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Abstract

In search for more efficient unit root tests in the presence of GARCH, some researchers

have recently turned their attention to estimation by maximum likelihood. However, al-

though theoretically appealing, the new test is difficult to implement, which has made it

quite uncommon in the empirical literature. The current paper offers a panel data based

solution to this problem.
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1 Introduction

The prevalence of GARCH effects in financial time series has recently led many authors to

consider its interaction with unit root testing, which constitutes a major cornerstone of all

types of time series econometric research. The resulting body of research can be divided into

two broad categories.

The first category consists of a number of studies aimed at analyzing the small-sample

behavior of existing unit root tests when applied to time series contaminated by GARCH.

Naturally, due to its wide-spread empirical use and its central role as a theoretical bench-

mark, the least squares based t-test of Dickey and Fuller (1979), henceforth denoted τLS, has
∗Westerlund would like to thank the Jan Wallander and Tom Hedelius Foundation for financial support under

research grant W2006–0068:1.
†Corresponding author: Department of Economics, University of Gothenburg, P. O. Box 640, SE-
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been subject to more scrutiny than any other test.1 For example, Kim and Schmidt (1993)

use simulation experiments to examine the impact of GARCH on the size accuracy of the

test. They find that although there is a tendency for the test to become oversized when the

GARCH effect increases, the problem is usually not very serious, which is also what others

have found. Of course, this is not totally unexpected since like most tests around, τLS is

asymptotically invariant with respect to heteroskedasticity, and therefore also with respect

to GARCH. In other words, although the additional information contained in the GARCH

structure of the errors is basically ignored, this has no effect on the asymptotic distribution

of τLS.

Thus, while the results regarding the issue of neglected GARCH have not been very con-

troversial, the second body of research is potentially more fruitful in the sense that it centers

around the development of new tests that make full use of the information contained in the

GARCH errors. The idea of joint maximum likelihood estimation of both the autoregressive

unit root and GARCH parameters was introduced by Seo (1999). He shows that in contrast

to τLS, the asymptotic distribution of the corresponding test based on maximum likelihood,

henceforth denoted τML, is not nuisance parameter free, and that it depends on the strength

of the GARCH effect. He also shows that as the GARCH effect increases, the asymptotic

distribution of τML moves away from the conventional Dickey and Fuller (1979) distribution

and towards the standard normal.

The problem is that while theoretically appealing in the sense that it is efficient, τML is

also quite difficult to implement, which is probably the most important reason for why it

is almost never used in empirical work. In particular, not only is the test statistic difficult

to compute, but there is also the numerical optimization of the likelihood function, which

is computationally very burdensome, especially when compared to simple least squares es-

timation. The dependence of the asymptotic distribution on the strength of the GARCH

effect is yet another inconvenience, which makes it necessary to tabulate critical values for

all possible values of this parameter.

The discussion so far suggests that the choice of test basically boils down to a trade-off

between efficiency and ease of implementation. While τLS is computationally convenient, it

is also inefficient, which makes τML an interesting alternative.

In this paper we make an attempt to combine only the good aspects of both tests, while at

1See Li et al. (2002) for an overview of the literature.
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the same time eliminating all the bad aspects. In particular, the idea is to apply least squares,

but not just to one time series but to a panel of multiple series. This means that although the

GARCH structure of the errors is not exploited, because of the added information that all

series have a unit root under the null, efficiency is still expected to be high. This is verified

in small samples using both real and simulated data.

The rest of the paper is organized as follows. Section 2 introduces our panel based ap-

proach, while Section 3 contains the simulation study. Section 4 then reports the empirical

results, while Section 5 concludes.

2 Testing for a unit root with GARCH

In this section, we begin with a brief account of the conventional unit root testing approach

when GARCH is suspected, and then we go on to discuss our panel proposal.

