

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2009

Performance &

Implementation Best Practices

for Information Passing

Through Web Services

XIAOMING CAI <ming.cxm@gmail.com>
JOSEFINE OTTOSSON <josefine.ottosson@gmail.com>

Bachelor of Software Engineering & Management Thesis

Report No. 2009:050
ISSN: 1651-4769

2

Abstract - Data interchange between different

web applications and web-services becomes

more and more common. Not only to send or

receive data from another service or

application but also to reuse modules and web-

service functionality from one application to

another. There are many standards and

protocols available today to use when building

web-services. This research will only focus on

three of them which all represent some of the

most common implementations when building

web-services of today. These are XML-RPC,

SOAP and REST. They have differences

between each other but can perform the same

tasks for a web-service. They are examined

through performance and implementation

issues, benchmarking as well as interviews.

The result reveals performance issues for

XML-RPC as well as how complex SOAP can

be for inexperienced users. In addition it also

reveals why REST is gaining popularity

recently.

1. Introduction
The purpose of this paper is to present the best

practices for information passing through web-

services. Information passing in this context

means sending requests and answers between a

client and a server. It can be done through

different ways of implementation through

standards and/or architectures. This paper will

examine three of the most common ways,

which are SOAP
1
, XML-RPC

2
 and REST

3
.

These will be referred to “research items” in

the following paper. SOAP and XML-RPC are

standards for transferring data through web-

services. Both of them have interfaces to the

client and server and runs above a transport

protocol. REST on the other hand is more of

an architecture as defined by Tomas Fielding

(1). It defines a new way of representing data

in various representations.

1
 Simple Object Access Protocol

2
 Extensible Markup Language – Remote Procedure

Call
3
 Representational State Transfer

When choosing a standard and architecture to

use for a web-service, a lot of aspects have to

be taken into considerations since the various

standards differ from each other. For example,

for a performance requirement, bandwidth and

memory usage, one standard could be better

than others to use. Time pressure for the

development could be crucial as well.

Therefore, choosing a suitable standard to

implement is beneficial.

In this research, we have looked at

performance issues as well as implementation

issues for these three research items. The

performance issues examined are network

latency, XML parsing latency and query

latency. The implementation issues include, for

example, customization, data types, transport

protocol, multiple request handling, data

overhead and extensibility/ maintainability.

In order to measure performance and

implementations issues, a benchmarking has

been performed together with interviews.

Through those means, this study has collected

enough data to let readers have a clear

overview of all research items from different

perspectives. In the end, this study presents a

model for how to use the research items and in

what situation. When choosing what standard

or architecture to use for a web-service, the

model can help clarify the differences between

the various research items.

The paper is structured in the following

manner: Next section is the literature review

which presents other research in the field and

statements about the three research items. The

literature review is followed by the Research

Approach section where the research method is

explained together with the grounded theory.

After that the Result section presents results

from both the benchmarking and the

interviews. The Discussion section presents a

summary of the results and the emerged model.

Last is the Conclusion that sums up the whole

paper and presents future work.

3

2. Literature Review
The literature review will reveal

implementation and performance issues which

have been noted by other researchers.

SOAP is widely used as a communication

protocol for data exchanging in XML-format

(2). Implementation-wise it is said to provide

simplicity, robustness, extensibility and

interoperability to a web-service (2) (3) (4). It

has good support for implementation

customization by supporting, for example

customized types (5) and it is not bound to any

transport protocol (6).

On the other hand SOAP's usefulness is

threatened by its poor performance (2) (4).

According to Nayef et al. (2) and Ng et al. (7),

it is the high overhead due to serialization to

the outgoing XML message that is the big

bottle neck.

SOAP is described through the WSDL
4

document, which is an XML-interface

specification between the client and the server

(4). WSDL has become a de facto standard to

use together with SOAP (4). However, it has

been said that for non-programmers, SOAP

with its WSDL document can be hard to

overview (8).

REST is said to be inexpensive, simple and

easier to extend than XML-RPC

implementations can offer (9). It only

elaborates the essential parts for internet-based

hypermedia interactions. As an architecture, it

keeps its abstraction rather than details of

implementation where the details can be

replaced if necessary (10). REST has also been

used to explain the excellence and scalability

of HTTP. Thus, it is commonly used in

conjunction with HTTP (11). However, REST

is criticized as "lacks tooling and interface

definition languages, or that it works for

human driven browser-based systems but is

unsuitable for application-to-application

4
 http://www.w3.org/TR/wsdl

integration, and it can't adequately support

distributed transactions." (9) p. 94.

Implementation of XML-RPC into an

application is said to be easy and to reduce the

programming complexity a lot (12). It can

easily be layered on top of existing application

protocols, for example HTTP (12). It also

represents loose coupling between hosts (12).

But it has been extensively criticized for its

network performance (13) (7) (12) (14).

3. Research Approach
During this research, we have focused on two

broad aspects which may be quite important

when considering choosing a research item to

use. Benchmarking may help people discover

how all research items perform under different

conditions whereas implementation issues

collected by interviews also cover other

relevant parts such as some non functional

requirements. Therefore, both quantitative and

qualitative data needed to be collected and

analyzed.

