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Abstract

Some unit root testing situations are more difficult than others. In the case of quar-

terly industrial production there is not only the seasonal variation that needs to be con-

sidered but also the occasionally breaking linear trend. In the current paper we take this

as our starting point to develop three new seasonal unit root tests that allow for a break

in both the seasonal mean and linear trend of a quarterly time series. The asymptotic

properties of the tests are derived and investigated in small-samples using simulations.

In the empirical part of the paper we consider as an example the industrial production

of 13 European countries. The results suggest that for most of the series there is evidence

of stationary seasonality around an otherwise nonseasonal unit root.
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1 Introduction

The persistence of macroeconomic shocks is one of the most investigated issues within the

field of empirical economics. In a seminal paper, Nelson and Plosser (1982) argue that, in

contrast to the tradition view, most shocks have permanent effects. Using the Dickey and

Fuller (1979) test they found that the null hypothesis of a unit root cannot be rejected for

13 out of the 14 annual macroeconomic variables considered. Their study triggered the

development of several unit root tests as well as numerous simulation studies directed at

comparing their small-sample performance.

At the same time, many of the shortcomings of these tests became apparent. Perron

(1989) questioned the preference of Nelson and Plosser (1982) to only consider the case of

a linear time trend when actually their data cover periods of major economic events such

as the oil crisis of the 1970’s and the Great Depression, which may well have affected the

slope of the trend. The problem is that the presence of such structural breaks induces serial

correlation properties that are akin to those of a random walk, and conventional tests such

as the Dickey and Fuller (1979) test may therefore incorrectly accept the null hypothesis of

a unit root when the data are in fact stationary around a broken trend. To account for this

possibility Perron (1989) developed a procedure to formally test the null hypothesis of a unit

root in the presence of a structural break, which he then applied to the same 14 variables con-

sidered by Nelson and Plosser (1982) with very different results. This is important because

the finding that macroeconomic variables do not have unit roots would make it necessary to

reconsider much of the previous empirical work.

With quarterly data there is not only the occasionally breaking trend but also pronounced

seasonal movements, which are just as problematic, and much effort has therefore gone

into the development of unit root tests that are robust against such movements. Here the

focal issue has been whether the seasonality varies in a non-stationary way or whether the

seasonality is stationary. In the latter case, season-specific intercepts are usually enough to

capture the seasonality, whereas in the former case, annual differencing is required.

1.1 Limitations of earlier studies

Hylleberg et al. (1990) were among the first to analyze the issue of seasonal unit roots. They

consider a quarterly time series yt, observable for t = 1, ..., T, whose seasonal properties can
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be analyzed by using the following auxiliary regression:

∆4yt =
4

∑
s=1

µsDs,t +
3

∑
s=1

ρsys,t−1 + ρ4y3,t−2 + εt, (1)

where Ds,t equals one if t is in season s and zero otherwise, and εt is a serially uncorrelated

error term. The variables y1,t−1, y2,t−1 and y3,t−1 are given by

y1,t−1 =
4

∑
s=1

yt−s, y2,t−1 =
4

∑
s=1

(−1)syt−s, y3,t−1 = − yt−1 + yt−3.

The authors show that the hypothesis of a nonseasonal, or zero frequency, unit root corre-

sponds to ρ1 = 0, that a seasonal unit root at the biannual frequency corresponds to ρ2 = 0,

and that seasonal unit roots at the annual frequency corresponds to ρ3 = ρ4 = 0. The first

two hypotheses are tested using a conventional t-test, while third is tested using an F-test.

The seasonal intercept dummies are irrelevant under the null but are there in order to make

the test robust against the alternative that the series is stationary around a seasonal mean.

One problem with the Hylleberg et al. (1990) approach is that it does not account for

the fact that certain shocks may cause the seasonal fluctuations to shift permanently, see for

example Ghysels (1991) who argue that many postwar macroeconomic variables have been

subject to seasonal means shifts. If this is the case, then the tests based on (1) are likely to be

misleading in the sense that they are biased towards accepting the null hypothesis, see for

example Lopes and Montañés (2005), and Smith and Otero (1997).

As a response to this Franses and Vogelsang (1998) propose an alternative model, which

allows for an unknown break in one or more of the seasonal means. This break may be

instant but it may also be gradual, reflecting the fact that even major breaks, such as the

stock market crash of 1929 or the oil price shocks of the 1970’s, usually do not display their

full impacts immediately. The resulting test statistics are therefore very general, and widely

applicable.

The problem with the Franses and Vogelsang (1998) approach is that it does not allow the

series to be trending, which we have argued to be one of the key features of most macroe-

conomic variables. In other words, while potentially very promising and general when it

comes to the seasonal variation, the Franses and Vogelsang (1998) approach cannot handle

series that are trending. The problem is that, as in the case of an unattended break, if the test

regression is fitted with seasonal dummies but the data contain a trend, then the ensuing

unit root test will be biased in favor of the null.
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1.2 A motivating example and the main results of this study

In recent years, there has been a great deal of research focusing on the persistence of indus-

trial production. This is an important and relevant question because industrial production is

oftentimes used as a measure of output, which is a key variable in many economic models,

whose validity hinges critically on whether output is stationary or not. There is also a large

body of empirical work based cointegration that relies on industrial production being non-

stationary. Take for example the study of Fernandez (1997), who uses industrial production

as a measure of economic activity in order to study the long-run relationship between out-

put and money supply. Similar approaches have been used by Nasseh and Strauss (2000)

and Binswanger (2004) to study the relationship between stock prices and macroeconomic

activity among western industrialized countries.

But the persistence of industrial production is interesting not only because of its use as

a measure of output or economic activity, but also in its own right. In fact, ever since the

provocative study of Nelson and Plosser (1989) researchers have been obsessed with trying

to revaluate their findings, see Hylleberg et al. (1993) and Osborn et al. (1999) for some

examples using industrial production.

The 13 series considered in this paper are the log of the industrial production index for

Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, the Netherlands, Nor-

way, Spain, Sweden and the United Kingdom. The series are quarterly and seasonally un-

adjusted. All data are taken from the OECD Statistical Compendium 2007, and cover the

period 1976:1–2006:1.

