instead of the cholinesterase 

inhibitor physostigmine (eserine). The reaction was started by the addition of 10 

µl [3H]- acetylcoenzyme A (specific activity 180 mCi mmol -1 ) and after 30 min at 

39 °C it was stopped by transferring the incubate to glass tubes containing 2 ml 

of an ice-cold mM acetylcholine chloride, followed by cooling on ice. 

Acetylcholine was extracted using tetraphenylboron (Fonnum, 1969). To 

separate the organic and aqueous phases, the tubes were centrifuged. A sample 

of the organic layer was transferred into scintillaion vials and measured in 

scintillation liquid. The salivary gland homogenate does not only form 

radiolabelled acetylcholine but also radiolabelled acetylcarnitine (Banns et al., 

1979; Banns & Ekström, 1981). The true reading for acetylcholine formation was 

obtained by subtracting the radioactivity left in the control incubation, where 

acetylcholine was continually destroyed by acetylcholinesterase, from that 

obtained in test incubations, where acetylcholine was preserved by eserine. The 

acetylcholine formed (1,2,4) was expressed in nmol per gland per hour or in 

terms of concentration in nmol per 100 mg wet gland tissue. Unless otherwise 

stated, the acetylcholine synthesis is expressed per gland in the text. 

 

Effects of the choline acetyltransferase inhibitor bromoacetylcholine  

To find out whether the acetylcholine synthesis in normally innervated and in 

chronically denervated glands as well as in intact nerves was due to choline 

acetyltransferase activity, the choline acetyltransferase inhibitor 

bromoacetylcholine (0.02–2000 µM, final concentration) was included in the 

incubate (Henderson & Sastry, 1978). The inhibitor was added to the 

homogenate before other components of both test and control medium (1,2,4).  

 
Immunoblotting 

Pieces of gland tissue were homogenized on ice. Gel electrophoreses was used 

to separate proteins. The proteins were then transferred to a membrane (PVDF, 

Hypobond-P, Amersham Bioscience), where they were probed using antibodies 

(primary rabbit polyclonal antibodies, anti subtype M1, M2, M3, M4 and M5, 
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respectively diluted 1:1000 (Santa Cruz Biotechnology). To visualize the proteins 

alkaline phosphates-conjugated secondary goat anti-rabbit antibody (diluted 1:40 

000, Tropix). To exclude unspecific binding, membranes were not exposed to 

primary antibodies. Semi-quantitative measurements of proteins were made by 

densitometry (4). 

 
Measurements of neuropeptide gland contents  

Antiserum raised against synthetic rat calcitonin gene related peptide conjugated 

to bovine serum albumine, was used (4). The antiserum does not recognize 

calcitonin, vasoactive intestinal peptide, somatostatin, gastrin-releasing peptide, 

enkephalins or tachykinins. Antiserum directed against the C-terminal part of 

Substance P was used. The antiserum does not cross-react with other known 

tachykinins. The antiserum recognizes the N-terminal 15-amino acid sequence of 

vasoactive intestinal peptide and does not cross-react with peptidine histidine 

isolucine amide or any known regulatory peptide (Ekström et al., 1984) 

 

Observations on humans 
 
The studies took place at the Department of Cariology, Institute of Odontology, 

Sahlgrenska Academy at Göteborg University. The protocols were reviewed and 

approved by the Ethics Committee at Göteborg University. The studies were 

performed with the signed consent of the participants. The subjects were free to 

discontinue their participation in the studies.  

 

Study 1- Healthy subjects 
Seven healthy female volunteers took part; six were aged between 18 and 24, 

whilst one was 53 years old (5). The mean age was 27 years. The volunteers did 

not experience mouth dryness. They produced a normal salivary flow in response 

to paraffin-chewing (>1ml/min for whole saliva).  
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Study design 

The subjects were treated on four separate days with a spray solution of either 

placebo or physostigmine in various concentrations to the oral mucosa in three 

puffs, one puff in each cheek and one puff under the lip given by the staff. The 

mean weight of the solution sprayed was 166 ± 3 mg (n=28). The total amount of 

physostigmine, as base, administered at three different concentrations was 0.9 

mg (0.5%), 1.8 mg (1.0%) and 3.6 mg (2%). After administration of placebo and 

physostigmine, the subjects were asked to roll their tongues along booth cheek 

surfaces to distribute the solution more effectively on the mucosa. Physostigmine 

has a bitter taste. A grapefruit-like taste correction was therefore made for both 

placebo and physostigmine to minimize the difference in taste between the 

solutions. 

 

Collection of saliva 

Whole saliva secretion was measured every 15 min up to a maximum of 3 hours 

by placing one pre-weighed dental roll in each lower jaw vestibulum for 5 min 

(10-15 min, 25-30 min, 40-45 min, etc). The dental rolls were then weighed to 

calculate the amount of absorbed saliva. The administration of physostigmine/ 

placebo was preceded by a period of 35 min, during which saliva was collected 

three times as above; the amount collected during the period “-5 min to 0 min” 

was set to basal value. 

 

Safety assessment 

The subjects were asked to report any discomfort. 

 
Study 2 - Dry mouth patients 

The study group comprised of twenty volunteers, eleven females and nine males 

(6). The age varied between 24 and 70 years, the mean age being 58 years. The 

subjects had experienced mouth dryness for at least six months prior to 

screening. All subjects were able to secrete but their resting secretion was less 
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than 0.1 ml/min, indicating hyposecretion. Intra-oral examination showed a dry 

mucosa. 

 

Study design 

This study comprised of two phases, A and B. In Phase A, the subjective feeling 

of mouth dryness was assessed by a Visual Analogue Scale. As a result of the 

Visual Analogue Scale-scoring and safety assessment, a dose of physostigmine 

was selected to objectively measure the amount of saliva secreted (Phase B). 

Physostigmine solutions, in a gel formulation, were prepared in a standard 

volume of 300 ul, which was dosed, by the staff, in two equal portions (150 ul) 

inside the upper and lower lips, respectively. The subjects were asked to 

distribute, with the tongue, the solution and to retain it in the mouth. The placebo 

solution was prepared in an identical volume as physostigmine and administered 

in the same manner as physostigmine. Also in this study, a grapefruit-like taste 

correction was made for both placebo and physostigmine. 

