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Multivariate surveillance is of interest in many areas such as industrial production, bioterrorism 
detection, spatial surveillance, and financial transaction strategies. Some of the suggested approaches to 
multivariate surveillance have been multivariate counterparts to the univariate Shewhart, EWMA, and 
CUSUM methods. Our emphasis is on the special challenges of evaluating multivariate surveillance 
methods. Some new measures are suggested and the properties of several measures are demonstrated 
by applications to various situations. It is demonstrated that zero-state and steady-state ARL, which are 
widely used in univariate surveillance, should be used with care in multivariate surveillance. 
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1. Introduction 
In many situations there are reasons to continuously observe a process in order to detect an 
important change in the process as soon as possible after the change has occurred. Multivariate 
surveillance typically concern several variables. However it is also of interest when there is only 
one process, but several characteristics of that process may change. Examples are processes where 
both the mean and the variance may change (treated in [19]) or changes in several aspects of one 
autoregressive time series as treated in [3]. 

The first suggestion of modern control charts [33] was widely utilized by industry. The 
monitoring of several processes is often of interest. Multivariate problems for the assembly 
process of the Saab automobile were described in [40]. In food industry different raw materials 
and several process steps are used, and in [32] it is suggested that these be analyzed in order to 
assure the quality of the final product. During the last years there have been an increased need for 
and interest in continuous monitoring in many areas apart from industrial production. After the 
9/11 attack the interest in surveillance methodology increased notably in the US, and new types of 
data are now being collected to get early signals of bioterrorism. By monitoring several data 
series different aspects can be covered, and thus multivariate surveillance techniques are needed. 
[28] contains an overview of the research needs for bioterrorism surveillance using multiple data 
streams. Spatial surveillance is another example of multivariate surveillance, since several 
locations are involved. A relatively new area for multivariate surveillance is financial decision 
strategies in situations where a portfolio contains several assets (see for example [13, 25]).  

General reviews on multivariate surveillance methods are made for example in [4, 6, 9, 
21, 31, 36, 39].  
 

Multivariate surveillance can have different aims. Sometimes, the aim is to identify which 
parameters that have changed (e.g. identify faulty components). However, this is naturally 
preceded by the detection of a change in any of the parameters. Here we concentrate on the 
detection of the first change.  
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2. Notations and specifications 
We will denote the multivariate process under surveillance by a p-variate vector, Y(t) = {Y1(t), 
Y2(t),..., Yp(t)}. The components of the vector may be, for example, a measurement on p different 
components. The distribution of the p-variate variable ( )tY  might be characterized by the mean 
vector μ and covariance matrix YΣ . The aim is to detect the change from one state – for example 
that the assembled product works well – to another – that some component is defective so that the 
product does not work. We aim to detect the change as soon as possible after it has occurred in 
order give warnings and to take corrective actions. At decision time s we base the decision on the 
available information Ys = {Y(1), Y(2)... Y(s)} to form an alarm statistic. An alarm is called the 
first time that the statistic exceeds an alarm limit, ( )G s . 

In the multivariate situation we observe p processes which can change at different times 
τ1, .. τp. Here the aim is often to detect the first time that the process is no longer in control – that 
is, we want to make inference about min 1min{ ,... }pτ τ τ= . If there is no change at all, we denote 
this by “τmin=∞”.  
 

3. Surveillance methods 
We will discuss different evaluation metrics for multivariate surveillance. The discussion is 
supported by results where commonly used methods are evaluated by the metrics. The evaluation 
measures will reveal principal differences between approaches for multivariate surveillance. 

