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Abstract

Some unit root testing situations are more difficult than others. In the case of quar-
terly industrial production there is not only the seasonal variation that needs to be con-
sidered but also the occasionally breaking linear trend. In the current paper we take this
as our starting point to develop three new seasonal unit root tests that allow for a break
in both the seasonal mean and linear trend of a quarterly time series. The asymptotic
properties of the tests are derived and investigated in small-samples using simulations.
In the empirical part of the paper we consider as an example the industrial production
of 13 European countries. The results suggest that for most of the series there is evidence

of stationary seasonality around an otherwise nonseasonal unit root.
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1 Introduction

The persistence of macroeconomic shocks is one of the most investigated issues within the
field of empirical economics. In a seminal paper, Nelson and Plosser (1982) argue that, in
contrast to the tradition view, most shocks have permanent effects. Using the Dickey and
Fuller (1979) test they found that the null hypothesis of a unit root cannot be rejected for
13 out of the 14 annual macroeconomic variables considered. Their study triggered the
development of several unit root tests as well as numerous simulation studies directed at
comparing their small-sample performance.

At the same time, many of the shortcomings of these tests became apparent. Perron
(1989) questioned the preference of Nelson and Plosser (1982) to only consider the case of
a linear time trend when actually their data cover periods of major economic events such
as the oil crisis of the 1970’s and the Great Depression, which may well have affected the
slope of the trend. The problem is that the presence of such structural breaks induces serial
correlation properties that are akin to those of a random walk, and conventional tests such
as the Dickey and Fuller (1979) test may therefore incorrectly accept the null hypothesis of
a unit root when the data are in fact stationary around a broken trend. To account for this
possibility Perron (1989) developed a procedure to formally test the null hypothesis of a unit
root in the presence of a structural break, which he then applied to the same 14 variables con-
sidered by Nelson and Plosser (1982) with very different results. This is important because
the finding that macroeconomic variables do not have unit roots would make it necessary to
reconsider much of the previous empirical work.

With quarterly data there is not only the occasionally breaking trend but also pronounced
seasonal movements, which are just as problematic, and much effort has therefore gone
into the development of unit root tests that are robust against such movements. Here the
focal issue has been whether the seasonality varies in a non-stationary way or whether the
seasonality is stationary. In the latter case, season-specific intercepts are usually enough to

capture the seasonality, whereas in the former case, annual differencing is required.

1.1 Limitations of earlier studies

Hylleberg et al. (1990) were among the first to analyze the issue of seasonal unit roots. They

consider a quarterly time series y;, observable for t = 1, ..., T, whose seasonal properties can



be analyzed by using the following auxiliary regression:

4 3

Agyr = Y psDsp+ Y psYsi—1+ paysi—2 + €t (1)
s=1 s=1

where D;; equals one if t is in season s and zero otherwise, and ¢; is a serially uncorrelated
error term. The variables y1 1, y2:—1 and y3 ;1 are given by

4 4
Yit—1 = Zyt—S/ Y1 = Z(_l)syt—S/ Y3i-1 = —Yi-1+Yi-3.
s=1

s=1

The authors show that the hypothesis of a nonseasonal, or zero frequency, unit root corre-
sponds to p; = 0, that a seasonal unit root at the biannual frequency corresponds to p, = 0,
and that seasonal unit roots at the annual frequency corresponds to p3 = p4 = 0. The first
two hypotheses are tested using a conventional t-test, while third is tested using an F-test.
The seasonal intercept dummies are irrelevant under the null but are there in order to make
the test robust against the alternative that the series is stationary around a seasonal mean.

One problem with the Hylleberg et al. (1990) approach is that it does not account for
the fact that certain shocks may cause the seasonal fluctuations to shift permanently, see for
example Ghysels (1991) who argue that many postwar macroeconomic variables have been
subject to seasonal means shifts. If this is the case, then the tests based on (1) are likely to be
misleading in the sense that they are biased towards accepting the null hypothesis, see for
example Lopes and Montafiés (2005), and Smith and Otero (1997).

As a response to this Franses and Vogelsang (1998) propose an alternative model, which
allows for an unknown break in one or more of the seasonal means. This break may be
instant but it may also be gradual, reflecting the fact that even major breaks, such as the
stock market crash of 1929 or the oil price shocks of the 1970’s, usually do not display their
full impacts immediately. The resulting test statistics are therefore very general, and widely
applicable.

The problem with the Franses and Vogelsang (1998) approach is that it does not allow the
series to be trending, which we have argued to be one of the key features of most macroe-
conomic variables. In other words, while potentially very promising and general when it
comes to the seasonal variation, the Franses and Vogelsang (1998) approach cannot handle
series that are trending. The problem is that, as in the case of an unattended break, if the test
regression is fitted with seasonal dummies but the data contain a trend, then the ensuing

unit root test will be biased in favor of the null.



1.2 A motivating example and the main results of this study

In recent years, there has been a great deal of research focusing on the persistence of indus-
trial production. This is an important and relevant question because industrial production is
oftentimes used as a measure of output, which is a key variable in many economic models,
whose validity hinges critically on whether output is stationary or not. There is also a large
body of empirical work based cointegration that relies on industrial production being non-
stationary. Take for example the study of Fernandez (1997), who uses industrial production
as a measure of economic activity in order to study the long-run relationship between out-
put and money supply. Similar approaches have been used by Nasseh and Strauss (2000)
and Binswanger (2004) to study the relationship between stock prices and macroeconomic
activity among western industrialized countries.

But the persistence of industrial production is interesting not only because of its use as
a measure of output or economic activity, but also in its own right. In fact, ever since the
provocative study of Nelson and Plosser (1989) researchers have been obsessed with trying
to revaluate their findings, see Hylleberg et al. (1993) and Osborn et al. (1999) for some
examples using industrial production.

The 13 series considered in this paper are the log of the industrial production index for
Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Nor-
way, Spain, Sweden and the United Kingdom. The series are quarterly and seasonally un-
adjusted. All data are taken from the OECD Statistical Compendium 2007, and cover the
period 1976:1-2006:1.