 

Phase A 

In phase A, physostigmine (0.9 mg, 1.8 mg, 3.6 mg and 7.2 mg) and placebo 

were compared.  Three different doses of physostigmine or placebo and two 

doses of physostigmine were administered to each subject according to a 

randomisation schedule. At each treatment visit, subjective assessments were 

done at 15 min and 0 min before administration of physostigmine/placebo, and 

again at 15, 30, 60, 90, 120 and 180 min after administration. At each time point, 

the subjects were first asked to estimate the feeling of dryness in the mouth and 

then to estimate the feeling of dryness on the inside of the lips by the questions 

“How do you feel in the mouth right now” (“Hur känner du dig i munnen nu”) and 

“How do you feel on the inside of the lips right now” (“Hur känner du dig på 

läpparnas insida nu”), respectively. The subjects answered by using a Visual 

Analogue Scale. The subject was not allowed to see the immediate preceding 

scores. The answers were documented, by the subject, with one pencil mark 



 

 19 

across a 100 mm horizontal line that was marked at its extreme end with 

“Extremely dry” (“Extremt torr”) and “Not at all dry” (“Inte alls torr”) 

 

Phase B 

Physostigmine 1.8 mg was selected for the quantative measurements of 

salivation. Pre-weighed dental rolls were placed in the vestibulum of the lower 

jaw on both sides and left to absorb saliva for 15 min.  Before application of the 

study drug or placebo, rolls were applied at 30 min and at 15 min, respectively. 

The volume obtained between -15 min and 0 min was set to basal value.  After 

the application of the drug or placebo, rolls were placed again at 15, 45, 75, 105 

and 165 minutes.  

 

Safety assessment 

Signs of systemic effects were recorded both in Phase A and Phase B and were 

focused on bradycardia, fall in blood pressure, change in mental alertness 

(sedation, nervousness), respiratory distress (asthma), gastro-intestinal 

discomfort (nausea, stomach pain) and excessive sweating. Heart rate and blood 

pressure were measured automatically.  

 

Evaluation - study 2 

The material with respect to the objective measurement of saliva volumes and 

the subjective estimation of oral dryness was analysed “per protocol”. 

 

Statistics 

 

Statistical significances of differences were calculated either by Student´s t-test 

for paired or unpaired values, one-way analysis of variance (ANOVA) followed by 

Fisher´s protected least-significant difference,  Wilcoxon´s signed-rank test for 

paired comparisons or Wilcoxon´s rank-sum test for unpaired comparisons using 

Statview™ SE+. The area under the curve was calculated using KaleidaGraph 
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version 3.51. Probabilities of less than 5% were considered significant. Values 

presented are means ±S.E.M.  

 

Substances 

 

Acetylcholinesterase type V-S, atropine sulphate, bromoacetylcholine bromide, 

hexamehonium, methacholine, methylscopolamine, physostigmine (eserine), 

propranolol were from Sigma. Physostigmine base (to be applied in humans) was 

from Lonza.  Radiolabelled acetylCoenzyme A was from Amersham. 

Phentolamine mesylate was from Novartis Pharma.  

 

 

Results and Discussion 
 
Observations on animals 
 
I. On the innervation of the rat parotid gland 
 

1. Acetylcholine synthesis and Gland weights 
(a) The otic ganglion and the auriculo-temporal nerve  
Otic ganglionectomy reduced the total acetylcholine synthesizing capacity of the 

parotid gland by 88% and the gland weight by 33%, when examined 7 days 

postoperatively (1). In response to division of the auriculo-temporal nerve the 

effect was less conspicuous, the acetylcholine synthesis being reduced by 76% 

and the gland weight by 20%. Avulsion of the auriculo-temporal nerve was more 

effective than otic ganglionectomy with respect to the acetylcholine synthesis 

(94%), while the effect on the gland weight was about the same as after 

ganglionectomy (39%). Acetylcholine synthesis and gland weights of 

contralateral, unoperated glands were unchanged.  
 



 

 21 

(b) The facial nerve  

Seven days after division of the facial nerve, the total acetylcholine synthesizing 

capacity of the parotid gland was reduced by 15%, whereas the gland weight 

was unaffected (1). The decrease in the synthesizing capacity upon otic 

ganglionectomy (88%) was even more reduced in combination with facial nerve 

division (98%). Also the combined division of the auriculo-temporal nerve and the 

facial nerve caused a greater fall in the acetylcholine synthesis (89%) than 

division of just the auriculo-temporal nerve (76%). 

 

(c) The great auricular nerve 

Neither the acetylcholine synthesis nor the gland weight was affected by division 

of the great auricular nerve (1).  

 
(d) The distribution of the acetylcholine synthesizing capacity  

In the normally innervated parotid glands the concentration of acetylcholine 

synthesis was evenly distributed in the three lobes of the gland. Otic 

ganglionectomy reduced the synthesizing capacity in all three lobes to the same 

extent. Combined with facial nerve division a further even distributed reduction 

was observed in all three lobes, suggesting that the facial nerve reaches the 

whole gland (1). 

 
2. Reflex secretion 
Reflex secretion was elicited after elimination of the influence of sympathetic 

noradrenaline and circulating catecholamines on the secretory cells (1). Citric 

acid evoked a high flow of saliva from innervated glands, which was not affected 

by interference with the nervous secretory pathways on the contralateral side, 

suggesting that the glands were exposed to maximal secretion.  After acute otic 

ganglionectomy, the flow rate of the denervated gland was reduced by as much 

as 99%. Just division of the auriculo-temporal reduced the flow rate by 88% and 

combined with division of the facial nerve by 95%. The reduction in flow rate 
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(99%) in response to avulsion of the auriculo-temporal nerve was of the same 

magnitude as after otic ganglionectomy. 

 

3. Electrical stimulation of the facial nerve 

Stimulation of the peripheral facial nerve (40 Hz), divided at the level of the 

stylomastoid foramen, evoked a flow of saliva (1), in the presence of 

adrenoceptor blockade, that was about 10% of that in response to stimulation of 

the auriculo-temporal nerve (Månsson & Ekström, 1991). When preceded by otic 

ganglionectomy one week in advance, the facial nerve still evoked secretion 

albeit at a reduced rate, a response that was exaggerated due to 

supersensitivity.  Analytic pharmacology showed the facial nerve-evoked 

secretion to be unaffected by the ganglion blocker hexamethonium, but (almost) 

completely abolished by atropine. The facial secretory response was not due to 

electrical irradiation from the stimulating electrode, since a) firm ligation of the 

peripheral nerve stump distal to the electrode completely abolished the flow of 

saliva and further, (b) stimulation of the peripheral end of the facial nerve, divided 

7 days in advance, produced no flow of saliva from the gland. 

 

4. Stimulation of the great auricular nerve 

No support was gained for a secretory role for the great auricular nerve, since 

stimulation (40 Hz) of the nerve in innervated glands or sensitized glands, by otic 

ganglionectomy one week in advance, caused no flow of saliva (1).  