3.1. General approaches 

3.1.1. Dimension reduction  
One approach for handling multivariate surveillance problems is to reduce the p-variate vector at 
each time point into a single statistic and then use a system for univariate surveillance on this 
statistic. One may simply use the sum or another linear combination of the variables. When we 
want to derive an optimal method, we must specify the type of change that we want the method to 
detect. One way to focus the attention is to consider some type of dimension reduction 
transformation as in [14, 15, 29]. In [30] this is done with specific respect to the special and 
common causes of variation. Sometimes a sufficient reduction can be found as in [37] where it is 
proved that when the changes occur simultaneously, it is possible to find a sufficient reduction to 
a univariate surveillance problem. For the exponential family with the same shift and dispersion 
parameter and independence between the processes, conditional on change times, the sufficient 
statistic for each time t is the sum of the observations Y1(t), ..., Yp(t). For some situations where 
the changes occur with known lags, it is also possible to find a sufficient reduction, see [17]. 
When a sufficient reduction is found, optimal methods can be derived. In many situations, 
however, it is not possible to find a sufficient reduction.  

3.1.2. Parallel surveillance 
The approach with parallel systems means that one starts with a univariate surveillance method 
for each variable. The most common way to combine the information from the p univariate 
methods is to signal an alarm if any of the univariate methods gives an alarm. This approach is 
called combined univariate methods or parallel methods. 
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3.2. Specific methods and situations 

3.2.1. Example 
We will illustrate the suggested measures and their properties by applying them in a number of 
different situations and for different methods. We will concentrate on the way in which the time 
of the changes influences the properties, and therefore a very simple example with two processes 
will be used. Our model contains two normally distributed variables, Y1 and Y2, which possibly 
have shifts in the expected value at possibly different time points. In order to focus on the effect 
of different change times we use equal shift sizes. The two processes, Y1 and Y2, are assumed to 
be independent (conditional on the change times).  

1
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The alarm times for different methods were determined by Monte Carlo simulations with 
at least 10,000,000 replicates for each situation. 

3.2.2. Specific methods 
Multivariate methods are usually extensions of common univariate methods. The univariate 
technique used here is the EWMA method, since it is commonly used also in multivariate 
situations. As regards the variance of the EWMA statistic there are two versions: the exact and the 
asymptotic variance, and we will use the asymptotic version as recommended in [35]. The 
statistic of the EWMA method for univariate surveillance of a variable Y is  

s
s -t

s
t=1

Z =λ(1-λ) (1-λ) Y(t)∑ , 

where 0<λ≤1 and Z0 is the target value, which here is zero.  
The optimal value of the parameter λ has drawn much attention. A formula for the optimal 

value was derived in [9] and explicitly given in [11] as * 2λ  = 1-exp(-μ /2)/(1-ν) , where µ is the 
shift size (here µ = 1) and ν = P(τ=t | τ ≥ t) denotes how often changes are prone to occur. Here 
we choose the value λ=0.35 which will give an approximately optimal method for a wide range of 
ν. 

We will compare results from i) the EWMA method applied to a reduction of data to a 
univariate statistic at each time, ii) a system based on two parallel EMWA methods, and iii) the 
EWMA method applied to the univariate process that changes first.  

As an example of the reduction approach, we reduce the bivariate variable (Y1,Y2) to a 
univariate statistic, here chosen to 

R(t) = (Y1(t)+Y2(t))/2. 
Then the EWMA method is applied to the variable R(t) (with the variance 2 0.5Rσ = ). The 

time of alarm for the reduction method, tAR, is the first time when the EWMA statistic exceeds a 
constant alarm limit. 

The parallel approach means that the EWMA method is applied to Y1(t) and Y2(t) 
separately. The time of alarm for Y1, tA1, is the first time when EWMAY1 exceeds a constant 
alarm limit (correspondingly for Y2). The time of alarm for the parallel approach is the first of 
either of the alarm times (tAP = min[tA1, tA2].  

For comparison we also have the results from the EWMA method applied to only one 
process. This corresponds to the situation when there is prior knowledge about which process will 
change first and therefore it is efficient to monitor only this one. 

The alarm limits are set in order to give each of the systems the same false alarm property.  
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4. Evaluation metrics 
The timeliness in detection is of extreme interest in surveillance, and hence there is a need for 
other evaluation measures than the ones traditionally used in hypothesis testing.  
 