One implication of using quarterly rather than annual data is that although the series
have more observations they cover a shorter time span. We therefore loose some information
about the long-run behavior of the series. On the other hand, quarterly data are richer in the
sense that they provide more information about the short-run behavior of the series. This is
illustrated in Figure 1 and 2, which plot the log of the 13 series considered.

The first thing to notice is the obvious seasonal variation. At the one end of the scale we
have France, Italy, Norway, Spain and Sweden, where the seasonality is very pronounced,
while at the other end of the scale, we have countries such as Austria, Ireland and the United
Kingdom, where the series are much smoother. In fact, for most of the series the trending
pattern is just as regular and pronounced as the seasonal pattern. All countries have expe-

rienced substantial growth in industrial production, which seem to have lasted throughout
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Figure 1: Log of industrial production.
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the sample.

These observations clearly illustrates the need of allowing for both season-specific means
and linear time trends. But this is not all. We also see that most of the series display a clear
break in both the seasonal mean and trend slope halfway into the sample. Consider for
example the industrial production of Finland, which display a very clear-cut change in the
seasonal pattern from the mid-1990’s and onward, becoming less pronounced but still very
regular. At the same time we also observe an increase in the growth of the series, which lasts

for about 10 years, but then it falls back again.



Figure 2: Log of industrial production.
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In other words, there is not only the need to allow for season-specific means and linear
trends, but there also a need to allow for the possibility of breaks in their coefficients, and
the current paper therefore makes an attempt in this direction. Three new seasonal unit
root tests are proposed, which are general enough to allow for a gradual structural break
in both the seasonal mean and linear trend of the series. As for the location of the break,
we consider two cases. In the first we take the breakpoint as given, while in the second,
the breakpoint is treated as an unknown parameter to be estimated from the data. The
asymptotic distributions of the new test statistics are derived, and verified in small samples
using simulations.

When we apply the new tests to our industrial production data we find that the null hy-

pothesis of a nonseasonal unit root must be accepted for 11 out of the 13 series considered,



suggesting that most shocks have permanent effects. On the other hand, the null of a bian-
nual unit root is rejected much more frequently, nine times, and the null of annual unit roots
is rejected even more often, 11 times. Thus, most series can be characterized as conventional
unit root processes with stationary seasonality.

The paper is organized as follows. The next section describes the model under consider-
ation and the tests that will be used to test it. Section 3 reports the asymptotic results, whose
accuracy in small samples is examined in Section 4. Section 5 concern itself with the empiri-
cal application, whereas Section 6 concludes. Proofs of important results are provided in the

appendix.

2 The seasonal unit root tests

We consider a component model, in which the observed series y; is decomposed into a de-

terministic part d; and a stochastic part s;,

Yy = dt+St, (2)

St = pPSi—a+e 3)

with e = ®(L)u;, where ®(L) is a polynomial in the lag operator L and u; is indepen-
dently and identically distributed with mean zero and variance 2. As for the deterministic
component d;, we consider two models, henceforth denoted by m € {1,2}. Model 2 is the
most general one and allows for a break in both the trend and seasonal mean of the series.
Specifically,

4

4
dy = 2 #sDs + At 4+ D(L) <l[JDTt + Z QDsDUs,t) , )
s=1

s=1
where D;; again equals one if f is in season s and zero otherwise, DU,y = 1(t > T°)Ds,,
DT, = 1(t > T°)(t — T°), 1(x) is the indicator function and T° denotes the date of the break,
which is such that T° = 7°T with 7° € (0,1). Model 1 is obtained by setting ¢ = 0, which
leads to a model with a break in the seasonal mean but not in the trend.
In both models, because of the multiplication by the lag polynomial ®(L), the break is
assumed follow the same dynamic path as the innovations to y;.! Suppose for example that

P = ¢ = ... = ¢4 = 0so that it is only the mean of the first season that changes, then it is

10Of course, assuming that the shifts have the same dynamics as the innovations is by no means the only way
to model the gradual impact of the mean shifts. But it is convenient.



not difficult to see that the immediate impact of the break is given by ¢ and the long-term
impact is @(1)¢;. Of course, on could also consider the case when the full effect of the break
takes place immediately, but a gradual effect seem more consistent with the data at hand.?
The testing approach that we use is taken from Hylleberg et al. (1990), which is very
convenient as it enables us to test for unit roots at all seasonal frequencies and at the zero
frequency. After deriving the reduced form of the component model in (1) and (2), and then
nesting and approximating it in the spirit of Perron and Vogelsang (1992), we obtain the

following test regression for model 2:

3 4
A4yt = Z OsYs,t—1 + P4Y3—2 + ﬁt +6DT; 4+ Z(“st,t + 95A4Ds,t + nsDus,tfél)
s=1 s=1
p
+ ’)’sA4yt—s + Et. (5)

s=1

where B, 6, as, 05 and 715 are derived from the coefficients in (4), & is a serially uncorrelated
error term that comprises an unexplained regression error plus the error that comes from the
approximation, and y1 -1, y2+—1 and y3;_1 are as before. The corresponding test regression
for model 1 is obtained by imposing J = 0.

Equation (5) is similar to a two-step procedure, in which (1) is fitted to the residuals of
a first-step regression of y; onto the elements of the deterministic component in (4). The
approach considered here is more convenient though, as it involves only a one-step regres-
sion, wherein the coefficients of both the deterministic and stochastic components of y; are
estimated simultaneously.

Following Hylleberg et al. (1990) we consider three different null hypotheses:

1. H} : p1 = 0, corresponding to a non-seasonal unit root;

2. Hj: pp = 0, corresponding to a seasonal unit root at the biannual frequency;

3. H3: p3 = ps = 0, corresponding to seasonal unit roots at the annual frequency.

The first two hypotheses can be tested by using the conventional t-statistic for testing the
significance of ps, which is henceforth denoted t(T°) with the superscript m indicating the
model under consideration. The reason for writing t' as a function of T° is to indicate that

the statistic has been computed for a particular choice of breakpoint, and that its limiting

ZNote also that although in the current paper we only consider the case of a single break, this is probably not
necessary. Indeed, intuition suggests that our results can be extended to the case of multiple breaks.



distribution depends on it. For testing the third hypothesis we use the F-statistic for the joint
significance of p3 and p4, which is written in an obvious notation as FJj(T°).