 

5. Further evidence for a facial nerve influence on the secretory cells 

Nerves exert long-term influences on the gland cells as revealed by the 

development of a postjunctional supersensitivity over a period of 2-3 weeks 

following parasympathetic or sympathetic denervation (Emmelin, 1965; Ekström, 

1980). However, no supersensitivity to the intravenous injection of methacholine 

was demonstrated 2-3 weeks following division of the facial nerve. Furthermore, 

no difference in the acetylcholine-synthesizing capacity existed between glands 

on operated and non-operated sides.  In contrast, one week postoperatively, the 
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parotid gland showed a slight sensitization to methacholine (as judged by the 

increase in volume response (25%) to a suprathreshold dose of this drug, a 

finding to be combined with the 15%-decrease in acetylcholine-synthesizing 

capacity of the gland on the operated side (1,2). For comparison, the secretory 

response to methacholine following otic ganglionectomy increased more than 

tenfold (I). The rapid restoration of the acetylcholine synthesizing capacity and 

the decrease in sensitivity may reflect compensatory impulse traffic in the 

remaining nerves and (or) collateral sprouting from these nerves (Ekström, 

1999b).  

 

6. Sensory contribution to the peptidergic gland innervation  

In the rat, vasoactive intestinal peptide is found in the otic ganglion but not in the 

trigeminal ganglion, whereas both calcitonin-gene related peptide and substance 

P are found in both the trigeminal ganglion and the otic ganglion (Ma et al., 2001; 

Hardebo et al., 1992). Almost all of the substance P- and vasoactive intestinal 

peptide-containing nerve fibres of the rat parotid gland reached the gland via the 

auriculo-temporal nerve trunk, while only a minor proportion of the calcitonin 

gene related peptide-containing nerve fibres did so (3): seven days after division 

of the auriculo-temporal nerve, the gland contents of vasoactive intestinal 

peptide, substance P and calcitonin gene related peptide were reduced by 88%, 

93% and 37%, respectively. Virtually all of the substance P- and vasoactive 

intestinal peptide-containing nerve fibres originated from the otic ganglion, while, 

once again, only a minor proportion of the calictonin gene related peptide-

containing nerve fibres was of otic origin: after otic ganglionectomy, the gland 

contents of substance P and vasoactive intestinal peptide were reduced by 98% 

and the gland content of calcitonin gene related peptide by 32%. No support for 

the idea that the auriculo-temporal nerve trunk supplied the gland with substance 

P- and/or calcitonin gene-related peptide-containing nerve fibres originating from 

another source than the otic ganglion was found: the division of the auriculo-

temporal nerve combined with otic ganglionectomy did not further lower the gland 

content of substance P (97%) and calcitonin gene related peptide (23%).  
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II. On the innervation of ferret salivary glands and their secretion: 
comparisons between glands, and with special focus on the submucosal 

zygomatic gland and the acetylcholine synthesis. 
 
1. Acetylcholine synthesis and Gland weights. 
(a) Intact glands  

Of the five types of glands studied the zygomatic and molar glands were heavier 

than the sublingual glands but lighter than the parotid and submandibular glands.  
The acetylcholine synthesis expressed per gland weight was three to four times 

higher in the mucin-producing sublingual, zygomatic and molar glands than in the 

serous parotid and seromucous submandibular glands (4).  

 
(b) Effects of division of the auriculo-temporal nerve and the buccal nerve  

Seven days postoperatively (4), the total amount of the acetylcholine-

synthesizing capacity was reduced by 97% in the parotid gland (auriculo-

temporal nerve), 95% in the zygomatic gland (buccal nerve) and 85% in the 

molar gland (buccal nerve). The parotid gland lost 15% in weight, while the 

weight loss was more pronounced in the zygomatic (46%) and molar glands 

(23%).  

 
2. Expression of muscarinic subtypes 
All five subtypes of muscarinic receptors were expressed in the five types of 

glands (4). The semiquantitative comparison within each gland showed the M3-

receptor subtype to dominate. The concentration of M5-receptor subtype was 

less in the mucinproducing glands than in the seous/sero-mucous glands. 

 

3. Secretory responses to nerve stimulation 
A resting viscous flow from the zygomatic gland was observed, while no resting 

secretion occurred from the parotid and submandibular glands (4). Expressed 

per gland weight, the parotid and submandibular glands secreted larger volumes 
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to stimulation of the auriculo-temporal nerve and chorda-lingual nerve, 

respectively, than the zygomatic gland to stimulation of the buccal nerve. A 

certain fraction of the secretory response of the zygomatic gland was due to 

mobilization of non-adrenergic, non-cholinergic transmitters, since in the 

presence of atropine (and α- and β-adrenoceptor blockers) 25% of the secretion 

persisted, to be compared with previous findings of the submandibular gland of 

30% and the parotid gland of 5% (Ekström et al., 1988b). 
 
4. Neuropeptides 

The three peptides vasoactive intestinal peptide, substance P and calcitonin 

gene related peptide were all present in the parotid, submandibular, zygomatic 

and molar glands, while the sublingual gland lacked detectable amounts of 

calcitonin gene-related peptide (4). Vasoactive intestinal peptide is associated 

with salivary protein secretion. However, no uniform pattern with respect to mucin 

producing and non-mucin producing glands was found; e.g.  the vasoactive 

intestinal peptide concentration was low both in the parotid gland and in the 

zygomatic gland.  

 
III. On the origin of acetylcholine and its specific synthesis 

 

The acetylcholine synthesizing capacity almost completely disappeared in the rat 

parotid gland in response to otic ganglionectomy (combined with division of the 

facial nerve) or to avulsion of the auriculo-temporal nerve (1), in the ferret parotid 

gland to avulsion of the auriculo-temporal nerve and in the ferret zygomatic gland 

to division of the buccal nerve (4). 

 

In salivary gland tissue extracts, the radioactive labeled acetylgroup is not only 

transferred to choline by the activity of choline acetyltransferase but also to 

carnitine by the activity of carnitine acetyltransferase (Banns & Ekström, 1981). 

Though the radioassay method of Fonnum (1975) is thought to avoid 

contamination of acetylcarnitine, comparisons between incubates where 
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acetylcholine is preserved (by physostigmine) and continuously destroyed (by 

cholinesterase) were always made (Banns et al., 1979). In incubates of 

innervated gland tissue extracts (of rat parotid gland and ferret parotid, 

submandibular, sublingual, zygomatic and molar glands) supplied with 

bromoacetylcholine, a specific inhibitor of choline acetyltransferase (Hendersson 

& Sastry, 1978), the enzyme activity was virtually abolished (95-99.5%). 

Likewise, the acetylcholine synthesis of the auriculo-temporal nerve (not 

containing carnitine acetyltransferase) showed a similar reduction in response to 

bromoacetylcholine (1, 4). In homogenates of denervated skeletal muscles a 

capacity to synthesize acetycholine of 5-8% is known to persist. In this case, 

bromoacetylcholine inhibited only 5% of the acetylcholine synthesis in the 

denervated muscle (Tuček, 1982). In contrast (1), and at the same concentration 

of bromoacetylcholine, the residual acetylcholine synthesizing capacity (2%) of 

the denervated rat parotid gland (otic ganglionectomy combined with section of 

the facial nerve) was reduced by 85% (20 nM), and at a higher concentration 

(200 nM) by 97%.  

