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Abstract: Statistical surveillance is used to detect an important change in a process as soon as 
possible after it has occurred. The EWMA method is used in industry, economics and 
medicine. Three optimality criteria of surveillance are studied. The ARL criterion violates 
commonly accepted inference principles and the drawbacks are demonstrated. The ED 
criterion is based on the minimal expected delay from change to detection. The full likelihood 
ratio method is optimal according to this criterion. Approximations of this method turn out to 
be modifications of the EWMA method. The approximations lead to a formula for the optimal 
value of the smoothing parameter of the EWMA statistic. The usefulness of this formula is 
shown. It is demonstrated that, for EWMA, the minimax criterion agrees well with that of the 
ED criterion but not with that of the ARL criterion. 
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1. INTRODUCTION 
Continual surveillance of time series, with the goal of detecting an important change in the 
underlying process as soon as possible after it has occurred is needed in many areas. An 
example is the surveillance of the foetal heart during labor described by Frisén (1992). An 
abnormality, caused by e.g. a lack of oxygen due to the umbilical cord around the neck of the 
foetus might happen at any time. If an alarm is given soon after the event has occurred it is 
possible to rescue the baby by e.g. a Cesarean section. A review of methods for the 
surveillance in public health is given by Sonesson and Bock (2003). Recent applications using 
the EWMA method include VanBrackle and Williamson (1999) and Williamson and Hudson 
(1999) where the detection of an increased incidence of a disease is studied. Environmetric 
control is described by e.g. Pettersson (1998). Applications in economics, and especially the 
surveillance of business cycles, are treated in e.g. the special issue (no. 3/4, 1993) of "Journal 
of Forecasting" and by Andersson et al. (2004). Financial decision strategies using EWMA 
are described by e.g. Severin and Schmid (1998), Schipper and Schmid (2001) and Schmid 
and Tzotchev (2004). 

Several methods for surveillance have been suggested in the literature. Broad surveys and 
bibliographies on surveillance are given by Lai (1995), who concentrates on minimax 
properties of stopping rules and by Woodall and Montgomery (1999), who concentrate on 
control charts. Here we concentrate on the method for surveillance based on exponentially 
weighted moving averages, usually called EWMA. It is useful for the analysis of several 
important issues of inference in connection with surveillance since it has a simple form, can 
be expected to have good properties, and lacks the discontinuity of the CUSUM method. The 
EWMA method was introduced in the quality control literature by Roberts (1959) and the 
method has got much attention. This may be due to papers such as Robinson and Ho (1978), 
Crowder (1987), Ng and Case (1989), Lucas and Saccucci (1990) and Domangue and Patch 
(1991) in which positive reports on the quality of the method are given. Also, Srivastava and 
Wu (1997) pointed out the fact that the EWMA control chart can easily be used to estimate 
the current mean and to make optimal forecasts. 

The concept of optimality in on-line surveillance is discussed by, e.g. Frisén and de Maré 
(1991) and Lai (1995). In a surveillance situation, there is no fixed data set and not even a 
fixed hypothesis to be tested. The choice of an optimality criterion is an interesting and 
important issue. Optimal EWMA is discussed by e.g. Crowder (1987), Lucas and Saccucci 
(1990) and Srivastava and Wu (1997). These papers all consider an optimality criterion based 
on the average run length when a change either happens immediately or not at all. Earlier 
studies on optimal EWMA have mainly focused on this criterion. Here, also other optimality 
criteria are applied to the EWMA method. The optimality condition based on minimal 
expected delay from change to detection, suggested by Girshick and Rubin (1952) and 
Shiryaev (1963) is used. The full likelihood ratio method is optimal according to this 
criterion. Various approximations of this method turn out to be modifications of the EWMA 
method. Also, a minimax criterion and its relation to the other two criteria are studied. The 
criteria are described in Section 4 and analyzed in the following sections. 

Most studies on EWMA are for the two-sided case. Important exceptions are the papers by 
Robinson and Ho (1978), Srivastava and Wu (1993), Wu (1994)and Han and Tsung (2004), 
where properties of one-sided methods are analyzed. Here we discuss the differences between 
one- and two-sided EWMA but concentrate on the one-sided case, in order to concentrate on 
some inferential conclusions. For the one-sided EWMA there are remarkable results which 
are not present for two-sided EWMA. Only surveillance of a process of independent and 
univariate observations is examined in order to focus on some critical issues of optimality. 

In Section 2 some notations are given and the case studied is specified. In Section 3 some 
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properties of some variants of the EWMA method are described. In Section 4 the criteria of 
optimality which are studied are described and analyzed. In Section 5 different constructions 
of optimal EWMA are described and motivated. In this section a large scale simulation study 
on different properties for EWMA and competitors are reported. Section 6 contains a 
discussion. The reliability of the simulation study is reported in the Appendix. 