As we just pointed out, the results reported so far are based on the assumption that T°
is known. When it is unknown, a natural approach is to treat the estimation problem as
a model selection issue, and to estimate T° by minimizing an information criterion. The
particular estimator used in this paper is very similar in spirit. Specifically, the proposal of
Popp (2007, 2008) is adopted, which focuses on the significance of the coefficient of impulse
dummy A4DUj s in (5). Specifically, let us denote by Fp(T*) the F-statistic for testing the joint
significance of 61, ..., 04 when the breakpoint is T* = 7*T, where ™ € (0,1). The breakpoint
estimator is defined as

o — Ey(T"),
8 1y P

where g € (0,1) is a trimming factor that eliminates the endpoints. Given T°, feasible ver-
sions of our test statistics can be computed as # = #"*(T°) and F}i = F}(T°), where the
dependence upon T° is henceforth suppressed.

It is worth taking a moment to discuss the rationale that underlies the above estimation
procedure. Note how the dummy variables DT; and DU,; appear in lagged form in (5),
which is different from the regression considered by Franses and Vogelsang (1998). This dis-
crepancy arises naturally from our choice of a component model, which is different from the
data generating process considered by Franses and Vogelsang (1998). The main advantage
of using our model is that the interpretation of the regression coefficients does not change
depending on whether we are under the null or not, see Schmidt and Phillips (1992) for a
more detailed discussion. In particular, it implies that the hypothesis of no break can be
implemented as a test of the restriction that 6; = ... = 04 = 0.

By contrast, Franses and Vogelsang (1998) adopt the approach of Perron and Vogelsang
(1992), which is based on the significance of the slope coefficient of DU, ;, whose meaning
depend critically on the integratedness of y;, see Popp (2007). As we demonstrate in Section

4, this difference can have a substantial impact on the accuracy of the estimated breakpoint.

3 Limiting distribution

To fix ideas, suppose that the overall null hypothesis of p; = ... = ps = 0is true. In this case

it is possible to show that as long as the order of the lag augmentation p is large enough to



capture the serial correlation in ¢;, the least squares estimator of p; in (5) is asymptotically
invariant with respect to the other coefficients of the model. Therefore, we do not loose
generality by setting them equal to zero. It follows that if we in addition assume that y_3 =

.. = yo = 0, then (5) reduces to

Agyr = uy, (6)

which simplifies the asymptotic analysis considerably. It should be pointed out, however,
that these assumptions are not necessary, and that they are only for convenience, see for
example Franses and Vogelsang (1998) for a further discussion.

In the theorem that follows we report the asymptotic distribution of the new test statistics
under the null hypothesis given by (6). However, before we come to the theorem we need to
introduce some notation. In particular, let us define

1 1
mezg[ﬁial, Mwm:g[jqﬁfg$w]’
T° T°
where dW is the increment of W = ( W1, W,, W3, Wy )/, a four-dimensional standard Brown-

inan motion on r € [0, 1].> Moreover, defining

1 4 1 4 1
B, = EZ:Ws, B, = EZ(—l)SWS, By = 5(W1_W3)'
1
B4 = E(WZ - W4),
then B = ( By, By, B3, By )/,
— fol BldBl 4 f()1 B%di’
) 1
4 [ B3
My, = —o*| . Jo BBz , Myy = o*diag 1 fo2 Zdrz ’
Ji\(B3dBs + BydBy) 2 o (B3 + By)dr
fol(B4dB3 — B3dBy) 2 fOl(B% + By)dr
1 1
Myp- = 0 f({ Gr Mype = 0| 4 Jo rGar
fro Gdr fro (7’ B TO>GEI7’
1L a-)Ln
M *TY)* = — 4
b*b 4 (1-1°)I4

My — L] (1—(r)°) = 37°(1 = (x°)?)
S (1= (TP =3 (7)) +3(T)2(1 - ) |

QW=

! 2\,/
by (1—(7°)%)s
(1—(r°)?=2t°(1—1°))y (1—(v°)*=21°(1—1°))4
3Here and throughout all Brownian motions such as W(r) will be written as W, with the measure of integra-
tion omitted. Integrals such as f01 r)dr and fo (r)dW (r) will be written fol Wdr and fol WAW, respectively.

x|

MD**D* ==
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withiy =(1,1,1,1) and

By By By By
1| —-B B —B, By

By —By —By Bs

Theorem 1. Under (6) as T — oo,

o 1, . RI(JMxx]") " My
AT) v Th(r) = SUMT) M
U\/RS(]MXX]) Rs
) R2My ) Mx,,

B(T°) —w k(7)) = —=2E—==,
o/ R2My 3 R¥
o 1, o 1 _ _
Fu(T) —w Fau(t%) = — My, ]'(JMxx]') 7R3, (Ri(JMxx]') ' R3))
Ry (JMxx]') " TMxu,
5 =2, . 1 _ _ -1 _
F324(T) —w Fau(T°) = gM/XuMX}(RgL(R%zLMX}(R%ZL) R§4MX}(MXW

-1

where —, denotes weak convergence, R} and RY} are the restriction matrices corresponding to ps =
0 and p3 = ps = 0 in model m, respectively, | is the identity matrix with row 10 removed, Mx, =
(Mpy., Mp.yy My, )’ and

Mp:p+ Mp=p+ Myp+

1
— 4
Mxx = | Mpep. Mpup Myp-
!/ !
Myp. M.  Myy

It is important to realize that the limiting distributions of t{' and Fj; do not depend on
o2, That is, 0 cancels out in the numerators and denominators. Thus, the new tests are
asymptotically invariant not only with respect to the coefficients of the equation driving y;
but also with respect to variance of u;. Moreover, although the asymptotic distributions are
for the case in which e; is serially uncorrelated, as we pointed out earlier this assumption is
only for convenience, and can be relaxed at the cost of some extra notation. The only thing
that is needed for this to hold is that the order p is sufficiently large.

One problem with Theorem 1 is that it assumes that the true breakpoint T° is known, as
indicated by the dependence of the limiting distributions on 7°. The asymptotic distribu-
tions of the feasible test statistics are provided in the following corollary.