One implication of using quarterly rather than annual data is that although the series

have more observations they cover a shorter time span. We therefore loose some information

about the long-run behavior of the series. On the other hand, quarterly data are richer in the

sense that they provide more information about the short-run behavior of the series. This is

illustrated in Figure 1 and 2, which plot the log of the 13 series considered.

The first thing to notice is the obvious seasonal variation. At the one end of the scale we

have France, Italy, Norway, Spain and Sweden, where the seasonality is very pronounced,

while at the other end of the scale, we have countries such as Austria, Ireland and the United

Kingdom, where the series are much smoother. In fact, for most of the series the trending

pattern is just as regular and pronounced as the seasonal pattern. All countries have expe-

rienced substantial growth in industrial production, which seem to have lasted throughout
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Figure 1: Log of industrial production.
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the sample.

These observations clearly illustrates the need of allowing for both season-specific means

and linear time trends. But this is not all. We also see that most of the series display a clear

break in both the seasonal mean and trend slope halfway into the sample. Consider for

example the industrial production of Finland, which display a very clear-cut change in the

seasonal pattern from the mid-1990’s and onward, becoming less pronounced but still very

regular. At the same time we also observe an increase in the growth of the series, which lasts

for about 10 years, but then it falls back again.
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Figure 2: Log of industrial production.

1975 1990 2005

4.5

UK

1975 1990 2005
4

5

Spain

1975 1990 2005

5
Norway

1975 1990 2005

4

5
Sweden

1975 1990 2005

4.5

5.0 Netherlands

In other words, there is not only the need to allow for season-specific means and linear

trends, but there also a need to allow for the possibility of breaks in their coefficients, and

the current paper therefore makes an attempt in this direction. Three new seasonal unit

root tests are proposed, which are general enough to allow for a gradual structural break

in both the seasonal mean and linear trend of the series. As for the location of the break,

we consider two cases. In the first we take the breakpoint as given, while in the second,

the breakpoint is treated as an unknown parameter to be estimated from the data. The

asymptotic distributions of the new test statistics are derived, and verified in small samples

using simulations.

When we apply the new tests to our industrial production data we find that the null hy-

pothesis of a nonseasonal unit root must be accepted for 11 out of the 13 series considered,
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suggesting that most shocks have permanent effects. On the other hand, the null of a bian-

nual unit root is rejected much more frequently, nine times, and the null of annual unit roots

is rejected even more often, 11 times. Thus, most series can be characterized as conventional

unit root processes with stationary seasonality.

The paper is organized as follows. The next section describes the model under consider-

ation and the tests that will be used to test it. Section 3 reports the asymptotic results, whose

accuracy in small samples is examined in Section 4. Section 5 concern itself with the empiri-

cal application, whereas Section 6 concludes. Proofs of important results are provided in the

appendix.

2 The seasonal unit root tests

We consider a component model, in which the observed series yt is decomposed into a de-

terministic part dt and a stochastic part st,

yt = dt + st, (2)

st = ρst−4 + et (3)

with et = Φ(L)ut, where Φ(L) is a polynomial in the lag operator L and ut is indepen-

dently and identically distributed with mean zero and variance σ2. As for the deterministic

component dt, we consider two models, henceforth denoted by m ∈ {1, 2}. Model 2 is the

most general one and allows for a break in both the trend and seasonal mean of the series.

Specifically,

dt =
4

∑
s=1

µsDs,t + λt + Φ(L)

(
ψDTt +

4

∑
s=1

φsDUs,t

)
, (4)

where Ds,t again equals one if t is in season s and zero otherwise, DUs,t = 1(t > T◦)Ds,t,

DTt = 1(t > T◦)(t− T◦), 1(x) is the indicator function and T◦ denotes the date of the break,

which is such that T◦ = τ◦T with τ◦ ∈ (0, 1). Model 1 is obtained by setting ψ = 0, which

leads to a model with a break in the seasonal mean but not in the trend.

In both models, because of the multiplication by the lag polynomial Φ(L), the break is

assumed follow the same dynamic path as the innovations to yt.1 Suppose for example that

ψ = φ2 = ... = φ4 = 0 so that it is only the mean of the first season that changes, then it is

1Of course, assuming that the shifts have the same dynamics as the innovations is by no means the only way
to model the gradual impact of the mean shifts. But it is convenient.
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not difficult to see that the immediate impact of the break is given by φ1 and the long-term

impact is Φ(1)φ1. Of course, on could also consider the case when the full effect of the break

takes place immediately, but a gradual effect seem more consistent with the data at hand.2

The testing approach that we use is taken from Hylleberg et al. (1990), which is very

convenient as it enables us to test for unit roots at all seasonal frequencies and at the zero

frequency. After deriving the reduced form of the component model in (1) and (2), and then

nesting and approximating it in the spirit of Perron and Vogelsang (1992), we obtain the

following test regression for model 2:

∆4yt =
3

∑
s=1

ρsys,t−1 + ρ4y3,t−2 + βt + δDTt−4 +
4

∑
s=1

(αsDs,t + θs∆4Ds,t + πsDUs,t−4)

+
p

∑
s=1

γs∆4yt−s + εt. (5)

where β, δ, αs, θs and πs are derived from the coefficients in (4), εt is a serially uncorrelated

error term that comprises an unexplained regression error plus the error that comes from the

approximation, and y1,t−1, y2,t−1 and y3,t−1 are as before. The corresponding test regression

for model 1 is obtained by imposing δ = 0.

Equation (5) is similar to a two-step procedure, in which (1) is fitted to the residuals of

a first-step regression of yt onto the elements of the deterministic component in (4). The

approach considered here is more convenient though, as it involves only a one-step regres-

sion, wherein the coefficients of both the deterministic and stochastic components of yt are

estimated simultaneously.

