

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

1/20

Managing memory scalability in web

gardens

A study in efficient inter-process memory usage

Stefan Matsson, matsson@ituniv.se

Elias Ung, eung@ituniv.se

Bachelor of Applied information technology thesis

Report No. 2009:039

ISSN: 1651-4769

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

2/20

Abstract

With web applications being more and more complex the need for data caching grows larger. When

running ASP.NET applications under Internet Information Services in Microsoft Windows it is

recommended to run the application in a web farm. This is because it allows multiple requests to be

handled simultaneous. Problems emerge when these processes needs to share common data with

each other since two processes cannot read each other’s memory in Microsoft Windows. Since each

process has to allocate memory for the data caching individually this creates a negative impact on

scalability. This study concludes that a shared memory solution using memory mapped files is the

most efficient solution regarding scalability and overall performance.

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

3/20

Contents

Abstract ..2

1. Introduction..4

1.2 Problem explained ..4

1.3 Motivation ..5

2. Literature review...6

3. Research approach..7

3.1 Tools and Techniques ..7

3.2 Prototypes and Implementations ..7

3.3 Performance benchmarking ..8

3.4 Business compatibility comparison..8

4. Prototypes ..9

4.1 File system ..9

4.2 Inter-process communication..9

4.4 Shared memory...10

4.5 Database Cache...10

4.5 .NET Remoting ..11

5. Results ..11

5.1 The speed test...11

5.2 The memory scalability test...11

5.3 File system ..12

5.4 Sockets..13

5.5 Shared memory...14

4.5 Database cache results..15

4.6 Benchmark summary...16

6. Discussion ...16

Conclusion ..17

References..18

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

4/20

1. Introduction

When running web applications in Windows using Microsoft Internet Information Service [1], one

does benefit in performance by running a web application in multiple processes (known as “w3wp

processes” [6]), known in server terms as a “web garden”. [2] When doing this the multiple processes

can run simultaneously and thereby handle more requests at the same time. This, however, causes

problems when the web application needs to load, and keep, data in its memory. Since there are

multiple, isolated, processes they cannot share this data with each other. If the web application

requires some sort of cache, e.g. to save time processing database requests, this cache must be

created by each process and stored in each process’ private memory for fast access. This leads to

scalability problems when the number of processes increase.

1.1 Solutions to the problem

When investigating solutions to this problem, no optimal solution that works in all environments and

project sizes could be found. There are a number of applications that claim to solve Comfact AB’s

problem [3, 4, 5], but these are both too expensive and too complex to put in production at a

company of Comfact AB’s size without proper investigation. In this study, the underlying techniques

of such solutions will be investigated in order to find out what solution suits companies and project

of Comfact AB’s type and size.

1.2 Problem explained

When using Microsoft Internet Information Services (IIS) on a machine that has more than one CPU

and/or one than more CPU core, one does benefit in performance by letting IIS operate several

w3wp processes. There are two main reasons to do this:

1. Each process can be handled by its own CPU or CPU core which increases the number of

requests that the server can handle simultaneously.

2. In 32bit versions of Windows, only 2 GB of memory can be addressed by one single process.

This means that if the server has more than 2 GB of memory IIS must run a web garden.

The problem, however, comes when multiple IIS processes must share common data.

When running in a single process, all data that is needed is loaded into that process’ memory and will

be kept there until further notice. Since the same process handles the user’s next request, everything

will go as planned (see figure 1). However when running a web garden there is no guarantee which

process will handle the user’s next request (see figure 2). The problem here emerges since two

processes in Windows cannot read and write each other’s memory. When process A generates data

and stores in its private memory process B cannot read it and vice versa. This means that when the

user switches providing process all data has to be recreated. The time it takes to recreate this data

leads to a lot of redundant processing. Each process must therefore keep the cached data for as long

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

5/20

as necessary since the speed would decrease too much if the data was to be recreated on every

request. The problem that follows is that the memory will be duplicated as many times as there are

processes.

Figure 1 - Single IIS process serving one user

Figure 2 - Multiple IIS processes serving one user

This study will focus on the following research questions:

A. Which are the most efficient ways to share data among processes in our environment?

B. Which solution of the ones found in question A is the best solution for Comfact AB and

similar companies considering cost of ownership and usability?