3.1 Research methodology

The grounded theory method was used for this

research, one of the main reasons for choosing

this method was because of its support for both

qualitative and quantitative data. It is a

qualitative research method which also

supports collecting of quantitative data. In

grounded theory, collection of data is done first

and from the observations a theory emerges,

which also makes it a good choice for this

research. To support our statements both from

the benchmarking and the interviews we highly

use related literature and research. This was

another reason to choose grounded theory,

because of its support from existing literature

and research.

The following sections describe the two parts

of data collection and how it is applied to

grounded theory.

Benchmarking

The benchmarking was done through two

different implementations.

benchmarking was built in PHP with built

functions for SOAP and XML

because the version of PHP we used has no

support for REST, we built it ours

Secondly, we also implemented the

benchmarking in Zend Framework

Frameworks are commonly used nowadays

and have great support for all of the research

items.

Both of these implementations follow

structure shown in Figure 1. One client and

one server were built for each research item.

The query latency was measured

when the request was sent and ending when the

client receives the response, see Figure 1

Network latency is a big factor when running

on two different hosts, therefore we also

measured the time for the server

answering with a string. Another factor for

latency is the XML-parsing therefore we also

did a small XML-parsing latency test.

Figure 1 - Benchmarking structure

PHP was used as the application language of

the benchmarking, mainly because PHP has

shown to have both good performance and

productivity (8) (15) (16).

performance result is based in its fast XML

parser, libxml2, written in C

general view on web-service performance is

that it is the XML-parsing and formatting that

is the largest factor of latency no ma

language is used (4) (8).

5
 http://framework.zend.com/

4

The benchmarking was done through two

 First the

was built in PHP with built-in

XML-RPC and

because the version of PHP we used has no

we built it ourselves.

we also implemented the

in Zend Framework
5

.

rameworks are commonly used nowadays

all of the research

se implementations followed the

One client and

ere built for each research item.

The query latency was measured starting from

when the request was sent and ending when the

, see Figure 1.

Network latency is a big factor when running

on two different hosts, therefore we also

measured the time for the server when just

Another factor for

parsing therefore we also

parsing latency test.

PHP was used as the application language of

, mainly because PHP has

shown to have both good performance and

. PHP's good

performance result is based in its fast XML

ritten in C (8) (17). A

service performance is

parsing and formatting that

is the largest factor of latency no matter what

The client and server were hosted on two

different Debian hosts. The servers run on

Intel Pentium Dual CPU E2220 @ 2.40GHz

with Debian etch and 4

version is 5.2.0, the clients are built on a

Debian machine with the PHP version 5.2.9.

Interviews

The interviews were conducted with

developers familiar with web development and

mainly web-services. Both regular interviews

and email interviews were

the study. The interviews revealed

implementation issues for each

items. The questions asked during the

interviews covered topics

advantages/disadvantages for each

item, how much knowledge is needed, has the

research item good and easy to find

documentation and such.

interview questions are added as

Questions’ and ‘B. Interview Data

Appendix.

3.2 Data analysis

Our view on grounded theory

data in an iterative process where

is thoroughly analyzed word by word to find

codes in the text. The interviews therefore

needed to be recorded and

codes then emerged into concepts which

grouped themes of them. By comparing each

concept broader categori

these categories were used as statements

each of the research items

analyze was used for each

separately. The model was later based on t

statements for each research item

3.3 Validity Evaluation

There are some items that may affect

threat the correctness and validity

in this research. Therefore in the following

paragraphs, analyses have been done on

items.

Test Environment

To be able to have a correct result, fair test

environment is necessary. We used PHP as the

The client and server were hosted on two

The servers run on an

Intel Pentium Dual CPU E2220 @ 2.40GHz

with Debian etch and 4GB ram. The PHP

clients are built on a

Debian machine with the PHP version 5.2.9.

The interviews were conducted with

developers familiar with web development and

Both regular interviews

were performed during

interviews revealed

implementation issues for each of the research

. The questions asked during the

topics like what are the

advantages/disadvantages for each research

how much knowledge is needed, has the

ood and easy to find

documentation and such. Details of the

interview questions are added as ‘A. Interview

Interview Data’ in

grounded theory is that it analyzes

data in an iterative process where the data first

is thoroughly analyzed word by word to find

The interviews therefore

to be recorded and transcribed. The

into concepts which were

grouped themes of them. By comparing each

concept broader categories was formed and

these categories were used as statements for

of the research items. This kind of

analyze was used for each research item

The model was later based on the

research item.

Validity Evaluation

here are some items that may affect and

and validity of the result

. Therefore in the following

paragraphs, analyses have been done on some

To be able to have a correct result, fair test

nment is necessary. We used PHP as the

5

only language for test developing and also

used one framework so that all the parts that

we cannot control are identical. Besides, for

the parts that we can control, i.e. our own

implementation, they are written in very

similar fashions and with same core method

calls. However, there are still other issues like

network latency over two different public

servers that may make incorrectness of the

result to a certain extent.