 
Observations on humans 
 

IV. Healthy subjects: topical administration of physostigmine  
 
1. Secretion of saliva 
The volume response to all three doses of physostigmine (0.9 mg, 1.8 mg and 

3.6 mg), applied as spray, was increased, peak values being 1 ½ -2½ above 

basal level, while the response to placebo decreased over time (5). One hour 

and forty-five minutes after the administration the curves of placebo and of the 

various physostigmine doses met. Based on AUC-values (0-105 min), the 

response to 0.9 mg, 1.8 mg and 3.6 mg was elevated by 66%, 91% and 62% 

over placebo. Interestingly, that subject, which showed the largest basal 

secretion (three times that of the subject showing the second largest increase) 

did not show any increase to physostigmine. There is the possibility that an 



 

 27 

existing film of saliva, covering the mucosa, may attenuate the uptake of 

physostigmine. Thus, the result of a physostigmine spray may be more effective 

in patients suffering from dry mouth.  

 

2. Safety results 
At the highest dose (7.2 mg) of physostigmine, two subjects complained of 

nausea and one of them discontinued the test. A third subject complained of a 

transient slight chest discomfort at 0.9 mg and 7.2 mg, but she experienced no 

respiratory distress. Neither blood pressure nor heart rate was affected over time 

by the three physostigmine doses. There were no complains in response to 

placebo. 

 

V. Salivary gland hypofunction: topical administration  of physostigmine 
 

In the first part of this study, the effect of various doses of physostigmine on the 

subjective feeling of dryness in the mouth or on the lips was estimated and 

reported or objectively noted signs of systemic effects were recorded (6). Based 

on safety results and relief in the feeling of dryness a dose of physostigmine was 

selected, to objectively estimate the effect on the volume of saliva in the second 

part of the study. 

 
1. Subjective assessment of dryness 
The baseline mean VAS scores for mouth dryness (“How do you feel in your 

mouth right now”) were not significantly different from each other in response to 

placebo and physostigmine at the dose levels of 0.9 mg, 1.8 mg, 3.6 mg and 7.2 

mg - varying between 75 and 68. The corresponding baseline VAS scores for lip 

dryness (“How do you feel on the inside of your lips right now”) were in the same 

range as those for mouth dryness - varying between 72 and 59. In response to 

physostigmine, the scores for both mouth and lips changed in tandem. 

Physostigmine at the dose levels of 0.9 mg, 1.8 mg and 3.6 mg caused 

significant and long-lasting relief in the feeling of dryness; placebo induced a 
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transient reduction in scores of about 5. In response to physostigmine, the 

reduction in scores was 10-15 at 0.9 mg (up to 120 min), about 25 at 1.8 mg (up 

to 120 min) and 15-20 at 3.6 mg (up to 180 min). The decrease in VAS scores 

was reflected in significant reductions in the area under the curve. When 

calculated over 180 min, as compared to placebo, the AUC-value at 

physostigmine 1.8 mg and 3.6 mg, respectively, was 6 and 5 times that of 

placebo. At the dose level of 7.2 mg of physostigmine, the subjects reported only 

a little relief from their dryness. Probably, the adverse effects that appeared at 

the higher doses (see below), distracted the subjects, thereby shifting their focus 

from oral sensations.  

 

2. Salivary secretion 
Following, placebo a small increase above baseline was initially (30 min) 

observed. In response to physostigmine 1.8 mg, elevated levels of secretion 

were found between 30 min and 180 min. The AUC values in response to 

physostigmine over 180 min was about five times that in response to placebo. 

 

3. Safety results 
In the first part of the study, no signs of systemic effects were recorded at the 

dose levels 0.9 mg and 1.8 mg. At 3.6 mg and 7.2 mg of physostigmine gastro-

intestinal disorders, mainly of mild character, were frequent. In the second part of 

the study, mild gastro-intestinal disorders were also reported to physostigmine 

1.8 mg. Most likely, the subjects were “primed” by the preceding tests, paying 

extra attention to the occurrence of anything unusual.  Placebo was in both parts 

of the study without systemic effects. Neither blood pressure nor heart rate were 

affected by the various doses of physostigmine.  
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General Discussion 

 

Textbooks usually depict the parasympathetic secretory nerve fibres of the 

parotid gland, arising from the inferior salivatory nucleus, to travel via the 

tympanic branch of the glossopharyngeal nerve (Jacobson´s nerve), the 

tympanic plexus, the small superficial petrosal nerve and, after relaying in the otic 

ganglion, the auriculo-temporal nerve to reach the gland cells (Bradley, 1995; 

Ferguson, 1999), a concept originating from early observations in the dog (see 

Holmberg, 1972).  

 

The nerve routes of the parotid gland seem, however, to be more complex than 

outlined above. The human parotid gland is supplied not only by fibres of the 

glossopharyngeal nerve but also by fibres of the chorda tympani branch of the 

facial nerve, since reflex parotid secretion is affected not only by the division of 

the glossopharyngeal nerve intracranially but also by the division of the chorda 

tympani in the tympanic membrane (Reichert & Poth, 1933; Diamant  & Wiberg, 

1965). In the rat, there is no direct connection with the glossopharyngeal nerve 

and the otic ganglion; the tympanic branch of the glossopharyngeal nerve does 

not exist (Contreras et al., 1980; Al-Hadithi & Mitchell, 1987). The only visible 

connection between the otic ganglion and the cranial nerves seems to be a 

branch of the facial nerve. A further connection between the facial nerve and the 

glossopharyngeal nerve has also been described in this species, which 

tentatively may offer a passage for salivatory preganglionic axons from the IXth 

nerve to the VIIth nerve (Al-Hadithi & Mitchell, 1987). In the dog (Emmelin et al., 

1968) as well as in the cat (Ekström & Emmelin, 1974a,b), reflexly elicited 

secretion is still obtained, albeit markedly reduced,  from the parotid gland after 

division of the auriculo-temporal nerve - not depending on the sympathetic 

innervation and blockable by atropine -  showing that cholinergic nerve fibres 

outside the auriculo-temporal nerve innervate the gland. Extensive studies by 

Holmberg (1971, 1972) showed cholinergic nerve fibres, detached at an early 

stage from the auriculo-temporal nerve, to reach the gland via the internal 
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maxillary artery, a finding later also observed in the cat (Ekström & Emmelin, 

1974b).   The present Thesis, using the rat as experimental animal, focused on 

the otic ganglion and yet another peripheral secretory pathway: the facial nerve.  

