
Towards enhancing perceived 
performance through adoption 
of proposed benchmarking 
techniques 

VJACESLAVS KLIMOVS
SERGEJS PISARENKO

Bachelor thesis in Software Engineering

Report No. 2009-029
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Göteborg, Sweden, May 2009



Abstract

“What the eyes see and the ears hear, the
mind believes.”

Harry Houdini, 1920

Despite the vast abundance of embedded/mobile
devices being released every day only a minority of
those gain enough momentum to secure mainstream
adoption, let alone market domination. User experi-
ence and user perceived performance are taking an
increasingly substantial stake in a successful product
launch. In this paper, we present the results from a
study of user perceived performance. Further, in this
design oriented study we have applied benchmarking
body of knowledge to develop a representative bench-
mark that assesses the end-user experience. We
conclude that implementation of proposed techniques
allows for repeatable, structured and systematic ap-
proach in user perceived performance testing, thus,
potentially creating cost savings for the company
and enhancing user perceived performance, which
in turn leads to strengthening of the market position.

Keywords: perceived performance, benchmarking,
embedded, user interface, platform sustainability.

1 Introduction

With a growing emergence of high speed wireless In-
ternet, access technologies such as Bluetooth1, Wi-
Fi2, 3G3, Worldwide Interoperability for Microwave
Access (WiMAX)4, Long Term Evolution (LTE)5

and a significant drop in prices for electronic com-
ponents [Kleinrock, 2001], embedded/mobile devices

1Bluetooth�is an open wireless protocol for exchanging
data over short distances from fixed and mobile devices.

2Also known as 802.11, is a set of standards carrying out
wireless local area network (WLAN) computer communication
in the 2.4, 3.6 and 5 GHz frequency bands.

33G refers to the third generation of telecommunication
hardware standards for mobile networking.

4WiMAX is a telecommunications technology that provides
wireless transmission of data using a variety of transmission
modes.

5LTE is the next major revision of mobile radio communi-
cations superceding 3G.

are becoming essential common artifacts of the mod-
ern human society and an inseparable part of our
everyday experience [Ling, 2004]. With radical im-
provements in reducing the sizes of form factors and
drastic enhancements of microprocessor technology
it is no longer unusual for a person to own and
operate a multitude of embedded/mobile devices6

[Lyytinen & Yoo, 2002]. Unseen by the end user, this
ubiquitous computing is brought by a throng of com-
panies fighting a fierce competition in hardware and
software markets. While the competition itself is ben-
eficial for the user, it puts pressure on vendors to
come up with new concepts, new features, provide
better performance and better user experience.

However, only a minority of all of the produced em-
bedded/mobile devices gain enough momentum to se-
cure mainstream adoption, let alone market domina-
tion. User experience and user perceived performance
are taking an increasingly substantial stake in a suc-
cessful product launch, yet many of the enterprises
have underestimated its significance and consequen-
tially lost their market share [Russinovich, 2008]. To
complicate matters even further, existence of a va-
riety of hardware and software platforms, for which
the embedded/mobile device is built and deployed,
inevitably creates the need to effectively measure how
well an embedded/mobile device in development be-
haves [McKenna, 2000]. Effective measurement is
paramount to gauge performance fluctuations over
product evolution as well as to determine operational
differences across platforms [Kevin, 2006].

Responding to the described challenges, this study
has been set out to disentangle an existing quag-
mire of evaluating user perceived performance within
the domain of embedded/mobile devices using ap-
plied benchmarking techniques while maintaining a
strong focus on perceived performance. Opera Soft-
ware ASA develops a variety of desktop and embed-
ded/mobile solutions that enable content-rich web ac-
cess on a wide spectrum of operating systems, plat-
forms and consumer devices. As a highly compet-
itive provider the company is determined to foster
innovation on an ongoing basis to deliver the best

6Further in the article any references to devices are inter-
changeable with the term ’embedded/mobile’.

2



user experience for its products. Currently, devel-
opers of mobile versions of the Opera browser are
required to carry out an enormous endeavor running
their builds on a diverse collection of devices. To ease
their development process and potentially lower asso-
ciated costs, we have tightly collaborated with Opera
to consider opportunities of simulating target devices
performance-wise. In an effort to contribute to the
much larger research scope of simulator development
we have studied perceived performance measurement.
To achieve the goal of collecting performance indi-
cators of an underlying platform we have developed
a representative device benchmark in a form of a
compile-time plug-in for the Opera web browser.

In this paper we research the subject of user per-
ceived performance, apply benchmarking body of
theory, while acknowledging limitations and known
approaches. A design science approach is taken
[Kasanen & Lukka & Siitonen, 1993] to develop a
representative solution for a specific domain with a
particular emphasis on assessing the end-user expe-
rience. Furthermore, the study was set out to dis-
cover methods that would enable effective measure-
ment collection and further representation of those
in an unambiguous way. Particularly, an emphasis is
put on the translation of user perceived performance
into measurable performance indicators. As a twist
to our solution, we discuss possible relation of sus-
tainable platforms to the issue of perceived perfor-
mance. This paper might appeal to researchers and
practitioners working in the field of embedded/mobile
software development as well as those interested in
performance benchmarking and user interfaces (UI).
In the future, our work could possibly be used to im-
plement a set of enhancements to a device simulator
or an emulator that could represent runtime charac-
teristics of various devices.

The remainder of the paper is structured as follows:
Section 2 introduces the concept of user perceived
performance and elaborates on the current standards
in computer performance measurement, their classi-
fication and also limitations of existing performance
benchmarking solutions. In Section 3 we present the
research method we have used to approach the prob-
lem. Our findings are uncovered in the Section 4,
where we explain and present the developed artifact.

Section 5 proceeds with discussing possible limita-
tions of our solution and speculates on possible re-
lations of long-term supported platforms (commonly
referred to as ’sustainable platforms’) to the issue of
perceived performance. Finally, the paper concludes
with our resulting thoughts and summary7.

2 Theory

In this part of the paper literature review is pre-
sented, concepts and terms that central to our re-
search are introduced.

2.1 Perceived performance

2.1.1 Definition and positioning

Merriam-Webster dictionary defines performance of
the machine as the ability to perform or the man-
ner in which a machine performs. When a com-
puter system is thought of, two kinds of perfor-
mance are distinguished. The objective machine
performance or computational performance comes
first, while the user perceived performance (UPP)8

constitutes a completely distinguished dimension
[TMurgent Technologies, 2003].

Machine performance is one of the ultimate engi-
neering goals and is addressed by many, if not all,
Computer Science branches. The field is character-
ized by an abundance of hardware and software en-
gineers exercising a diverse universe of approaches
and techniques to introduce improvements and to ad-
dress existing shortcomings and bottlenecks. These
include, but are not limited to [Dunlavey, 1993,
TMurgent Technologies, 2003]:

� improving hardware to get less latency, more
bandwidth, better response times

� improving software, so that it uses more efficient
algorithms and data structures

7All errors in this paper are that of the authors.
8Terms “UPP”, “user perceived performance” and “per-

ceived performance” are used interchangeably in this paper.

3



It is the domain of machine performance, where
most quantitative performance measurement tech-
niques exist [Hockney, 1992]. Machine performance is
the only type of performance where it is possible to do
measurements in low-level units such as MHz, Mbit
and relatively high-level units such as cost per trans-
action [Tognazzini, 2001]. Conversely, user perceived
performance is concerned with the appearance of per-
formance, that is, the feeling of how quickly a soft-
ware feature seems to perform its task [Seow, 2008].