1.3 Motivation

One of Comfact AB’s customers was running a web application serving thousands of users

simultaneously on a single core server. When all of these users where fetching big data files from a

data source the overall performance of the application decreased since it had to recreate the in-

memory representation of the data on every page request. To solve this, an in-memory cache was

implemented. The problems started again when the customer bought a new server with two dual

core CPUs and increased the number of w3wp processes. After the move to the new server, users

started reporting problems with slow loading times. When the load of the server reached its peak,

with almost 1500 users simultaneously, the server ran out of memory and crashed. The customer

was at this time in a very crucial phase of a project and the load of the server was this high for almost

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

6/20

one week. The server ran out of memory and crashed every day around 1100 hours (workdays were

0800-1600 hours). When this was further investigated by Comfact AB they discovered that each of

the w3wp processes had its own copy of the memory cache, resulting in four times the memory

usage that should be needed. The immediate solution was to reduce the number of w3wp processes

to a number where the duplicate cache did not use all of the server’s memory. This, of course,

decreased performance for the users.

The reader of this article would benefit from our findings if he or she is

running a web application, which handles a lot of heavy data, using a web

farm. The article can also act as support for companies and organizations

that are planning to invest in a multi CPU server and need information on

how to best adjust their web applications for the new environment.

2. Literature review

This section contains related research and how the writers of this article’s position themselves

towards the related research found.

Mujtaba Khambatti [31] writes about named pipes [8] and sockets under different operating

systems. Sockets [9] are a good way of distributing data between applications (and computers). Our

problem can be solved using an external server which sends and receives data over sockets.

Khambatti’s works lead us to the “Socket server”-prototype. Bagchi and Nygaard [30] also inspired us

to on how to use sockets.

Burns and Rees [29] are talking about how to use distributed file systems for sharing data between

servers. Our thesis is about sharing data between processes in the same computer but their paper

gave us valuable information on what to think about when dealing with the file system. This

information lead us to the “File system storage”-prototype.

From Department of Computer Science, City University of London [32], comes a paper on inter-

process communication [7] (IPC). The paper talks about that IPC is relatively slow and time

consuming and instead it recommends the usage of shared memory, which we used in our “Shared

memory”-prototype.

Ingo Rammer has written a book on .NET Remoting [33]. The book describes in-depth what .NET

Remoting is, why to use it and how to use it.

Cubrera et al [34] has written a paper about web services. Our idea was to use web services in the

same way as the socket server. When researching this further we found that web services require the

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

7/20

data to be serialized using XML serialization [13] and XML serialization is slow. Another problem with

this approach would be that if the web service host is having performance problems, the whole web

site would have these problems. Because of this, this technique was not investigated further.

3. Research approach

When choosing a research method for this study, the non-measurable factors provided by research

question B encouraged a qualitative approach. In order to answer all research questions, research

has to be conducted in different cycles where each cycle provides results to initiate the next. The

research method used was Design Science [10] since it is outcome based and suits well when moving

from phase to phase iteratively. When a cycle is finished and evaluated, the results will be used in

order to initiate the next cycle and when all four cycles are finished, a final result of the study can be

evaluated.

3.1 Tools and Techniques

In the first research cycle, the objective was to find what alternatives were available for comparison

in order to answer research question A. The goal was to find what techniques are used by solutions

today in order to solve redundant memory allocation among processes. In the Related Research

section, a number of studies on techniques and solutions were discovered. In this phase of research

these techniques and other, less academically documented ones, were identified as they were

actually used in the industry today.

This cycle was evaluated by the number of viable solutions found that was later used for comparison

against each other. In order to continue to the next cycle, at least two viable solutions were required.

3.2 Prototypes and Implementations

In the second cycle, the objective was to acquire usable prototypes for the techniques gathered in

the previous cycle. Those prototypes had to be able to run in the specified test environment for

benchmarking against each other. Some techniques found in cycle one were represented only as

concepts or insufficiently implemented solutions. In those cases, the first step was to find other

implementations using the same technique but with a solution more suitable for our testing

purposes. If no such implementations were found, a prototype needed to be developed by us if the

technique and its provided research offered enough insight to implement such a prototype. Other

techniques were presented only as a part of a larger, multifunctional, enterprise system. In those

cases, if the whole system itself was not applicable or available to us, the underlying technique was

identified in order to implement our own testing prototype. The specification of the test

requirements for the testable prototypes was that they all had the ability to interact with

applications written using the .NET framework [11], either natively or using a driver. Our test

prototypes all shared support for the following interface:

• Method Initialize with in-parameter “parameters” that initializes the prototype using the

parameters provided.