Following Hylleberg et al. (1990) we consider three different null hypotheses:

1. H1
0 : ρ1 = 0, corresponding to a non-seasonal unit root;

2. H2
0 : ρ2 = 0, corresponding to a seasonal unit root at the biannual frequency;

3. H3
0 : ρ3 = ρ4 = 0, corresponding to seasonal unit roots at the annual frequency.

The first two hypotheses can be tested by using the conventional t-statistic for testing the

significance of ρs, which is henceforth denoted tm
s (T◦) with the superscript m indicating the

model under consideration. The reason for writing tm
s as a function of T◦ is to indicate that

the statistic has been computed for a particular choice of breakpoint, and that its limiting

2Note also that although in the current paper we only consider the case of a single break, this is probably not
necessary. Indeed, intuition suggests that our results can be extended to the case of multiple breaks.
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distribution depends on it. For testing the third hypothesis we use the F-statistic for the joint

significance of ρ3 and ρ4, which is written in an obvious notation as Fm
34(T◦).

As we just pointed out, the results reported so far are based on the assumption that T◦

is known. When it is unknown, a natural approach is to treat the estimation problem as

a model selection issue, and to estimate T◦ by minimizing an information criterion. The

particular estimator used in this paper is very similar in spirit. Specifically, the proposal of

Popp (2007, 2008) is adopted, which focuses on the significance of the coefficient of impulse

dummy ∆4DUs,t in (5). Specifically, let us denote by Fθ(T∗) the F-statistic for testing the joint

significance of θ1, ..., θ4 when the breakpoint is T∗ = τ∗T, where τ∗ ∈ (0, 1). The breakpoint

estimator is defined as

T̂◦ = arg max
T∗∈[qT,(1−q)T]

Fθ(T∗),

where q ∈ (0, 1) is a trimming factor that eliminates the endpoints. Given T̂◦, feasible ver-

sions of our test statistics can be computed as tm
s = tm

s (T̂◦) and Fm
34 = Fm

34(T̂◦), where the

dependence upon T̂◦ is henceforth suppressed.

It is worth taking a moment to discuss the rationale that underlies the above estimation

procedure. Note how the dummy variables DTt and DUs,t appear in lagged form in (5),

which is different from the regression considered by Franses and Vogelsang (1998). This dis-

crepancy arises naturally from our choice of a component model, which is different from the

data generating process considered by Franses and Vogelsang (1998). The main advantage

of using our model is that the interpretation of the regression coefficients does not change

depending on whether we are under the null or not, see Schmidt and Phillips (1992) for a

more detailed discussion. In particular, it implies that the hypothesis of no break can be

implemented as a test of the restriction that θ1 = ... = θ4 = 0.

By contrast, Franses and Vogelsang (1998) adopt the approach of Perron and Vogelsang

(1992), which is based on the significance of the slope coefficient of DUs,t, whose meaning

depend critically on the integratedness of yt, see Popp (2007). As we demonstrate in Section

4, this difference can have a substantial impact on the accuracy of the estimated breakpoint.

3 Limiting distribution

To fix ideas, suppose that the overall null hypothesis of ρ1 = ... = ρ4 = 0 is true. In this case

it is possible to show that as long as the order of the lag augmentation p is large enough to
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capture the serial correlation in et, the least squares estimator of ρs in (5) is asymptotically

invariant with respect to the other coefficients of the model. Therefore, we do not loose

generality by setting them equal to zero. It follows that if we in addition assume that y−3 =

... = y0 = 0, then (5) reduces to

∆4yt = ut, (6)

which simplifies the asymptotic analysis considerably. It should be pointed out, however,

that these assumptions are not necessary, and that they are only for convenience, see for

example Franses and Vogelsang (1998) for a further discussion.

In the theorem that follows we report the asymptotic distribution of the new test statistics

under the null hypothesis given by (6). However, before we come to the theorem we need to

introduce some notation. In particular, let us define

MD∗u =
σ

2

[ ∫ 1
0 dW∫ 1
τ◦ dW

]
, MD∗∗u =

σ

2

[ ∫ 1
τ◦ rdW∫ 1

τ◦(r− τ◦)dW

]
,

where dW is the increment of W = ( W1, W2, W3, W4 )′, a four-dimensional standard Brown-

inan motion on r ∈ [0, 1].3 Moreover, defining

B1 =
1
2

4

∑
s=1

Ws, B2 =
1
2

4

∑
s=1

(−1)sWs, B3 =
1
2
(W1 −W3),

B4 =
1
2
(W2 −W4),

then B = ( B1, B2, B3, B4 )′,

MYu = −σ2




− ∫ 1
0 B1dB1∫ 1

0 B2dB2∫ 1
0 (B3dB3 + B4dB4)∫ 1
0 (B4dB3 − B3dB4)




, MYY = σ2 diag




4
∫ 1

0 B2
1dr

4
∫ 1

0 B2
2dr

2
∫ 1

0 (B2
3 + B2

4)dr
2
∫ 1

0 (B2
3 + B2

4)dr




,

MYD∗ = σ

[ ∫ 1
0 Gdr∫ 1
τ◦ Gdr

]
, MYD∗∗ = σ

[ ∫ 1
0 rGdr∫ 1

τ◦(r− τ◦)Gdr

]
,

MD∗D∗ =
1
4

[
I4 (1− τ◦)I4

· (1− τ◦)I4

]
,

MD∗∗D∗∗ =
1
3

[
1 (1− (τ◦)3)− 3

2 τ◦(1− (τ◦)2)
· (1− (τ◦)3)− 3τ◦(1− (τ◦)2) + 3(τ◦)2(1− τ◦)

]
,

MD∗∗D∗ =
1
8

[
ι′4 (1− (τ◦)2)ι′4(

1− (τ◦)2 − 2τ◦(1− τ◦)
)
ι′4

(
1− (τ◦)2 − 2τ◦(1− τ◦)

)
ι′4

]

3Here and throughout all Brownian motions such as W(r) will be written as W, with the measure of integra-
tion omitted. Integrals such as

∫ 1
0 W(r)dr and

∫ 1
0 W(r)dW(r) will be written

∫ 1
0 Wdr and

∫ 1
0 WdW, respectively.
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with ι4 = ( 1, 1, 1, 1 )′ and

G =
1
4




B1 B1 B1 B1

−B2 B2 −B2 B2

B3 B3 −B3 −B3

B4 −B4 −B4 B4


 .