2.1.2 Key trends

According to Moore’s law, the number of transis-
tors that can be placed inexpensively on an inte-
grated circuit has increased exponentially, doubling
approximately every two years [Moore, 1965]. Al-
most every measure of the capabilities of digital
electronic devices is strongly linked to Moore’s law.
Examples include but are not limited to process-
ing speed, memory capacity and memory bandwidth
[Myhrvold, 2006]. In other words, parameters we
deem as a machine performance increase exponen-
tially. User perceived performance grows as well,
however, even a casual user of electronics will notice
a slight discrepancy here. Due to increasing com-
plexity of background functions that need to be exe-
cuted after each user input, growth of user perceived
performance is not that rapid [Tognazzini, 2001]. In-
terestingly, leaving the case when it actually grows
alone9, there are two distinct cases when user per-
ceived performances degrades. First, while moving
to a next generation product, a machine performance
might have actually deteriorated, due to complication
in software design or architecture, new demanding
features or improper use of new hardware capabili-
ties (or even abuse of those). This inevitably leads
to decrease in user perceived performance. Similarly,
if the perceived performance of the next generation
product is unchanged or only marginally better, the
user might perceive it as being worse, since it does
not live up to the expectations of better performance.
This is supported by Maister’s First Law of Service,
which states that user satisfaction is a function of dis-

9We are not that hypercritical.

confirmation [Maister, 1984]. In the second case, the
newer version of the product improves the machine
performance while actually degrading perceived per-
formance. To casual users this appears as puzzling
and inconclusive as the very least, causing major ir-
ritation and discomfort in most use cases.

2.1.3 Case in point

To illustrate the phenomena, let us consider file copy
performance of two modern operating systems of the
Windows10 family, namely Microsoft Windows Vista
and Windows XP. Users of Windows Vista complain
that file copy performance of this operating system
is worse than that of Windows XP, despite objective
measurements, that show that actual file copy perfor-
mance is better in most cases in Windows Vista than
in Windows XP [Bott, 2008]. Windows XP and Win-
dows Vista use different algorithms for copying files.
Windows XP algorithm uses cached I/O, which lets
Explorer11 finish writing destination files to memory
and dismiss the copy dialog long before the write-
behind thread has actually committed the data to
disk. With Vista’s non-cached implementation, Ex-
plorer is forced to wait for each write operation to
complete before issuing more, and ultimately for all
copied data to be on disk before indicating a copy’s
completion [Russinovich, 2008]. Seemingly less ad-
vanced, that actually addresses some shortcomings of
previous design, and in some cases, such as copying
files over high-latency high-bandwidth links12 brings
tremendous improvements [Russinovich, 2008].

In addition to that, Vista’s Explorer waits 12 sec-
onds before making an estimate of the copy’s dura-
tion as the estimation algorithm is sensitive to fluctu-
ations in the copy speed [Russinovich, 2008]. Indeed,
there is a theoretical background to that seemingly
paradox situation. During the copy process the user
is really concerned only about what is seen on the
screen, the copy dialog being the only visible arti-
fact during the process. Most of modern operating

10Windows, Windows Vista, Windows XP are registered
trademarks of Microsoft Corporation.

11Explorer is the shipped file manager used in Microsoft
Windows operating system.

12Most of the Wide Area Network (WAN) links adhere to
that characteristics.

4



Figure 1: Windows Vista prolonged estimation pro-
cess

systems provide a progress bar for process progress
visibility. The file copy progress bar demonstrates
the elapsed and remaining amounts of the operation.
It is expected that the progress shown by a progress
bar increases over time and it is natural for users to
assume that a task requires time to reach a certain
progress. [Harrison et al, 2007] compared user reac-
tions to eight progress behavior functions. Although
all of the progress bars took exactly the same abso-
lute amount of time in the test, two characteristics
made users think the process was faster:

� progress bars that moved smoothly towards com-
pletion

� progress bars that increased in speed towards the
end

It is evident that Vista’s copy dialog design vi-
olates these principles. Explorer waits 12 seconds
before providing a copy duration estimate, which
certainly provides no sense of smooth progress and
the copy dialog does not disappear until the data
is committed the data to disk, which means the
copy is slowest at the end. Both of these behav-
iors exacerbate user frustration with slower copies
[Russinovich, 2008, Maister, 1984]. All in all, despite
all the algorithmic improvements, in spite of the su-
perior file copy benchmark results, Vista’s perceived
file copy performance is worse than Windows XP.

2.1.4 Inherent contradictions

There is a natural conflict between obtaining ideal
user perceived performance and inclination of en-
gineers to optimize computational performance of
the system [Tognazzini, 2001]. Consider a networked
client desktop application which lets user operate on
certain data. In the application database, there is
abundance of domain data. In fact there is so much
data, that it does not fit into one semantic screen13

. In other words, the user might have a need to see
different portions of data during the course of the
task. To achieve ideal user perceived performance in
that case, all data would need to be fetched from a
remote server at once, so that when the user switches
semantic screen, there is no delay in actually display-
ing that data. On the contrary, to achieve ideal ma-
chine performance, bandwidth and computational re-
sources would rather be preserved, therefore no data
would be loaded, except for when demanded.

2.1.5 Psychological perspective

The argument for the importance of perceived time is
not new to areas outside benchmarking [Seow, 2008].
Within psychology, the highly researched concept of
flow builds on this element. In extensive studies of
different cultures, different professions, and over dif-
ferent ages, [Csikszentmihalyi, 1990] argues that ex-
periencing so called “flow” involves a number of in-
terconnected, but unique, elements, one of which in-
volves losing track of time. The flow is a positive feel-
ing of energized focus, full involvement, and success
in the process of the activity. Therefore, design which
strives for optimum user experience should not fo-
cus solely on designing widgets, for example, progress
bars, in an optimum way. Instead, the design should
look at the user experience as a whole, and place
particular emphasis on overcoming areas where users
may otherwise risk losing immersion [Seow, 2008].
This closely relates to the need for focus and loss of
self-consciousness that [Csikszentmihalyi, 1990] also
lists as important characteristics for flow experience.

13Not a physical screen, but rather screen as an simultane-
ously seen informative area. It has become common nowadays
to have several physical screens.

5



2.2 Benchmarking

To approach the issue of perceived performance, in-
vestigation into existing benchmark research and the
overall state of computer benchmarking is given. Be-
low, the current body of knowledge on benchmark-
ing is presented along with the core concepts and
methods of measuring performance in desktop, work-
station, server, mainframe computers and embed-
ded/mobile devices. The presented analysis is then
used to further support our findings.

Inevitably, benchmarking is of great relevance to
this study given the quantitative measurement ap-
proach to the perceived performance conundrum.
Benchmarking as a concept exists since the era of
mainframes and, thus, is quite old if judged by
software engineering standards. While the taxon-
omy of existing approaches for performance mea-
surements has been widely expanded since then, the
basic idea remains surprisingly simple. It all boils
down to a concept of measuring either time over
a predefined fixed task or measuring the amount
of completed work over a fixed period of time
[Gustafson et al, 1990]. Usually, the classification
of benchmarks is done based on their internal fo-
cus, i.e., which component of the system the bench-
mark utilizes. It could be a set of integer, floating-
point, I/O-intensive or network-centered operations.
Simplified abstractions have demonstrated that syn-
thetic benchmarks commonly fail to represent a re-
alistic workload and a performance profile because
of their narrow focus and, thus, are often effec-
tively limited in its potential use as an accurate per-
formance comparison tool. The issue is not uni-
versally solvable and relies on specifics of the tar-
get as well as expectations of the measured re-
sults. For example, a representative benchmark ex-
ercises tasks which are close, or even identical, to the
ones used in real world situations [McKenna, 2000,
Paul & Somers, 2008, Guthaus et al, 2001].