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

8/20

• Method StoreObject with in-parameter ‘object’ returning the key that the object was stored

with.

• Method GetObject with in parameter ‘key’, returning the object stored with that key.

This interface acted as a wrapper for all the techniques that were investigated in this study and

needed to be supported by all the different prototypes. The data being stored needed to be

serialized so that it could be passed from one application to another [13]. The prototypes took

advantage of binary serialization [12] used in the .NET framework to serialize objects into binary

format. The reason for using binary serialization, instead of XML serialization which the .NET

framework also supports, in this case was that it was faster [13].

The test environment existed on one of Comfact AB’s servers running a 64bit version of Windows

2008 Server and the .NET 3.5 framework.

This cycle was evaluated by the number of prototypes fulfilling the requirements of the test

environment presented. In order to move on to the next cycle, at least two prototypes had to be

ready for benchmarking.

3.3 Performance benchmarking

The benchmarking cycle focused on fulfilling research question A. The cycle consisted of measuring

and comparing the speed and memory scalability of the different testing prototypes. A testing tool

was developed in order to test each prototype according to the interface specified in cycle 2. The

testing tool was developed by ourselves and focused on storing and fetching data via the selected

prototype. The tool ran in many processes and each instance stored the exact same data. The shared

data was then read back to all instances of the test tool and the speed of the storing and retrieving

was measured as well as how much the amount of system memory increased with every extra

process.

When evaluating the prototypes after the benchmark, which was be done by using the Performance

Monitor in Windows 7 [16], the main attribute to evaluate was the size of system memory allocated

for all test tool processes and the current prototype. As long as the memory scalability was no

smaller than the existing scenario, where the total memory size was equal to the number of

processes times the size of the data that each process needed to operate, the prototype and

underlying technique could be discarded as it does not fulfil research question A. For each prototype

that got less memory scalability than the existing scenario, the growth in size of each additional

process was weighted in together with the speed performance in order to present the benchmark

score for a prototype. When measuring scalability, the private work copy of each w3wp process was

not taken into account. This is because Comfact AB had a requirement that none of the existing

codebase should be changed and the current codebase requires the process to keep its own private

copy while it uses the data. The prototypes that scaled significantly better, with system memory

usage per process instance without any major losses in speed, and had no obvious high risk external

factors was considered in the next cycle.

3.4 Business compatibility comparison

Cycle four consisted of a series of interviews that revealed what characteristics, besides

performance, that is important to Comfact AB’s management. With the result from these interviews

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

9/20

a new comparison could be done between the top candidates from the performance benchmarking,

determining which solution is to be preferred for implementation in the real system.

In order for this cycle to evaluate, one or more possible candidates for use within Comfact AB had to

be presented.

4. Prototypes

This section describes the different prototypes that were investigated in this study.

4.1 File system

The file system is widely used by almost every application for persistent data storage. Every

document, video, music file etc. found on everyday computers have been saved from an application

onto the hard drive via the file system. Different file systems vary in performance and usability, the

file system used by Windows in our test environment is NTFS [17]. The .NET framework offers

efficient methods for reading and writing data to the file system, these methods were simply

wrapped into a very simple prototype.

4.2 Inter-process communication

There are mainly two types of inter-process communication that are used in the industry today;

sockets and named pipes. Neither of these techniques is focused on solving our research questions

but they can both be used to solve them.

Sockets

Sockets [9] are an old technique used in a lot of applications that communicates over the internal

and external networks. Web browsers, email clients, computer games etc all use sockets for

communication. To use this technique a server needs to be present holding all the objects, which are

later requested by the web application. The disadvantages of having a single back-end server are

many:

• If the server goes down, everything is gone. This can of course be solved by using a replicated

server.

• Sending each object over sockets from one application to another can be slow if the network

is overloaded (only applies when the web application and the socket server are located on

different machines) or when the object is very big.

 The huge advantage of using sockets as a solution is that the back-end server does not have to

written in any language supported by the .NET framework. It does not even have to be running

Windows. This could prove important if system written in other languages and for other platforms

should be able to access the cache.