Theorem 1. Under (6) as T → ∞,

t1
s (T◦) →w t1

s (τ◦) =
R1

s (JMXX J′)−1 JMXu

σ
√

R1
s (JMXX J′)−1R1′

s
,

t2
s (T◦) →w t2

s (τ◦) =
R2

s M−1
XX MXu

σ
√

R2
s M−1

XXR2′
s

,

F1
34(T◦) →w F1

34(τ◦) =
1
σ2 M′

Xu J′(JMXX J′)−1R1′
34

(
R1

34(JMXX J′)−1R1′
34

)−1

· R1
34(JMXX J′)−1 JMXu,

F2
34(T◦) →w F2

34(τ◦) =
1
σ2 M′

Xu M−1
XXR2′

34
(

R2
34M−1

XXR2′
34

)−1R2
34M−1

XX MXu,

where →w denotes weak convergence, Rm
s and Rm

34 are the restriction matrices corresponding to ρs =

0 and ρ3 = ρ4 = 0 in model m, respectively, J is the identity matrix with row 10 removed, MXu =

( M′
D∗u, M′

D∗∗u, M′
Yu )′ and

MXX =
1
4




MD∗D∗ MD∗∗D∗ MYD∗

M′
D∗∗D∗ MD∗∗D∗∗ MYD∗∗

M′
YD∗ M′

YD∗∗ MYY


 .

It is important to realize that the limiting distributions of tm
s and Fm

34 do not depend on

σ2. That is, σ2 cancels out in the numerators and denominators. Thus, the new tests are

asymptotically invariant not only with respect to the coefficients of the equation driving yt

but also with respect to variance of ut. Moreover, although the asymptotic distributions are

for the case in which et is serially uncorrelated, as we pointed out earlier this assumption is

only for convenience, and can be relaxed at the cost of some extra notation. The only thing

that is needed for this to hold is that the order p is sufficiently large.

One problem with Theorem 1 is that it assumes that the true breakpoint T◦ is known, as

indicated by the dependence of the limiting distributions on τ◦. The asymptotic distribu-

tions of the feasible test statistics are provided in the following corollary.

Corollary 1. Under (6) as T → ∞,

tm
s →w tm

s (τ∗m), Fm
34 →w Fm

34(τ∗m),
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where

τ∗1 =
1
σ2 M′

Xu J′(JMXX J′)−1R1′
θ

(
R1

θ(JMXX J′)−1R1′
θ

)−1R1
θ(JMXX J′)−1 JMXu,

τ∗2 =
1
σ2 M′

Xu M−1
XXR2′

θ

(
R2

θ M−1
XXR2′

θ

)−1R2
θ M−1

XX MXu,

with Rm
θ being the restriction matrix corresponding to θ1 = ... = θ4 = 0 in model m.

As in Theorem 1, although it appears in the formula for τ∗m, there is no real dependence

on σ2, which cancels out when forming tm
s (τ∗m) and Fm

34(τ∗m). The limiting distributions of the

feasible test statistics are therefore completely free of nuisance parameters. Note in particular

how the dependence on τ◦, the true break fraction, is now gone. In the next section we use

simulations to obtain the critical values of tm
s and Fm

34.

4 Simulations

4.1 Critical values

The critical values are obtained by making 5,000 draws of length T from the data generat-

ing process in (6), where ut ∼ N(0, 1).4 The computation of the test statistics requires two

choices. The first is how many lags of ∆4yt to use in the test regression, here denoted by p.

The second is how much to trim when estimating the breakpoint, that is, how to pick q. As

for the choice of p, we consider two approaches. One is to set p = 0, while the other is to

follow Franses and Vogelsang (1998) and to set p according to the general-to-specific proce-

dure of Hall (1994) with a maximum of five lags. As for the choice of q, we follow the usual

convention and set q = 0.1, so that 10% of the observations in both beginning and end of the

sample are trimmed away. All computational work is performed in GAUSS. The results are

reported in Table 1.

4.2 Size and power

The size and power comparisons are based on 5,000 draws from the data generating process

given by (2) to (4), where Φ(L) = 1 and µ1 = ... = µ4 = λ = 0. As for the mean break

coefficient φs we consider two cases. In case 1, φs = φ for all s, so that all the seasons are

4As before, the test statistics are asymptotically invariant with respect to the parametrization of the data
generating process. Therefore, we do not loose generality when generating the data from (6), at least not asymp-
totically.
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affected by the same break, while in case 2, φ1 = φ3 = −φ2 = −φ4 = φ, so that the effect

of the break is allowed to change with the season. In both cases we assume that the break

is located in the middle of the sample, that is, τ◦ = 0.5. The test statistics are constructed in

exactly the same way as described in Section 4.1.

Franses and Vogelsang (1998) develop three tests, denoted tFV
1 , tFV

2 and FFV
34 , that are

designed to test the null of a seasonal unit root when there is a break in the mean but the

data are not allowed to be trending. As with tm
1 and tm

2 , tFV
1 and tFV

2 are constructed as

simple t-tests of the null hypotheses H1
0 and H2

0 , respectively, while FFV
34 , in similarity to

Fm
34, is constructed as an F-test of the joint null of H3

0 . In terms of construction the tests

are therefore very similar. The main difference is that Franses and Vogelsang (1998) presume

that the researcher can be confident that the data generating process does not include a linear

time trend. Thus, not only is it assumed that the researcher has full certainty over the trend,

but also that there is no trend, which is of course highly unlikely to hold in practice. It is

therefore interesting to see how these tests perform in the presence of an unattended trend,

which in addition may be subject to a structural break.

Table 2 summarizes the results from the size and power of the tFV
1 , tFV

2 and FFV
34 tests at

the 5% significance level. Some results of the correct selection frequency, and of the mean

and standard deviation of the estimated breakpoint are also reported.

The first thing to notice is the size, which increases considerably with the size of the

break, as measured by φ. As an extreme example, consider case 1 when T = 152, in which

an increase in φ from zero to 10 causes the size of tFV
1 to go from 5% to almost 100%. The

distortions do get smaller as T increases but the size is still severely distorted, even when T is

as large as 500. The results for case 2 are more favorable. However, the tendency for the size

distortions to increase with φ still remains. The tFV
2 test suffers the same problem but with

this test the distortions are more pronounced in case 2. The FFV
34 test has some distortions in

both cases and is therefore more robust in this sense.