Research method

The codes to concepts to categories method

has been criticized as a bit complicated for

inexperienced researcher (18). Berg says that

some of the major obstacles are to identify

good codes and understand the intended

meaning of a sentence (18). The coding

approach has also been said to be a very time

consuming method (19). Both of these

assertions are probably true but we believe this

research gained from the method since it gave

a good ground for the statements we did for

each research item and its concepts.

4. Result
The data collected is divided into two areas

which are benchmarking and interviews.

4.1 Benchmarking

The result of benchmarking are divided into

three sections: network latency, parsing latency

and query latency. The following sections

present the result from each of them.

Network latency

To see the network latency a request was made

with a hardcoded string as return message. The

following table shows the result.

Research Item Latency

SOAP 0.0554907917976
REST 0.0721788525581

XML-RPC 0.0542722392082

Table 1 - Network latency

XML-parsing latency

For the parsing test, a number in String was

parsed from the xml document to an Int and

the latency for the parsing was measured to

ensure how much it interfered with the query

latency. This was done by the built in parsing

function in PHP, simplexml_load_file().

 200 Strings 400 Strings 800 Strings

parsing 0.00014 0.00034 0.00072

Table 2 - XML parsing latency

Query latency

The performance benchmarking for each

research item was done with a request

executed from a client and the return value

from the server was an XML containing an

array with all requested values. There were

three data types tested as request return values,

which were Int, String and Object. Besides, to

be able to test the performance under different

amount of request data constrains, we

increased the amount of return data gradually,

started with 200 items and ended with 3200.

To get a fair result for each request, tests were

performed 100 times for each data type so that

an average of consumed time was calculated

afterwards.

PHP’s current stable version has no native

support for REST and when implementing it in

PHP without using any framework, it resulted

in extremely high latency. Figure 2 shows the

comparison with SOAP. REST is above 2.5

seconds when SOAP instead is below 0.5

seconds for each query. We also found that the

library that supports XML-RPC in PHP has to

be enabled in the hosts. This was not the case

for any of the servers that we have access to.

Figure 2 – First benchmarking, latency for SOAP and

REST built in PHP

0
1
2
3
4

SOAP

REST

6

The following tables 3, 4, 5 show the second

result of the benchmarking implemented in

Zend Framework.

 Int

[200]

Int

[400]

Int

[800]

Int

[1600]

Int

[3200]

SOAP 0.1970 0.205

8

0.288

9

0.298

6

1.033

5

REST 0.1600 0.207

1

0.237

2

0.324

0

0.754

8

XML-

RPC

0.1819 0.193

8

0.265

9

0.404

6

2.257

5

Table 3 – Second Benchmarking, Query latency with

Int

 String

[200]

String

[400]

String

[800]

String

[1600]

String

[3200]

SOAP 0.1946 0.2327 0.2693 0.3562 0.8052

REST 0.2198 0.2260 0.2679 0.3679 0.8268

XML-

RPC

0.2177 0.2720 0.3678 0.5563 3.6848

Table 4 – Second Benchmarking, Query latency with

String

 Objec

t [200]

Objec

t

[400]

Objec

t [800]

Objec

t

[1600]

Objec

t

[3200]

SOAP 0.2288 0.2798 0.3669 0.5092 1.0590

REST 0.2196 0.2716 0.3435 0.4845 1.0553

XML-

RPC

0.3845 0.5714 0.9083 1.6053 8.1609

Table 5 - Second Benchmarking, Query latency with

Object

REST is the most stable and fastest one among

all three. Both XML-RPC and SOAP are fast

with arrays containing less than 1600 objects

but with the increment requesting data amount,

the latency started to differ, especially when

requested items are above 1600, XML-RPC is

suffering a lot. For objects, table 5, XML-RPC

performs badly even with arrays containing

few objects. Figure 2 shows an average from

all three tables 3, 4 and 5.

Figure 3 - Query latency average

4.2 Interviews

Data collected from the interviews was

analyzed with the intention to follow the

grounded theory method, from text to codes to

concepts to categories. The following sections

show the emerged theory for each research

item from the interviews and table 6, 7, and 8

show the categories. The emerged theory will

focus on three things for each research item; if

it is easy or hard to use and learn, advantages

and disadvantages.

Through the tables, it is possible to track the

category back to its origin. The bullet points

are concepts and the numbers refer to id's that

could be found in each interview.

SOAP

The analysis shows that SOAP can be hard to

use due to its WSDL specification. On the

other hand the WSDL specification makes the

SOAP implementation clean and correct.

One advantage of SOAP is that it requires

strict typing. The strict typing gives

correctness and a fault tolerance to the

application but makes it harder to follow. The

disadvantage for SOAP is the WSDL

document which makes the SOAP

implementation complex. One disadvantage to

note is that SOAP is standardized and has a

specification
6

, the specification is said to

change a lot and that could cause problems.