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

10/20

The socket prototype was written as a server/client application where the server consisted of one

process sending and receiving data to the web applications different processes (i.e. clients). This was

because the different processes of the web application are running the same code and because of

this we cannot set it to listen, and communicate over, different ports.

Named pipes

The disadvantage of named pipes is that they are stored in a special section of the file system,

meaning that this approach is no faster than the file system prototype. Because of this, no prototype

will be built using named pipes.

4.4 Shared memory

Sharing memory between applications allow them to access the memory just as if the data was

located in the applications private memory. This makes shared memory very fast. In Windows,

shared memory is implemented using a technique called “Memory Mapped Files” [14]. MMFs are

files located in memory and backed by the Windows page file [15], meaning that files (data objects in

memory) that are still active, but have not been used for a while, are saved to the hard drive. When

the data is needed again it is loaded into the common memory area, from the page file, where it

once again is accessible as any other data in memory.

4.5 Database Cache

The most common approach when is to cache the shared data in a database and let each process

read and write the data via a database connection provided by a database driver. Most database

management systems on the market also allow a database table to be cached in the system memory

rather than on the file system, this would allow even faster read and write times. With proper

indexing of the data, this could be a fast and very stable technique.

The Database Management System used for testing this technique was MySQL[18], MySQL was

chosen since it is free and has support for functionality such as in-memory tables [19] and other

types of memory caching. MySQL also has database drivers ready to use from .NET via ADO.NET [20]

which made the implementation of the prototype very easy. The memory storage engine turned out

to be quite restrictive since it does not allow columns of ‘text’ or ‘blob’ types [21], these types are

crucial in order to store the binary serialized objects that are used by the test program. However,

MySQL also supports regular memory caching of a table [22], this allows data to be stored to the file

system when the cache size is exceeded, but since the cache size can be configured to a large

amount, this technique allows fast access to the shared table.

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

11/20

4.5 .NET Remoting

.NET Remoting [23] is a Microsoft API used for communicating and sharing data between processes

in Windows, locally or via a network. .Net Remoting allows an object to be shared as a reference

through reference marshalling. This means that every process that uses the shared object would

actually use the same object reference, even as the object passes the bounds of the process’s

application domain [24].

When sharing objects with .NET Remoting, each object that needs to be shared must extend the class

MarshalByRefObject [25]. This object is then allocated on a Remoting server component and

Remoting client components will access this object via the server. The communication between client

and server goes through IPC channels [26], this means that this technique is quite similar to the IPC

prototype. The complexity added by the fact that all objects that needed to be shareable required

modifications would prove a large problem when implementing this technique in Comfact AB’s

environment since they have the desire to modify their running code as little as possible. This, in

combination with the fact that .NET Remoting uses the same underlying functionality used by other

prototypes and the sheer complexity of the API itself, lead to the decision to abort implementation of

this prototype before it was ready for benchmarking. It was unrealistic that Comfact AB would ever

be able to implement this solution so further testing and investigations were not necessary.

5. Results

This section covers the benchmarking and the results obtained from the benchmarking. The

benchmarking was made with two different types of tests. The first test focused on how long time it

took for the different solutions to store and retrieve data. The second test focused on memory

usage. The tests were conducted using a 981 kilobyte large XML-file that was de-serialized into a

class structure in .NET. This class structure was then shared between multiple processes via the

different test prototypes, all read and write times as well as memory usage was measured and

documented . All times are presented in milliseconds and all memory sizes are presented in kilobytes

if nothing else is specified.

5.1 The speed test

The speed test consisted of a single process writing data to the current prototype’s test interface.

This process represented the process that creates and stores the data cache that multiple processes

will use. When the common data was stored to the prototype, five processes attempted to read this

data and use it instead of creating its own. Both the read and write times were measured and

documented, the scenario was repeated five times in order to receive more accurate numbers.

5.2 The memory scalability test

The memory scalability test consisted of one single process writing the data and 20 different

processes retrieving this data. The data was retrieved by all 20 processes with a small delay during a

10 minute session to simulate the load on the server. The memory scalability was measured in

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

12/20

Windows Performance Monitor [16] and documented in order to compare the different prototypes.

As comparison the original scalability situation was used (see figure “Original memory scalability” for

an example). “Per object” is defined as “per identical de-serialized XML object”. The test scenario

was repeated five times.