Corollary 1. Under (6) as T — oo,
x

t;n —w E:1(1},1); F:’:Z —w F;'Z(T;;)’
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where

1

* _ _ 1 _
= ﬁMS(u]/(]MXX]/) 1Ré/(Ré(]MXX]/) 1R5/) Ré(]Mxxfl) 1]MX11/
1 _
T = My MRy (REMyxRY) 'R2M L My,
with Ry being the restriction matrix corresponding to 01 = ... = 04 = 0 in model m.

As in Theorem 1, although it appears in the formula for T, there is no real dependence
on 02, which cancels out when forming f.' (77) and F34 (). The limiting distributions of the
feasible test statistics are therefore completely free of nuisance parameters. Note in particular
how the dependence on 7., the true break fraction, is now gone. In the next section we use

simulations to obtain the critical values of t]" and FJj.

4 Simulations
4.1 Critical values

The critical values are obtained by making 5,000 draws of length T from the data generat-
ing process in (6), where u; ~ N(0, 1).4 The computation of the test statistics requires two
choices. The first is how many lags of Asy; to use in the test regression, here denoted by p.
The second is how much to trim when estimating the breakpoint, that is, how to pick 4. As
for the choice of p, we consider two approaches. One is to set p = 0, while the other is to
follow Franses and Vogelsang (1998) and to set p according to the general-to-specific proce-
dure of Hall (1994) with a maximum of five lags. As for the choice of g, we follow the usual
convention and set g4 = 0.1, so that 10% of the observations in both beginning and end of the
sample are trimmed away. All computational work is performed in GAUSS. The results are

reported in Table 1.

4.2 Size and power

The size and power comparisons are based on 5,000 draws from the data generating process
given by (2) to (4), where ®(L) = 1 and p; = ... = psa = A = 0. As for the mean break

coefficient ¢ we consider two cases. In case 1, ¢; = ¢ for all s, so that all the seasons are

4As before, the test statistics are asymptotically invariant with respect to the parametrization of the data
generating process. Therefore, we do not loose generality when generating the data from (6), at least not asymp-
totically.
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affected by the same break, while in case 2, ¢1 = ¢35 = —¢o = —¢ps = ¢, so that the effect
of the break is allowed to change with the season. In both cases we assume that the break
is located in the middle of the sample, that is, T° = 0.5. The test statistics are constructed in
exactly the same way as described in Section 4.1.

Franses and Vogelsang (1998) develop three tests, denoted ", t}¥ and FZ/, that are
designed to test the null of a seasonal unit root when there is a break in the mean but the
data are not allowed to be trending. As with /' and 7, tfV and t}V are constructed as
simple t-tests of the null hypotheses H} and H}, respectively, while FLY, in similarity to
Fj}, is constructed as an F-test of the joint null of HS’. In terms of construction the tests
are therefore very similar. The main difference is that Franses and Vogelsang (1998) presume
that the researcher can be confident that the data generating process does not include a linear
time trend. Thus, not only is it assumed that the researcher has full certainty over the trend,
but also that there is no trend, which is of course highly unlikely to hold in practice. It is
therefore interesting to see how these tests perform in the presence of an unattended trend,
which in addition may be subject to a structural break.

Table 2 summarizes the results from the size and power of the v, tg Vand F&V tests at
the 5% significance level. Some results of the correct selection frequency, and of the mean
and standard deviation of the estimated breakpoint are also reported.

The first thing to notice is the size, which increases considerably with the size of the
break, as measured by ¢. As an extreme example, consider case 1 when T = 152, in which
an increase in ¢ from zero to 10 causes the size of 'V to go from 5% to almost 100%. The
distortions do get smaller as T increases but the size is still severely distorted, even when T is
as large as 500. The results for case 2 are more favorable. However, the tendency for the size
distortions to increase with ¢ still remains. The t£V test suffers the same problem but with
this test the distortions are more pronounced in case 2. The Fl}” test has some distortions in
both cases and is therefore more robust in this sense.

Moreover, looking now at the results from the estimated breakpoint, in agreement with
the discussion of Section 2, we see that the estimation procedure of Franses and Vogelsang
(1998) is unable to pinpoint the location of the break.” However, since the performance is

roughly the same in the two break cases, this is probably not the reason behind the size

5Similar results have been documented by for example Harvey ef al. (2002), Lee and Strazicich (2001), and
Popp (2007, 2008).
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distortions in the unit root tests.

The results obtained by applying our tests to the same data are reported in Table 3 for
model 1 and in Table 4 for model 2. As expected, we see that the size accuracy for all three
tests is almost perfect, and that the performance is unaltered by the size of the break. The
results from the power of the tests are also quite encouraging. Specifically, we see that al-
though the tests can sometimes have difficulties in discriminating between the null and al-
ternative hypotheses, as expected, the power increases quickly as T grows. The overall best
performance is obtained by using F3;, which is to be expected since it is a joint hypothesis
test.

We also see that the breakpoint estimator seems to perform very well with almost perfect
accuracy in a majority of the experiments, which of course stands in sharp contrast to the
overall poor performance of the Franses and Vogelsang (1998) estimator. As expected, the
accuracy increases slightly with T and also with ¢, which seems reasonable as a larger break

is more easy to discern.

5 The motivating example continued
5.1 Preliminary results

As a complement to the graphical evidence of Figures 1 and 2, Table 5 reports the average
and standard deviation for the percentage change of each series, which are computed as
100 - Ay;, where y; is the log of industrial production. Ireland has experienced the most
rapid growth by far with an average growth rate of about 2% per quarter, while in Norway
and the United Kingdom the average growth is much lower, only 0.15%. Sweden stands
out as having the most volatile series, which is partly due to a relatively strong season. This
is seen in the rightmost column, which reports R?-measure from a regression of Ay; onto
D14, ..., Dys. The lowest R? is obtained for Austria, which is consistent with its relatively
weak seasonal pattern, as can be seen in Figure 1.