2.2.1 Traditional benchmarking

Performance benchmarks exist since the era of main-
frames and are employed to calculate metrics, to com-
pare and asses operational behavior of particular sys-

Figure 2: Benchmarking taxonomy

tems or their parts, including, but not limited to cen-
tral processing unit (CPU), input/output (I/O), net-
working throughput. They also constitute a critical
part in designing future products to overcome exist-
ing limitations and bottlenecks when performance-
based design approach is used [Guthaus et al, 2001].
The first and the most important factor in designing
a benchmark is its ability to characterize the spe-
cific domain it is covering, i.e., to predict the perfor-
mance of an unknown system on a known, or at least
well-defined, task or workload [Sill, 1996]. Thus, it is
advantageous to study presently-used indicators and
methodologies in their application area with a goal of
developing a highly-relevant set of performance tests
for the particular domain under research.

2.2.2 Classification by scope

Benchmarks could be classified by the nature of their
internals and their target. Below we present our own
list of benchmarks, which is based on concepts pro-
posed by other researchers, and selected for their rel-
evance to this research. We have categorized them for
the sake of clarity. While the postulated types cover
the concepts of the more granular category charac-
terization, it would provide limited benefit to our

6



research as well as bring unnecessary complications
and term conflicts to include each and every existing
benchmarking category.

Real application — uses real existing applica-
tions on a predefined input data set to measure how
quick the tested system completes typical usage sce-
narios. Usually, in such setups data compression
tools, media file encoders/decoders, compilers and
computers games are used. An associated advan-
tage of such benchmarks is their accuracy and re-
flection of the objective realistic performance. Ex-
amples include compressors (e.g. bzip2, lzma, 7-zip),
compilers (e.g. GNU Compiler Collection), media en-
coders/decoders (e.g. lame, ffmpeg) and a variety of
recent gaming titles. Particular attention is given to
open-source alternatives because those could be ob-
tained for free for a multitude of platforms, though
still compiled from the same sources, which adds
credibility to the representativeness of the obtained
results.

Kernel — in contrast to the real-world appli-
cations, these benchmarks focus on a very specific
subsystem behavior. As such, these aim to strip
away unnecessary program activity while still pro-
viding realism. Advantages of such approaches lies
in the ability to compare efficiency of very spe-
cific operations across different architectures. For
example, comparison of integer operations’ perfor-
mance between x86 and x86-64 bit CPUs would
be possible. LINPACK (the kernel benchmark de-
veloped from a package of linear algebra routine
“LINPACK”) and Livermore loops (C loop code
from Livermore labs) are examples of such bench-
marks. Micro-benchmarks (also referred to as “Com-
ponent benchmarks”) are more extreme instances
of kernel benchmarks which focus on specific in-
struction sets and operations [Guthaus et al, 2001,
Lee & Mangione-Smith & Potkonjak, 1997].

Synthetic tests — developed and standardized
to replicate typical workload, however, are subject
to common abuse because of vendor optimizations.
The problem lies in the fact that vendors tend to
introduce changes which result in benchmarks giv-
ing significantly better scores to slightly better hard-
ware. Most of such benchmarks target specific ar-
eas of computation, for instance: integer compu-

Figure 3: Classification by measurement

tations, floating-point intensive operations, media
applications, input-output and other defined tasks
[Curnow & Wichmann, 1976]. In addition, the ma-
jority of standard test suites (which include Whet-
stone, CPU2, SPEC and others) have heavily influ-
enced design of microprocessors and microarchitec-
tures [Guthaus et al, 2001].

Mixed approach — combines several different
tests to get the most realistic performance measure.
Such tools typically constitute benchmarking suites
and execute various tests in a batch, e.g. the suite
runs synthetic tests first and then checks how quick
the target devices handles encoding of a predefined
source raw media data followed by a compression of
fixed-size pseudo-random data. Optionally, some of
the suites offer geometric representation of the results
[Dujmovic, 1999].

2.2.3 Classification by measurement

Gustafson et al have proposed to characterize bench-
marks in one of the two categories by the way mea-
surement is approached:

Fixed problem-sized benchmark — the sys-
tem under test is presented with a fixed defined task
that needs to be solved. Execution time is then mea-
sured and used as a performance indicator. How-
ever, major increases in computational power over
the last decade make it very difficult to measure per-
formance without giving the scaling issue enough at-
tention [Gustafson et al, 1990]. Quick evolution of
processors and architectures obsoletes such tasks in
terms of time and memory requirements and ulti-
mately renders such benchmarks unrepresentative of
realistic use.

Fixed-time benchmark — the system is given a
predefined amount of time to solve a scalable task. It

7



is argued that such an approach offers a more realis-
tic practical and meaningful estimation, includes I/O
times and scales to vastly different architectures and
programming environments [Gustafson et al, 1990].

2.2.4 Acknowledged challenges

The domain of benchmarking has a vast array of cer-
tain limitations that need to be taken care of, if a
representative and a useful product is being devel-
oped:

One of the challenges a benchmark design should
overcome is its ability to reflect characteristic system
behavior, i.e., the test should be executing something
that is very similar, if not identical, to what the sys-
tem normally does under normal operational condi-
tions [McKenna, 2000].

Benchmarks often fail to correlate gathered results
with any realistic workloads. This is especially the
case when a specific benchmark is used in domain
for which it’s not intended, for example, Drystone
has been widely used for measuring performance of
embedded systems while it has even been abandoned
in its original general-purpose system target domain
[Lee & Mangione-Smith & Potkonjak, 1997]. In such
cases collected results typically have nothing but a
value of a ballpark figure. By definition, benchmarks
are tools for performance evaluation which associate
the assessment rankings with user perceived operat-
ing attributes of the system being analyzed. With-
out this association, benchmarks essentially become
meaningless and the benchmark methodology used
can be judged by the strength of this correlation with
user experience [McKenna, 2000].

It is inherently difficult, if not impossible, to ab-
stract a single output number that is representative
of any real usage profiles and interactions, especially
in case a variety of multidimensional factors influ-
ences the result, e.g. energy efficiency, compatibility,
performance [McKenna, 2000].

Most of the benchmarks target very narrow specific
domains, e.g. particular architectures, subsystems,
CPUs. The SPEC benchmarks, for example, were
specifically developed to assist in commercial evalu-
ation and marketing of desktop computing systems
[Lee & Mangione-Smith & Potkonjak, 1997]. Thus,

results gathered from such benchmarks present little
value in assessing end-user’s perceived performance.

Hardware and software vendors tend to optimize
their products in order to achieve vastly better results
in the standard de facto synthetic benchmarks with-
out any visible or significant improvements in typical
usage scenarios, which in itself confirms the limited
usefulness of such testing suites. For example, opti-
mizing options on today’s compilers can drastically
affect the results of benchmark tests so vendors take
an advantage by publishing a range of test results
using different optimization levels [Price, 1989].

Existing multipurpose benchmarks fall short on
characterizing mobile computers because of their
peak-performance orientation and are inadequate to
address requirements of the new mobile paradigm
which should be measured with attributes and us-
age patterns which are important for mobile users
[McKenna, 2000]. In addition, modern-day usage
of computers fundamentally differs from decade old
specification styles and benchmarks which do not
take into account the new paradigm of mixed con-
tent browsing and new computer usage patterns
[Paul & Somers, 2008].

Often, hardware testing is characterized by quali-
tative statements that are not quantifiable. Such dis-
regards, done by benchmarking institutions, do not
follow basic scientific method and, as a consequence,
mislead the reader. This includes, but is not lim-
ited to: small sample size, lack of variable control,
and the limited repeatability of results [Kevin, 2006].
Ultimately, absence of objective scientific verification
reduces the confidence in benchmark results, yields
too frequent and increasingly more difficult upgrades
of benchmark suites, and causes unjustified global in-
crease of the cost of benchmarking [Dujmovic, 1999].