Moreover, looking now at the results from the estimated breakpoint, in agreement with

the discussion of Section 2, we see that the estimation procedure of Franses and Vogelsang

(1998) is unable to pinpoint the location of the break.5 However, since the performance is

roughly the same in the two break cases, this is probably not the reason behind the size

5Similar results have been documented by for example Harvey et al. (2002), Lee and Strazicich (2001), and
Popp (2007, 2008).
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distortions in the unit root tests.

The results obtained by applying our tests to the same data are reported in Table 3 for

model 1 and in Table 4 for model 2. As expected, we see that the size accuracy for all three

tests is almost perfect, and that the performance is unaltered by the size of the break. The

results from the power of the tests are also quite encouraging. Specifically, we see that al-

though the tests can sometimes have difficulties in discriminating between the null and al-

ternative hypotheses, as expected, the power increases quickly as T grows. The overall best

performance is obtained by using Fm
34, which is to be expected since it is a joint hypothesis

test.

We also see that the breakpoint estimator seems to perform very well with almost perfect

accuracy in a majority of the experiments, which of course stands in sharp contrast to the

overall poor performance of the Franses and Vogelsang (1998) estimator. As expected, the

accuracy increases slightly with T and also with φ, which seems reasonable as a larger break

is more easy to discern.

5 The motivating example continued

5.1 Preliminary results

As a complement to the graphical evidence of Figures 1 and 2, Table 5 reports the average

and standard deviation for the percentage change of each series, which are computed as

100 · ∆yt, where yt is the log of industrial production. Ireland has experienced the most

rapid growth by far with an average growth rate of about 2% per quarter, while in Norway

and the United Kingdom the average growth is much lower, only 0.15%. Sweden stands

out as having the most volatile series, which is partly due to a relatively strong season. This

is seen in the rightmost column, which reports R2-measure from a regression of ∆yt onto

D1,t, ..., D4,t. The lowest R2 is obtained for Austria, which is consistent with its relatively

weak seasonal pattern, as can be seen in Figure 1.

Before applying the new seasonal unit root tests, in interest of comparison we first con-

sider some results from applying the conventional Dickey and Fuller (1979) and Hylleberg

et al. (1990) tests. The former is denoted by tDF
1 , while the latter are denoted by tHEGY

1 , tHEGY
2

and FHEGY
34 to indicate their close connection with the tests proposed here. All four tests are
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computed while allowing for the presence of a linear trend.6 Thus, the main difference here

is that while our tests permit for the possibility of a break, the other tests do not. The tDF
1 test

is even more restrictive and does not allow for seasonality either. The results are reported in

Table 6.

So far our findings suggest that a majority of the series exhibit both strong seasonal vari-

ation and permanent shifts, which in turn implies that the tests of Dickey and Fuller (1979)

and Hylleberg et al. (1990) are likely to be biased in favor of the unit root null. In agreement

with this result we see that the tDF
1 and tHEGY

1 tests are unable to reject the null of a non-

seasonal unit root. This inability to reject is also observed when testing null hypothesis of a

biannual unit root, in which case we count five rejections at the 10% level and one rejection at

the 5% level. The results for the null of annual unit roots are different. In this case we count

five rejections at the 1% level, nine rejections at the 5% level, and 12 times at the 10% level.

Thus, while weak at the two lowest frequencies, the evidence against the null is stronger at

the highest frequency.

Of course, these results should not be taken too seriously, as the possibility remains that

they have been spuriously induced by the presence of seasonality and breaks in the case of

the Dickey and Fuller (1979) test, and by the presence of breaks in the case of the Hylleberg

et al. (1990) tests.

5.2 The results of the new tests

Table 7 reports the results of the new tests, which are implemented in the same way as de-

scribed in Section 4. We begin by looking at the tm
1 test, which tests the null of a nonseasonal

unit root. The results for the two models are very similar. If we allow for a break in the sea-

sonal mean but not in the trend, then we count two rejections at the 5% level, whereas if there

is a break in the trend, then we count only one rejection at the same level of significance.

The tm
2 test, which tests the null of a biannual unit root, results in more rejections. For

model 1 we count 11 rejections at the 5% level, whereas for model 2 we count nine rejections.

At the 10% level there is evidence against the null for all countries but Austria, Finland, the

Netherlands and Sweden. The fact that the evidence against the null is so much stronger

now in comparison to Table 6 suggests the presence of a break, which is not accounted for

6As in Section 4, the appropriate number of lags to use is determined by using the general-to-specific ap-
proach of Hall (1994) with the maximum lag length set to five.
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when using the Hylleberg et al. (1990) tHEGY
2 test.

Next, we consider the results from the Fm
34 test and the null hypothesis of annual unit

roots. Looking at the 1% level we see that the hypothesis is refuted for all countries but

two, for Belgium and Finland, which seem largely consistent with the graphical evidence

reported in Section 1.

Finally, we take a look at the estimated breakpoints that come out as a bi-product in the

testing procedure. Focusing on the most general model with a break in both the seasonal

mean and trend slope we see that there is a predominance of breaks occurring in the late

1990’s, which is in agreement with the graphical evidence. The estimated breaks in the mid-

1980’s for Belgium and the United Kingdom are also clearly visible in the figures.

6 Conclusions

This paper is inspired by the large amount of empirical research that has gone into the testing

for unit roots in output, and in particular industrial production, which at a quarterly basis

is typically characterized by strong seasonality and an upwards trend. Then there is also

the presence of breaks that permanently shift both the seasonal regularity and the rate of

growth. However, most studies based on examining the persistence of industrial production

fail to account for these features, and use tests that are invalid in their presence.

In this paper we take these observations as our point of origin. The purpose is to device

a test procedure that is able to handle all the major features of this kind of data. In particular,

three new seasonal unit root tests are proposed that allow not only for seasonal and trending

behavior, but also for a break of unknown timing in both the seasonal mean and trend slope.

The relevant asymptotic theory and critical values are provided. Some simulation results are

also reported to suggest that the tests perform well with very high size accuracy and good

power in most experiments considered.

In our empirical application we consider the industrial production for a sample of 13

European countries that cover the period from 1976:1 to 2006:1. There are two main results.