2.1 Tests based on single series

Consider for simplicity the case when the time series variable yt, observable for t = 1, ..., T,

is generated by the following autoregression

yt = ρyt−1 + ut, (1)

where ut is assumed to be a mean zero and serially uncorrelated error term. Let us further

assume that the conditional variance of this error can be written as

σ2
t = α + φu2

t−1 + βσ2
t−1. (2)

That is, we assume that ut is generated according to a first order GARCH model. If α is

positive, while φ and β are nonnegative such that their sum is less than one, then the uncon-

ditional variance of ut exists and is in fact given by σ2 = E(σ2
t ) = α

1−φ−β . This is the case

considered here. Note also that although there are no deterministic components in (1) and

that the GARCH model in (2) is the simplest possible, this is only for simplicity. Nonzero

intercept and trend terms, and higher order GARCH effects can be readily accommodated

as in Seo (1999). As we demonstrate in Section 5, allowing for serial correlation is just as

simple.

The null hypothesis to be tested is formulated as that H0 : ρ = 1, while the alterna-

tive hypothesis is that H1 : ρ < 1. As mentioned earlier, the by far most common way of
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performing this test is through a simple t-test, which is typically based on the least squares

estimator ρ̂LS of ρ, yielding τLS. But it can of course also be based on other estimators, such

as the maximum likelihood estimator ρ̂ML, which yields τML.

In discussing the asymptotic null distributions of these tests, it is convenient to let DF

and Z denote the Dickey and Fuller (1979) and standard normal distributions, respectively.2

The relevant distributional result for τLS has been worked out by Ling et al. (2002) among

others. They show that

τLS ⇒ DF as T → ∞,

where the symbol ⇒ denotes convergence in distribution. Thus, since the asymptotic dis-

tribution of τLS with GARCH is the same as the one with no GARCH, τLS is said to be

asymptotically invariant in this respect.

The corresponding result for τML can be found in Seo (1999). It reads

τML ⇒ λZ

λ

(
λ DF +

√
1− λ2 Z

)
as T → ∞,

where λ = 1√
σ2 H

with H given by

H =
(
E(u4

t )− 1
)
φ2

∞

∑
s=1

β2(s−1)E
(

u2
t−s

σ4
t

)
+ E

(
1
σ2

t

)
,

and where λZ is λ with E(u4
t ) in H set equal to three, as when ut is normally distributed.

Some remarks are in order. Firstly, in contrast to τLS, the asymptotic distribution of τML is

a mixture of the Dickey and Fuller (1979) test distribution and the standard normal. If there

is no GARCH so that φ and β are zero, then σ2
t reduces to α, and so does σ2. This means

that both λZ and λ equals unity, which in turn implies that τML goes to DF. At the other

end of the scale we have the infinite variance case, in which λ → 0 and so τML goes to the

normal distribution. In the intermediate case when either φ or β, or both, are positive, then

the asymptotic distribution of τML is a mixture of DF and Z.

Secondly, by determining the relative contribution of the DF distribution, λ also deter-

mines the relative efficiency of τML. If λ is one, τLS and τML are equally efficient, while if

λ approaches zero, then τML is infinitely more efficient than τLS, see Ling and Li (1998) for

a more detailed discussion. When λ is between zero and one, then it measures the relative

efficiency gain of τML.

2These distributions are assumed to be known, and are introduced here without any further discussion. For
more details, we make reference to Ling et al. (2002).
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Thirdly, as pointed out by Seo (1999), there are at least three different versions of τML,

depending on the choice of variance estimator, which in turn determines its asymptotic dis-

tribution. We may use the information matrix, the inverse of the outer product of the gra-

dient or the robust variance estimator. However, since the distributions of these tests are

qualitatively very similar, and since their small-sample performance were almost identical,

in this paper we focus on the first test based on the information matrix.