The conclusions drawn from a benchmark study of
computer performance depend not only on the ba-
sic timing results obtained, but also on the way they
are interpreted and converted into performance fig-
ures. The choice of the performance metric, may
itself influence the conclusions [Hockney, 1992]. In
other words, “producing and interpreting benchmark
data crosses into the realm between art and science”
[Price, 1989].

Furthermore, issues identified in relation to the

8



user perceived performance pose additional chal-
lenges to be solved in the implementation of a rep-
resentative benchmarking solution. Specifically, this
implies extension of the above mentioned needs to
carefully design the workload as well as to choose rep-
resentative indicators. That in itself comprises a task
to discover meaningful correlations between end-user
tasks that constitute the subjective user experience
(e.g. scrolling by utilizing touch interface) and actual
software functions that implement the functionality
(e.g. functions that re-draw the screen area).

Without careful assessment of the above mentioned
issues and mitigation of associated risks a benchmark
under design is threatened to provide very little vis-
ibility into the real operational characteristics that
are paramount in definition of end-user experience.

3 Research method

This section introduces the proof of concept study
and the reasoning behind a decision to chose it as
a research method for the paper. Also, the section
provides a detailed description about the empirical
context of the paper. Finally, it postulates the ap-
plied data collection methodologies.

3.1 Research setting

The research has been carried out continuously over
the course of 10 weeks at Opera Software ASA in
Gothenburg. Opera started in 1994 as a research
project inside Norway’s largest telecom company, Te-
lenor. Today, Opera Software develops the Opera
Web browser which runs on a wide variety of operat-
ing systems, embedded Internet products and gaming
consoles. Opera’s vision is to deliver the best Internet
experience on any device. Opera Software was a ma-
jor stakeholder in this research, as the company was
interested in potential applicability of the artifacts
produced during the course of this work.

Opera’s product line of browsers (including Opera
Mini14 and Opera Mobile) is proprietary and closed-
source software. Coupled with the fact that some

14Opera, Opera Mini and Opera Mobile are registered trade-
marks of Opera Software ASA.

technologies used in the product line are unique and
currently have no effective competition on the mar-
ket, required the authors to sign a non-disclosure
agreement (NDA) before being given access to the
source code. Naturally, the ability to work on the ex-
isting source code, access to the intellectual property
of the company and productive working conditions
all were important contributions of Opera Software
to this research. However, it is worth to note that
nothing substantial relevant to the research question
has been lost due to NDA.

3.2 Research limitations

The scope of this paper was limited to exclusively
deal with the mobile versions of the Opera browser,
i.e., Opera Mini and Opera Mobile. Opera Mobile
runs on a variety of platforms including Symbian
and Windows Mobile. Opera Mini, however, employs
Java Micro Edition (Java ME) as its virtual machine
so it works on every platform Java ME is available
for. It is worth to mention, that despite subtle dif-
ferences in the way Opera Mini and Opera Mobile
are built, performance benchmarking of underlying
platforms is equally relevant to both of them.

3.3 Research positioning

The paper is positioned as a design oriented re-
search work. In software engineering related
fields, design oriented research approaches has
been lately recognized as a valuable way of
conducting scientific research [Hevner et al, 2004,
Gasser & Majchrzak & Markus, 2002]. Besides the
fact that some of the knowledge just might
not be accessible without a preliminary de-
signed artifact, there are other advantages to
it [Kuechler & Vaishnavi, 2007]. Namely, the re-
searcher who employs artificial constructs has an
opportunity to influence the time and the condi-
tions of the research rather than being limited by
the research object itself [Simon, 1996]. Addition-
ally, one may mention the fact that the designed
artifact might bring additional unanticipated value
[March & Smith, 1995].

9



On the other hand, the chosen research approach
also exhibits a number of shortcomings. First, the
research artifacts might be imperfect or inaccurate
because of their artificial nature which, in turn, could
lead to erroneous conclusions [March & Smith, 1995].
This problem is relevant to this research. However,
the presence of a review body (i.e., Opera Software
engineers) had somewhat mitigated the issue.

The necessity to build an artifact presents a
problem in itself since that could turn out to
be costly, dangerous, or disadvantageous altogether
[Simon, 1996]. In the case of this paper, this does
not apply at all, since the produced artifact (in the
form of source code) and methodology it illustrates,
constitutes the the main contribution of this research.

Finally, an attempt to answer a research question
by means of an artifact one might be consciously or
subconsciously tempted to develop the artifact biased
towards an answer one would expect or like to find
out [Kuechler & Vaishnavi, 2007]. Design oriented
research imposes a danger of predisposition towards
the research [March & Smith, 1995]. To mitigate this
potential flaw in this study, data produced by the de-
veloped software, was empirically assessed to heuris-
tically detect any inconsistencies in the benchmark-
ing results.

The study was set out to create a solution for a
known real-world problem. To some degree a contri-
bution to the theory of the discipline has been made.
According to [Kasanen & Lukka & Siitonen, 1993],
the main attribute of constructive research methods
is the concept of constructions. Since software or
information system design fall under the definition
of constructions it is evident that this research lies
within the constructive research method. Important
characteristic of constructions is that they are devel-
oped and not discovered, the later being a common
constituent of other research methods. In addition,
practical consequences as a meaning of truth were
considered in this study, therefore, this research lies
within the pragmatic school of thought.

3.4 Related research

It was of utter importance for this study to compile a
list of suitable performance indicators. This task was

systematically approached by performing a literature
review and examining set of existing benchmarking
tools. Appropriate keywords were identified to fa-
cilitate search and investigation of existing knowl-
edge corpus. Those included, but were not limited
to: embedded, mobile, performance, perceived, time,
measurement, benchmarking. To structure work pro-
cess, analysis and classification of found material was
performed. Literature review aided in identifying
key sources and big names in the field, and also
revealed some major issues and debates about the
topic. It also helped to define epistemological and
ontological grounds of this study, in other words na-
ture, scope and structure of the knowledge in the
field. References used by many authors, including
but not limited to [Seow, 2008], [Russinovich, 2008],
[Tognazzini, 2001], were found to be tremendously
useful for this study too. A set of existing tools
for benchmarking embedded/mobile devices consti-
tuted an alternative input towards the more practical
grounds of the paper. Literature review and the find-
ings from examining existing benchmarking software
are thoroughly covered in section 2.2 of this docu-
ment.

3.5 Approach to implementation

Development of the compile time plug-in for a web
browser constituted a substantial part of this work.
Therefore, it has been vital to use an appropriate and
efficient software process. An improper use of a soft-
ware process, or lack thereof, could have resulted in
the feature-incomplete product and possibly a failure
of this study. For both of the authors the problem
domain has been rather new. The definition of the
main research question has been open-ended and ini-
tially not very well understood.

It was required to come up with a set of tech-
nical specifications and their later implementation.
Prior to the commence of the research, necessary
algorithms and data structures were not defined,
though language of implementation has been intro-
duced. The actual software, for which the plug-in
has been developed, was easily extendable and con-
veniently explorable. Due to mentioned constraints,
as well as after consulting existing body of knowl-

10



Figure 4: RUDE cycle illustration

edge, a exploratory software development model was
deemed as a most appropriate one [Trenouth, 1991].
Use of extremely short Run-Understand-Debug-Edit
(RUDE) cycles allowed for more flexibility, in terms
of ability to quickly change the concepts to reflect
newly gained knowledge [Partridge, 1991]. Addition-
ally, the amount of changes introduced in each cy-
cle was controlled, so that the software would re-
main continuously executable and meaningfully ex-
plainable. These undertakings made the software de-
velopment relatively efficient.