Firstly, all series seem to have a clear nonseasonal unit root. Secondly, for a majority of

the series there do not seem to be any seasonal unit roots at all. Hence, for these series it

seem reasonable to assume a stationary season, in which the season-specific means reflect

the seasonal cycle.
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Appendix: Mathematical proofs

Lemma A.1. Under the above conditions, as T → ∞

1
T2

T

∑
t=1

Yt−1Y′t−1 →w MYY,

1
T

T

∑
t=1

Yt−1ut →w MYu,

where Yt−1 = ( y1,t−1, y2,t−1, y3,t−2, y3,t−1 )′.

Proof of Lemma A.1.

Consider first the results for y1,t. Letting N = T/4 and Ss,j = ∑
j
n=1 u4n−(4−s), where j = bt/4c

with bxc denoting the integer part of x, then by a functional central limit theorem,

1√
N

Ss,j →w σWs (A1)

as T → ∞. Thus, since

y1,t =
t

∑
n=1

un =
4

∑
s=1

Ss,j + Op(1).

it follows that

1√
T

y1,t =
4

∑
s=1

1√
4N

Ss,j + op(1) →w σB1 (A2)

as T → ∞, and by further application of the continuous mapping theorem,

1
T2

T

∑
t=1

y2
1,t →w σ2

∫ 1

0
B2

1dr.

Moreover,

1
T

T

∑
t=1

y1,t−1ut =
1

4N

N

∑
j=1

(
4

∑
s=1

Ss,j

)
4

∑
s=1

u4j−(4−s) + op(1) →w σ2
∫ 1

0
B1dB1.

Next, consider y2,t, for which it holds that

y2,t =
4

∑
s=1

(−1)s

{
−Ss,j + Op(1) t mod 2 = 1
Ss,j + Op(1) t mod 2 = 0

. (A3)

Hence,

1√
T

y2,t →w σ

{
−B2 t mod 2 = 1
B2 t mod 2 = 0

,
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which in turn suggests that 1
T2 ∑T

t=1 y2
2,t →w σ2

∫ 1
0 B2

2dr. Also,

1
T

T

∑
t=1

y2,t−1ut = − 1
4N

N

∑
j=1

(
4

∑
s=1

(−1)sSs,j

)
4

∑
s=1

(−1)su4j−(4−s) + op(1) →w − σ2
∫ 1

0
B2dB2.

A similar calculation reveal that as T → ∞

1√
T

y3,t →w σ





B3 t mod 4 = 1
B4 t mod 4 = 2
−B3 t mod 4 = 3
−B4 t mod 4 = 0

(A4)

giving

1
T2

T

∑
t=1

y2
3,t →w

σ2

2

∫ 1

0
(B2

3 − B2
4)dr,

1
T

T

∑
t=1

y3,t−2ut →w −σ2
∫ 1

0
(B3dB3 + B4dB4),

1
T

T

∑
t=1

y3,t−1ut →w −σ2
∫ 1

0
(B4dB3 − B3dB4).

By combining the results we obtain 1
T ∑T

t=1 Yt−1ut →w MYu as T → ∞. The proof of the

second result is made complete by noting that y1,t−1, y2,t−1, y3,t−2 and y3,t−1 are asymptoti-

cally orthogonal, ensuring that MYY is a diagonal matrix, see Appendix A of Ghysels et al.

(1994). ¥

Proof of Theorem 1.

The test regression can be written in matrix format as

∆4yt = X′
tγ + ut, (A5)

where Xt = ( D∗′
t , D∗∗′

t , Y′t−1 )′, D∗
t = ( D′

t, DU′
t )′ and D∗∗

t = ( t, DTt )′ with Dt and DUt be-

ing the vectors stacking Ds,t and DUs,t, respectively. The one-time dummy variable ∆4DUs,t

is asymptotically negligible and is therefore omitted from (A5).

Using γ̂ to denote the least squares estimator of γ,

H−1(γ̂− γ) =

(
H−1

T

∑
t=1

XtX′
tH

−1

)−1

H−1
T

∑
t=1

Xtut, (A6)
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where

H =
√

T




I8 0 0
· T I2 0
· · √

T I4


 .

Consider H−1 ∑T
t=1 Xtut. Define N◦ = T◦/4. Clearly, since N◦

N = T◦
T → τ◦ as T → ∞,

1√
T

T

∑
t=1

DUs,tut =
1√
T

T

∑
t=T◦+1

Ds,tut =
1√
4N

N

∑
j=bN◦c+1

uj →w
σ

2

∫ 1

τ◦
dWs,

and by the same arguments, 1√
T ∑T

t=1 Ds,tut →w
σ
2

∫ 1
0 dWs. Therefore,

1√
T

T

∑
t=1

D∗
t ut →w MD∗u,

and in view of this result it is not difficult to see that

1√
T

T

∑
t=1

DTtut =
1√
T

T

∑
t=T◦+1

(t− T◦)ut →w
σ

2

∫ 1

τ◦
(r− τ◦)dW1,

from which we deduce 1√
T ∑T

t=1 D∗∗
t ut →w MD∗∗u. These results, together with Lemma A.1,

yield

H−1
T

∑
t=1

Xtut =
T

∑
t=1




1√
T

D∗
t ut

1
T3/2 D∗∗

t ut
1
T Yt−1ut


 →w




MD∗u

MD∗∗u

MYu


 . (A7)

Next, consider the denominator of H−1(γ̂− γ), which is given by

H−1
T

∑
t=1

XtX′
tH

−1 =
T

∑
t=1




1
T D∗

t D∗′
t

1
T2 D∗∗

t D∗′
t

1
T3/2 Yt−1D∗′

t
1

T2 D∗
t D∗∗′

t
1

T3 D∗∗
t D∗∗′

t
1

T5/2 Yt−1D∗∗′
t

1
T3/2 D∗

t Y′t−1
1

T5/2 D∗∗
t Y′t−1

1
T2 Yt−1Y′t−1


 , (A8)

where

1
T

T

∑
t=1

D∗
t D∗′

t =
1
T

T

∑
t=1

[
DtD′

t DtDU′
t

DUtD′
t DUtDU′

t

]
→ 1

4

[
I4 (1− τ◦)I4

(1− τ◦)I4 (1− τ◦)I4

]
= MD∗D∗

as T → ∞. Furthermore,

1
T2

T

∑
t=1

D∗∗
t D∗′

t =
1

T2

T

∑
t=1

[
tD′

t tDU′
t

DTtD′
t DTtDU′

t

]