 
2. NOTATIONS AND SPECIFICATIONS 
At each decision time s, s=1, 2, ... we want to discriminate between the two events C(s), 
which requires an action, and D(s), which does not. The decision at time s is based on  
Xs = {X(t): t = 1,2,...,s}, where X(t) is the observation made at time t. The observation may be 
an average or some other derived statistic. The random process that determines the state of the 
system is denoted by :={:(t), t = 1,2, ...}. Given :, the observations are assumed independent 
with the same known standard deviation, Φ. At some unknown time point ϑ, there is a change 
in the distribution of X(t). As in most literature, the case of a shift in the mean of a Gaussian 
random variable from a value :0 to another value :1 is considered. Only one-sided alternatives 
are considered here, where :1>:0. Here, :0 and :1 are regarded as known values and without loss 
of generality we set :0=0, the standard deviation Φ=1 and :1 is denoted :. The process suddenly 
shifts at time ϑ and remains at the new level. That is,  

 
:(t) = 0 for t = 1, ..., ϑ-1 and :(t) = : for t = ϑ, ϑ+1, ....  

 
The time point, ϑ, when the change in the distributions of X(t) occurs, is regarded as a 

random variable. We study the case of a constant intensity < = P(ϑ=t | ϑ ≥ t). 
The distribution of ϑ is thus geometric with P(ϑ=t) = <(1-<)t-1. We aim to discriminate 

between the two events C(s) = {ϑ#s} and D(s) = {ϑ>s} by the set of observations Xs. We will 
consider different ways of constructing alarm sets A(s) with the property that, when Xs is a 
subset of A(s), there is an indication that the event C(s) has occurred. The time of the first 
alarm is tA = min{s: XsδA(s)}. For the methods studied here this can be expressed as 

 
tA = min{s: p(Xs)>K(s)}, 

 
where p(Xs) is an alarm statistic and K(s) is an alarm limit. In the Table below,  all the 
methods and their alarm criteria are presented. 
 
3. THE EWMA METHOD 
The EWMA method for surveillance has an alarm statistic based on exponentially weighted 
moving averages,  

 
Zs = (1-8)Zs-1+8X(s), s=1, 2, ... 

 
where 0<8≤1 and here, as usual, Z0  is the target value :0, which is set to zero. The alarm 
statistic is sometimes referred to as a geometric moving average. It can equivalently be 
written as  

s
s -t

s
t=1

Z =λ(1-λ) (1-λ) X(t)∑ . 

 
The EWMA statistic gives the most recent observation the greatest weight, and gives all 

previous observations geometrically decreasing weights. If 8 is near zero, all observations 
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have approximately the same weight. If 8 is equal to one, only the last observation is 
considered as in the Shewhart method. Shewhart (1931) suggested that an alarm should be 
given at 
    tA = min{s: X(s) > L},      (3.1) 

 
where L is a constant. 

 
Table. Notations for the methods  
Method  Expression Alarmstatistic    Alarmlimit Formula 
Shewhart  X(s) L (3.1) 

Standard 
version 

Zs LΦZ (3.2)  
EWMAa 

s (3.3) With 
normalized 
weights 

sZw =  
s

EWMA
t=1

w (s,t)X(t)∑ KEWMAa(s)=LΦZ/[1-(1-8) ] 

Standard 
version 

Zs LΦZs (3.4)  
EWMAe 

With 
normalized 
weights 

(3.5) K
sZw = 

s

EWMA
t=1

w (s,t)X(t)∑ EWMAe(s) = LΦZs /[1-(1-
8)s] 

 L/sSCUSUM  (5.1) s

t=1
X(t)/s ∑  

μ/2 + L/s  (5.2) LCUSUM s

t=1
X(t)/s ∑  

LR  (5.3) s s
2

t=1 u=t

P( =t)exp{tμ /2}exp{μ X(u)}∑ ∑τ 2 Lexp{( 1)μ /2}P(τ>s)
1-L

+s  

 
LinLR  (5.4) LinLRK (s)  s

LinLR
t=1

w (s,t)X(t) ∑  

EWLR  (5.5) sZw   EWLRK (s)  
EWlnLR  (5.6) sZw   EWlnLRK (s)  