4.1. False alarms 
In a univariate setting the most commonly used measure is [ ]0 |AARL E t τ= = ∞ . This is naturally 
generalized as E[tA|τmin=∞] = E[tA|τ1=∞, ... τp=∞]. The median run length, MRL0, can be used 
instead of the expected value with the same generalization as for ARL0. In the simulations below, 
the alarm limits are set so that each of the systems has an MRL0 equal to 100. 

In theoretical work the false alarm probability, PFA=P(tA<τ), is commonly used. This is 
naturally generalized as 

( ) ( ) ( )min min min min
1

A A
i

PFA P t P t i P iτ τ τ τ
∞

=

= < = < = =∑  

It can also be expressed as ( ) ( )minA j jPFA P t Pτ τ τ= < =  

Note that the distribution of τmin (through the distribution of the change point distributions 
of all variables) is included in the suggested multivariate PFA expression. 

In hypothesis testing with multiple comparisons it is important to control the probability 
of false rejection (an overview of important methods is given in [16]). For the situation when 
several drugs are tested against one standard, the family-wise error rate is relevant. For another 
situation, for example when several aspects of a single drug are tested, the False Discovery Rate 
(FDR), suggested in [5], may be more relevant. Recently FDR has been suggested for surveillance 
problems for example in [28]. Surveillance, where we make more than one decision, differs from 
hypothesis testing in that methods with high detection ability have a false alarm rate that tends to 
one (as time tends to infinity), see for example [7]. If one tries to avoid this, by letting the alarm 
limit tend to infinity, it will harm the ability to detect late changes. Thus, false alarms are not 
regarded in the same way in surveillance as in hypothesis testing. The FDR measure is difficult to 
use in surveillance, since it is based on a probability which is not constant. There are different 
suggestions for solving this problem: In [23] a fairly short period of time is monitored and only 
the properties of the early part of the run length is used. When surveillance is used as a screening 
instrument, with follow-up tests, it may be less important to control the FDR. The ARL0 of the 
multivariate procedure, as suggested above, might be easily interpreted as the expected time until 
an un-necessary screening. 

4.2. Delay 

4.2.1. Delay as a function of the time of the change 
We start by recapturing the univariate case where the expected delay for a specific value of τ is 

ED(τ) = E{(tA-τ)+ }, 
or, if τ is stochastic, the average delay over the distribution of τ  

ED=E{ED(t)}. 
This average is the base for the ED optimality, which is closely related to the utility 

functions suggested in [34] and sometimes called a Bayesian measure since it depends on the 
distribution of τ, which for some applications is naturally regarded as a parameter and for others 
as a stochastic variable.  

Since ED(τ) for most methods tends to zero (because of the false alarms when τ tends to 
infinity), it is useful to study the delay conditional on no alarms before τ. For a specific value of τ, 
the Conditional Expected Delay, CED, is 
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( ) A ACED E t tτ τ τ= ⎡ − ≥ ⎤⎣ ⎦ . 
The first use of the term CED and calculation for a specific value of τ, different from 1 

and ∞ seems to be in [41]. In [1, 12], the CED was used as a function of τ, and in [9, 11] it was 
strongly advocated that the whole CED curve be studied. In [20] the dependency on τ is avoided 
by using the least favorable value of τ. The asymptotic measure is another example of how the 
value of τ can be avoided. The CED has been a component in many measures but often in a way 
which avoids the dependency on τ.  

In the multivariate case the ED(τ1, ...,τp) and CED(τ1, ...,τp) depend on the vector {τ1, 
...,τp}, and ED depends on the multivariate distribution of (τ1, ...,τp). [2] suggested the following 
delay measure (for a situation where p=2)  

( )1 2 min min,  ,  ... ,  p A ACED E t tτ τ τ τ τ= ⎡ − ≥ ⎤⎣ ⎦  
and demonstrated the dependency on τmin. This delay measure depends on all the change 

points. However, there is often some relation between the change times which simplifies the 
picture. In Figure 1 and 2, we will use the multivariate CED to demonstrate principal differences 
between methods for some typical situations with special relations between the change times. In 
Figure 1 the conditional expected delay is presented for the Parallel and Reduction approaches, 
for the example where the changes appear simultaneously.  
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τmin

CED

Parallel
Reduction

 
Figure 1. CED(τ1, τ2) vs τmin for τ1=τ2=τmin, presented for the Parallel and Reduction methods. 
 