Categories Id

THE WSDL SPECIFICATION MAKES

SOAP COMPLEX

6
 http://www.w3.org/TR/soap/

0

1

2

3

4

5

200 400 800 16003200

SOAP

REST

XML-RPC

7

• WSDL specification is complex but

necessary

• SOAP is unnecessary complex with

a steep learning curve

• WSDL makes it time consuming

and hard to maintain

• WSDL takes time, knowledge and

research is needed

100, 103,

101, 102,

104, 108,

114, 115,

117, 120,

121

STRICT TYPING IS GOOD BUT

OFTEN UNNECESSARY

• strict typing makes it correct and

fault tolerant

• strict typing is unnecessary

105, 106,

110, 111,

113, 107

THE SOAP SPECIFICATION CAN

CAUSE PROBLEMS

• the SOAP specification often

updates which can cause problems

• Bad specification

109, 112,

130

NO OFFICIAL DOCUMENTATION IS

NEEDED

• Easy to find information online 122

THE WSDL MAKES SOAP CLEAN

AND CORRECT

• WSDL specification is commonly

used and makes SOAP clean and

easy

• strict typing makes it correct and

fault tolerant

118, 119,

105, 106,

110, 111,

113

NEED A LOT OF PRIOR

KNOWLEDGE

• It’s a nightmare and you need a lot

of knowledge

123, 125,

126, 128

THE SAME LANGUAGEE SHOULD

BE USED

• Same language should be used for

both client and server

124, 127,

129

BUILT-IN CLIENTS AND SERVERS

EXIST BUT MAKES IT HARDER

• A lot of built-in clients and servers

• Many poor implementations exist

130, 132

LACKS IN MAINTAINABILITY

• WSDL makes it time consuming

and hard to maintain

• lacks maintainability

115, 117,

133

Table 6 – Interview Data SOAP

XML-RPC

XML-RPC is commonly accepted as easy to

use, it is easy to find information through

tutorials and forums online since it is widely

spread.

One advantage is that it is not as strict as

SOAP and therefore best for open and easy

services online. The disadvantages of XML-

RPC are first that it is said to be closely

coupled and also bad when designing an

application from scratch.

Categories Id

EASY TO USE

• easy compared to SOAP with simple

structure and no strict types

• XML and some RPC knowledge is

needed

• easy to find other projects

• framework is useful

• easy to use and learn

200, 205,

206, 202,

203, 201,

204, 213,

214, 216

GOOD FOR OPEN SERVICES

• good for loose web applications

• better for open services than closed

since the client does not break

207, 208,

209, 211

NO OFFICIAL DOCUMENTATION IS

NEEDED

• easy to find other projects

• no official documentation

• no official documentation

201, 212,

215

XML-RPC IS SIMILAR

• XML-RPC and REST are similar 210

CLOSELY COUPLED

• closely coupled 218

BASIC BUT FUNCTIONAL

• basic but functional 222

WORKS AS A WRAPPER

• wrapper around existing functions 217, 220

BAD WHEN DESIGNING FROM

SCRATCH

• not good if designing a service from

scratch

221

GOOD FOR INTERNAL SYSTEMS

• good for internal systems 219

Table 7 – Interview Data XML-RPC

REST

According to the concepts, REST seems to

have a good reputation for being easily

implemented. Not much prior knowledge is

needed for implementing a REST service. A

REST client is really simple to use and

understand. In addition, a REST service is also

suitable for open service as everyone can

access. A common understanding would be

REST is bonded to use HTTP protocol.

8

Categories Id

THE CLIENT IS EASY TO USE

• the client is easy with just an URL to

manage and browser compatible

• fast to implement

• the client is easy to use

• the client is easy and fast

• easy to document and understand

• standardized and makes sense

• easy to use and learn

300, 301,

302, 303,

304, 310

318, 320,

322, 323,

308, 309

327, 330,

338, 339,

342, 346

USE OF HTTP AND IS GOOD FOR

OPEN SERVICES

• HTTP as transport protocol

• not complex and good with open

services

• the complexity is unnecessary

305, 306,

307, 312,

314, 319

NO OFFICIAL DOCUMENTATION IS

NEEDED

• the documentation is application

specific

• used only Wikipedia and Google

• knowledge about the language you use

• no documentation needed

• good documentation

317, 325,

326

324, 336,

340, 341

THE SERVER IS HARD TO

IMPLEMENT

• the server is complicated and takes

more time

• time consuming

328, 329,

334, 335

CAN'T HANDLE MANY REQUESTS

• not good with many request

• the size of data is important when

choosing standard

311, 315

IT IS EASY TO MODIFY AND EXTEND

DUE TO ITS FLEXIBILITY

• it is simply to modify and extend due

to its flexibility

337

EASY TO MISUNDERSTAND

• easy to misunderstand 343

SECURE

• secure 344

GOOD WITH VARIOUS LANGUAGES

AND CLIENTS

• good when mixing various languages

and clients

345

GOOD PERFORMANCE

• good performance 347

Table 8 – Interview Data REST

5. Discussion
Based on our qualitative and quantitative test

results from previous sections, we in this

section summarize and present the overall

comparisons together with our own experience

when conducting this research. Different

aspects are discussed based on the model that

we present. They are categorized into three

different views: performance, technology and

usability.