 
If no change ever occurs, the expected value of the EWMA statistic is E(Zs |:(t)/ 0) = 0. If 

the change occurs immediately, we have E(Z |:(t)/:) = :(1-(1-8)s
s ) 6: as s 6 4. The variance of 

the statistic is Φ2
Zs= 8[1-(1-8)2s]/(2-8) which tends to Φ2

Z
 = 8/(2-8) when s 6 4. The rate of 

convergence of the variance depends on 8. For small values of 8 it is very slow. However, the 
use of the asymptotic variance is very common and it can in fact be preferred to the exact 
version in some aspects, see for example Sonesson (2003). This procedure will be referred to 
as the “asymptotic version”. When it is necessary to distinguish between the exact and the 
asymptotic version, the notations EWMAe and EWMAa will be used. Most of the results 
below concern EWMAa. When not otherwise indicated it is this version which is analyzed. 
EWMAa will give an alarm at time tA, where 
    tA = min{s: Z >LΦs Z},      (3.2) 

 
where L is a constant. For EWMAe the exact standard deviation is used in the alarm limit 
instead of the asymptotic. For the comparison with other methods in the following sections it 

s-tis useful to express the alarm statistic with normalized weights w (s,t) = 8(1-8) /[1-(1-EWMA
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s8) ], which sum to one. The alarm criterion in (3.2) is equivalent to  

 
    A s Zt = min{s: Z /[1-(1- )s]>L /[1-(1- )s]}λ σ λ  
 
which can be written as  
 

       (3.3) A st = min{s: Zw >K (s)]}EWMAa

where  

     
s

s EWMA
t=1

Zw = w (s,t)X(t)∑
and 

s    KEWMAa(s) = LΦZ /[1-(1-8) ].  
 

The EWMAe method gives an alarm if  
 

    tA = min{s: Z >LΦ },      (3.4) s Zs
 

        (3.5) A st = min{s: Zw >K (s)]}EWMAe

where  
    KEWMAe(s) = LΦ  /[1-(1-8)s].  Zs

 
 
Small values of 8 will be of special concern in Section 5.1 on ARL optimality. In the other 

end we have the large values of 8. For 8=1 the EWMA method is identical with the Shewhart 
method. 

Since an alarm for EWMAe (obvious adjustment for EWMAa) is given if the statistic Zs 
exceeds the alarm limit, LΦ , where L is a constant, we have that P(Z  >LΦ ) = Μ(-{L-E(ZZs s Zs s) 
/ΦZs}), where Μ is the normal cumulative distribution function. For this exact version this 
probability is constant if the process is in control. Note that this is not the probability of an 
alarm at s. It is only if 8=1 that successive values of Zs are independent. We have in that case 
ARL0 = 1/Μ(-L) and ARL1 = 1/Μ(-{L-:}). For other values of 8, there is a dependency 
between successive values of Zs, and the dependency increases when 8 decreases. The value 
of L, which gives a desired ARL0, is a function of this correlation which in turn is a function 
of 8. For a fixed value of L the smallest value of ARL0 is obtained for 8=1 and the largest 
when it approaches zero. Equivalently, for a fixed value of ARL0 the largest value of L is 
obtained when 8=1 and the smallest when it approaches zero. 

The use of EWMA for autocorrelated processes is discussed by e.g. Schmid and Schöne 
(1997), Lu and Reynolds Jr (1999) and Gut and Steinebach (2004). Multivariate EWMA 
methods are discussed by e.g. Lowry et al. (1992), Tsui and Woodall (1993), Lowry and 
Montgomery (1995), Prabhu and Runger (1997) and Yeh et al. (2003). Multivariate 
surveillance by EWMA for time series is discussed by e.g. Kramer and Schmid (1997), Knoth 
and Schmid (2002) and Rosolowski and Schmid (2003). Here, only surveillance of a process 
of independent and univariate observations is discussed in order to focus on some critical 
issues of optimality. 

Two-sided EWMA methods can be achieved by running two one-sided surveillance 
procedures parallel and to make an alarm as soon as one of them signals a change. When the 
one-sided versions are symmetrical, this is equivalent to making an alarm as soon as 
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|Zs|>LΦZ. The investigations by Lucas and Saccucci (1990), Crowder (1989) and Srivastava 
and Wu (1997) use two-sided limits symmetrical around zero. The properties for one- and 
two-sided EWMA are not easily related because of different relations between successive 
decisions. Waldmann (1986) suggested that barriers should be used in order to get an 
approximation of the ARL for the one sided case. The use of max{b, Zs} (or min{b, Zs} in the 
case of negative changes) in the one-sided surveillance has the advantage of the same simple 
relation between the one- and two-sided versions as for the CUSUM method. A formula by 
Kemp (1961) can be used for derivation of the ARL properties. Waldmann (1986) suggested a 
wide barrier in order to get a good approximation of the ordinary method. Champ et al. 
(1991), Gan (1995) and Gan (1998) also use barriers for the alarm statistic. Barriers avoid bad 
properties in the “worst possible” case when the change occurs at a time when the earlier 
observations least favor the detection of the change. Sonesson (2003) examined the inferential 
differences between two-sided, one-sided with barrier and ordinary one-sided methods. In this 
paper we will only deal with ordinary one-sided procedures in order to draw attention to 
certain optimality issues since optimality is most clearly expressed in this situation. However, 
it should be noticed that the results are not immediately translated to the two-sided case. 