For a similar reason as the software process, ap-
propriate software design has been equally important
for this work. However, achieving consistency in that
area has been less of an issue as the design of the
software for which plug-in was constructed was to be
adhered. A simplistic multilayer approach had been
chosen due to the inherent flexibility provided by such
design and by the fact that developed software is a
compile time plug-in, which is required to integrate
seamlessly with the rest of the system. In that design,
the software would pose as a thin layer between ex-
isting UI code and existing backend code, effectively
intercepting calls to lower level to allow measurement
of time where appropriate.

3.6 Tools

To systematically approach the problem of construct-
ing the software as well as to get better understanding
of the inner-workings of the domain application sev-
eral tools were employed. Below, a list of applications
that have assisted us in this endeavor is presented:

Figure 5: grep GNU regular expression matcher

3.6.1 Development tools

As an aid in the implementation of the benchmarking
plug-in a set of development instruments has been ex-
ercised. The tools contributed to the research process
by narrowing original research scope and by concen-
trating research efforts at fundamental areas first.

Profiler — to collect runtime statistics and dis-
cover performance bottlenecks the in-house profiler,
developed specifically for the target application, was
employed. Through the use of the profiler distinct
critical parts of the browser were analyzed, while typ-
ical tasks have been initiated by the user (e.g. open-
ing a web page, scrolling in different directions, zoom-
ing, etc).

grep — once key methods and functions have been
identified a common UNIX tool grep has been exe-
cuted to localize and specify the area where necessary
modifications are required to be introduced. Then,
identified source code files were targeted for further
analysis.

Eclipse — the Eclipse Integrated Development
Environment (IDE) has been mandated by the
project for the reason that the development team pro-
vides an addition to the IDE which make the code
base substantially easier to work with.

3.6.2 Productivity tools

In order to organize ideas, concepts and knowledge
several collaboration tools have been used, specifi-
cally:

Xmind — an open-source mindmapping graphi-
cal tool which allows to build diagrams to structure
identified concepts, ideas, words through visualizing

11



Figure 6: Xmind mindmapping tool

Figure 7: Zim knowledge management tool

those around central topics.
Zim — an open-source desktop knowledge man-

agement software for maintaining interrelated infor-
mation in a wiki format. The tool has been used to
store structured texts, processed gathered data, re-
search logs, writing aids, check lists and other related
information.

3.7 Collected results

While the focus of other research methods is set
on collecting empirical data, it is a primary prop-
erty of constructive research to think of a practi-
cal applicability of the construction as an empiri-
cal data, thus implying its validity. Therefore, it
is important to define a fail-success continuum for
a project. It is considered that the perfect result for
a project exercising constructive research method is
that a newly developed construction solves a real-
world problem, which, in turn, forms a challenge of
defining what a solution is. It is considered that
a result that is satisfactory from the viewpoint of
all stakeholders of the project indeed is a success
[Kasanen & Lukka & Siitonen, 1993]. To add more
validity to the data in the form of construction, the
study was set out to verify it’s design principles. This
has been done by heuristically evaluating results ob-

tained from running the software on a variety of hard-
ware. When doing so, it is expected from inherently
slow hardware to demonstrate lower results than a
more powerful next generation device.

4 Software construction

In this part of the paper a clarification to the car-
ried out research is presented, additional concepts
and terms are introduced, identified findings are pos-
tulated, compared and combined to support the dis-
cussion in the upcoming section.

Opera Software develops web-browsing products
for wide device ranges that feature numerous man-
ufacturers and models. Such a span creates a bur-
den on the software engineers who need to ensure
that the application behaves exactly the same and
that the performance does not degrade on any of
those devices. In contrast to certain companies which
are in total control of both aspects of their prod-
ucts, i.e. software and hardware (for example, Ap-
ple Computer Inc., that is often identified as an
industry leader in user experience, with its iPhone
smartphone), Opera is constrained by the software
boundaries. In other words, the company is expected
to adapt their software to guarantee that it shall
work with the many devices and basically circumvent
any existing problems or limitations in the hardware.
Nevertheless, user perceived performance still consti-
tutes a major part of the company’s goal to deliver
the best user experience which brings the necessity
to assess how well a particular product or its version
behaves on the target embedded/mobile device. In
section 2.1 we have looked at the importance of UPP
for the success of a consumer product, in this part of
the paper we shall introduce and describe a solution
that contributes to solving the described challenge.

To maintain insight into operational characteris-
tics of the software, such as user experience, it is
necessary to at least execute software on the device
in question. However, running the software on each
and every device that exists on the market would
be a tedious, time and resource consuming process.
Given that there is a possibility to run the applica-
tion in a simulated environment it would be much

12



simpler and efficient to enhance an existing simula-
tor to mimic the behavior of various devices. That
way developers would have a possibility to assess how
well a particular build of the software is handled on a
particular device. Before we proceed, it is beneficial
to review existing device simulators. As we have lim-
ited ourselves to two versions of the Opera Browser
— Opera Mobile and Opera Mini, only the platforms
which they run on are of interest to the research. Be-
low, a list of the more common platforms for which
the specified products are built is presented:

� Windows Mobile

� Java ME

� Symbian (also known as S60)

Each of the listed platforms have been provided
with simulators by the original platform providers.
Additionally, third-party simulators are available for
some of the platforms, e.g. Microemulator15 for the
Java platform. However, as of 2009 none of the listed
solutions provide any means to simulate performance
aspects. To compensate for the lacking feature an
implementation of a mechanism that would limit the
computational power for the running application is
needed. To be able to simulate existing devices it is
crucial to have data that accurately represents capa-
bilities of those. As part of solving a more complex
issue, our approach is to build a benchmark which is
capable of producing a so-called “performance pro-
file” that could be used later in the simulator to im-
itate behavior of the target device. Although deep
internals or construction specifics of enhancing a sim-
ulator is out of scope for this research, a rudimentary
analysis is still essential for this undertaking to be
useful. Specifically, a fundamental understanding of
its future design is required for the sake of function-
ality of produced profiles.

One approach to solve the simulation problem is to
introduce intentional delays in the execution of cru-
cial resource-intensive operations, e.g. certain system
calls or program functions that wrap around those

15MicroEmulator is a pure Java implementation
of Java ME in Java Standard Edition (Java SE),
http://www.microemu.org/.

system calls. Relating back to the problem of UPP,
part of the problem is to discover correlations be-
tween end-user tasks that constitute the subjective
user experience (e.g. scrolling by utilizing the touch
interface) and actual software functions that imple-
ment the functionality (e.g. functions that re-draw
the screen area) that would be subjected to men-
tioned delays. It is important to notice that such
an analysis is bound to specifics of a particular appli-
cation under question and is possibly a limitation of
the approach, however, it is exactly the case that the
original research problem is tied to such specifics.

4.1 PETHIS benchmark

To produce the previously mentioned “performance
profiles” a compile-time plug-in PETHIS for Opera’s
browsers has been developed. At a high level of
abstraction the aggregation of the plug-in with the
browser itself constitutes a benchmark of “real appli-
cation” type, according to the classification in section
2.2.2. Basically, an existing application, i.e., Opera
Browser (with certain modifications), is used to mea-
sure the performance of a certain device.

In order to achieve a realistic workload which is
representative of a real end-user task a concept of
scenarios has been introduced. In this context, sce-
nario refers to a typical action or a collection of ac-
tions executed by the user which is autonomously
performed by PETHIS. For example, user types in
a Uniform Resource Locator (URL), loads a page
and then scrolls it in different directions. While a
scenario is executed PETHIS collects run-time per-
formance data, i.e., how long it takes to perform
a particular method, from several so-called probes.
Probes are implemented as intercepts of underlying
functions and are implemented in a special program-
ming language construct. The construct allows us to
transparently insert code along the existing system
functions and measure execution time without signif-
icant overall changes to the application. The results
are then passed to a suitable data-structure and then
sent through Hypertext Transfer Protocol (HTTP)
to a results server.