Figure - Original memory scalability

Number of processes Memory usage per object Scalability factor

1 981 KB (1004544 bytes) 1

2 1962 KB (2009088 bytes) 2

5 4905 KB (5022780 bytes) 5

10 9810 KB (10045560 bytes) 10

5.3 File system

Speed

Max write

time

Min write

time

Avg. write

time

Max read time Min read time Avg. read time

1744 496 784 249 187 199

624 375 436 218 171 193

577 390 461 808 684 772

670 374 452 1245 860 980

587 385 460 218 187 196

Max write time: 1744

Max read time: 1245

Total average time to write an object: 519

Total average time to read an object: 468

Additional notes:

• The peak-time in the above write test is the result of the file system being very single

processes minded, i.e. when multiple processes work towards the file system, the write-

times increase a lot.

• The results in this test will be slower over time due to fragmentation of the file system.

Memory scalability

Serialized object: 535 KB (547 857 bytes)

Additional notes: This prototype does not use any memory since all data is stored using in the file

system.

Number of processes Memory usage per object Scalability factor

1 0 KB (0 bytes) 1

2 0 KB (0 bytes) 1

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

13/20

5 0 KB (0 bytes) 1

10 0 KB (0 bytes) 1

Advantages

• Low memory usage, the latest reads will be cached in memory by the operating system but

most of the data will be stored on the hard drive.

• Smaller serialized size than most other prototypes, i.e. the object takes up less storage.

Disadvantages

• Slower the more fragmented the file system gets. Defragmentation is required which wears

down the hard drive.

• When hard drive activities increase (e.g. when multiple processes are writing to the disk) the

write/read time increase a lot.

5.4 Sockets

Speed

Max write

time

Min write

time

Avg. write

time

Max read time Min read time Avg. read time

920 499 627 1139 468 546

1388 483 633 1216 468 681

1123 483 595 1400 468 691

733 499 568 1341 468 565

998 499 572 1372 468 635

Max write time: 1388

Max read time: 1400

Total average time to write an object: 599

Total average time to read an object: 624

Memory scalability

Serialized object size: 1 MB (1048576 bytes)

Additional notes: none.

Number of processes Memory usage per object Scalability factor

1 1 MB (1048576 bytes) 1

2 1 MB (1048576 bytes) 1

5 1 MB (1048576 bytes) 1

10 1 MB (1048576 bytes) 1

Advantages

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

14/20

• Can be used across networks.

• Supported on most platforms.

Disadvantages

• High peaks in read/write time.

• Requires an additional server.

5.5 Shared memory

Speed

Max write

time

Min write

time

Avg. write

time

Max read time Min read time Avg. read time

218 171 180 218 171 190

171 171 172 218 171 187

187 156 174 220 172 189

187 156 174 218 171 187

187 171 174 202 171 187

Max write time: 187

Max read time: 220

Total average time to write an object: 175

Total average time to read an object: 188

Memory scalability

Serialized size: 535 KB (547865 bytes)

Additional notes: none.

Number of processes Memory usage per object Memory scalability

1 535 KB (547865 bytes) 1

2 535 KB (547865 bytes) 1

5 535 KB (547865 bytes) 1

10 535 KB (547865 bytes) 1

Advantages

• Very fast! The studies fastest prototype.

• Consistent read/write times.

• Small object size after serialization.

Disadvantages

• Uses the WinAPI [27], which is a bit complicated to use, to access the shared memory.

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

15/20

4.5 Database cache results

Speed

Max write

time

Min write

time

Avg. write

time

Max read time Min read time Avg. read time

686 375 446 234 187 205

624 374 436 249 190 205

577 390 461 235 202 212

670 374 452 250 187 205

671 391 549 249 188 213

Max write time: 686

Max read time: 250

Total average time to write an object: 469

Total average time to read an object: 208

Additional notes: none

Memory scalability

Serialized object size: 1 MB (1048576 bytes)

Additional notes: This solution requires a MySQL server running which requires additional memory.

At startup it required 10 MB and when storing 75 objects, of the above size, the MySQL server

required approx 100 MB of memory. However, the scalability factor did not increase with multiple

processes fetching data.