5.1 Performance

According to Figure 2, XML-RPC shows

really bad performance above 1600 objects.

The bad performance for complex and big

messages is also supported in (13) (7) (12)

(14).

Mentioned by Abu-Ghazaleh et al. (2) and Ng

et al. (7) SOAP has high overhead and the

serialization/deserialization is a big bottleneck.

The research done by Ng et al. shows that the

overhead is even worse for XML-RPC, and the

latency gets really bad for complex messages.

This could be one of the reasons for the bad

result for XML-RPC.

The difference between SOAP and REST are

minimal for arrays above 800 objects. For

arrays containing below 800 objects, the

difference is minimal for all three. When

REST is built through Zend Framework, the

performance of REST is both good and the

latency is stable even for arrays with 3200

objects. The extremely bad result from the first

benchmarking of REST implemented in PHP

together with the fact that the support library

for XML-RPC is not enabled by default makes

the use of a framework much more favourable

than building a web-service by your own.

To note is that each framework has different

implementations for each one of the research

items and this research only shows the

performance from Zend Framework. A bad

implementation inside Zend Framework could

also be one of the reasons behind the bad

performance of XML-RPC.

5.2 Technology

Table 9 presents technology differences

collected in the previous sections from each

one of the research items. The following

paragraphs describe each row from the table

more in detail.

9

 SOAP XML-

RPC

REST

Structs and arrays YES YES NO

Named structs and

arrays

YES NO NO

Customized data set YES NO YES

Strict typing YES NO NO

Multiple request

handling

YES YES NO

Transport protocol

independent

YES YES YES

Table 9 - Feature table Technology

Data types

This section presents details from table 9;

structs and arrays, named structs and arrays,

and customized data set.

According to XML-RPC specification
7

, it

supports 8 data types by default such as

Integer, Boolean, String, Double,

java.util.Date, byte[], java.util.Map, Object[]

and java.util.List. There are more data types

supported in XML-RPC if the property

enabledForExtensions is set.

According to a SOAP data type summary
8

SOAP has Integers, Booleans, Double and

Strings, those are called XSD:[TYPE] in the

WSDL document. Array, Hash and Objects are

all named XSD:STRUCT. For mixed types,

which could be your own defined type, it

should be named XSD:ANYTYPE. The data from

the interviews shows that SOAP has support

for much more customization for the developer

such as structs and arrays, character set and

data set whereas REST is not that comparable

in this case. For REST, data is sent in String to

the server and then the server responses in

various representations accordingly such as

HTML, XML, PDF and more.

Strict typing

SOAP requires strict typing which, according

to the interviews, often is unnecessary but

good for services when correctness is of

importance. For example payment solutions or

7
 http://ws.apache.org/xmlrpc/types.html

8
 http://old.apisnetworks.com/soap-data-types.php

closed systems. XML-RPC on the other hand

does not have strict typing and will not break if

a client uses a double instead of a float.

According to the interviews this strict typing is

often not necessary and most web-applications

works better without it.

Multiple request handling

Multiple request does not mean handling

request in different threads simultaneously，

instead, we mean performing more than one

method call or procedure by a single request.

XML-RPC is extremely good for this purpose

since the data transferred is in an specified

XML format, which means there are no limits

for the client to add more than one method call

in that XML. But all method calls are

processed in turns on the server not at the same

time. This feature also applies to SOAP since

XML-RPC and SOAP are very similar in many

ways whereas REST in this case is

not competitive.

When using HTTP as transport protocol, which

is also the most common way, handling

multiple requests with REST is not

as convenient as the other two mentioned

before. This is also stated in the interviews.

Since the representative of requested resource

is identified by unique URL usually, it is hard

to execute more than one method at one time.

There are ways to work around it, for instance,

designing specific URL to call many methods

before representing the resource. Again, it

becomes more a design issue from the

beginning for building a web service.

Transport protocol

As mentioned in the literature review SOAP is

transport protocol independent and according

to Allman (12) XML-RPC is as well so both of

them could therefore be used in any

environment.

Compared to them, REST does not restrict

communication to a particular protocol (11),

but it does constrain the interface between

components, and hence the scope of interaction

and implementation assumptions that might

10

otherwise be made between components (1). A

common misunderstanding discovered during

this research is that people think that REST is

limited by only using HTTP as protocol. This

misunderstanding also appears in the data from

the interviews. This may because web can be

considered as REST service (20), and for a

web service or application, HTTP is the most

common protocol to use. According to

Pautasso et al. (11) due to the constrains of the

limitations that HTTP protocol have, request

methods are usually limited by only using

“GET” and ”POST”. Because not all servers

allow users to use methods like “PUT”,

“DELETE” for security reasons. Therefore,

additional effort and time are needed to work

around (11).

5.3 Usability

Table 10 compares features of SOAP, XML-

RPC and REST. It is generated based on data

collected and presented in the previous

sections.