From Figure 1 we can see that the results in [37] mentioned in Section 3.1.1 hold here: the 
Reduction method is the best (gives the shortest delay) when all processes change at the same 
time. In Figure 2 it is seen that the CED curves differ considerably for different relations between 
the values of the change times.  

Sometimes the time available for action is limited. In such situations it is important to use 
a surveillance system with high detection ability within the limited time available. This property 
can be measured by the Probability of Successful Detection, which was suggested by [8]. It 
measures the probability that an alarm is called within d time points. In the multivariate case it 
can be defined as  

1 min min( , ... ) ( | )p A APSD d P t d tτ τ τ τ= − ≤ ≥ , 
as in [10]. 
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Figure 2. CED(τ1, τ2) vs τmin for different relations between the τ values, presented for the Parallel 
method. 
 

The PSD measure is a function of both the change times (τ1, ..., τp) and the length of the 
interval in which the detection is defined as successful (d). [38] suggested that the PSD be 
calculated as a function of only d and τmin, by expressing PSD as an expected value for other 
(stochastic) change points than τmin. The PSD can be used to describe the detection ability of a 
method and compare it to that of other methods. PSD can also be calculated and compared for 
different values of d, as is done in [23] in connection with the use of the FDR (false detection 
rate). If we expect sudden and major changes, we may want a method with high detection ability 
(a high PSD for a small d). In a situation where we expect small changes, the long term detection 
ability (a high PSD for a large d) may be more important. Thus it is essential to consider what 
kind of change one wants to detect at different time points. In Figure 3 we examine the PSD for 
the Parallel method, for two different cases of relations between the change points. With the 
Parallel method, it is easier to quickly detect simultaneous changes than changes with a time lag. 
The PSD will tend to one for both cases when d increases. 
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Figure 3. PSD(τ1, τ2) vs d for different relations between the τ values (τ1=τ2 and τ1+2=τ2) 
presented for the Parallel method when τmin=3. 
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4.2.2. Zero-state ARL 
One measure of the detection ability is the average run length, given that the change occurs 
immediately (τ=1). This is widely used in univariate surveillance and often named zero-state ARL 
or ARL1. In univariate surveillance the ARL1 has a simple relation to the delay, namely 
ARL1=CED(1)+1. This demonstrates that only τ=1 is considered. It may also be important to 
consider other change times, since the delay and detection ability of many methods depend on 
when the change occurs (i.e. depend on τ). To consider only τ=1 in the univariate case is a 
limitation, and the univariate ARL1 is criticized as a formal optimality criterion for example by 
[9].  

Zero-state ARL is the most commonly used evaluation measure also in the multivariate 
case. However, it is seldom explicitly defined. One possibility is to define the multivariate zero-
state ARL as E[tA|τmin=1]. However, as seen in Figure 2, the values of CED for τmin=1 vary a lot 
for different relations between the values of τmin and the change times of the other processes. 
Thus, there is no unique zero-state ARL with the definition E[tA|τmin=1]. Another possibility is to 
define the multivariate zero-state ARL as E[tA| τ1= τ2= …  τp =1]. This is probably the definition 
implicit in most publications. Here, it is assumed that all processes change at the same time. It 
was demonstrated by [37] that a sufficient reduction to a univariate problem exists when all 
processes change at the same time. Thus, when τ1=...= τp =1, a reduction to a univariate 
surveillance statistic is the proper procedure by the sufficiency principle, which means that we 
have a univariate situation. Zero-state ARL is thus questionable as a formal measure for 
comparing methods for genuinely multivariate problems.   