Finally, note that in contrast to τLS, τML involves some severe complexity of expression,

which in practice translate into a relatively difficult estimation problem. In particular, not

only does it require numerical optimization of the likelihood function, but τML also calls for

consistent estimation of λ and λZ.3 Then there is also the problem that even if λ and λZ were

known, their presence makes it difficult to obtain exact critical values. As an illustration

of this, consider the article of Seo (1999), in which the conventional approach of simulating

critical values for a few equally spaced values of λ is adopted. This entails at least two

problems. The first is that discretizing λ in this way is generally not appropriate, in which

case critical values for a possible continuum of values may be required. The second problem

is that, even if λ is discrete and equally spaced, one faces the complicating factor of having

to consult a table for the critical values for every choice of λ, which may be a very tedious

undertaking in itself.

The above discussion leaves us with an intricate dilemma. On the one hand, when ex-

ploiting the additional information contained in the GARCH structure of the errors, we end

up with a test that is computationally very costly and borderline impractical. On the other

hand, by pretending that there are no GARCH effects, although much simpler, we run the

risk of obtaining an inefficient test.

2.2 A test based on panel data

While certainly appealing in many respects, as we have seen τLS and τML also have their

limitations, and this section therefore offers an alternative testing approach. The idea is

basically to device a test that maintains the invariance and simplicity of τLS, while at the same

time not sacrificing the efficiency of τML. We start with the least squares estimator, which

is simple. But instead of considering just one time series we consider a panel of multiple

series, henceforth indexed i = 1, ..., N. Thus, although this means loosing the information

3See Sections 4 and 5 for more details regarding the implementation of τML.
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contained in the GARCH errors, by effectively increasing the total number of observations

from T to NT, this is nevertheless expected to produce a more efficient test.

The panel model that we consider is given by

yit = ρyit−1 + uit, (3)

where the conditional variance of uit is given by

σ2
it = αi + φiu2

it−1 + βiσ
2
it−1. (4)

Thus, we basically assume here that each of the cross-sectional units i evolves according to

(1) and (2). Note that no restrictions are placed on σ2
it, which is permitted to be completely

heterogeneous. In fact, the only apparent assumption is that the autoregressive coefficient

ρ is equal across i, which is very common when dealing with panel data. The reason for

why we have it here is of course that if we are interested in getting an efficient estimator of

ρ under the null, then nothing is lost by assuming it to be equal. We also assume that the

error uit is uncorrelated across i. But this is only for easy of presentation, and is by no means

restrictive, as the test we consider can be easily generalized along the lines of for example

Moon and Perron (2004) to allow for cross-sectionally correlated errors, see Section 5 for a

more thorough discussion.

Let τpLS denote the t-test based on ρ̂pLS, the pooled least squares estimator of ρ. The

idea here is to propose this test as an effective and simple alternative to τML and τLS when

testing H0 against H1.4 The essential insight behind the efficiency of τpLS is that while ρ̂ML is

more efficient than ρ̂LS when applied to a single series, its rate of consistency under the null

is nevertheless the same, T. By contrast, ρ̂pLS converges to ρ at rate
√

NT, and is therefore

infinitely more efficient than both ρ̂ML and ρ̂LS. Formally, we have the following relationship

var
(
ρ̂pLS − 1

)

var
(
ρ̂ML − 1

) = Op

(
1

NT2

)
Op(T2) = Op

(
1
N

)

which of course goes to zero as N → ∞, reflecting the fact that the relative efficiency of ρ̂pLS

increases with N.5

4Except for the fact that we have chosen not to consider serial correlation, τpLS is exactly the same test con-
sidered by Levin et al. (2002), see Section 5 for a more thorough discussion.

5For any real r, yT = Op(Tr) indicates that yT is at most of order Tr in probability, which simply means that
yT
Tr converges in distribution as T grows.
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3 Simulation results

In this section, we compare the small-sample performance of τpLS with that of τML and τLS

by means of simulations. The simulation design used for this purpose is taken from Seo

(1999), and consists of creating 1, 000 panels using (3) and (4) to generate the data, where

uit is drawn from a normal distribution with mean zero and variance σ2
it. The first 100 time

series observations for each i are then discarded to avoid possible initial value effect.6 As in

Seo (1999), we set αi = 1 for all i, and instead consider varying the values of the GARCH

parameters φi and βi, which are both assumed to be equal across i. The homogenous values

of these parameters are henceforth denoted φ and β, respectively. For the size simulations,

ρ = 1 while for the power simulations, ρ < 1.