PETHIS is built as a collection of classes, struc-
tured into 4 major packages: ui, core, probes and

13



Figure 8: PETHIS scenario selection menu

Figure 9: PETHIS showing intermediate result

scenarios. The design follows a layered architec-
ture approach and restricts interactions between non-
adjacent layers. The UI provides means to execute
different scenarios and to upload the gathered results
which would be used later for performance simula-
tion. Currently, PETHIS provides following scenar-
ios:

� Load page

� Scrolling

� Kinetic scrolling

� Zooming

� Demanding menu invocation

Additional scenarios and probes are required to
be developed to further extend the usefulness and
accuracy of the obtained results, however, the cur-
rent solution already demonstrates a proof-of-concept
implementation of the ideas described in this work.
To prove that the solution is representative, results
for few embedded/mobile of different generations are
compared. Still, in case the comparison demonstrates
controversy it does not necessarily imply existence of
major faults but rather a lacking set of implemented
probes and/or scenarios.

5 Discussion

Previously, in section 2.2, an overview has been given
to the current state of benchmarking in general and
its limitations in particular. To address the issues
identified in the current body of knowledge on per-
formance assessment we discuss how the existing lim-
itations apply to our solution and what is necessary
to avoid those intricate situations. A significant fac-
tor that needs to be taken into account is that a real
application is used as a benchmark which means that
several of the acknowledged limitations do not apply.

Additionally, in this section, after proceeding to
the discussion of our solution - PETHIS, we look
at the topic of sustainable mobile platforms with a

14



particular emphasis on perceived performance, to ex-
amine whether efforts to maintain long-term plat-
forms enable enterprises to successfully deliver prod-
ucts that are accepted by consumers in high demand.
Furthermore, a speculation is presented on possibil-
ity of combining techniques used by PETHIS, with
the development of such long-term platforms.

5.1 Leveraging PETHIS

In the section we discuss our proof-of-concept imple-
mentation as well as various issues related to it. In
our research and development process each of the pre-
viously identified benchmarking limitations has been
addressed:

Synthetic nature of the test and inadequate
workloads — the original problem of synthetic tests
which do not represent any realistic load and, as a
consequence, provide results that can hardly be used
to compare different devices is addressed by the fact
that a real application with very specific and com-
mon tasks is used. PETHIS scenarios represent typ-
ical operations a user performs on a browser, such as
loading a page, scrolling in different directions and
using animation-intensive menus.

Vendor optimizations — the problem does not
apply in our case since Opera is dealing with devices
that are already released on the market. Moreover,
the issue generally does not apply to any benchmarks
except those used for comparative extensive hardware
tests (i.e., kernel benchmarks), such as CPU bench-
marks. Furthermore, for marketing reasons only well-
known de facto solutions are targets for such abuse so
very specific niche products, such as PETHIS, have a
little chance to be employed for generic benchmark-
ing purposes.

Lack of reliable data and result interpre-
tation — PETHIS collects runtime low-level per-
formance data, such as functions’ execution times,
which is quantitative, and therefor objective indi-
cator. However, additional analysis might be re-
quired to study which particular functions present
the biggest correlation to the user perceived perfor-
mance because little or no use could be extracted
from measuring random method performance tim-
ings. Also, since the obtained results shall be con-

sumed by the simulator there is no subjective inter-
pretation involved. On the other hand, there is more
than one way of implementing the mechanism that
shall simulate the behavior of devices based upon the
collected results so it is crucial to carefully design the
future simulator.

The developed solution PETHIS that we propose
raises certain concerns and calls for future inves-
tigation to improve the methodology of accurately
measuring perceived performance. While similar ap-
proaches are known to be taken in the past by other
researchers (e.g. [TMurgent Technologies, 2003])
there have been major obstacles in implementing a
working prototype due to inherent complexity of in-
tercepting correct function calls to extract meaning-
ful data for analysis.

Unlike the previous research attempts we have
dealt with a particular specific application devel-
oped by Opera Software so we had an opportunity to
closely study its structure and discover exact places
where the performance bottlenecks occur. And al-
though the developed artifact does not yet provide
performance statistics for every application aspect
a convenient framework for extending its usefulness
with enough modularity is in place.

A better understanding of correlation between the
perceived performance and parts of the software that
represent actual features is necessary to produce per-
formance data which resembles typical realistic be-
havior. That in itself is not a straightforward process
and calls for a separate research undertaking. One
might argue that it is possible to analyze the exe-
cution of low-level procedures (for example, system
calls), however, there is a trade-off between:

� providing meaningful representative statistics
which can be used to compare and judge whether
particular devices have better user experience
and possibly be used in a simulator to mimic
the behavior

� presenting meaningless, though very detailed
and specific, performance indicators that have
very little or no correlation with the perceived
performance

Thus, it is crucial not to end up with a bench-

15



mark that has a vast array of limitations that are
typically associated with synthetic benchmarks. An-
other possible limitation of this research is its narrow
scope since it might not be feasible to execute a very
detailed software analysis in order to discover inter-
ception points where measurements are to be taken.
Nor would it be feasible to place such a framework
in a generic environment such as the Linux kernel for
the same complexity reason.

5.2 Sustainable mobile platforms

Building a solution like PETHIS requires a significant
development involvement and ultimately translates
into high development costs. The reason for high de-
velopment costs comes from the nature of PETHIS
as it is closely coupled to the underlying application
or platform it is measuring. In other words, solution
like PETHIS would require an on-going maintenance
unless it is changed in some crucial way. Therefore,
we argue for introducing PETHIS into platforms or
products that are supported in the long-term per-
spective.

5.2.1 Relation to UPP

One of the most successful consumer devices that has
been attributed to the high-end user experience and
is believed to be a revolution on the mobile market
is the Apple iPhone smartphone. While iPhone is
generally considered not the best from its features or
technical specifications (based on comparisons to ri-
val products), it delivers a unique user interface and
deep integration with the web. Specifically, iPhone’s
web browser Safari has been regarded by consumers
as being fast and responsive. In reality its Extensi-
ble Hypertext Markup Language (XHTML) render-
ing engine has been assessed to perform on par with
the rivals’ products [Michaluk, 2008, Haselton, 2008,
Lee, 2008]. The reason why such positive perception
has been awarded to Apple’s product is the contribu-
tion of perceived performance and company’s efforts
to engineer a highly consumer-friendly device.

Though the topic of sustainable platforms and
their impact is out of scope of this paper and re-
quire additional research treatment, we nevertheless

consider it useful to hypothesize about its relation
to concepts of perceived performance. Continuing
with the Apple’s product success an observation can
be made that the iPhone not only revolutionized the
handset market but the adjacent technical areas too.
For example, the browser included with iPhone, al-
beit not being the first one on the market with full
XHTML support, was first one to make it seem that
browser is a natural part of the mobile device. There
have been many mobile browsers, and even highly-
specific network protocols (e.g. Wireless Application
Protocol), before Apple joined the competition but
UPP and platform consistency greatly modified the
market landscape so it is now unlikely that any mo-
bile manufacturer will release a smartphone without
including a XHTML-compliant browser. This should
positively affect companies such as Opera business-
wide. As CEO of Opera Software, von Tetzchner,
puts it: “What the iPhone did was make people want
a full browser for their phones, and we have that.”
[von Tetzchner, 2009].