4.2.3. Steady-state delay 
Already [27] suggested the use of the limit of CED as τ tends to infinity (even though he used τ=8 
in the numerical comparisons). Here this will be called the steady-state conditional expected 
delay, CEDSS.  

lim ( )SSCED CED
τ

τ
→∞

=  

This steady-state delay is closely related to steady-state ARL (often denoted by SS ARL 
or ARLSS) which is defined in [22] as “The time from the change to the signal ... using the steady 
state distribution” or more specifically by [18] as 

lim - 1A AE t t
τ

τ τ
→∞

⎡ + ≥ ⎤⎣ ⎦ . 

Here we see that ARLSS=CEDSS +1. This corresponds to the relation ARL1=CED(1)+1.   
Evaluations of multivariate methods by asymptotic measures are often made by the same 

measures as are used for univariate methods. For example, [22] used “the steady state average 
delay time” and [26] “the steady-state Average Time to Signal.” However, the correspondence to 
the univariate CEDSS is not without problems. The multivariate CED depends on several τ values 
and so does the multivariate steady-state conditional expected delay, as seen in Figure 2. There is 
thus no unique steady-state CED (or steady-state ARL) that could characterize a method. Often 
only the situation τ1=τ2=...=τp is considered. In that case we have  

CED(τ1=τ2=...=τp=t) as t →∞. 
For equal change points we have a unique delay value for each method. However, this is 

another example of the situation where univariate surveillance can be used instead of multivariate 
surveillance since there is a sufficient reduction to univariate surveillance. This is confirmed in 
Figure 1, where we saw that the best method is based on the reduction to a univariate statistic. For 
other situations than simultaneous changes there is no simple asymptotic CED, as is seen in 
Figure 2. Even though all the τ values tend to infinity, it also matters how they do this. There is no 
simple asymptotic measure for the multivariate case. Instead, one has to specify how the times of 
the change points are related when they tend to infinity.  
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4.3. Predictive value 
The predictive value, suggested by [8], is defined as 

( )A
PMA(t)PV(t) P C(t) | t t

PMA(t) PFA(t)
= ==

+ , 
where PMA is the probability of a motivated alarm and PFA is the probability of a false alarm. 
Thus, PMA(t)=P(C(t)|tA=t) and PFA=P(D|tA=t). 

In a univariate setting with C(t)={τ≤t} and D={τ>t} this is  

1

1

( | ) ( )
( ) ( | )

( ) ( ) ( | ) ( )

t

A
i

A t

A A
i

P t t i P i
PV t P t t t

P t t i P i P t t t P t

τ τ
τ

τ τ τ τ

=

=

= = ⋅ =
= ≤ = =

= = ⋅ = + = > ⋅ >

∑

∑
. 

In a multivariate setting we generalize this with  C(t)= {τmin≤t} and D={τmin>t} to 

min min
1

min

min min min min
1

( ) ( )
( ) ( | )

( ) ( ) ( ) ( )

t

A
i

A t

A A
i

P t t i P i
PV t P t t t

P t t i P i P t t t P t

τ τ
τ

τ τ τ τ

=

=

= = ⋅ =
= ≤ = =

= = ⋅ = + = > ⋅ >

∑

∑
. 

For the case of two variables, Y1 and Y2, we have that the probabilities of a motivated and 
a false alarm, respectively, are 

( )

( ) ( )

1 2 1 2
1 1

1 2 1 2 1 2 1 2
1 1

( ) ( | , ) ( , )

( | , ) ( , ) ( | , ) ( , )

t t

A
i j

t t

A A
i j

PMA t P t t i j P i j

P t t i t P i t P t t t j P t j

τ τ τ τ

τ τ τ τ τ τ τ τ

= =

= =

= = = = = = +

= = > = > + = > = > =

∑∑

∑ ∑
 

and 
1 2 1 2( ) ( , ) ( , )APFA t P t t t t P t tτ τ τ τ= = > > ⋅ > > . 