 

The history of salivary glands and nerves began with the discovery of Carl 

Ludwig in 1850, when he described that electrical stimulation of the chorda-

lingual nerve caused a copious flow of submandibular saliva in the dog (Garrett, 

1999). In submandibular glands, relays between pre- and postganglionic nerve 

fibres occur intraglandularly. Apart from a recent study concerned with the 

influence of sympathectomy on the neuropeptide content of the parotid gland of 

the rat (Ekström & Ekman, 2005), the effect of otic ganglionectomy on the parotid 

gland innervation has not previously been reported.  The otic ganglion in the rat 

is a discoid structure of about 1 mm in diameter located in the foramen ovale. It 

lies medial to the pterygopalantine branch of the internal carotid artery 

(corresponding to the pterygopalatine portion of the internal maxillary branch of 

the external carotid artery in man) and is separated from the trigeminal ganglion 

by the sphenoid bone (Al-Hadithi & Mitchell, 1987). Otic ganglionectomy affected 

the parotid gland more profoundly than division of the auriculo-temporal nerve 

with respect to loss in gland weight, synthesis of acetylcholine and reflex 

secretion (1); the latter was, in fact, almost abolished (in the presence of α- and 

β-adrenoceptor blockade). As judged from the acetylcholine synthesis, the 

proportion of cholinergic nerve fibres to the parotid gland outside the auriculo-

temporal nerve is about the same in the rat  (24%) and the dog (29%, Ekström & 

Holmberg, 1972) but lower in the cat (11%, Ekström & Emmelin, 1974b). In the 

present investigation, no attempt was made to trace nerve fibres on the artery to 

the gland. Since otic ganglionectomy combined with division of the facial nerve 

reduced the acetylcholine synthesis of the parotid gland even more than division 

of the auriculo-temporal nerve combined with division of the facial nerve, a 

minute contribution seems to occur by additional routes to the parotid gland in 

the rat. The great auricular nerve was not such a route as to the cholinergic 
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innervation (1). Neither is the sympathetic innervation a route for cholinergic 

nerves to the gland (Ekström, 1972). 

 

The facial nerve (1,2) contributed to the acetylcholine synthesizing capacity of 

the three lobes of the gland, evoked secretion upon electrical stimulation (about 

10% of that to stimulation of the auriculo-temporal nerve), conveyed reflexly 

elicited impulses for secretion, via the otic ganglion, and exerted trophic effects 

on the secretory cells (as shown by the development of denervation 

supersensitivity). The secretion was of cholinergic muscarinic nature and the 

secretory nerve fibres originated mainly from the otic ganglion. However, the 

present findings did also suggest that some parasympathetic cholinergic nerve 

fibres relayed outside the otic ganglion, since after otic ganglionectomy,  the 

facial nerve still contributed to a certain fraction of the acetylcholine synthesis of 

the gland and the stimulation of the facial nerve still evoked a small secretory 

response (blockable by atropine). It cannot be excluded that some facial somato-

motor fibres contributed to the residual acetylcholine synthesis. However, the 

even distribution of the facial nerve in the gland, as judged by the contribution of 

the facial nerve to the acetylcholine synthesis of the three lobes of the gland 

seems to favour the idea that somato-motor fibres, escaping dissection, 

contribute but little to the acetylcholine synthesis of the gland. There is not 

necessarily a direct relationship between the acetylcholine synthesizing capacity 

of the gland and its cholinergic innervation stimulating to fluid secretion. 

Cholinergic nerve fibres supply vessels, myoepithelial cells and ducts in addition 

to the secretory acinar cells (Garrett, 1999). The location of the extra-otic relay 

between pre- and postganglionic nerves was not located in the facial nerve distal 

to the level of the stylomastoid foramen.  Moreover, the parotid gland is known to 

lack ganglia (Garrett, 1999). Where fibres to innervate the parotid gland join the 

facial nerve, if they do not originate from the nerve itself, is presently unknown. A 

secretory role for the facial nerve in the parotid gland may be a general 

phenomenon among the various species. In the dog, the facial nerve contributes 

to a small proportion of the acetylcholine synthesizing capacity of the gland and 
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to a minute cholinergic secretory response (Ekström & Holmberg, 1972). A brief 

report states that in cats the facial nerve trunk (at the level of the stylomastoid 

foramen) carries impulses evoking secretion from the parotid gland evoked by 

stimulation of the inferior salivatory nucleus (Porto et al., 1981). In humans 

suffering from unilateral facial nerve paresis, parotid secretion on the parethetic 

side upon reflex secretion is reduced (Vollrath et al., 1980).  

 

The denervation technique applied was evidently of importance not only with 

respect to the inclusion of various pathways but also whether the approach of 

avulsion or cutting the respective nerve was chosen. Avulsion of a nerve is likely 

to cause more damage than just cutting the nerve (1,4). Avulsion of the auriculo-

temporal nerve was more effective than otic ganglionectomy with respect to the 

decrease in the acetylcholine synthesizing capacity in the gland (99% versus 

88%) and as effective as otic ganglionectomy with respect to abolishing reflex 

secretion (99% versus 98%). Avulsion of the auriculo-temporal nerve was also 

used to denervate the rabbit parotid gland (Nordenfelt, 1964) and presently, the 

ferret parotid gland, and also here, the acetylcholine synthesis was almost 

abolished  (97% and 96%, respectively). 

 

Regenerating cholinergic nerve fibres of an intentionally or unintentionally 

damaged auriculo-temporal nerve are no doubt the main cause to the re-

innervation of the sympathetically denervated sweat glands and skin vessels 

(normally under the influence of a cholinergic transmission mechanism and 

possible, peptidergic transmission mechanisms such as that using vasoactive 

intestinal peptide, Drummond, 2002) and, consequently, the development of 

gustatory sweating and flushing (Glaister et al., 1958; Dunbar et al., 2002; 

Tugnolgi et al., 2002). Regenerating cholinergic somato-motor nerve fibres only 

exceptionally establish functional contact with salivary gland cells (Emmelin et 

al., 1960). With the present knowledge of a facial nerve that carries secretory 

parasympathetic nerve fibres to the parotid gland (1,2), a damaged facial nerve 
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may be regarded as a potential contributor to the development of Frey´s 

syndrome.  

 

Loss of most of the cholinergic innervation of the parotid gland, by division of the 

auriculo-temporal, is followed by a gradual restoration of the acetylcholine 

synthesizing capacity and a gradual fall in the level of sensitivity of the secretory 

cells of the parotid gland over several months and concomitant with increased 

reflex responses, as shown in the cat (Ekström & Emmelin, 1974a). In the 

present Thesis, the decrease in the acetylcholine synthesizing capacity and the 

slight increase in the sensitivity to methacholine in the parotid gland, following the 

division of the facial nerve, were very short-lasting events and might easily go 

unnoticed (2).  Similar transient changes in the level of sensitivity and 

acetylcholine synthesizing capacity occur in the partially denervated urinary 

bladder and further, the persisting cholinergic axons of the sprout (Alm & 

Ekström, 1981). Collateral sprouting from the fibres of the auriculo-temporal 

nerve and increased traffic of impulses in that nerve are likely causes to the rapid 

recovery after damage to the facial nerve.  