Number of processes Memory usage per object Scalability factor

1 1 MB (1048576 bytes) 1

2 1 MB (1048576 bytes) 1

5 1 MB (1048576 bytes) 1

10 1 MB (1048576 bytes) 1

Advantages

• Much for free. The SQL language gives Comfact AB possibilities to gather objects based on

range or e.g. minimum file size.

• One of the studies fastest prototypes on getting data.

Disadvantages

• Requires an additional server.

• Requires additional memory per object after certain amount of objects.

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

16/20

4.6 Benchmark summary

This section gives an overview of all benchmarks performed.

Speed

Prototype Max write time Avg. write time Max read time Avg. read time

File system 1744 519 1245 468

Sockets 1388 599 1400 624

Shared memory 187 175 220 188

Database cache 686 469 250 208

Memory scalability

Prototype Memory usage per object Scalability factor

File system 0 KB (0 bytes) 1

Sockets 1 MB (1048576 bytes) 1

Shared memory 535 KB (547865 bytes) 1

Database cache 1 MB (1048576 bytes) 1

6. Discussion

Since all prototypes used a centralized instance of the shared data that every client process retrieved

and used as a working copy, memory scalability turned out to be equally optimal for all implemented

prototypes. In terms of speed, performance of all prototypes except the file system and IPC

prototypes were sufficient for use in the real system. The two excluded prototypes had too large

peaks in read and write times and this would be a problem to put in the production environment.

In the end, the prototype and benchmarking study presented two prototypes that outperformed the

others: Shared Memory and Database Cache. These two were both significantly faster and more

reliable in performance than the other prototypes and they both would work as an answer to

research question A. This left it up to research question B to decide which one was the most optimal

to implement into Comfact AB’s specific system. When deciding this, the management and

development staff at Comfact AB were consulted in order to determine which technique would suit

them best. The developers would prefer the Database Cache solution since this would require very

little implementation. The database server and communication interface via the database driver was

already implemented and tested, it just needed to be installed on the server machine. The

management however, was not too keen on relying on third party software. The overhead and

unnecessary complexity of a database system together with the fact that all well known and stable

database systems required expensive enterprise licenses to run in Comfact AB’s environment,

motivated the approach to write the server side of this solution themselves. Since they decided to

implement the server side themselves, the decision was made to implement this according to the

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

17/20

Shared Memory technique rather than the Database Cache. The strength of the Database Cache was

that it required minimal implementation, with the added requirement to implement the server side

themselves, Shared Memory is, according to benchmarking, faster and at least equally complicated

to implement and integrate into Comfact AB’s system.

Conclusion

In this study we wanted to find a solution to Comfact AB’s problem (see section “1.2 Problem

explained”) with memory scalability in their web applications running in web farms. We have shown

that all the solutions tested in this study (see section “4. Prototypes”) gave a scalability factor of 1

(one) implying that memory usage did not increase with each new process fetching the data. We also

proved that a solution based on shared memory using memory mapped files [14] will need the

shortest time to write and read objects. A solution of this type might be difficult to implement.

Because of this, the second fastest solution (which was the database cache) was also considered for

use within Comfact AB. This solution is easier to implement but comes with a lot of unnecessary

functionality resulting in both overhead and expensive licenses for third party software where only

small parts of the purchased functionality is used.

Comfact AB chose to implement the shared memory solution because of its advantages in speed and

simplicity in terms of functionality.

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

18/20

References

[1] - The Official Microsoft IIS Site, http://www.iis.net/, 2009. Last checked: 2009-03-22

[2] - Boosting performance using an IIS web garden | IIS Aid, http://www.iis-

aid.com/articles/performance_testing/boosting_performance_using_an_iis_web_garden, 2007-12-

13. Last checked: 2009-03-23

[3] ScaleOut StateServer - Product Description, 2008-11-07. Last checked: 2009-03-27,

http://www.scaleoutsoftware.com/products/stateServer/index.html

[4] Distributed Caching, ASP.NET Session State, NHibernate Caching, and Caching Application

Blocking, http://www.alachisoft.com/ncache/index.html, 2009-03-05. Last checked: 2009-03-27

[5] Oracle Coherence, http://www.oracle.com/products/middleware/coherence/index.html, 2009-