For independently geometrically distributed change processes with the same intensity ν, 
the alarm probabilities simplify. If also the distributions between which the changes appear are 
the same for the two variables as in the example, we get  

( ) ( )
2

2 1
1 2 1 2

1 1 1

( ) ( | , )[ (1 ] 2 ( | , )[ (1 ) ]
i jt t t

i t
A A

i j i

PMA t P t t i j P t t i tτ τ ν ν τ τ ν ν
+ −

+ −

= = =

= = = = − + = = > −∑∑ ∑  

and 
2

1 2( ) ( , ) (1 ) t
APFA t P t t t tτ τ ν= = > > ⋅ − . 

In Figure 4, the predicted value is illustrated for two methods, Parallel and Reduction. We 
can see that the Parallel method has a better PV than the Reduction method. This can be expected 
since the change points are seldom simultaneous when we have independent processes with low 
intensities.  
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- Figure 4. The predicted value (for C(t)= {τmin≤t}) at different alarm times tA, for the case 
where τ1 andτ1 are independently geometrically distributed with parameter values ν1=ν2= 0.01. 

 
For simultaneous changes with τ1=τ2=τ and τ geometrically distributed with ν= 0.01, we 

have that the probabilities of a motivated and a false alarm, respectively, are 

( )
1

1
( | )[ (1 ]

it

A
i

PMA P t t iτ υ υ
−

=

= = = −∑  

and 
( ) ( ) (1 )t

APFA t P t t tτ ν= = > ⋅ − . 
As seen in Figure 5, the Reduction method has a better predicted value than the Parallel 

method when both processes change at the same time. By comparing Figure 4 and 5, we see that 
the method which has the best predicted value and thus the most trustworthy alarms depends on 
the relation between the change points. 
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Figure 5. The predicted value at different alarm times tA, for the case where τ1=τ2=τ and τ 
geometrically distributed with ν= 0.01. 
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5. Discussion 
Optimality is often hard to define in multivariate problems due to the several dimensions resulting 
from the variables. A method could work well for detecting a change in one direction but not in 
others. In surveillance (univariate as well as multivariate), evaluation is difficult due to the 
complex time relations. Some methods work well for detecting gradual long term changes and 
others for detecting sudden large ones. Thus, it is a challenge to evaluate multivariate surveillance 
methods which involve the difficulties with both several dimensions and complex time relations. 
The use of multivariate surveillance methods is growing, and the evaluation challenge has to be 
approached.  

Some new measures, which are generalizations of univariate counterparts, were suggested 
here and the properties of several measures were demonstrated by applications to various 
situations. The relation between the change times is very important for deciding which method is 
the best. For example, the Reduction method gives the shortest delay and the highest predictive 
value when all processes change at the same time but not when the changes occur separately. The 
Parallel approach has a higher predictive value when the changes are not prone to occur 
simultaneously.  

It was demonstrated that zero-state and steady-state ARL, which are widely used in 
univariate surveillance, should be used with care in multivariate surveillance. Unfortunately, the 
more elaborated CED measure is necessary for full information. 

The numerical values of the evaluation measures can be hard to obtain analytically for 
surveillance methods. Thus, Monte Carlo simulations (as in this paper and many others) or 
numerical approximations (as for example by [18]) are useful. Evaluation by application to a 
single case might be interesting but has the drawback of being highly dependent on stochastic 
variation. Applications to several cases diminish this drawback. An approach between the 
application to a single case and simulations is the technique of using an observed data series as a 
start and inducing simulated disturbances to this series (see for example [24]). 

For the measures PFA, ED, and PV, we need the distribution of τmin, which in turn 
depends on the distributions of the change times for all processes. These measures are only 
suitable when the change process is considered to be stochastic. The other measures are also 
suitable when the change points are considered as unknown but fixed values. 
Even if it is appropriate for the application to consider the change points as stochastic, the exact 
distribution is seldom known. However, any indication about the predicted value is of great 
importance for the interpretation of an alarm. An alarm does not give cause for extensive action if 
the predicted value is low. In Figure 4 we can see that the predictive value can be low for early 
alarms. This means that these should not call for the same actions as later alarms. 
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