 

The sensory periductal and perivascular nerve fibres of salivary glands, 

containing both substance P and calcitonin gene related peptide, disappear in 

response to capsaicin treatment showing that these fibres are of sensory origin 

(Ekström et al., 1988a, 1989). The gland contents of substance P and calcitonin 

gene-related peptide are reduced by the capsaicin treatment, by 11% and 36%, 

respectively. For comparison, the same capsaicin treatment reduces the contents 

of substance P and calcitonin gene related peptide by 90% in the urinary bladder 

(Ekström & Ekman, 2005). A likely origin of these fibres is the trigeminal 

ganglion. In this ganglion, the two peptides are co-localized but, in addition, 

calcitonin gene related peptide occurs in neurons of the Aδ-fiber type, devoid of 

substance P (Ma et al., 2001), and not likely to be sensitive to capsaicin. Thus, 

there is the possibility that also capsaicin-nonsensitive sensory nerves exist in 

salivary glands. Moreover, capsaicin-nonsensitive effector responses can be 
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elicited by the electrical stimulation of the trigeminal ganglion as shown by 

menigeal vasodilatation (Peitl et al., 1999). Tentatively, the sensory nerves of 

salivary glands may exert protective functions by mobilizing defensive agents of 

the ductal cells, e.g. β-defensins (Darnell et al., 2006), or they may stimulate the 

myopithelial cells to increase the intra-ductal pressure to overcome distension of 

the duct-system or to eject noxious substances. Interestingly, the substance P-

relative non-mammalian tachykinin physalaemin contracts the myoepithelial cells 

(Thulin, 1976b). The perivascular localization may suggest that they may be 

associated with the inflammatory response. Both substance P and calcitonin 

gene-related peptide are involved in protein extravasation and oedema formation 

in the salivary glands (Asztély et al., 1998). In recent years, neurogenic 

inflammation has come into focus, e.g. in connection with asthma (Barnes et al., 

1990). The afferent sensory nerves are thought to exert efferent functions 

through local axonal reflexes and may maintain and prolong the inflammatory 

response.  Hypothetically, sensory nerves may be involved in chronic salivary 

gland inflammation. Moreover, they may be involved in the postsympathectomy 

pain in the parotid gland upon eating (Schon, 1985).  

 

Evidently, the trigeminal ganglion did not seem to contribute with substance P 

and calcitonin gene-related peptide via the auriculo-temporal nerve trunk (3). A 

previous report (Sharkey & Templeton, 1984), showed that a portion of True Blue 

retrogradely labeled nerve cell bodies of the trigeminal ganglion, following 

injection of the dye in the rat parotid gland, contained immunoreactivity for 

substance P. This made the authors to conclude that substance P-containing 

neurons of the trigeminal ganglion innervate the parotid gland via the auriculo-

temporal nerve trunk; however, compelling evidence for the auriculo-temporal 

pathway was not presented. Unfortunately, the dye was not injected in the 

parotid gland subjected to division of the auriculo-temporal nerve in advance to 

verify the auriculo-temporal nerve as the route for those neurons of the trigeminal 

ganglion that contained substance P. The great auricular nerve, like the facial 

nerve, penetrates the parotid gland (Zohar et al., 2002), and both nerves are 
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likely pathways for both substance P and calcitonin gene realated peptide as 

shown in denervation experiments (Ekström et al., 1988a). The great auricular 

nerve does also supply the parotid fascia (Zohar et al., 2002).  Stretching of the 

fascial layer encapsulating the glands, as for instance in response to gland 

swelling, is thought to give rise to pain (Shapiro 1973; Leipzig & Obert, 1979). A 

large number of calcitonin gene-related peptide-containing nerve fibres is 

presently not accounted for. They do not reach the gland via the sympathetic 

innervation (Ekström et al., 1988a).  

  

The zygomatic gland, located in a space in the anterio-lateral part of the soft 

palate in the infratemporal fossa less than one mm beneath the mucosa, is a well 

defined gland with two ducts opening on the mucosal ridge posterio-medial to the 

parotid gland. The lateral duct drains 80% of the gland and is easily accessible 

for cannulation (Shackleford & Wilborn, 1968; Ekström & Helander, 2002). 

Likewise, the molar gland, located opposite the lower molar teeth, is well defined 

but less in size and with several excretory ducts, emptying in relation to the same 

teeth. The zygomatic gland of the ferret (4) was found to be yet another gland to 

be added to the list of salivary glands that respond with a flow of saliva upon 

stimulation of the parasympathetic nerve in the presence of atropine (and 

adrenoceptor blockers). The concentrations of the neuropeptides in the five types 

of glands did not reveal any conspicuous pattern with respect to mucous glands 

versus serous/seromucous glands. Though, the muscarinic receptor subtype M1 

usually is thought to be associated with mucous cells (Watson & Culp, 1994), no 

preponderance for the expression of the M1 receptor type in the mucous glands 

was found in the ferret glands. In fact, immunochemistry of the major human 

salivary glands shows the M1 receptor type to be confined to the serous cells 

and not to the mucous cells (Ekström, Helander, Godoy, Grunditz and Riva, to be 

published).  

 

Apart from an early observation of the sublingual gland of the rat, the 

acetylcholine synthesis of mucous glands does not seem to have been studied 
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previously. In the rat, the acetylcholine synthesis, expressed in terms of 

concentration, was comparable to that of the parotid gland but higher than that of 

the submandibular gland (Ekström, 1972). Comparisons with respect to the 

acetylcholine synthesis, expressed as concentration, revealed a striking 

difference in the ferret between, on one hand, the mucous sublingual, zygomatic 

and molar glands and, on the other hand, the serous parotid gland and the 

seromucous submandibular gland, since the acetylcholine synthesis (per unit 

weight) was  3-4 times greater in the mucin-producing glands than in the parotid 

and submandibular glands (4). The zygomatic gland of the anaesthetized ferret, 

as also shown in the cat (Al-Gailani et al., 1981), was found to secrete 

continuously at a low rate. At first sight this continuous secretion may be thought 

to be associated with the high acetylcholine synthesis. However, the resting 

secretion persists in the presence of atropine (Ekström & Helander, 2002).  No 

support for the idea of an extra-neuronal glandular synthesis of acetylcholine of 

any significance was found in the glands, and this was regardless of whether the 

acetylcholine synthesis was high or low. Division of the buccal nerve, a branch of 

the mandibular nerve and thought to originate from the otic ganglion (Kuchiiwa & 

Kuchiiwa, 1996), reduced the acetylcholine synthesis (expressed per gland) by 

95%, while avulsion of the auriculo-temporal nerve reduced the synthesis by 96% 

in the parotid gland. In analogy with the rat parotid gland (see above) nerves may 

escape the denervation procedure. With respect to the molar gland, this gland 

seems to have a dual innervation, the buccal nerve and, in addition, the 

mylohyoid nerve (Kuchiiwa & Kuchiiwa, 1996); in the molar gland the 

acetylcholine synthesis decreased by 85% in response to the division of the 

buccal nerve. The high acetylcholine synthesis, in terms of concentration, in the 