 SOAP XML-

RPC

REST

Specification YES YES YES

Tools framework YES YES YES

Extensibility/Mainta

inability

EASY EASY EASY

Security HIGH HIGH N/A

Overhead HIGH HIGH LOW

Short learning curve NO YES YES

Table 10 – Feature table Usability

Specification

Based on data from the interviews, SOAP

requires very strict matching on both client and

server side, which may cause problems and

makes the implementation hard. According to

the interviews SOAP has a specification that

could cause problems. When writing a SOAP

client it can be crucial to use the same version

of the SOAP specification as the server is

written in. According to the interviews the

SOAP specification changes often and that can

cause problems if the server was written to

follow a previous specification.

XML-RPC is very well documented which

means when developing it, people can put

focus on build the server side functions and

simply assume that the XML got from the

client follows its specification. This is also

well supported in data from the interviews.

As mentioned in Luiz and Celso’s paper (20),

REST is an architecture, it does not have any

specifications for it in terms of developing

details. Instead, it is a concept that needs to be

understood. REST's resource is identified by

URL and its content can be accessed in

different formats such as XML, HTML, JPEG

etc. However, it is not easy to find such

specifications and this resulted in that people

think XML is the only representation of data

resource according to the interview.

Tools /Framework

As discovered during the benchmarking, PHP

has a library to support XML-RPC but it is not

enabled by default. That means if it is not

enabled on the server you use and if you don’t

have control over the server you will not be

able to use it. According to the interviews it

could be useful to use a framework together

with XML-RPC.

For SOAP, the WSDL document has been

described in the data from the interviews as

complex and hard to understand. To note is

that there are some WSDL generators available

online to help generate the WSDL document

based on the written code.

As REST gains more popularity recently, there

are some frameworks available to use such as

Zend, Restlets
9
 and Simple Web

10
.

Extensibility/Maintainability

According to the data from the interviews

SOAP lacks in maintainability, it is mainly the

WSDL document that makes it time

consuming and hard to maintain. This could

also affect the extensibility. To extend a SOAP

server the WSDL document needs to be

updated. It is also important to note which

9
 http://www.restlet.org/

10
 http://www.simpleweb.org/

11

SOAP specification to use and follow when

maintain and extend a SOAP application.

XML-RPC on the other hand is said to be easy

to use and learn (12), this is also mentioned in

the data from the interviews. Maintaining and

extending it should therefore not cause any

further problems. REST has also been said to

have modifiability and extendibility due to its

flexibility. On the contrary REST is just an

architecture and has been said to have a

complex server and deep understanding of its

architecture is of course needed.

Security

For SOAP it is the WSDL that binds the server

to the client and creates a secure connection (3)

without any extra effort from the developer.

XML-RPC was built with no intention to

protect the data at all. Even passwords were

transmitted in clear-text (21). Nowadays it is

possible to bind the client to the server and get

a secure connection, but this is not

automatically done as in SOAP and it needs

some extra functions to be used. According to

the interviews SOAP is safer due to its strict

typing. If the client uses a different data type

from the server a SOAP server will create an

error when a XML-RPC server will only crash

if the developer haven’t prepared for that

specific fault (13). For REST no adequate

information about security was found.

Overhead

As stated in data, both from the interviews and

according to Phan et al. (22), both XML-RPC

and SOAP suffer from high overhead. This is

due to the XML serialization and

deserialization and the underlying transport

protocol TCP. This has to be considered

especially for resource constraint applications.

According to Nayef et al. (2), the performance

could be increased by storing and reusing the

message template. The research done by Chuik

et al. (23) reveals that by reducing the number

of comparisons for XML tags by using trie

data, performance could also be increased.

REST does not have the same problem with

overhead due to its implementation flexibility.

The overhead added is done through the

implementation for each specific application,

and not enforced by the protocol.

Short learning curve

According to our own experience when

building the benchmarking, the learning curve

for building a REST service is relatively low

comparing to the other two. HTTP clients and

servers are implemented in most of the major

languages already and supported by most of

the hardware or operating systems (11),

therefore the base of building a service is

already done. The only thing that one needs to

learn is the concept of REST service. To build

a service, frameworks like Zend also does

great help for build both REST client and

server in PHP and it is well documented.

Therefore, it is easy to be adopted and

inexpensive to acquire (11).

According to the interviews XML-RPC is also

easy to use and learn and there are a lot of

materials, forums and tutorials available

online. For SOAP on the other hand the

learning curve is steep, this is also mentioned

in the interviews. The data from the interviews

reveals that it is the WSDL which is the

complicated part to learn. Whether you build a

server or a client you have to understand the

WDSL document.

6. Conclusions
This paper examines three of the most

common ways for data transfer through web-

services, SOAP, XML-RPC and REST. Many

standards and protocols are available today and

when choosing a way to implement a web-

service, a lot of aspects have to be considered.

These three were therefore examined not only

from a performance perspective but also from

an implementation view. This was done

through benchmarking and interviews. The

data collected from these two were analysed in

12

conjunction to each other and a model is

presented.

In short, SOAP should be used for systems

when correctness is important but is more

complex both to learn and use.

RPC is easy to use and suitable in most cases

but performs very poorly on large amount of

data.

REST is good for open services and especially

for service oriented systems because of its

simplicity of identifying resources by URLs

and the light weight messaging.