Before applying the new seasonal unit root tests, in interest of comparison we first con-
sider some results from applying the conventional Dickey and Fuller (1979) and Hylleberg
et al. (1990) tests. The former is denoted by tlD F while the latter are denoted by thGY, t?EGY
FHEGY

and to indicate their close connection with the tests proposed here. All four tests are
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computed while allowing for the presence of a linear trend.® Thus, the main difference here
is that while our tests permit for the possibility of a break, the other tests do not. The tPF test
is even more restrictive and does not allow for seasonality either. The results are reported in
Table 6.

So far our findings suggest that a majority of the series exhibit both strong seasonal vari-
ation and permanent shifts, which in turn implies that the tests of Dickey and Fuller (1979)
and Hylleberg et al. (1990) are likely to be biased in favor of the unit root null. In agreement
with this result we see that the tPF and tHECY tests are unable to reject the null of a non-
seasonal unit root. This inability to reject is also observed when testing null hypothesis of a
biannual unit root, in which case we count five rejections at the 10% level and one rejection at
the 5% level. The results for the null of annual unit roots are different. In this case we count
five rejections at the 1% level, nine rejections at the 5% level, and 12 times at the 10% level.
Thus, while weak at the two lowest frequencies, the evidence against the null is stronger at
the highest frequency.

Of course, these results should not be taken too seriously, as the possibility remains that
they have been spuriously induced by the presence of seasonality and breaks in the case of

the Dickey and Fuller (1979) test, and by the presence of breaks in the case of the Hylleberg
et al. (1990) tests.

5.2 The results of the new tests

Table 7 reports the results of the new tests, which are implemented in the same way as de-
scribed in Section 4. We begin by looking at the ¢ test, which tests the null of a nonseasonal
unit root. The results for the two models are very similar. If we allow for a break in the sea-
sonal mean but not in the trend, then we count two rejections at the 5% level, whereas if there
is a break in the trend, then we count only one rejection at the same level of significance.
The 7' test, which tests the null of a biannual unit root, results in more rejections. For
model 1 we count 11 rejections at the 5% level, whereas for model 2 we count nine rejections.
At the 10% level there is evidence against the null for all countries but Austria, Finland, the
Netherlands and Sweden. The fact that the evidence against the null is so much stronger

now in comparison to Table 6 suggests the presence of a break, which is not accounted for

®As in Section 4, the appropriate number of lags to use is determined by using the general-to-specific ap-
proach of Hall (1994) with the maximum lag length set to five.
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when using the Hylleberg et al. (1990) thGY test.

Next, we consider the results from the Fj; test and the null hypothesis of annual unit
roots. Looking at the 1% level we see that the hypothesis is refuted for all countries but
two, for Belgium and Finland, which seem largely consistent with the graphical evidence
reported in Section 1.

Finally, we take a look at the estimated breakpoints that come out as a bi-product in the
testing procedure. Focusing on the most general model with a break in both the seasonal
mean and trend slope we see that there is a predominance of breaks occurring in the late
1990’s, which is in agreement with the graphical evidence. The estimated breaks in the mid-

1980’s for Belgium and the United Kingdom are also clearly visible in the figures.

6 Conclusions

This paper is inspired by the large amount of empirical research that has gone into the testing
for unit roots in output, and in particular industrial production, which at a quarterly basis
is typically characterized by strong seasonality and an upwards trend. Then there is also
the presence of breaks that permanently shift both the seasonal regularity and the rate of
growth. However, most studies based on examining the persistence of industrial production
fail to account for these features, and use tests that are invalid in their presence.

In this paper we take these observations as our point of origin. The purpose is to device
a test procedure that is able to handle all the major features of this kind of data. In particular,
three new seasonal unit root tests are proposed that allow not only for seasonal and trending
behavior, but also for a break of unknown timing in both the seasonal mean and trend slope.
The relevant asymptotic theory and critical values are provided. Some simulation results are
also reported to suggest that the tests perform well with very high size accuracy and good
power in most experiments considered.

In our empirical application we consider the industrial production for a sample of 13
European countries that cover the period from 1976:1 to 2006:1. There are two main results.
Firstly, all series seem to have a clear nonseasonal unit root. Secondly, for a majority of
the series there do not seem to be any seasonal unit roots at all. Hence, for these series it
seem reasonable to assume a stationary season, in which the season-specific means reflect

the seasonal cycle.
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Appendix: Mathematical proofs

Lemma A.1. Under the above conditions, as T — oo

1 T
ﬁEYt—lytlfl —w  Myy,
=1

1 T
T Y Yiqu —w My,
t=1
where Yi—1 = (Y1,6-1, Y2,1-1, Y32, Y3,0-1)"

Proof of Lemma A.1.

Consider first the results for yy ;. Letting N = T/4and S, ; = Z{lzl Uy (4—s), Where j = |t/4]

with | x| denoting the integer part of x, then by a functional central limit theorem,

1
— = Ss,j —w OWs

VN

as T — oo. Thus, since

t

4
Yyit = Zun = ZSS,]'+Op(1).
s=1

n=1 =

it follows that

1 I |
— = ——S.;+0,(1) —, 0B
\/Tyllt s_; /—4N s,j P( ) w 1

as T — oo, and by further application of the continuous mapping theorem,
1 v 2 [T g2
ﬁ Z yl,t —w O / Bl dr.
t=1 0
Moreover,

1

1 T N 4 4 . .
fgyl,t—mt = E-:l Y. S, Zu4]-,(4,s)—|—op(1) —w O /0 B,dB;.

j s=1 s=1

Next, consider 5, for which it holds that

Yor = i(—l)s{ —Ssj+0p(1) tmod2 =1 .

= Ssj+0p(1) tmod2 =0

Hence,

1 - —B, tmod2 =1
— —
T/ T %) B, tmod2 =0’
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which in turn suggests that % Zthl y%/t —y 02 fol B%dr. Also,

1 T 1 N 4 4 1
T Y youu = — N ) (Z(—l)SSS,]) Y (—1)%uyj(ag) +0p(1) =0 —(72/0 B,dBs.
=1

j=1 \s=1 s=1

A similar calculation reveal that as T — oo

Bs tmod4 =1
1 By tmod4 = 2
— o A4
ST T ~ By tmod4 = 3 (Ad)
—B; tmod4 =0

giving

3=
1~
<
@
!
<

o2 rl ) )
7/0 (Bs — By)dr,

..ﬁ
Il
—_

1= ~

1
Yot —w — 2/0 (B3dBz + BdBy),

Sl e
I

N
Il
—_

1
Y3 i—1Ur —w — 2/0 (B4ng—BgdB4).

1=

By combining the results we obtain % Zthl Y;_qus —w My, as T — oco. The proof of the
second result is made complete by noting that y1;_1, y2,+—1, ¥3:—2 and y3 ;1 are asymptoti-
cally orthogonal, ensuring that Myy is a diagonal matrix, see Appendix A of Ghysels et al.