5.2.2 Historical perspective

Apple iPhone stands out for a much more significant
reason than just an example of a well thought-of UI
— in essence, it is a perfect example of a sustain-
able mobile platform. While competitors are known
to release devices with substantially better techni-
cal characteristics (examples include but are not lim-
ited to LG Prada, Motorola Q series, high-end Nokia
phones, HTC smartphones) they are still considered
as an “afterthought”, or even as the secondary part
of the market in contrast to the iPhone, which stands
aside. Though the mentioned manufacturers have
been moving in the same direction as Apple, at the
time the iPhone went out they had poorly under-
developed concepts of a long term platform without
an emphasis on the business model behind it. Op-
positely, Apple has some experience in building sus-
tainable platforms under its belt, having the world’s
longest running graphical desktop platform with the
Macintosh and being one of the first companies to
successfully release a personal computing platform
Apple II back in the 70s. As a matter of fact, more
and more manufacturers are picking up Apple’s strat-

16



egy, and are either developing their own software
platform, or reusing an existing one, like the Open
Handset Alliance Android.

What Apple has managed to comprehend is the im-
portance of user experience for the success of a con-
sumer product. Company’s engineers have translated
that into a consistent, reliable, attractive and innova-
tive platform which has been maintained throughout
the development of the line of its products. There is
a price for everything and maintaining mobile plat-
forms is not an exception to that rule. In the early
90s Apple’s efforts to introduce one of the first per-
sonal digital assistant (PDA), Newton Message Pad,
have been bogged down by a collection of techno-
logical problems (such as short battery life, thermal
constraints, limited storage and processing capabili-
ties) inherent to all mobile device of the time. Origi-
nally, Apple has cooperated with a company called
Acorn Computers Ltd to develop a new processor
called ARM616, built an entirely new operating sys-
tem and amply invested in marketing17 to overcome
these difficulties. Despite these efforts, Newton has
still failed. Primary reason for its reason is accounted
to the overmarketing of hand-writing recognition ca-
pabilities, which, although were ahead of its time, did
not fulfill the expectations of users [Tesler, 2001].

There have been several other attempts to fill the
market with a long term sustainable platform, the
well-known examples include Microsoft Windows CE
(it was later renamed to Windows Mobile), Symbian
and Palm OS. However, none of these have man-
aged to attract satisfactory levels of audience be-
cause of the problem that lies in the opposite side
of the platform design continuum. While a lot of en-
gineering talent has been involved in the development
(not without major technological breakthroughs) lit-
tle thought has been given to assessing user experi-
ence as a whole and perceived performance in partic-
ular. To a certain extent, a product could be com-
pared to an artwork. Engineering efforts, just like

16This ARM architecture branch became start to what ARM
is today. The ARM architecture is the most widely used 32-bit
CPU architecture in the world.

17The device still remains familiar within a lot of users as
of 2009, unlike all other devices sold at the time or even years
later.

artistic efforts, can extremely valuable when pack-
aged appropriately, yet without it, the talent itself
has no intrinsic value.

Having learned on their own and others’ mistakes,
three years later after discontinuing Newton, Apple
created a new device, the iPod. It had some rudi-
mentary PDA features, including a calendar and con-
tacts, though it has been assigned a primary task —
music playback. Pushing iPod into existing, wildly
successful, market of digital playback devices turned
out to be an extremely smart strategy. The device
stood out with its revolutionary comprehensive in-
terface and simple synchronization capabilities which
reliably worked with both, PC and Macintosh com-
puters, something that has been a huge problem for
the other big vendors of the time. Once it mas-
tered audio playback, Apple has licensed audiobook
through a service called Audible, introduced pod-
casting support, video playback and some capabil-
ities for extending functionality (e.g. ability to in-
stall games). The company succeeded in building
an iPod empire, licensing hardware accessory makers
and working with selected software vendors to offer
games. That, in turn, has put company in an ex-
cellent position to launch a smartphone based on a
new, at the time, software technology which is based
on their desktop operating system Mac OS X.

In 2007, Apple launched the iPhone as a high-end
iPod, phone, and web browser device to a large, en-
thusiastic user base of Mac and iPod users. The
iPhone effectively attached all of the iPod’s goodwill
and content expertise with the technical superiority
of Mac OS X to a new market even larger than that of
music players, a market dominated by products that
were largely based on simple devices trying to oper-
ate well out of their league. Users, not mistakenly
though, assumed that the product had some desir-
able quality because it carried the same brand name
as their other favorite products, a condition other-
wise known as halo effect [Seow, 2008]. However, it
was not the PDA features that made it stand out, but
rather effective packaging of a Wi-Fi enabled phone,
iPod media player, software features, albeit quite lim-
ited, rich Internet-connected applications and effec-
tive marketing. Not less important how Apple han-
dled that transition, and most importantly the user

17



base. All generations of iPod and iPhone share most
parts of the UI, whilst there is a huge difference in
functionality between, say, iPod 1.0 and iPhone 3.0,
which is more than a smartphone — it is now a cen-
tral interface for controlling all sorts of hardware.

5.2.3 Implications of sustainable platforms

Despite the need of further research in the area
of mobile platforms, it appears that developing a
long-term sustainable platform contributes to a com-
pany’s efforts to deliver devices that are capable
of demonstrating excellent perceived performance.
Moreover, having a software platform that is sup-
ported and maintained throughout technology gener-
ations, allows incorporating an infrastructure similar
to PETHIS to obtain measurable UPP indicators.

6 Conclusion

While machine performance is a subject of interest
to many, if not all, Computer Science branches, user
perceived performance is a relatively uncharted area.
User perceived performance of embedded/mobile de-
vices and its benchmarking are subject of this paper.

Machine performance or user perceived perfor-
mance alone may not win user acceptance and subse-
quent marketability. If the end-users feel that a prod-
uct is not easy to learn, not easy to use, or too cum-
bersome, an otherwise excellent product could fail.
Furthermore, the way users form their mental model
of the system and their feeling of responsiveness and
performance is subjective and complex. It is not un-
usual for a user perceived performance to deteriorate
on the contrary to the objective measurement and
common sense. However responsive UI can make a
product easy to understand and use, which results in
greater user acceptance.

At the same time, competition on the hardware
and software market forces vendors to come up with
new products in shorter development time, thus,
among all, reducing time available for quality assur-
ance procedures. This, together with complexity of
modern UIs inevitably creates pressure on respective

teams, forcing them to adopt automated testing tech-
niques.

During the course of our work, carried at Opera
Software ASA, we have created a proof of concept
piece of software, which has a form of compile time
plug-in, for a yet to be released product. On its ba-
sis we have successfully demonstrated techniques for
effective perceived performance measurement. Imple-
menting these techniques allows for repeatable, struc-
tured and systematic approach in user perceived per-
formance testing, thus, potentially creating cost sav-
ings for the company and enhancing user perceived
performance, which in turn leads to strengthening of
the market position.