For future research, more and extensive

benchmarking could definitely contribute to

this research. Besides, deeper studies could be

focused on what are the factors that affect the

performance for different

standards/architecture in the area.

More standards, frameworks or protocol could

also be added to this research, SOAP, XML-

RPC, REST and Zend are only fours ways of

implementing a web-service available today,

other are for example JavaRMI or CORBA.

SOAP, XML-RPC and REST could be used in

conjunction to each other. It is possible to use

REST architecture together with both SOAP

and XML-RPC. It is also possible to build a

SOAP/ RPC server. These scenarios could also

be interesting for a future research.

7. References
1. Fielding, Thomas Roy. Architectural Styles

and the Design of Network-based Software

Architectures. Irvine : University of California,

2000.

2. Abu-Ghazaleh, Nayef, Lewis, Michael J.

och Govindaraju, Madhusudhan.

Differential Serialization for Optimized SOAP

Performance. State University of New York :

Department of Computer Science, 2004.

3. Fremantle, Paul, Weerawarana, Sanjiva

och Khalaf, Rania. Examining the emerging

field of web services and how it is integrated

into existing enterprise infrastructures. New

York : ACM, 2002.

4. Parashar, Manish och Davis, Dan.

Latency Performance of SOAP

Implementations. The state university of New

Jersey : Center for Advanced Information

Processing, 2002.

5. Dissanaike, S., Wijkman, P. och

Wijkman, M. Utilizing XML-RPC or SOAP

on an Embedded system. Stockholm :

Stockholm University, 2004.

6. Overeinder, B. J, Verkaik, P. D. och

Brazier, F.M. T. Web Service Access

Management for Integration with Agent

Systems. New York, USA : ACM, 2008.

7. Ng, Alex, Chen, Shiping och Greenfield,

Paul. An Evaluation of Contemporary

Commercial SOAP Implementations. North

Ryde, Australia : u.n.

8. Toyotaro, Suzumura, o.a. Performance

Comparison of web service engines in PHP,

Java and C. Tokyo : Tokya Research

Laboratory, IBM, 2008.

9. Verivue - RPC and REST. Vinoski, Steve.

u.o. : IEEE Computer Society, 2008.

10. Fielding, Thomas Roy. Principled Design

of the Modern Web Architecture. Irvine :

University of California, 2005.

11. Cesare Pautasso,Olaf

Zimmermann,Frank Leymann. RESTful

Web Services vs. “Big” Web Services:Making

the Right Architectural Decision. 2008.

12. Allman, Mark. An evaluation of XML-

RPC. New York, USA : ACM, 2003.

13. Andrew S. Tanenbaum, Robbert van

Renesse†. A Critique of the Remote Procedure

Call Paradigm. Amsterdam, The Netherlands :

Vrije Universiteit, 1988.

13

14. IONA Technologies - RPC Under Fire.

Vinoski, Steve. u.o. : IEEE Computer Society,

2005.

15. Cecchet, Emanuel, o.a. Performance

Comparison of Middleware Architectures for

Generating Dynamic Web Content. New

York : Springer-Verlag, 2003.

16. Amza, Christiana och Emmanuel

Cecchet, et. al. Specifications and

Impelementation of Dynamic Web Site

Benchmark. u.o. : WWC: IEEE 5th Annual

workshop on Workload Characterization,

2002.

17. Head, Michael R., o.a. Benchmarking

XML Processors for Applications in Gridd

Web Services. New York : ACM, 2006.

18. Berg, Bruce L. Qualitative Research

Methods for the Social Science. Long Beach :

California State University, 2007.

19. Allan, George. A critigue of using

grounded theory as a research method. UK :

Portsmouth University, 2003.

20. Luiz Alexandre Hiane da Silva Maciel,

Celso Massaki Hirata. An Optimistic

Technique for Transactions Control using

REST Architectural Style.

21. Nelson, Andres D. Birrell and Bruce Jay.

Implementing Remote Procedure Calls. Palo

Alto, CA : Xerox Palo Alto Research Center,

1984.

22. Phan, Khoi Anh, Tari, Zahir och Bertok,

Peter. A Benchmark on SOAP’s Transport

Protocols Performance For Mobile

Applications. Dijon, France : ACM, 2006.

23. Chiu, Kenneth, Govindaraju,

Madhusudhan och Bramley, Randall.

Investigating the limits of SOAP performance

for Scientific Computing. Edinburgh,

Scotland : Bloomington, Indiana University,

2002.

8. Appendixes

A. Interview Questions

SOAP

For someone that never used SOAP, is it easy

to use and learn?

What kind of pre knowledge is needed?

Have you used any official documentation of

SOAP?

-Is it easy to find?

-Is it easy to understand?

What are the advantages for SOAP in your

opinion?

What are the disadvantages for SOAP in your

opinion?

Which are the special occasions when SOAP is

better than the other standards to use?

What is your overall impression of SOAP?

XML-RPC

For someone that never used RPC, is it easy to

use and learn?

What kind of pre knowledge is needed?

Have you used any official documentation of

RPC?