→ 1
8

[
ι′4 (1− (τ◦)2)ι′4(

1− (τ◦)2 − 2τ◦(1− τ◦)
)
ι′4

(
1− (τ◦)2 − 2τ◦(1− τ◦)

)
ι′4

]

= MD∗∗D∗ ,
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where we have used that

1
T2

T

∑
t=1

tDs,t =
1

16N2

N

∑
j=1

4j → 1
16

∫ 1

0
4rdr =

1
8

,

1
T2

T

∑
t=1

tDUs,t =
1

16N2

N

∑
j=bN◦c+1

4j → 1
16

∫ 1

τ◦
4rdr =

1
8
(1− (τ◦)2),

1
T2

T

∑
t=1

DTtDUs,t =
1

16N2

N

∑
j=bN◦c+1

4(j− N◦) → 1
4

(∫ 1

τ◦
rdr− τ◦(1− τ◦)

)

=
1
8

(
1− (τ◦)2 − 2τ◦(1− τ◦)

)
,

where the last result also applies to 1
T2 ∑T

t=1 DTtDs,t. A similar calculation reveals that
1

T3 ∑T
t=1 D∗∗

t D∗∗′
t → MD∗∗D∗∗ .

As for 1
T3/2 ∑T

t=1 Yt−1D∗′
t = 1

T3/2 ∑T
t=1 Yt−1( D′

t, DU′
t ) note that

1
T3/2

T

∑
t=1

Yt−1D′
t =

1
T3/2

T

∑
t=1




y1,t−1D1,t y1,t−1D2,t y1,t−1D3,t y1,t−1D4,t

y2,t−1D1,t y2,t−1D2,t y2,t−1D3,t y2,t−1D4,t

y3,t−2D1,t y3,t−2D2,t y3,t−2D3,t y3,t−2D4,t

y3,t−1D1,t y3,t−1D2,t y3,t−1D3,t y3,t−1D4,t


 ,

where

1
T3/2

T

∑
t=1

y1,t−1Ds,t =
1

8N3/2

N

∑
j=1

y1,4j−(4−s) →w
σ

4

∫ 1

0
B1dr

as T → ∞. But the same result applies to all s and so we have that the first row of the matrix
1

T3/2 ∑T
t=1 Yt−1D′

t converges to the first row of σ
∫ 1

0 Gdr, which in turn is the first element of

MYD∗ . Let us now consider 1
T3/2 ∑T

t=1 y2,t−1Ds,t. As T → ∞

1
T3/2

T

∑
t=1

y2,t−1Ds,t =
1

8N3/2

N

∑
j=1

y2,4j−(4−s) =
1

8N3/2

N

∑
j=1

{
−Ss,j + Op(1) s mod 2 = 1
Ss,j + Op(1) s mod 2 = 0

→w
1
4

∫ 1

0

{
−Bs s mod 2 = 1
Bs s mod 2 = 0

.

Similar calculations for y3,t−2 and y3,t−1 across seasons yield 1
T3/2 ∑T

t=1 Yt−1D′
t →w σ

∫ 1
0 Gdr

as T → ∞. The results for 1
T3/2 ∑T

t=1 Yt−1DU′
t and 1

T5/2 ∑T
t=1 Yt−1D∗∗′

t are immediate conse-

quences of this, and so the proof is complete. ¥
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Table 2: Simulation results for the Franses and Vogelsang (1998) tests.

φ λ ψ tFV
1 tFV

2 FFV
34 Corr Mean SE

T = 152
0 0 0 0.050 0.050 0.050 0.009 78.7 30.2
3 0 0 0.991 0.028 0.092 0.000 72.0 1.1
5 0 0 1.000 0.185 0.663 0.000 72.0 0.0

10 0 0 1.000 0.998 1.000 0.000 72.0 0.0

0 3 0 0.001 0.057 0.061 0.012 78.7 31.0
0 5 0 0.001 0.065 0.060 0.013 78.4 30.8
0 10 0 0.001 0.065 0.057 0.008 77.7 31.1

0 0 3 0.000 0.012 0.009 0.155 75.1 1.1
0 0 5 0.000 0.011 0.014 0.257 75.4 1.0
0 0 10 0.000 0.008 0.020 0.318 75.4 0.9

T = 300
0 0 0 0.050 0.050 0.050 0.005 154.6 61.6
3 0 0 0.937 0.013 0.038 0.000 145.8 10.8
5 0 0 1.000 0.034 0.202 0.000 146.0 0.0

10 0 0 1.000 0.912 1.000 0.000 146.0 0.0

0 3 0 0.000 0.052 0.045 0.005 153.2 62.7
0 5 0 0.001 0.055 0.053 0.004 152.9 63.2
0 10 0 0.000 0.052 0.053 0.007 154.1 63.5

0 0 3 0.000 0.007 0.008 0.119 149.0 1.0
0 0 5 0.000 0.006 0.008 0.203 149.2 0.9
0 0 10 0.000 0.006 0.010 0.292 149.3 0.9

T = 500
0 0 0 0.050 0.050 0.050 0.003 255.8 103.2
3 0 0 0.812 0.020 0.031 0.000 245.2 33.1
5 0 0 0.999 0.010 0.049 0.000 246.0 0.1

10 0 0 1.000 0.641 0.997 0.000 246.0 0.0

0 3 0 0.000 0.051 0.053 0.003 256.6 105.7
0 5 0 0.001 0.047 0.050 0.004 254.7 105.9
0 10 0 0.000 0.052 0.047 0.003 254.0 105.8

0 0 3 0.000 0.005 0.006 0.083 249.0 1.0
0 0 5 0.000 0.003 0.006 0.152 249.2 0.9
0 0 10 0.000 0.004 0.008 0.262 249.3 0.8

Notes: φ refers to the break in the intercept, λ refers to the trend slope, and ψ refers
to the break in the trend. Corr, Mean and SE refer to the correct selection frequency,
the mean and the standard deviation of the estimated breakpoint.
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Table 5: Descriptive statistics.