As indicated before, τML is rather difficult to compute, not only because it requires an

estimator of λ, the strength of the GARCH effect, but also because it is based on numerical

optimization of the likelihood function.7 In this paper, we use the GAUSS optimization li-

brary OC, which makes it possible to optimize while at the same time satisfying the various

inequality restrictions needed for σ2
it to be well-defined. We use the Newton–Raphson algo-

rithm with numerical derivatives, and the standard error of ρ̂ML is computed as described

earlier, using the information matrix. To start up the estimation, we used the true parameter

values, which means that the results obtained for τML are probably somewhat better than

the ones actually achievable in practice. In other words, the results reported here probably

overstate the performance of τML.

The results from the performance under the null when ρ = 1 are summarized in Table 1,

which reports the size at the 5% level for each test, as well as the mean bias and root mean

squared error, or MSE, of each estimator. The first thing to notice is that the performance of

the pooled estimator ρ̂pLS is uniformly better than that of ρ̂ML and ρ̂LS, both in terms of bias

and MSE. But the performance is not only better, it is vastly superior. In fact, as seen from

the table, it is not unusual for the performance of ρ̂pLS to be many hundred times better than

that of the other two. The results in terms of bias are particularly impressive, and suggest

that ρ̂pLS is essentially unbiased, while ρ̂ML and ρ̂LS are downward biased.

Another interesting result is that unless φ is positive, there is basically no difference in

performance between ρ̂ML and ρ̂LS. Thus, according to this, it is the ARCH parameter φ that

6Without loss of generality, we set the initial value of σ2
it to one, while those of yit and uit are set equal to zero.

7The parameter λ is estimated as in Seo (1999) and the critical values are taken from Table 1 of the same paper.
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has the most adverse effect on ρ̂LS.

The overall best performance in terms of size accuracy is obtained by using τLS, which

is a little surprising in view of the fact that it is based on the worst preforming estimator.

However, the difference is usually not very large, with the other two tests performing only

slightly worse. Thus, in terms of size accuracy, there is really not much difference between

the tests.

Consider next the results for the performance under the stationarity alternative, which

are reported in Table 2 for the case when ρ = 0.99, and in Table 3 for the case when ρ = 0.95.8

It is seen that although the performance of ρ̂pLS is generally not as good as under the null,

the results are still very encouraging. In particular, ρ̂pLS still outperforms its competitors.

The fact that both the bias and the MSE tend to be somewhat higher in Tables 2 and 3 than

in Table 1 is well expected, as the rate of consistency under the alternative is
√

T slower than

under the null.

In agreement with the good performance of ρ̂pLS, we also see that τpLS generally turns

out to be the most powerful test, and that the relative power advantage increases as ρ gets

closer to its hypothesized value under the null.9 We also see that the power of τpLS seems

to be largely unaffected by the parametrization of the GARCH model. This leads us to the

conclusion that our panel proposal should be well suited for financial applications, which are

likely to involve data that are heteroskedastic and nonstationary under the null, and highly

persistent under the alternative. The fact that the power advantage appears to be larger

when N and T are small, a typical scenario in applied work, reinforces this conclusion. The

lowest power is always obtained by using τLS, with the power of τML lying somewhere in

between.

In summary, we find that τpLS show higher power than the other tests considered and,

at the same time, maintain the nominal size well in small samples. Since the power advan-

tage is particularly striking in small and highly autoregressive panels, this leads us to the

8Since the size distortions were so marginal, we only present the results for the raw power. Some results
based on the size-adjusted power are available upon request from the corresponding author.