 
4. OPTIMALITY CRITERIA 
The performance of a method for surveillance depends on the time point ϑ of the change. 
Sometimes it is appropriate to express the performance as a function of ϑ, as by Frisén (1992) 
and Frisén and Wessman (1999). Sometimes, however, a single criterion of optimality is 
needed. We will here study three such criteria, the first one often used in the quality control 
literature and in connection with EWMA and the two others often used in literature on general 
surveillance but seldom in the construction of optimal EWMA. Also other optimality criteria, 
based for example on the stationary average delay time, SADT, concerning the asymptotic 
properties when τ tends to infinity, have been suggested in the literature. However, here only 
three criteria will be studied in detail.  

First, a measure which is often used in quality control, and which was suggested by Page 
(1954), is the average of the run length until the first alarm. The average run length until an 
alarm, when there is no change in the process under surveillance, is denoted by ARL0 = 
E(tA|:(s)/0). The average run length until detection of a true change (that occurred at the same 
time as the surveillance started) is denoted by ARL1 = E(tA|:(s)/:) = E(tA|ϑ=1). In the literature 
on quality control, optimality is often stated as minimal ARL1 for fixed ARL0. This criterion 
is, for short, named the ARL criterion. Margavio et al. (1995), Woodall and Montgomery 
(1999) and Carlyle et al. (2000) stated that the use of the ARL criterion usually is 
recommended in spite of the known fact that the distributions of the alarm time are skewed. 
Margavio et al. (1995) suggested that the whole distribution should be used. A time dependent 
limit can be chosen to give the desired distribution. By this, special properties such as fast 
initial alarms could be designed. However, the possible problem of an influence of ϑ remains. 
For some situations, the expected delay of an alarm, given that there was no alarm earlier, is 
only slightly dependent on ϑ but this is not generally true. This will be demonstrated in 
Section 5.2. Degenerated methods, which would never be used in practice, give minimal 
ARL1 for a fixed ARL0   as demonstrated by Frisén (2003). 

Secondly, an important specification of utility is that of Girshick and Rubin (1952) and   
Shiryaev (1963). The gain of an alarm is a linear function of the difference tA-ϑ between the 
time of the change and the time of the alarm. The loss of a false alarm is a function of the 
same difference. The criterion of maximization of this utility is named the ED criterion, since 
the expected delay from a change to the detection is minimized. This criterion will be further 
discussed in Section 5.2, where the exact definition is presented. Their solution to the 
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minimization of the expected utility is identical to the LR method described by Frisén and de 
Maré (1991). The LR method will be used as a benchmark when comparing the expected 
delay for EWMA and different modifications in Section 5.2. Variants with exponential 
penalty for delay have been discussed by Poor (1998) and Beibel (2000), but will not be 
considered here. 

The third criterion is the minimax of the expected delay after a change with respect to the 
time of the change. This will be further discussed in Section 5.3, where the exact definition is 
presented. It is related to the ED criterion as several possible change times are considered. 
However, instead of an expected value, which requires a distribution of the time of change, 
the worst value is used. Thus, minimax solutions, with respect to ϑ, avoid the requirement of 
information about the distribution of ϑ. Important results on minimax are given by e.g. Pollak 
(1985), Gordon and Pollak (1995), Yakir (1997) and Yakir et al. (1999). The maximal value 
of the expected delay is for ϑ=1 for many methods and with a minimax perspective this can 
be a motivation for the use of ARL1. However, this argument is not relevant for all methods. 
It will be demonstrated that the argument is not useful for the EWMA method. A still more 
pessimistic criterion, the “worst possible case”, not only uses the worst value of ϑ but also the 
worst history of earlier observations. The merits of studies of this criterion have been 
thoroughly discussed by e.g. Yashchin (1993). Important results based on this minimax 
criterion were given by e.g. Moustakides (1986), who concludes that the CUSUM method is 
optimal based on this criterion. 

In the studies of the ED criterion and the minimax criterion a fixed value of the total false 
alarm probability P(tA<ϑ) is used here, whereas a fixed value of the ARL0 is used in the ARL 
criterion. The relation between these two measures of false alarms is illustrated in Section 5.2. 
For the minimax criterion ARL0 is often used in literature, as will be discussed in Section 5.3. 

 
5. OPTIMAL EWMA 
The properties of the EWMA methods depend both on the value of 8 in the alarm statistic and 
on the alarm limit. The aim is to achieve a combination of limits and values of 8, which 
results in a total optimality. For the EWMA method there is a restriction of how the given 
formula for the alarm limit should be combined with weights in the alarm statistic. When 
optimal weights and optimal limits can be combined, better exponentially weighted methods 
are achieved as will be seen below.  