Country Mean SE R2

Austria 0.842 13.784 0.591
Belgium 0.405 10.940 0.683
Finland 0.862 13.391 0.673
France 0.252 12.937 0.798
Germany 0.460 5.878 0.724
Greece 0.249 10.960 0.624
Ireland 2.038 9.071 0.755
Italy 0.361 15.539 0.747
Netherlands 0.481 11.538 0.667
Norway 0.150 10.206 0.705
Spain 0.460 12.351 0.809
Sweden 0.585 20.816 0.822
United Kingdom 0.149 3.751 0.739

Notes: Mean and SE refer the mean and standard deviation of
100 · ∆yt, while R2 refers to the R2-measure in a regression of
∆yt onto four quarterly dummy variables.
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Table 6: Empirical results from the Dickey and Fuller (1979) and Hylleberg et al. (1990) tests.

DF HEGY

Country tDF
1 p̂ tHEGY

1 tHEGY
2 FHEGY

34 p̂
Austria −1.667 4 −1.662 −1.281 23.298∗∗∗ 4
Belgium −2.093 3 −0.601 −1.601∗ 4.768∗∗∗ 4
Finland −2.034 4 −1.335 −1.147 2.377∗ 4
France −2.045 5 −1.531 −1.609∗ 3.877∗∗ 4
Germany −1.857 3 −3.086 −1.948∗∗ 8.503∗∗∗ 1
Greece −3.076 3 −1.035 −1.765∗ 4.230∗∗ 4
Ireland −1.757 4 −1.773 −1.450 3.356∗∗ 4
Italy −2.563 4 −1.123 −1.637∗ 1.507 4
Netherlands −3.325 3 −0.532 −1.555 5.412∗∗∗ 4
Norway −2.997 4 −2.977 −1.558 2.610∗ 1
Spain −2.134 3 −1.671 −0.862 2.373∗ 4
Sweden −2.546 4 −1.728 −0.835 3.169∗∗ 4
United Kingdom −1.586 3 −1.575 −1.811∗ 4.944∗∗∗ 1

Notes: p̂ refers the number of lag augmentations as estimated by the general-to-specific
procedure of Hall (1994). The maximum lag length is set to five. The superscripts ∗, ∗∗

and ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively. DF and HEDG
refer to the tests of Dickey and Fuller (1979) and Hylleberg et al. (1990), respectively.
tDF
1 and tHEGY

1 test the null of a nonseasonal unit root, tHEGY
2 tests the null of a biannual

unit root, and FHEGY
34 tests the null of annual unit roots.
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Table 7: Empirical results for the new tests.

Country tm
1 tm

2 Fm
34 Rejections p̂ T̂◦ τ̂◦

Model 1, m = 1
Austria −3.063 −4.717∗∗∗ 22.654∗∗∗ H2

0 , H3
0 0 1985:4 0.33

Belgium −3.078 −3.441∗ 16.106∗∗∗ H2
0 , H3

0 0 1991:4 0.53
Finland −1.376 −3.807∗∗∗ 13.861∗∗∗ H2

0 , H3
0 0 1990:4 0.49

France −2.632 −4.671∗∗∗ 21.656∗∗∗ H2
0 , H3

0 0 1992:2 0.54
Germany −2.388 −5.519∗∗∗ 45.267∗∗∗ H2

0 , H3
0 0 1992:2 0.54

Greece −3.820∗∗ −5.638∗∗∗ 33.369∗∗∗ H1
0 , H2

0 , H3
0 0 1992:3 0.55

Ireland −2.783 −5.675∗∗∗ 47.634∗∗∗ H2
0 , H3

0 0 1996:3 0.69
Italy −3.623 −5.177∗∗∗ 80.514∗∗∗ H2

0 , H3
0 0 1996:4 0.69

Netherlands −4.247∗∗ −4.462∗∗∗ 47.459∗∗∗ H1
0 , H2

0 , H3
0 0 1995:4 0.66

Norway −2.774 −3.887∗∗ 19.171∗∗∗ H2
0 , H3

0 0 1996:3 0.69
Spain −3.355 −5.131∗∗∗ 33.307∗∗∗ H2

0 , H3
0 0 1992:2 0.54

Sweden −3.273 −3.559∗ 15.265∗∗∗ H2
0 , H3

0 0 1994:2 0.61
United Kingdom −3.083 −5.371∗∗∗ 65.741∗∗∗ H1

0 , H2
0 , H3

0 0 1986:3 0.36

Model 2, m = 2
Austria −2.326 −2.519 26.863∗∗∗ H3

0 1 1999:3 0.79
Belgium −2.275 −8.158∗∗∗ 5.668 H2

0 4 1987:4 0.39
Finland −2.405 −0.553 1.506 − 5 1999:4 0.79
France −1.588 −3.756∗∗ 31.206∗∗∗ H2

0 , H3
0 2 1999:2 0.78

Germany −2.542 −5.563∗∗∗ 50.258∗∗∗ H2
0 , H3

0 0 1992:2 0.54
Greece −3.410 −7.498∗∗∗ 15.585∗∗∗ H2

0 , H3
0 3 1992:3 0.55

Ireland 0.499 −6.064∗∗∗ 30.378∗∗∗ H2
0 , H3

0 0 1999:4 0.79
Italy −4.264∗∗ −12.574∗∗∗ 77.089∗∗∗ H1

0 , H2
0 , H3

0 2 1999:4 0.79
Netherlands −2.298 −1.593 13.943∗∗ H3

0 5 1999:4 0.79
Norway −3.244 −5.622∗∗∗ 22.378∗∗∗ H2

0 , H3
0 0 1996.1 0.67

Spain −3.301 −5.021∗∗∗ 31.008∗∗∗ H2
0 , H3

0 0 1992:2 0.54
Sweden −1.706 −2.816 11.369∗∗∗ H3

0 1 1999:4 0.79
United Kingdom −3.853 −3.619∗∗ 16.608∗∗∗ H2

0 , H3
0 1 1986:1 0.34

Notes: τ̂◦ refers to the estimated break fraction with T̂◦ being the associated break date. See Table 6
for an explanation of the remaining features.
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