9Although the assumption of a homogenous ρ is irrelevant under the null that all N units have a unit root, as
Moon et al. (2007) shows, this is not the case under the alternative of stationarity. In particular, if ρ is homoge-
nous, then τpLS uniformly most powerful, while if it is heterogeneous, then the power will depend on the extent
of the heterogeneity. However, as long as the average autoregressive parameter is larger than one, then τpLS
should be more powerful than the other tests, which is also what we find in our simulations. In other words,
although the magnitude of the power gain will generally depend on the heterogeneity of ρ, the relative ordering
of the test should still be the same. Because of space constraints, we therefore only report the results for the case
when ρ is homogeneous.
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conclusion that the new tests should be well suited for financial applications.

4 Empirical results

In this section, we illustrate empirically the issues previously discussed using three common

examples. Namely, the purchasing power parity (PPP) hypothesis, the Fisher hypothesis and

the efficient market hypothesis. We begin with a brief description of the data, and then we

go on to discuss the implementation of the tests and the results obtained.

4.1 Data

Data on stock prices, consumer price indices and real exchange rates are obtained from

Bloomberg. All data are monthly.

The stock price data covers 20 OECD countries across the period January 1988 to April

2003. This means that there is a total of 3,680 observations available for testing the efficient

market hypothesis, stating that prices should be nonstationary and hence unpredictable.

The consumer price index data cover 23 OECD countries and stretch the period January

1991 to August 2003. Thus, the number of observations available for examining the Fisher

hypothesis is 3,496. More precisely, by testing if prices are stationary, we can determine

the appropriateness of the conventional way in which this hypothesis is tested, namely as a

cointegration test between inflation and nominal interest rates. If prices, and hence inflation,

are stationary, then this test is no longer valid. The exchange rate panel covers 20 OECD

countries between January 1981 to May 2003, which means that there is no less than 5,380

observations available for testing the PPP hypothesis of a stationary real exchange rate. All

three variables are expressed in logs.

To foreshadow the more formal treatment in the next subsections, we begin with a graph-

ical inspection of each of the three variables, which are plotted in Figures 1 to 3. The first

thing to note is the periodically high volatility, which makes it is very difficult to say whether

the series are in fact stationary or not. For example, stock prices seem to be more volatile in

the first half of the sample than in the second. This is not very surprising given that the

post-1996 period has been a turbulent one, with the market exposed to the Asian financial

crisis and various terrorist attacks around the world. While much less volatile, the consumer

price indices plotted in Figure 2 seem to follow the same upwards trend as the stock prices.

The exchange rate series plotted in Figure 3 are generally more volatile in the beginning and
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Figure 1: Share prices.
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Figure 2: Prices.
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end of the sample, while it is relatively stable in the middle.10

10We use dotted lines to indicate that the exchange rate of Iceland and Japan are measured along the secondary
right-hand side axis.
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Figure 3: Exchange rates.
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This evidence suggests that the presence of GARCH cannot be excluded, and that in turn

makes it difficult to determine order of integration of the data. We also see that there is a

strong tendency for the series to move together, both across time as well as across countries.

Dependence is therefore an important aspect to consider now when we proceed to discuss

the implementation of the tests.

4.2 Implementation

So far we have been focusing exclusively on GARCH, and we have said nothing about the

treatment of other empirically important features like deterministic terms, and serial and

cross-sectional dependence.