An important feature of a method is how the alarm limit depends on the decision time s. 
The unavoidable false alarms can be allowed early or late. This error-spending strategy is 
important for the properties of the method. It might appear as if the error-spending by 
EWMAe is independent of 8 since P(Zs >LΦZs| :=0) = Μ(-L) is independent of 8. However 
the correlation between successive Zs, and thus the error-spending, depends on 8. 

In order to investigate the properties of methods according to the different optimality 
criteria we need estimates of the values of different measures. Numerical approximations 
involve problems, as discussed in the next section. Here a simulation study was performed to 
investigate the properties of methods. The cases studied were chosen to be representative for 
situations in practice but only cases which could be studied with enough exactness by 
simulations were chosen. A special study, reported in the Appendix, demonstrates that the 
technique used, and the very large number of replicates, allow safe conclusions. 

 
5.1 Minimal ARL1 for a fixed ARL0

5.1.1 Choice of value of the parameter 8.
ARL1 and ARL0 are expectations under the assumption that there are equal distributions for 
all observations under each of the two alternatives. Statistical inference with the aim of 
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discriminating between the alternatives that all observations have the expected value 0, or all 
have the expected value :, should by the ancillarity principle not be based on the time of the 
observation. Thus, one should not give unequal weight to the late and old observations. 
However, the ARL-criterion must not necessarily agree with generally accepted principles of 
inference.  

Frisén (2003) demonstrated that there exist methods with equal weights for all observations 
which are ARL optimal. This is another reason to choose equal weights for the EWMA 
method. To get equal weights to all observations by the EWMA method, 8 should approach 
zero. 

The variance for the standardized alarm statistic, Zws, has the smallest variance when 8 
approaches zero. As the expected value of Zw  is constant (0 or : for the conditions for ARL0

s  
or ARL1 respectively) the coefficient of variation of the statistic is minimized. This is still 
another argument for using equal weights if the aim is only to discriminate between these two 
alternatives. 

0,0

2,0

4,0

6,0

8,0

10,0

12,0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
λ

ARL1

μ=1 μ=1.5 μ=3

 
Figure 1. ARL1 as a function of 8 for EWMA when ARL0 = 100 and :=1, 1.5 and 3. 
 
Figure 1 supports the conclusion that 8 should approach zero to satisfy the ARL criterion, 

irrespectively of the size of the shift. In that figure the observations for 8=0 and 8=1 are based 
on theory while the others are based on simulations. Also, Chan and Zhang (2000) observed 
by simulations that the ARL1 decreases when 8 decreases. The suggestion was to impose a 
restriction that the variance of the run length should be small, which it is not for small values 
of 8. The conclusion that 8 approaching zero is optimal is avoided by this alternative criterion. 
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One would intuitively give more weight to the later observations as compared to past ones 

if one might suspect that the past observations might come from the in-control distribution. 
This is also the solution using the ED criterion (Section 5.2) or the minimax criterion (Section 
5.3). These two criteria take into account the possibility of shifts occurring at different time 
points. However, observe that all observations are out of control when ARL1 is calculated 
since τ=1. In that case there is an advantage in giving all observations equal weights. 

Different computational techniques to numerically approximate the ARL have been 
suggested. Here, we mention some which have been directly devoted to find “optimal” values 
of the parameter 8 in the EWMA method. For one-sided EWMA, Robinson and Ho (1978) 
used Edgeworth series expansion. According to Lucas and Saccucci (1990) this 
approximation is inaccurate for small values of 8. The algorithm does not converge for small 
values of 8. Crowder (1989) used integral calculations suggested by Crowder (1987). Lucas 
and Saccucci (1990) suggest that the EWMA statistic should be represented as a continuous-
state Markov chain, whose properties can be approximated by a finite-state Markov chain 
following a procedure similar to that of Brook and Evans (1972). Srivastava and Wu (1993) 
use a continuous time model and an explicit formula for average run lengths for one-sided 
EWMA. Continuous time approximations are not good for all discrete time situations. Wu 
(1994) uses a correction by an approximation of the overshoot, which is claimed to be good 
enough for practical cases but not for optimality considerations. This numerical 
approximation is used for determination of the value of the parameter which makes the one-
sided discrete time EWMA SADT optimal . Srivastava and Wu (1997) give a correction term 
which is used to determine the parameter for the ARL optimal two-sided EWMA. However 
this correction term is not satisfactory for very small values of the parameter. Han and Tsung 
(2004) compare their generalized EWMA, which does not use knowledge of the size of the 
shift, with the method by Wu (1994) which is named “optimal EWMA” by an analytical 
comparison of the ARL properties of one-sided EWMA and by a simulation study of the two-
sided EWMA. 