sublingual, zygomatic and molar glands is thought to reflect a high reflexly 

elicited parasympathetic tone over time. The fact that the parasympathetic 

postganglionic denervation of the zygomatic gland caused a much more 

pronounced fall in weight than that of the parotid gland supports such an 

assumption. Presently, nothing is known about the acetylcholine synthesizing 

capacity of human salivary glands. 
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In humans, several hundreds of minor glands are found in the mouth and named 

after their location, i.e., lingual, labial, buccal, palatinal, pharyngeal and uvulal 

glands. Only the gingiva and the midline and anterior part of the hard palate lack 

the minor glands. The glands are located in the submucosa surrounded by 

connective tissue or muscle fibres. In contrast to the major glands, the minor 

glands are not encased in a fibrous capsule.  Apart from the posterior deep 

lingual gland (von Ebner´s), the minor human salivary glands are mucous in 

character but do also, to varying extent, contain seromucous cells usually 

capping the end of mucous acini and tubules (Hand et al., 1999; Riva et al., 

1999). Secretory cells, classified as seromucous, show a cell morphology 

intermediate between true serous cells and mucous cells; the seromucous cells 

have granules with low electron density. Interestingly, the seromucous cells have 

been suggested to reflect maturative stages of mucous cells (Riva et al., 1999). 

The minor glands are located just under the mucosal epithelium. The ductal 

system is less well-developed as compared to those of the major gland. The 

excretory duct of individual glands open directly onto the mucosa. The saliva 

produced, is likely to be responsible for the local environment of the mucosal 

surface. The buccal and lingual glands display the highest salivary flow rate, the 

labial gland an intermediate and the palatal gland the lowest flow rate (calculated 

per area of mucosal surface per min) (Riva et al., 1999). As judged by the labial 

glands, the salivary secretion from minor glands in humans can be evoked 

reflexly by strong gustatory stimulants and mechanical stimulations such as 

chewing and speaking (Speirs, 1984; Gandara et al., 1985; Boros et al., 1999). 

The acinar cells of the labial glands are not only innervated by cholinergic nerves 

(Rossini et al., 1979) but also by vasoactive intestinal peptide-containing nerves 

(Fehér et al., 1999); the acinar cells lack adrenergic innervation (Rossini et al., 

1979).  Local application of physostigmine evokes secretion from labial glands 

(Hedner et al., 2001) and further, isolated pieces of labial glands respond to 

muscarinic agonists but poorly to adrenergic receptor agonists (Turner et al., 
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1999). The contribution of the minor glands to the whole amount of saliva 

produced is calculated to 7-8% (Dawes & Wood, 1973) 

 

Saliva forms a thin film that coats the oral structures. Marked regional differences 

in the thickness of the fluid layer on the oral mucosa exist, the highest figure (70 

µm) is from the posterior dorsum of the tongue and the lowest figure (10 µm) is 

from the hard palate (DiSabato-Mordaski & Kleinberg, 1996; Wolff & Kleinberg, 

1998). The volume of saliva in the oral cavity is not only depending on the 

secretion of saliva but also of evaporation, absorption through the oral mucosa 

and swallowing. Evaporative loss of fluid is mainly due to mouth breathing and 

speaking. The hard palate with its thin fluid layer will be particularly exposed to 

the effect of evaporation, since it is directly exposed to the flow of inspired air 

(Thelin et al., 2008). The oral mucosa is permeable for water. Movement of water 

across the oral mucosa occurs due to an osmotic gradient (resting saliva being 

hypotonic) and to an active ion transport of sodium. Under normal conditions, the 

volume of saliva entering the mouth exceeds the loss of volume by evaporation 

and absorption. Excess of saliva initiates a swallowing reflex. The volume that is 

swallowed amounts to about 0.3 ml per swallow (Lagerlöf & Dawes, 1984).  

 

Though the figure for a mean flow rate of resting whole saliva is about 0.3 ml per 

min in healthy subjects (Dawes, 1987), large inter-individual differences exist 

without complains of xerostomia:  from 0.008 to 1.85 ml per min in one study 

(Becks & Wainwright, 1943) and from 0.25 to 5.58 ml per min in another study 

(Heintze et al., 1983), and also illustrated in the present Thesis.  Xerostomia is 

not a reliable predictor of salivary gland hypofunction. In large study groups, 

where all subjects complained of xerostomia, only 54-58% of them showed low 

flow rates (Field et al., 1997; Longman et al., 1995). Despite wide differences 

between healthy subjects in resting secretion, a parasympatholytic-induced 

decrease by about 50% of an individual’s resting secretion gives rise to the 

feeling of oral dryness (Dawes, 1987; Wolff & Kleinberg, 1999). Under this 

circumstance, the thickness of the saliva film of the anterior dorsum of the tongue 
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and the hard palate is less than 10 µm, and from these locations the subjects 

experience the most pronounced symptoms of xerostomia (Wolff & Kleinberg, 

1999).  Interestingly, a decrease in the labial fluid output of 21% is correlated to 

the feeling of dryness (Eliasson et al., 1996). 

 

Physostigmine was locally applied onto the non-keratinized mucosa (5,6), which 

is permeable for drugs, and in a region where the density of minor glands is high: 

in a spray formulation onto the inside of the lower lip and the buccal mucosa in 

healthy subjects or in a gel formulation onto the inside of the lower and upper lip 

and then, distributed in the mouth with the tongue. The amount of saliva collected 

was in both types of experiments elevated over a relatively long period of time (in 

response to the same dose level), 90-120 min. In the group of subjects showing 

salivary gland hypofunction, the secretion was about twice that of baseline during 

the first 60 min. In these dry mouth-patients, the mean AUC-value for the volume 

response over 180 min to physostigmine was five times higher than that to 

placebo.  

 

It cannot be excluded that the “grapefruit-like” taste of the drug gave rise to a 

certain reflex secretion initially, as reflected by the placebo-response. In addition, 

a transient osmotic attraction of fluid from the interstitium of the mucosa to the 

mucosal surface may have occurred, since in animal experiments, using the 

ferret as model, the osmolality of both the placebo and the physostigmine 

solutions is higher than in the body fluids (Ekström & Helander, 2002).  

 

The local application of physostigmine in humans aimed at selectively activating 

the underlying submucosal minor glands to secretion of saliva, while at the same 

time cholinergic systemic effects would be avoided or minimized (5,6). Support 

for the assumption that physostigmine acts locally by diffusing through the 

mucosal barrier and causing secretion without systemic effects was initially 

gained from observations in the ferret (Ekström & Helander, 2002). In this 

preparation, the flow of saliva from the parotid, submandibular and sublingual 
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glands, on both sides, was diverted from the mouth. Local application of 

physostigmine on the buccal and labial mucosa on one side increased the 

amount of saliva on the exposed side but not on the contralateral side. Likewise, 

by duct-cannulation of the zygomatic gland, an increase in the resting flow rate of 

saliva was revealed in response to physostigmine applied on the overlying 

mucosa but no increase in the flow rate of saliva from the contralateral gland 

occurred. Moreover, there was no secretion from duct-cannulated parotid and 

submandibular glands providing further evidence for a local effect of 

physostigmine. The increase in secretory rate to physostigmine did not involve 

central mechanisms. It was due to a muscarinic action on the secretory cells.  