Accounting for the presence of nonzero intercept and trend terms, and serial correlation

is particularly easy, and involves replacing (3) with its augmented version

y◦it = ρy◦it−1 +
pi

∑
s=1

γis∆y◦it−s + uit, (5)

where y◦it denotes the least squares residual from regressing yit onto an appropriate vector of

deterministic components, typically representing a constant and trend. Given that the error

uit is uncorrelated across both i and t, estimation of (5) can proceed exactly as explained
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before, using maximum likelihood or individual or pooled least squares.11 In order to do

so, however, we first need to determine pi, the lag order of each unit, which in this paper is

done by minimizing the Schwarz Bayesian criterion. Thus, in this setup τLS represents the

usual augmented Dicky and Fuller (1979) test, while τpLS represents the t∗δ test of Levin et

al. (2002), which can be seen as a panel generalization of the former. While not necessary

for τLS, in addition to pi, in order to fully eliminate the effects of serial correlation, t∗δ also

requires a choice of bandwidth, which in this paper is accomplished using the automatic

rule of Newey and West (1994).

Although replacing (3) with (5) takes care of any correlation across time, there is still the

problem that uit might be correlated across units. This has two effects. The first one is not so

serious in the sense that it just amounts to a loss of information. The second effect, however,

is more problematic, and amounts to an asymptotic bias in the limiting distribution of the

tests. Although usually disregarded in the time series literature, in the panel literature this

bias has led to the development of several new tests that are robust not only with respect to

serial correlation but also with respect to cross-sectional correlation.12

To be able to understand the basic idea behind these tests, suppose that uit can be decom-

posed in the following way

uit = λ′i ft + eit, (6)

where ft is a vector of unobserved common factors, which could represent oil-price shocks or

any other feature affecting yit that is common across i, while eit is assumed to be completely

idiosyncratic. The reason for having ft here is to model the cross-sectional dependence in

uit, whose extent is determined by λi, a vector of loading parameters that measure the effect

of the common factors. This is easily seen by writing

E(uitujt) = λ′ivar( ft)λj for i 6= j.

Thus, if λi is zero, then there is no correlation, whereas if λi is nonzero, then uit is cross-

sectionally correlated. The tests that we employ here, denoted ta and tb, are taken from

Moon and Perron (2004), and are based on first using the method of principal components

to estimate the factors and their loadings, and then to run (5) based on the de-factored series,

11Thus, as in Seo (1999), τML is based on using least squares to obtain y◦it, and then to estimate the remaining
parameters using maximum likelihood.

12See Breitung and Pesaran (2008) for a recent review of this literature.
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which should be asymptotically cross-section uncorrelated. The resulting tests are imple-

mented in the same way as t∗δ , except for the added difficulty that now we also need to

determine the number of factors to use. This is done using the IC1 information criterion

recommended by Bai and Ng (2004).

Thus, if we want to test the unit root null while permitting for both serial and cross-

sectional correlation, τpLS is either ta or tb, or both if we want to refer to them jointly.

4.3 Results

We begin by looking at the country-by-country results obtained from the τLS and τML tests.

The graphical evidence reported earlier suggests that a constant alone might not be enough

to capture the deterministic behavior of the variables, and that there is a need allow for a

linear trend. In interest of comparison, however, the results for the model with no trend are

also reported. The information contained in Table 4 may be summarized in the following.13

Turning first to the results for the model with no trend, we see that the null is rarely

rejected. In fact, even if we look at the liberal 10% level, the number of rejections is never

larger than seven. At the 5% level, we count at most three rejections for the stock price,

one rejection for the consumer price index, and four rejections for the exchange rate. The

evidence against the null is therefore weak, at best. For the model that includes a tend, the

evidence against the null is even weaker. Indeed, if we look at the 1% level then there is not

a single rejection, and there is at most four rejections at the 10% level.

Although the results so far indicate that the evidence against the null is weak, there are at

least two problems with this conclusion. Firstly, both τLS and τML are constructed under the

assumption that the data are cross-sectionally uncorrelated, which, as noted in the previous

section, is unlikely to hold. These tests are therefore not strictly valid. Then there is also

the more conventional problem of using repeated testing, which make our results difficult

to interpret. As an example, imagine that we are interested in knowing whether we should

reject the unit root null for the whole panel at level α. Clearly, it would be a mistake to

conclude that we should reject simply because the null is rejected for one of the countries.