The results concerning the optimal value of 8, by the numerical approximations in the 
publications mentioned above, are not in agreement with the theoretical arguments that 8 
should approach zero to give a statistic which is suitable for the ARL criterion. The 
explanation for this might be that the numerical approximations are not good enough for very 
small values of 8. Very accurate numerical approximations by Knoth (2004) support our 
result that for one-sided EWMA optimal ARL is achieved when 8 60. Besides, the present 
result is for the one-sided case and some of the results mentioned above are for the two-sided 
case. 

 
5.1.2 The alarm limit.
In the preceding section we found that, for ARL optimality, equal weights for all observations 
should be considered. Still, we have to construct the optimal alarm limit. We will now study 
alarm limits for EWMA when 8 60.  

For the EWMAe method (see formula 3.5) using the exact variance Φ2
Zs = 8[1-(1-8)2s]/(2-

8) we have the alarm limit:  
 

KEWMAe(s)  = LΦZs /[1-(1-8)s] = L (8[1 - (1-8)2s]/(2-8))1/2/[1-(1-8)s] 6 L/s0.5 as 8 60. 
 

The method tends to a repeated likelihood ratio test method (see Siegmund (1985) p 86, 98) 
as 8 approaches zero. For EWMAa (see formula 3.3) the situation is more complicated since 
LEWMAa tends to infinity for all s, for a fixed L, when 8 approaches zero. The ratio between the 
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limit for a certain s and that for s=1, will reflect how the alarm-limit depends on s. The ratio  

 
KEWMAa(s)/ KEWMAa(1) 6 1/s as 860. 

 
A related method with an alarm limit which is exactly proportional to 1/s is the “simple 

CUSUM” (SCUSUM) method described by Frisén (2003). The method is seldom used but is 
of interest as a limiting case of the EWMA method. The SCUSUM method gives an alarm at  

 

        (5.1), 
s

A
t=1

t =min{s: X(t)/s > L/s}∑
 

where L is a constant. Thus, the alarm statistic is the unweighted average of the observations 
which is also the alarm statistic of the EWMA method when 860. An alarm is triggered when 
this average exceeds L/s or equivalently: when the simple cumulative sum of the observations 
exceeds a fixed limit L.  

Since the ARL criterion (minimum ARL1 for a fixed ARL0) can be criticized, we will also 
briefly examine how the EWMA satisfies a modification, the criterion of minimum ARL1 for 
a fixed false alarm probability, (P( At τ< ). The LCUSUM method, demonstrated by Frisén 
(2003)to be optimal for this criterion is based on an SPRT, and gives an alarm at 

 

       (5.2), 
s

A
t=1

t =min{s: X(t)/s > μ/2 + L/s}∑
 

where L is a constant. Altering the criterion to have a fixed false alarm probability instead of a 
fixed ARL0 leads to a much more reasonable “ARL-optimal” method than the “Two-point 
method” which was demonstrated by Frisén (2003) to be optimal for the usual ARL criterion 
(for a fixed ARL0). However, the LCUSUM method is seldom used for surveillance. It is 
suitable for a test of a hypothesis of τ=1, but also serves as a theoretical benchmark for 
surveillance methods. In Figure 3 in the next section the minimal ARL1 for a fixed false alarm 
probability is illustrated by the low expected delay for ϑ=1. However, the low expected delay 
is true only for this value of ϑ. The properties for a later change are very bad. This is so also 
for the SCUSUM method but less pronounced. Thus, to go beyond the class of EWMA 
methods you can get still better ARL-properties, but even worse properties for large values of 
ϑ. 

None of the EWMA variants have alarm limits which depend on s in the same way as the 
LCUSUM method when 8 approaches zero. However, when : tends to zero the LCUSUM 
method approaches the SCUSUM method and in that case EWMAa approaches the LCUSUM 
method when 8 approaches zero. 

It follows from the general theory of SPRT that the LCUSUM method does not have a 
finite ARL0. The same follows for SCUSUM from the theory of Brownian motions and the 
fact that discrete stopping procedures have larger expected stopping times than the continuous 
version. When 8 approaches zero, the ARL0 of EWMAa behaves as for SCUSUM and will 
not be finite. The alarm limit of EWMAa converges to that of EWMAe when s increases if 
the same value of L is used. The alarm limit for Zs is constant for EWMAa and increases 
faster with s for EWMAe than for EWMAa. Thus, the ARL0 tends to infinity also for 
EWMAe. Exact ARL optimality for EWMA is thus hard to discuss. However, as L decreases 
to -4 in order to get a fixed value of ARL0, P(tA=1) increases to 1. The results from the 
simulations, reported in Figure 1 for EWMAa, illustrates that the ARL-properties will 
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approach the optimal one with ARL1=1 for a fixed value of ARL0 when 8 60. 