However, by increasing the concentration of the locally applied physostigmine a 

small secretory response of the contralateral side (and the contralateral 

zygomatic gland) as well as from the duct-cannulated major glands occurred, 

blockable by atropine, signalling systemic cholinergic effects. Subsequently, a 

direct evidence for local activation of labial glands in humans was provided by 

the topical application of physostigmine on an overlying small mucosal area 

(Hedner et al., 2001).  

 

In analogy, the secretion of saliva in response to physostigmine in the present 

studies is assumed to be preferentially due to the local action of physostigmine, 

by causing acetylcholine to accumulate in the neuro-glandular junction. The rigid 

protocol presently applied in the human studies did, unfortunately not, include the 

possibility to consider a systemic physostigmine- induced secretory contribution, 

for instance, by applying the Lashley-Crittenden cup over the orifice of the parotid 

gland to record the flow of saliva, if any, in a separate set of tests. The fact that 

systemic side effects, such as gastro-intestinal discomfort, appeared in respone 

to increasing doses of physostigmine shows that physostigmine reaches the 

circulation. 

 

Though, certain drawbacks with the use of the Visual Analogue Scale to score 

the feeling of dryness and the possible relief in response to physostigmine, such 
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as not applying the scale at the screening process, not exposing all subjects to 

placebo, not allowing the subjects to see their immediate preceding score and 

difficulties in compliance, a significant effect of physostigmine was revealed (6). 

Intra-individual comparisons (with baseline before administration of 

physostigmine) showed long-lasting decreases in the feeling of dryness with 

respect to the lips and the whole mouth for up to 120-180 min, the reduction in 

scores being 25% to a dose of physostigmine of 1.8 mg, i.e the same dose level 

that was used for the objective measurement of the saliva secreted (see above). 

According to mean AUC value (over 180 min), the improvement was six times 

greater than that produced by placebo at this dose level. Though, the volume 

responses, to higher doses, of physostigmine are expected to increase, the relief 

in oral dryness, as judged by the Visual Analogue Scale, decreased instead. This 

inverse response at higher doses is probably due to the fact that feelings 

associated with side effects, such as nausea, got the upper hand and shifted the 

focus from oral sensations. The overwhelming type of systemic side-effects of 

the drug, in the doses tested, was gastro-intestinal discomfort, usually classified 

as mild to moderate. Compared to muscarinic receptor agonists on the market for 

systemic treatment of dry mouth, the frequency of side-effects is less with the 

local administration of physostigmine presently tested (Wiseman & Faulds, 1995;  

Wynn et al., 2004). The therapeutic window for physostigmine, in its present 

formulation, may seem narrow as for all drugs with cholinergic effects.  

 

The long duration of the effect of a single dose of physostigmine in terms of the 

secretion of saliva and the relief of the feeling of dryness was surprising, since 

the half-life of the drug is 15-30 min in plasma (Nordberg & Svensson, 1998). It is 

presently not known whether the long-lasting effect is due to the drug being 

retained in oral tissues, including the glands. Interindividually, large variations 

exist with respect to the pharmacokinetics of physostigmine (Sharpless & Thal, 

1985; Thal et al., 1986; Hartwig et al., 1990; Asthana et al., 1995). Physostigmine 

levels, the volume of distribution, and the clearance may vary threefold between 

patients receiving identical intravenous doses. The bioavailibilty of the drug after 
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swallowing (Nordberg & Svensson, 1998; Hartwig et al., 1990) is usually 

considered low (<10%), but higher values have been reported (23%).  The local 

treatment of dry mouth with physostigmine, as explored in this Thesis, is a novel 

approach that may turn out to be a therapeutic option. Since subjects may be 

more or less sensitive to the local application of physostigmine with respect to 

secretion and adverse effects based on pharmacokinetic causes, both the dose 

and the interval of administration may need to be individualized.  

 

   

Main Conclusions 
 

Almost all of the parotid cholinergic innervation in the rat is derived from the otic 

ganglion. Cholinergic nerve fibres from the ganglion reach the gland not only via 

the auriculo-temporal nerve but also via the facial nerve and, in addition, some 

other route(s). The reflexly elicited cholinergic (as well as the non-adrenergic, 

non-cholinergic) secretion is relayed via the otic ganglion.  

 

The facial nerve supplies the parotid gland with cholinergic secreto-motor fibres 

and takes part in the reflex secretion.The nerve exerts a trophic influence on the 

secretory cells of the parotid gland. It is a potential contributor to the 

development of Frey´s syndrome. 

 

Almost all substance P-containing nerve fibres innervating the parotid gland 

originate from the otic ganglion in the rat. Only a minor part of the calcitonin 

gene-related peptide-innervation of the gland is derived from the otic ganglion. 

The trigeminal ganglion does not contribute to the sensory substance P- and 

calcitonin gene-related peptide-innervation of the parotid gland via the auriculo-

temporal nerve trunk.   

 

The acetylcholine synthesis, expressed per gland weight, was three to four times 

higher in the mucin-producing sublingual, zygomatic and molar glands than in the 



 

 43 

serous parotid and sero-mucous submandibular glands in the ferret. The high 

acetylcholine synthesizing capacity in the mucous glands reflects a high 

cholinergic tone over time. Muscarinic receptor subtypes M1-M5 were detected in 

all five glands but there was no preponderance for M1-subtype in the mucin-

producing glands. A part of the parasympathetic secretory response of the 

zygomatic gland depended on non-adrenergic, non-cholinergic transmission 

mechanisms probably involving substance P and vasoactive intestinal peptide 

and possibly calcitonin gene-related peptide. 

 

The activity of choline acetyltransferase was responsible for the acetylcholine 

synthesis in the glands. Denervation experiments showed virtually all of the 

acetylcholine synthesis, due to the activity of choline acetyltransferase, to be of 

nervous origin (and not of non-nervous origin). 

 

The cholinesterase inhibitor physostigmine topically applied on the oral mucosa 

evoked a long-lasting secretion of saliva in healthy subjects and in patients 

suffering from salivary gland hypofunction. A long-lasting relief in the patients 

suffering from dry mouth was revealed by the use of a Visual Analogue Scale. It 

was possible to find a dose of physostigmine that both objectively and 

subjectively was of effect with cholinergic systemic effects at a minimum, if any. 

Local treatment aiming at activating hundreds of minor salivary glands, situated 

just below the oral epithelium, to secrete, while at the same time minimising 

systemic side-effects is a novel and promising approach to the treatment of dry 

mouth. 
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