Doing so would ignore the fact that for a panel of N members, we would expect to reject in

αN times even if the null is true.
13Due to space constraints, we only report the results from the number of rejections of the null hypothesis at

conventional levels of significance. The complete set of results can be obtained from the corresponding author
upon request.
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Fortunately, once the individual significance levels have been computed, it is also possi-

ble to use these to produce a more conservative test that is also invariant to the presence of

cross-sectional dependency. Indeed, by the Bonferroni inequality we have that α is at most

N times the significance level of the individual tests. In other words, we should only reject

the null for the full panel if any one country rejects at level of α
N or stronger.

In our case with N close to 20, if we set α to 20%, this means that the null should be

rejected if any of the individual tests end up in a rejection at the 1% level. Thus, in view of

Table 4, the null of a unit root in the full panel is rejected for the model with a constant but

not for the model with a trend.

Consider next the results reported in Table 5 for the three panel tests. If we look at

the model without trend, we see that while t∗δ results in a rejection of the null for all three

variables, this is not the case for the other two tests, at least not at the 1% level. In other

words, if we disregard t∗δ , which is likely to be biased due to the cross-sectional correlations,

then there is not much evidence against the null. The same picture appears if we look at

the model with the trend included, in which case the null cannot be rejected at the 5% level,

except for consumer prices.

In sum, if we concentrate on the most appropriate model with a trend, then the results

obtained from both the individual and panel tests lead to the same conclusion, namely that

the null cannot be rejected, except possibly for the consumer price index. This in turn implies

that while there is no evidence of PPP, the efficient market hypothesis is accepted. It also

implies that the Fisher hypothesis cannot be inferred by a simple cointegration test between

inflation and nominal interest rates.

5 Concluding remarks

The greater usage of financial time series data and the potential impact of GARCH have

motivated researchers to be mindful of such effects when testing for unit roots. This means

that researchers are faced with a difficult dilemma, either they use the fully efficient but

computationally very demanding maximum likelihood based test or else they use the simple

but inefficient least squares counterpart.

In this paper, we attempt to ease this tension by offering a simple panel based solution.

The idea is that by using panel data, we can increase efficiency without sacrificing the sim-

plicity of least squares. This is verified in a series of simulation experiments, where we show

14



that the use of panels results in tests that are vastly more efficient and powerful than existing

tests based on pure time series. We also show that this holds regardless of whether there are

GARCH effects present or not. When we apply our proposal to test for a unit root in con-

sumer price indices, stock prices and real exchange rates, we only find evidence against the

unit root null for the first variable.
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Table 4: Empirical rejection counts for the individual tests.

Constant Trend
Variable Test 1% 5% 10% 1% 5% 10%
Stock price τML 1 3 4 0 2 4

τLS 0 2 2 0 0 0

Consumer price τML 0 0 0 0 0 0
τLS 0 1 1 0 2 4

Exchange rate τML 1 1 3 0 0 0
τLS 3 4 7 0 1 1

Notes: The table reports the number of rejections of the null hypothesis
of a unit root at the 1%, 5% and 10% significance levels.

Table 5: Empirical results for the panel tests.

Constant Trend
Variable Value ta tb t∗δ ta tb t∗δ
Stock price Test −0.071 −0.260 −4.440 −0.915 −0.832 3.944

p-value 0.472 0.397 0.000 0.180 0.203 1.000

Consumer price Test 0.244 15.601 −10.597 −3.414 −4.163 −12.215
p-value 0.596 1.000 0.000 0.000 0.000 0.000

Exchange rate Test −0.288 −1.866 −7.246 −1.580 −1.582 −4.384
p-value 0.387 0.031 0.000 0.057 0.057 0.000

Notes: The tests of Moon and Perron (2004) are denoted ta and tb, while the Levin et al. (2002)
test is denoted t∗δ . All three tests take nonstationarity as the null hypothesis. The p-values are
based on the normal distribution.
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