Methods which allocate the power to the first time points, like EWMAe, the Fast Initial 
Response method by Lucas and Saccucci (1990)or a combination of both and a more direct 
allocation Steiner (1999) will have good ARL1 properties but worse ones if the change 
happens later. This is also true for EWMAa with small values of 8 as illustrated in Figure 3. 

 
5.2 Minimal expected delay 
The ED criterion as described in general terms in Section 4, belongs to a wide class of utility 
functions. The LR method (see Frisén and de Maré (1991)), which is based on the full 
likelihood ratio, maximizes all these utility functions. 

Instead of using the ARL0 as the false alarm measure as in the ARL criterion we now use a 
fixed value of the false alarm probability, P(tA<ϑ). The relation between the ARL0 and the 
P(tA<ϑ) is illustrated in Figure 2 for some methods. It is clear that you can expect different 
results in comparisons depending on which of the restrictions you choose. Methods are 
favored differently by the two restrictions. For large and moderate values of < it can be seen 
in Figure 2 that the EWMAa method with a large value of 8 is favored by the ARL restriction, 
while the LR method (to be described below) optimized for small values of < and : is favored 
by the restriction on P(tA<ϑ). 
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0Figure 2. The false alarm probability P(tA<ϑ), when ARL  = 100, as a function of the 
intensity <. 
 
Let the expected delay from the time of change, ϑ=t, to the time of alarm, tA, given the 

time of change, be denoted by 
 

ED(t) = E[max (0, tA-t) | ϑ=t] 
 
To connect with the preceding section, it can be noted that ED(1)=ARL1-1. For most 
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methods the ED(t) will tend to zero as ϑ increases. The conditional expected delay 

 
CED(t) = E[tA-t | ϑ=t, tA ∃ t] = ED(t) / P(tA ∃ t) 

 
on the other hand, will for most methods converge to a constant value. The CED(ϑ) for the 
EWMA methods, with large values of 8, is fairly independent of ϑ. Only the last observations 
will have any great influence. Thus the ability to detect a change, given that no alarm has 
been given earlier, is fairly constant. For 8=1 the EWMA methods equal the Shewhart 
method, which has a constant CED= ARL1-1. For large values of 8, the CED curve 
approaches an asymptote and a constant value of CED for moderate values of τ. However, for 
small values of 8 the delay for changes which occurred in the beginning differs much from 
those occurring later on. For small values of 8, CED increases as a function of ϑ. The extreme 
situation is when λ approaches zero and the CED curve for EWMA approaches that for 
SCUSUM. In Figure 3 the relation between CED and τ is illustrated for some methods 
described above or below.  
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Figure 3. The conditional expected delay CED as a function of ϑ for <=0.01 and :=0.25. The 
false alarm probability is fixed to 0.75. 

 
The summarizing expected delay 

ED= Eϑ[ED(ϑ)], 
 

where the expectation is with regard to the distribution of the time ϑ of the change, is in focus 
of this section. It satisfies the very general utility function by Shiryaev (1963) where the 
expected delay of a desired alarm plays an important role. He treated the case of constant 
intensity of a change where the gain of an alarm is a linear function of the value of the delay, 
tA-τ. The loss associated with a false alarm is a function of the same difference. This utility 
can be expressed as U= E{u(τ, tA)}, where 
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A A
A

1 A 2

h(t -τ) if  t <τ 
u(τ,t )=

a (t -τ)+a else
⎧
⎨
⎩

 

The function h(tA- τ) is usually a constant (say b), since the cost of alerts and investigations is 
the same irregardless of how early the false alarm was given. In this case we have 

U= b P(tA<τ) + a  ED + a1 2 . 
Thus, we would have a maximal utility if we have a minimal (a1 is typically negative) 
expected delay from the change-point for a fixed probability of a false alarm. The ED 
criterion seems to be a suitable optimality criterion in many applications because of its 
generality of including changes occurring at different time points. 
 The ED is minimized (for a fixed value of the false alarm probability) by the LR method. 
For the situation specified in Section 2, the LR method gives an alarm for 

 
s s

2 2
A

t=1 u=t

Lt =min{s: P( =t)exp{tμ /2}exp{μ X(u)} exp{( 1)μ /2}P(τ>s)
1-L

> +∑ ∑ sτ   (5.3), 

 
where L is a constant which determines the probability of a false alarm. The alarm criterion 
can equivalently be expressed by the posterior probability 

 
s sP(τ s|X =x ) > L≤ . 

 
The special data-analytic interpretation of the values of the statistics of methods with a simple 
relation to the posterior probability is pointed out by Kenett and Pollak (1996). 