-Is it easy to find?

-Is it easy to understand?

What are the advantages for RPC in your

opinion?

What are the disadvantages for RPC in your

opinion?

Which are the special occasions when RPC is

better than the other standards to use?

What is your overall impression of RPC?

REST

For someone that never used REST, is it easy

to use and learn?

What kind of pre knowledge is needed?

Have you used any official documentation of

REST?

-Is it easy to find?

-Is it easy to understand?

What are the advantages for REST in your

opinion?

What are the disadvantages for REST in your

opinion?

14

Which are the special occasions when REST is

better than the other standards to use?

What is your overall impression of REST?

B. Interview Data

SOAP

id interview text

100 understand the WSDL specification

101 not easy for anyone that never used it

102 it is complex with SOAP

103 had to learn WSDL

104 not easy, could have been easier

105 most people think strict typing is an advantage

106 if you need strict typing it's good

107 in most cases you don't need strict typing

108 It is very complex

109 the SOAP specification keeps changing

110 It is strict typed

111 if you change a data type it might not work

112 was bound to use SOAP

113 the client break if there is something wrong

114 It is annoyingly complex

115 Time consuming to implement

116 SOAP is not good if you deal with a lot of data

117 changing internal things in SOAP is a big thing

118 A WSDL document is commonly used as a

specification over the soap request and answer.

119 it makes the SOAP implementation clean and easy

120 to define the WSDL specification some knowledge

and research is needed

121 the SOAP implementation itself is not hard but it

is the WSDL part that takes time to understand

122 I did not use any official documentation, there are

A lot of resources available online. Forums,

tutorials

123 its a nightmare

124 Lots of programming language have built in

clients and servers but these actually make it

harder to use unless you are using the same

language on both

client and server

125 You need to know services, XML, data types, HTTP

126 There is a spec, its not easy to understand

because SOAP itself is complicated

127 If you're using the same language on both client

and server it can be very robust and work well

128 It is very complicated

129 data types between languages are often badly

handled

130 It isn't an exact spec and the inconsistencies

make it very hard for different services to inter

operate

131 SOAP is fine, its businessy and lots of clients have

built-in clients and servers.

132 Its a buzz word and most implementations are

poor.

133 SOAP is slowest because although you can get a

system up really quickly, these systems have huge

maintenance basic overheads

XML-RPC

id interview text

200 it depends, easier than SOAP

201 many XML-RPC in general available on the net

202 need knowledge about XML

203 need to basically understand the idea of RPC

204 used a framework that generate the RPC calls

205 it's simple without any complicated types

206 it has a simple structure with strings and ints

207 it should be used for loose web applications

208 not good with closed applications

209 not good if the client should break

210 Choose between XML-RPC and REST

211 XML-RPC is good for open web-services

21

2

did not use official documentation

213 Very easy to use and learn

214 Pre knowledge about programming

215 I haven't used any official documentation

216 Its easy to understand

217 makes a nice wrapper for an existing set of

functions

218 Function and interface are very closely coupled

219 It's good for internal systems where the

consumer of the service is already familiar with

the functions

220 it's good if you are wrapping existing functions

which are documented.

221 Not so useful if designing a service from scratch

222 RPC is Basic but functional

223 RPC is fastest of these three

15

REST

id interview text

300 The easiest way

301 how to know how to make an URL

302 it works with all browsers

303 It is only a URL

304 anyone knows how to create an URL

305 it can only use HTTP as transport protocol

306 if I would build an easy service

307 not complex

308 easy to document

309 easy to understand

310 fast to implement

311 if you have many requests REST is not that good

312 REST is very easy

313 REST could be a good idea for the "spel-server"

314 REST is good for open web-services

315 the size of data should be considered when

choosing standard

316 I have never built my own, but used REST

317 it is very application specific

318 it's not so complex and if you don’t need that it is

a good choice

319 often you don't need the complexity in web-apps

320 it's very easy to use, especially for small apps

321

I did a web-interface, for adding, grabbing all

kinds of data

322 Yes I think it is easy to learn, compared to the

other

323 not that much work but got some help from

others

324 some knowledge about the scripting lang you use

325 did not use official documentation

326 used wikipedia and google

327 it's standardized so it's easy for others to use

328 it could be a bit complicated

329 have to spend some extra time for a REST server

330 I think it is good, makes sence

331 Not an standard but an architecture, quite

abstract

332 focus on structure rather implementation details

333 it can be built in different ways

334 no built-in support in PHP

335 build both client and server from scratch

336 not that complex because there are examples

that you can reach on the internet

337 it is simply to modify and extend due to its

flexibility

338 Yes, it is easy to use and learn

339 Pre knowledge is only HTTP

340 There are some specs and I have the O'Reilly

RESTful web services book.

341 All documentation is excellent

342 Its clean, simple and uses a lot of build in

functionality of HTTP

343 People misunderstand it and write horrible

 interfaces with everything routing through one

controller - thereby losing half the advantages

344 It's good when there are other requirements such

as security

345 It's good when you want to consume with

various languages/clients

346 Love it

347 For systems where performance is important I

always use REST