References

[Csikszentmihalyi, 1990] M.Csikszentmihalyi, 1990,
Flow: The Psychology of Optimal Experience,
Harper Collins, New York, USA;

[Curnow & Wichmann, 1976] H.J.Curnow,
B.A.Wichmann, 1976, ’A synthetic bench-
mark’, Central Computer Agency, Riverwalk
House, London, UK;

[Bott, 2008] E.Bott, 2008, Another
take on Vista vs. XP benchmarks,
http://blogs.zdnet.com/Bott/?p=369, retrieved
04.05.09;

[Dunlavey, 1993] M.R.Dunlavey, 1993, ’Performance
Tuning: Slugging It Out!’, Dr. Dobb’s Journal, vol.
18, no. 12, pp. 18-26;

[Dujmovic, 1999] J.J.Dujmovic, 1999, ’Universal
Benchmark Suites’, Dept. of Comput. Sci., San
Francisco State Univ., CA, USA;

[Gasser & Majchrzak & Markus, 2002] L.Gasser,
A.Majchrzak, M.L.Markus, 2002, ’A Design
Theory for Systems that Support Emergent
Knowledge Processes’, MIS Quarterly, vol. 26, no.
3, pp. 179-212;

[Gustafson et al, 1990] M.Carter, S.Elbert,
J.Gustafson, D.Rover, 1990, ’The design of a

18



scalable, fixed-time computer benchmark’, Ames
Laboratory, Iowa State University, Ames, Iowa,
USA;

[Guthaus et al, 2001] T.M.Austin, R.B.Brown,
D.Ernst, M.R.Guthaus, T.Mudge, J.S.Ringenberg,
2001, ’MiBench: A free, commercially representa-
tive embedded benchmark suite’, Michigan Univ.,
Ann Arbor, MI, USA;

[Harrison et al, 2007] B.Amento, R.Bell, C.Harrison,
S.Kuznetsov, 2007, ’Rethinking the Progress Bar’,
Symposium on User Interface Software and Tech-
nology, Proceedings of the 20th annual ACM sym-
posium on User interface software and technology,
pp. 115-118;

[Haselton, 2008] T.Haselton, 2008, Mobile Browser
Showdown: iPhone 3G vs Opera Mobile and Sky-
Fire, http://blog.laptopmag.com/mobile-browser-
showdown-iphone-3g-vs-opera-mobile-and-skyfire,
retrieved 19.05.2009;

[Hevner et al, 2004] A.R.Hevner, S.T.March,
J.Park, S.Ram, 2004, ’Design Science in In-
formation Systems Research’, MIS Quarterly, vol.
28, no. 1, pp 75-105;

[Hockney, 1992] R.Hockney, 1992, ’A Framework for
Benchmark Performance Analysis’, Southampton
University, Southampton, UK;

[Kasanen & Lukka & Siitonen, 1993] E.Kasanen,
K.Lukka, A.Siitonen, 1993, ’The constructive
approach in management accounting research’,
Journal of Management Accounting Research, vol.
5, no. 1 pp. 241;

[Kevin, 2006] C.Kevin, 2006, Hardware
Testing and Benchmarking Methodology,
http://donutey.com/hardwaretesting.php, re-
trieved 06.04.2009;

[Kleinrock, 2001] L.Kleinrock, 2001, ’Breaking
loose’, Communications of the ACM, vol. 44, no.
9, pp. 41-46;

[Kuechler & Vaishnavi, 2007] W.Kuechler,
V.Vaishnavi, 2007, Design Research in Infor-
mation Systems, http://tinyurl.com/chgadd,
retrieved 06.04.2009;

[Lee, 2008] J.K.Lee, 2008, Website load times
compared: Archos 5 vs. iPhone 3G vs. Nokia
N810, http://www.pocketables.net/2008/10/
website-load-ti.html, retrieved 19.05.2009;

[Lee & Mangione-Smith & Potkonjak, 1997] C.Lee,
W.H.Mangione-Smith, M.Potkonjak, 1997, ’Medi-
aBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems’, In-
ternational Symposium on Microarchitecture,
Proceedings of the 30th annual ACM/IEEE
international symposium on Microarchitecture,
pp. 330-335;

[Ling, 2004] R.S.Ling, 2004, The mobile connection,
Morgan Kaufmann, San Francisco, CA, USA;

[Lyytinen & Yoo, 2002] K.Lyytinen, Y.Yoo, 2002,
’Issues and Challenges in Ubiquitous Computing’,
Communications of the ACM, vol. 45, no. 12, pp.
62-65;

[Maister, 1984] D.H.Maister, 1984, ’The Psychology
of Waiting Lines’, Harvard Business School, Har-
vard, CA, USA;

[March & Smith, 1995] S.T.March, S.T.Smith, 1995,
’Design and natural science research on informa-
tion technology’, Information and Decision Sci-
ences Department, Carlson School of Management,
University of Minnesota, Minneapolis, MN, USA;

[McKenna, 2000] D.McKenna, 2000, ’Mobile Plat-
form Benchmarks, A Methodology for Evaluating
Mobile Computing Devices’, Transmeta Corpora-
tion;

[Michaluk, 2008] K.Michaluk, 2008, Real World
iPhone 3G vs. Storm Browser Speed Test,
http://crackberry.com/iphone-3g-vs-blackberry-
storm-real-world-browser-test, retrieved
19.05.2009;

19



[Moore, 1965] G.E.Moore, 1965, ’Cramming more
components onto integrated circuits’, Electronics,
vol. 38, no. 8, pp. 114-117;

[Myhrvold, 2006] N.Myhrvold, 2006, ’Moore’s Law
Corollary: Pixel Power’, The New York Times, 7
June;

[Paul & Somers, 2008] J.M.Paul, M.Somers, 2008,
’Webpage-Based Benchmarks for Mobile Device
Design’, Virginia Tech Electr. & Comput. Eng.,
Blacksburg, VA, USA;

[Partridge, 1991] D.Partridge, 1991, A New Guide to
Artificial Intelligence, Norwood, N.J. Ablex Pub.
Corp., New York, USA;

[Price, 1989] W.J.Price, 1989, A Benchmark Tuto-
rial, IEEE Micro, vol. 9, no. 5, pp. 28-43;

[Russinovich, 2008] M.Russinovich, 2008, In-
side Vista SP1 File Copy Improvements,
http://blogs.technet.com/markrussinovich/archive
/2008/02/04/2826167.aspx, retrieved 04.05.09;

[Seow, 2008] S.C.Seow, 2008, Designing and Engi-
neering Time: The Psychology of Time Perception
in Software, Addison-Wesley Professional, San-
Francisco, CA, USA;

[Sill, 1996] D.Sill, 1996, comp.benchmarks Fre-
quently Asked Questions, With Answers,
http://tinyurl.com/ct6aqu, retrieved 06.04.2009;

[Simon, 1996] H. Simon, 1996, ’The Sciences of the
Artificial’, MIT Press, Cambridge, MA, USA;

[Tesler, 2001] L.Tesler, 2001, Why
the Apple Newton Failed,
http://g4tv.com/techtvvault/features/25271/Why-
the-Apple-Newton-Failed pg2.html, retrieved
07.05.09;

[von Tetzchner, 2009] J.S.von Tetzchner, 2009,
Browser Wars: Opera Says It’s Not Down or
Out, http://gigaom.com/2009/03/02/browser-
wars-opera-says-its-not-down-or-out/, retrieved
07.05.09;

[Tognazzini, 2001] B.Tognazzini, 2001,
Maximizing Human Performance,
http://www.asktog.com/basics/03Performance.html,
retrieved 14.05.09;

[TMurgent Technologies, 2003] TMurgent Technolo-
gies, 2003, ’White Paper: Perceived Performance’;

[Trenouth, 1991] J.Trenouth, 1991, ’A Survey of Ex-
ploratory Software Development’, Department of
Computer Science, University of Exeter, Devon,
UK;

20


	Introduction
	Theory
	Perceived performance
	Definition and positioning
	Key trends
	Case in point
	Inherent contradictions
	Psychological perspective

	Benchmarking
	Traditional benchmarking
	Classification by scope
	Classification by measurement
	Acknowledged challenges


	Research method
	Research setting
	Research limitations
	Research positioning
	Related research
	Approach to implementation
	Tools
	Development tools
	Productivity tools

	Collected results

	Software construction
	PETHIS benchmark

	Discussion
	Leveraging PETHIS
	Sustainable mobile platforms
	Relation to UPP
	Historical perspective
	Implications of sustainable platforms


	Conclusion