(1994). [

Proof of Theorem 1.

The test regression can be written in matrix format as
Agyr = Xiy +u, (A5)

where X; = (D}, D;*, Y/, ), D; = (D;, DU;)" and D;* = (t, DT; )’ with D; and DU; be-
ing the vectors stacking Ds; and DU, respectively. The one-time dummy variable A4DUs s
is asymptotically negligible and is therefore omitted from (A5).

Using 4 to denote the least squares estimator of -,

T -1 T
HY9—9) = (Hl ) XtX;Hl) H! Y Xeuy, (A6)
t=1 t=1
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where

s O 0
H=+VT| - TL 0

VT

Consider H™! Zthl Xiuy. Define N° = T° /4. Clearly, since N _T

N = T —T1%as T — oo,
1 & 1 < 1 N o 1
7ZDus,tut = = Z Dsjuy = —— Z Uj —w */ dWs,
T =1 \/T f=T°+1 V4 4N ]-:LNoJJrl 2 T°

and by the same arguments, % YL Dty — 5 fol dW;. Therefore,

1 T
WZD?TM —w Mp+y,
t=1

and in view of this result it is not difficult to see that

s Ly T o O -
— Y' DTy = — F— TV, —o f/ r— VAW,
TS VT T 2 Je

from which we deduce % Zthl D{*u; —4 Mp+,. These results, together with Lemma A.1,
yield

1 *
» T T ﬁDt Uy Mp+y,
H E Xpup = Z ﬁD?*ut —w Mpey | - (A7)
t=1 t=1 %Yt—lut MYu

Next, consider the denominator of H~!(4 — <), which is given by

I 1 T DDy DDy YDy
H'Y XiXiH™' = Y| &D;D;” &Dy*DfY  =zYiaDfY |, (A8)
=1 = @RDiYl mRDPYL, fYiaYi
where
1 1< | DD, D:DU 1 I (1—1°)I4
- D*D*l — - t t _ = M * )%
Tt; e Tt; DU,D, DUDU. | 4| 1-7) (1-1°) pb

as T — oo. Furthermore,

1 T
et
T t=1

1 i tD;  tDU;
T2 = | DT\D, DTDU;

! [ / (1- ()4 ]

8| (1— ()2 -2t°(1—7°))f, (1—(r°)2-27°(1—1°))4

4
= Mpwp-
D**D*,
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where we have used that

! itD Loy L /14rdr !
— = — — - =
T2 LSt 16N2 & 77 16 Jo 8

1 & 1 1 gt 1 oo
T2 ; tDUs; = TeNZ LNZO +14] 6/ drdr = §(1 —(1°)%),
iZDTtDus,t - E 4(j—N°) — ! </11’d1’—1’o(1—’t0)>
= 16N j=N°]+1 4 \Je
1

= 3 (1-(r°)*—21°(1—1°)),

where the last result also applies to - ZT: DT;D;. A similar calculation reveals that
PP T t=1 ,
As for 3, Y1y Yi 1D}’ = =35 Y[, Yi1(Dj, DUJ ) note that

yit-1D1t y14-1D2t y14-1D3r y10-1Day
21Dt Y21-1D2t Y20-1D3r Y2,i-1Day
y3t—2D1t y3r-2D2p y3r-2D3r y3p2Day
Y3i-1D1e Y3r-1Dop Y3r-1Dsp Y3r-1Day

1 1
T3/2 ZYt 1Dt - T3/

-

where
1 & 1 N o /1
W;ylleS/f - 8N3/2j§]/1,4j(45) —w Z/o Bdr

as T — oo. But the same result applies to all s and so we have that the first row of the matrix
# ):thl Y;_1Dj converges to the first row of ¢ fol Gdr, which in turn is the first element of

Myp-. Let us now consider ﬁ Zthl Yoi-1Dst. AsT — o0

1 1 =S5 +0p(1) smod2 =1
— D - , — s/f
T3/2 t;}/z,t 1lst 8N3/2 ];yz,4](4s) 8N3/2 Z{ Ssj+ O, (1) smod?2 = 0

1 /1 —Bs smod2 =1
—w = .
4 Jo B, smod2 =0
Similar calculations for y3 ;> and y3 1 across seasons yield ﬁ 2?,1 Y; 1D} =y 0 fol Gdr

as T — oo. The results for T3/2 Zt 1Y:-1DU; and 75 /2 Zt 1 Yi—1Df* are immediate conse-

quences of this, and so the proof is complete. n

20



References

Binswanger, M. 2004. Stock Returns and Real Activity in the G-7 Countries: Did the Re-
lationship Change During the 1980s? Quarterly Review of Economics and Finance 44,
237-252.

Dickey, D., Fuller, W. (1979). Distribution of the Estimators for Autoregressive Time Series
With a Unit Root. Journal of the American Statistical Association 74, 427—-431.

Fernandez, D. G. (1997). Breaking Trends and the Money—-Output Correlation. The Review
of Economics and Statistics 79, 674-679.

Franses, P., Vogelsang, T. (1998). On Seasonal Cycles, Unit Roots, and Mean Shifts. Review
of Economics and Statistics 80, 231-240.

Ghysels, E. (1994) On the Economics and Econometrics of Seasonality. In Sims, C. A. (Ed.).
Advances in Econometrics, 6th World Congress, vol. 1. CUP, Cambridge, United King-

dom.

Ghysels, E., Lee, H. S., Jaesum, N. (1994). Testing for Unit Roots in Seasonal Time Series.
Journal of Econometrics 62, 415-443.

Hall, A. (1994). Testing for a Unit Root in Time Series with Pretest Data-Based Model Selec-

tion. Journal of Business and Economic Statistics 12, 461-470.