03-27. Last checked: 2009-03-27

[6] IIS Worker Process, http://technet.microsoft.com/en-us/library/cc735084.aspx, 2007-12-11. Last

checked: 2009-03-30

[7] Interprocess Communications (Windows), http://msdn.microsoft.com/en-

us/library/aa365574%28VS.85%29.aspx, 2009-02-12. Last checked: 2009-03-30

[8] Named pipes (Windows), http://msdn.microsoft.com/en-us/library/aa365590%28VS.85%29.aspx,

2009-02-12. Last checked: 2009-03-30

[9] Windows sockets 2, http://msdn.microsoft.com/en-us/library/ms740673%28VS.85%29.aspx,

2009-03-12. Last checked: 2009-03-30

[10] Design Science in Information Systems Research, AR Hevner, ST March, J Park, S Ram -

Management Information Systems Quarterly, 2004

[11] .NET Framework Developer Center, http://msdn.microsoft.com/en-

us/netframework/default(en-us).aspx, 2009. Last checked: 2009-03-30

[12] Binary Serialization, http://msdn.microsoft.com/en-us/library/72hyey7b(VS.85).aspx, 2009. Last

checked: 2009-04-21

[13] Basics of .NET Framework Serialization http://msdn.microsoft.com/en-

us/library/ms233836.aspx, 2009, Last checked: 2009-04-21

[14] Managing Memory-Mapped Files in Win32, http://msdn.microsoft.com/en-

us/library/ms810613.aspx, 2009. Last checked: 2009-04-28

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

19/20

[15] RAM, Virtual Memory, Pagefile and all that stuff http://support.microsoft.com/kb/555223,

2004-12-12. Last checked: 2009-04-28

[16] Windows 7 Resource Monitor http://www.windows7buzz.com/windows-7-resource-monitor-

interface.html, 2008, Last checked: 2009-05-07

[17] New Technology File System http://www.ntfs.com/ , 1998-2009, Last checked: 2009-04-28

[18] MySQL Database Management System http://mysql.com, Last checked: 2009-05-07

[19] MySQL Memory Storage Engine http://dev.mysql.com/doc/refman/5.0/en/memory-storage-

engine.html, Last checked: 2009-05-07

[20] ADO.NET http://msdn.microsoft.com/en-us/library/e80y5yhx.aspx, Last checked: 2009-05-07

[21] MySQL BLOB Data Type http://dev.mysql.com/doc/refman/5.0/en/blob.html, Last checked:

2009-05-07

[22] MySQL Query Cache http://dev.mysql.com/tech-resources/articles/mysql-query-cache.html,

Last checked: 2009-05-07

[23] Microsoft .NET Remoting – overview http://msdn.microsoft.com/en-us/library/ms973857.aspx,

Last checked: 2009-05-07

[24] Application Domains http://msdn.microsoft.com/en-us/library/cxk374d9.aspx, Last checked:

2009-05-07

[25] MarshalByRefObject – MSDN http://msdn.microsoft.com/en-

us/library/system.marshalbyrefobject.aspx, 2009, Last checked: 2009-05-12

[26] .NET Remoting IPC Channel http://msdn.microsoft.com/en-

us/library/system.runtime.remoting.channels.ipc.ipcchannel.aspx, 2009, Last checked: 2009-05-12

[2 7] Windows API (Windows), http://msdn.microsoft.com/en-us/library/cc433218(VS.85).aspx ,

2009-05-07, Last checked: 2009-05-11

[28] Main memory database systems: an overview, Garcia-Molina, H. Salem, K. Dept. of Computer.

Sci., Stanford Univ., CA

[29] Efficiently Distributing Data in a Web Server Farm, Randal C. Burns and Robert M. Rees, 2001

[30] Application controlled IPC synchrony - An event driven multithreaded approach, Susmit Bagchi,

Mads Nygaard, Department of Computer and Information Science, Norwegian University of Science

and Technology (NTNU)

[31] Named Pipes, Sockets and other IPC, Mujtaba Khambatti, Arizona State University

[32] Experiences with Distributed Shared Memory, Systems Architecture Research Centre,

Department of Computer Science, City University, London

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

20/20

[33] Advanced .NET Remoting in VB .NET, Ingo Rammer, 2002, ISBN: 1-59059-062-7

[34] Unraveling the Web Services Web: An Introduction to SOAP, WSDL, and UDDI

Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi, and Sanjiva

Weerawarana, IBM T.J. Watson Research Center, IEEE distributed systems online, March–April 2002