Harvey, D., Leybourne, S., Newbold, P. (2002). Seasonal Unit Root Tests With Seasonal
Mean Shifts. Economics Letters 76, 295-302.

Hylleberg, S., Engle, R., Granger, C., Yoo, B. (1990) Seasonal Integration and Cointegration.
Journal of Econometrics 44, 215-238.

Hylleberg, S., Jorgenson, C., Serensen, N. K. (1993). Seasonality in Macroeconomic Time

Series. Empirical Economics 18, 321-335.

Lee, J., Strazicich, M. (2001). Break Point Estimation and Spurious Rejections with Endoge-
nous Unit Root Tests. Oxford Bulletin of Economics and Statistics 63, 535-558.

Lopes, Artur C. B. da Silva, Montafiés, A. (2005). The Behavior of HEGY Tests for Quarterly

Time Series with Seasonal Mean shifts. Econometric Reviews 24, 83—-108.

21



Nasseh, A., Strauss, J. (2000). Stock Prices and Domestic and International Macroeconomic
Activity: A Cointegration Approach. Quarterly Review of Economics and Finance 40, 229—
245,

Nelson, C. R., Plosser, C. I. (1982). Trends and Random Walks in Macroeconomic Times
Series. Journal of Monetary Economics 10, 139-162.

Osborn, D. R., Heravi, S., Birchnhall, C. R. (1999). Sesonal Unit Roots and Forecasts of Two-
Digit European Industrial Production. International Journal of Forecasting 15, 27-47.

Perron, P. (1989). The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis.
Econometrica 57, 1361-1401.

Perron, P, Vogelsang, T. (1992). Nonstationarity and Level Shifts with an Application to

Purchasing Power Parity. Journal of Business and Economic Statistics 10, 301-320.

Popp, S. (2007). Modified Seasonal Unit Root Test with Seasonal Level Shifts at Unknown
Time. Economics Letters, 97, 111-117.

Popp, S. (2008). New Innovational Outlier Unit Root Test With a Break at an Unknown
Time. Journal of Statistical Computation and Simulation 78, 1143-1159.

Schmidt, P, Phillips, P. C. B. (1992). LM Tests for a Unit Root in the Presence of Deterministic
Trends. Oxford Bulletin of Economics and Statistics 54, 257-287.

Smith, J., Otero, J. (1997). Structural Breaks and Seasonal Integration. Economics Letters 56,
13-19.

22



"9AT 0} 39S S3e[ JO ToqUINU WNWIXEW 34} UM (F661) [[eH JO arnpadoid oyroads-0)-rerousad sy 03
3urpI00oe PaUTWLIARP U] Sey d Jey} $a1edIpul GI5) S19UM ‘suorjejuawurdne 3ef Jo IoqUINu a1} 0} SI9JAI d :SajoN

€L, 820€— 0l66— 668 89¢€— T0TH—  FSIL 9p6'c— SI8FT—  00S
6L 680€— Fhe'E—  VT6 66€€— /STH—  S8TIL S¥eE— L8~  00€
vC8 80— ¥0V— 796 LIFE— S¥EF— 18Tl S0 Te0S— TSI
098 0€T'e— TITP—  €I0l €he— 69%F—  6Fel €clv— 8TS— 001
€96 F0TE— [(8€F— 9611 999°€— O0¥8F— 979l 0S€y— €LLS— TS SID
LU [0e— F98'E— 106 FECE— PITF—  S9TT 698E€— 869F— 00§
€64 L00€— 116€—  1€6 €€~ TCH—  SLTIL 986'€— LLLV—  00€
L6L SS0'€— TE6'E—  8T6 00WE— ISTHF—  LTTL 00— €L6%— TSI
118 090€— 6T6€—  9V6 L6€€— WLCV—  0TTL 168€— 646%— 001
SF'8 660€— 9F0F— SO0 9FFe— EIFF—  SLEl €9TF— FIIS— & 0
¢ = w T PPON
€08 860°€— 96— €76 I6€€— G98°€—  €TTL TehE— 0LF— 00§
66 T90E— F8GE— 676 €8€'€— G06'€—  S8TIL VL6E— L6VF—  00€
€08 €eTe— 919€—  6V6 Ihe— TH6'E—  STTL S66'€— 699F— TSI
8’8 9FI'E— €69€— 9001 WLFE— ¥LO0F—  6L€l IFTF— 98L%— 001
956 8ITE— €€6'c—  LLTL TH9E— €9¢F— €91 90§F— 6IFS— 7§ SID
88, TE0E— See—  8I'6  WHEE— 018€—  S8IT $96E— 19€F— 00§
[8L T66T— 00S€—  FI'6  I€6€— ST8€—  TOTL L96€— SLEV—  00€
€08 €€~ 108°€—  8¥'6 L6€€— 06L€—  99TL 8L6€— 8E€F— TSI
118 ¥S0°€— 8¥S€— 956  L6€€— 098'€—  SLTL LE0F— GESF— 00T
98 FEOE— SF9e— 6001 L0FE— T00F—  ISFT LETF— 99LF— & 0
[ = ut ‘T [PPON
s & il 3 & il 3 i udl L d
%01 %S %L

'$159) MU d} 10J SaN[eA [ednLL) i d[qel,

23



Table 2: Simulation results for the Franses and Vogelsang (1998) tests.

o A ¥ tv kv FLY Corr Mean SE
T =152

0 0 0 0050 0050 0050 0009 787 302
3 0 0 0991 0028 0092 0000 720 11
5 0 0 1000 0185 0.663 0000 720 0.0
10 0 0 1000 0998 1.000 0000 720 0.0
0 3 0 0001 0057 0061 0012 787 310
0 5 0 0001 0065 0.060 0013 784 308
0 10 0 0001 0065 0057 0008 777 311
0 0 3 0000 0012 0009 0155 751 11
0 0 5 0000 0011 0014 0257 754 10
0 0 10 0000 0008 0.020 0318 754 09
T = 300
0 0 0 0050 0050 0050 0005 1546 616
3 0 0 0937 0013 0038 0000 1458 10.8
5 0 0 1000 0034 0202 0000 1460 0.0
10 0 0 1000 0912 1.000 0000 1460 0.0
0 3 0 0000 0052 0045 0005 1532 627
0 5 0 0001 0055 0053 0004 1529 632
0 10 0 0000 0052 0053 0007 1541 635
0 0 3 0000 0007 0008 0119 1490 1.0
0 0 5 0000 0006 0008 0203 1492 09
0 0 10 0000 0006 0010 0292 1493 09
T = 500
0 0 0 0050 0050 0050 0003 2558 103.2
3 0 0 0812 0020 0031 0000 2452 33.1
5 0 0 099 0010 0.049 0000 2460 0.
10 0 0 1000 0641 0997  0.000 2460 0.0
0 3 0 0000 0051 0053 0003 256.6 1057
0 5 0 0001 0047 0050 0004 2547 1059
0 10 0 0000 0052 0.047 0003 2540 10538
0 0 3 0000 0005 0006 0083 2490 1.0
0 0 5 0000 0003 0006 0152 2492 09
0 0 10 0000 0004 0008 0262 2493 0.8

Notes: ¢ refers to the break in the intercept, A refers to the trend slope, and 1 refers
to the break in the trend. Corr, Mean and SE refer to the correct selection frequency,
the mean and the standard deviation of the estimated breakpoint.
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Table 5: Descriptive statistics.

Country Mean SE R?

Austria 0.842 13.784 0.591
Belgium 0.405 10.940 0.683
Finland 0.862 13.391 0.673
France 0.252 12937 0.798
Germany 0.460 5.878 0.724
Greece 0.249 10.960 0.624
Ireland 2.038  9.071 0.755
Italy 0.361 15.539 0.747
Netherlands 0.481 11.538 0.667
Norway 0.150 10.206 0.705
Spain 0460 12.351 0.809
Sweden 0.585 20.816 0.822

United Kingdom 0.149  3.751 0.739

Notes: Mean and SE refer the mean and standard deviation of

100 - Ay, while R? refers to the R2-measure in a regression of

Ay; onto four quarterly dummy variables.
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Table 6: Empirical results from the Dickey and Fuller (1979) and Hylleberg et al. (1990) tests.

DF HEGY
Country tPF HHEGY HHEGY FHEGY
Austria —1.667 4 —-1.662 —1.281 23.298*** 4
Belgium —-2.093 3 —0.601 —1.601* 4.768*** 4
Finland —-2.034 4 —-1.335 —1.147 2.377* 4
France —2.045 5 —1.531 —1.609* 3.877* 4
Germany -1.857 3 —3.086 —1.948** 8.503"* 1
Greece -3.076 3 —-1.035 —1.765*  4.230** 4
Ireland —1.757 4 —-1773 —-1450  3.356"* 4
Italy —2.563 4 —-1.123 —-1.637* 1.507 4
Netherlands —-3325 3 —0.532 —1.555 5412 4
Norway —2997 4 —2977 —1.558 2.610* 1
Spain —2.134 3 —-1.671 —0.862 2.373* 4
Sweden —2.546 4 —-1.728 —0.835 3.169** 4
United Kingdom —-1.586 3 —1.575 —1.811* 4.944** 1

Notes: p refers the number of lag augmentations as estimated by the general-to-specific
procedure of Hall (1994). The maximum lag length is set to five. The superscripts *, **
and *** denote significance at the 10%, 5% and 1% level, respectively. DF and HEDG
refer to the tests of Dickey and Fuller (1979) and Hylleberg ef al. (1990), respectively.

t? Fand t’lq EGY test the null of a nonseasonal unit root, thGY tests the null of a biannual

unit root, and FﬁEGY tests the null of annual unit roots.
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Table 7:

Empirical results for the new tests.

Country ¢ ty E5; Rejections  p T° T
Model 1, m =1
Austria —3.063  —4.717**  22.654*** H3, H] 0 19854 0.33
Belgium —3.078  —3.441* 16.106*** H3, Hj 0 1991:4 0.53
Finland —-1376 ~ —3.807***  13.861*** H3, H] 0 1990:4 0.49
France —2.632  —4.671***  21.656*** HZ, H3 0 19922 0.54
Germany —2.388  —5.519***  45267*** H3, Hj 0 19922 0.54
Greece —3.820"* —5.638***  33.369*** H}, H3, HS 0 1992:3 0.55
Ireland —2.783  —5.675***  47.634*** H3, H] 0 1996:3 0.69
Italy —3.623  —5.177***  80.514*** H3, HJ 0 19964 0.69
Netherlands —4.247*  —4.462**  47.459*** H}, H3 H3 0 1995:4 0.66
Norway —2.774  —3.887**  19.171*** H3, HJ 0 19963 0.69
Spain —3.355  —5.131***  33.307*** H3, Hj 0 19922 0.54
Sweden —3.273  —3.559* 15.265***  HZ, Hj 0 19942 0.61
United Kingdom —3.083  —5.371***  65.741*** H], H3, HS 0 1986:3 0.36
Model 2, m =2
Austria —2.326  —2.519 26.863*** Hj 1 1999:3 0.79
Belgium —2275  —8.158**  5.668 H} 4 19874 0.39
Finland —2.405  —0.553 1.506 - 5 19994 0.79
France —1.588  —3.756**  31.206*** H3, Hj 219992 0.78
Germany —2542  —5.563***  50.258*** H3, H] 0 1992:2 0.54
Greece —3410  —7.498**  15.585*** H3, Hj 3 1992:3 0.55
Ireland 0.499 —6.064***  30.378*** H3, Hj 0 1999:4 0.79
Italy —4.264*  —12574"* 77.089*** H}, H3, H3 2 1999:4 0.79
Netherlands —2.298  —1.593 13.943**  H} 5 1999:4 0.79
Norway —3.244  —5.622"**  22378*** H3, HJ 0 199.1 0.67
Spain —3301  —5.021***  31.008*** H3, H3 0 19922 0.54
Sweden -1.706  —2.816 11.369*** H} 1 1999:4 0.79
United Kingdom —3.853  —3.619**  16.608*** Hj, H3 1 1986:1 0.34

Notes: t° refers to the estimated break fraction with T° being the associated break date. See Table 6

for an explanation of the remaining features.
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