The LR method is optimized for the values of : and < used in the alarm statistic. When the 
values of these two parameters are of interest, they are used as arguments in the notation 
LR(:,<). 

The expected delays for the LR method and the Shewhart method are presented in Figure 4 
for some situations. The expected delay of the LR method is used as the benchmark in the 
following descriptions, since it is the minimal one. The values for the Shewhart method 
indicate a practical upper limit, even though EWMA with a very small value of 8 has worse 
values. Thus, the limits between which methods vary for a specific combination of < and 
P(tA<ϑ) can be seen in the figure. For small values of : the intervals are wide, while they are 
tight for large values. The LR and Shewhart methods converge to have identical properties 
when : tends to infinity, as proved by Frisén and Wessman (1999). 
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Figure 4. The expected delay as a function of : for the Shewhart and LR methods for different 
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used for the legend to the curves. 

 
Linear approximations of the LR method were suggested by Frisén (2003). Here we will 

study three variants and compare them to the EWMA method. All the approximations of the 
LR method are functions of the pivot parameter 

 
2λ* = 1-exp(-μ /2)/(1-ν) , 

 
which has a specific value as soon as : and < are specified. The method which is best for rare 
large changes is not the same as  the method which is best for small long-term changes. Exact 
knowledge is rarely available. However, Frisén and Wessman (1999) demonstrated that the 
LR method is very robust with regard to the parameter <, of the geometrical distribution (no 
major effects were demonstrated for < less than 0.1).  
 Here we are specially interested in the methods as modifications of the EWMA method. 
We will express the methods with the unspecified parameter 8 and examine whether the value 
8=8* actually is optimal or if it can be improved. 

The first approximation, which is denoted LinLR is achieved by a Taylor approximation of 
the alarm statistic of the LR method. The LinLR method has a linear alarm statistic with the 
standardized weights 

 
s

LinLR t s

1 λ(1-λ)w (s,t)= -1
(1-λ) 1-(1+sλ)(1-λ)

⎡ ⎤
⎢ ⎥
⎣ ⎦

. 

The weights are well approximated by exponential weights proportional to 1/(1-8) except 
possibly for small values of t. The alarm limit is 
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s+1

LinLR s

λ ν(1-L)(1-λ) -1+λL
K (s)=

ν(1-L)(1-λ){μ-μ(1+sλ)(1-λ) }

⎡ ⎤⎣ ⎦ , 

 
where the constant L is determined by false alarm properties. This alarm limit, as well as that 
of the normalized version of the EWMAa, tends to a constant when s increases. The LinLR 
method will give an alarm for 
 

      (5.4). 
s

A LinLR LinLR
t=1

t =min{s: w (s,t)X(t) > K (s)}∑
 

The exponential weights of the EWMA are appealing. When the weights of the LinLR 
method are approximated by exponential weights, and we keep the limit of the LinLR 
method, we have the EWLR method, which gives an alarm at 
 

        (5.5). A s EWLt =min{s: Zw  > K (s)}R

R

 
A third approximation, EWlnLR, is achieved by a Taylor approximation of the logarithm 

of the alarm statistic of the LR method and, as a further approximation, exponential weights. 
An alarm is given at 

       (5.6), A s EWlnLt =min{s: Zw  > K (s)}
where 
 

s s

EWlnLR s

λ 1-(1-λ) L-ln(1-(1-λ) )
K (s)=

μ 1-(1+sλ)(1-λ)

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤⎣ ⎦

. 

 
The three approximations of the LR method can be seen as modifications of the EWMA 

method. The EWLR and EWlnLR methods keep the alarm statistic of the EWMA but modify 
the alarm limits. The modifications are negligible for large values of the decision time, s but 
have an influence by the effect for small values of s. The LinLR method modifies also the 
alarm statistic for small values of s. The modifications of the EWMA have the purpose to give 
smaller expected delays. 

The CED is illustrated in Figure 3. For the EWlnLR method it can be seen that the 
dependency of CED on ϑ is very similar to that for LR. The other LR-approximations are not 
illustrated in the figure but are also very similar to the LR method. 
The methods are compared in Figure 5 by the ED relative to that of the LR method for 
different values of 8 for some situations. In this figure we can find the details, discussed in 
Section 5.2.1, about how the value of 8 influences the ED for different methods. The 
diagrams are also used for derivation of the summarizing measures, used to compare the 
methods in Section 5.2.2. 
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Figure 5. The expected delay relative to the LR method for fixed false alarm probabilities as 
functions of 8 for different variants of EWMA. The values of < and P(tA<ϑ) are fixed for each 
column while the values of : are indicated in each diagram.  
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5.2.1 Optimal 8.
The choice of 8 is important and the search for the optimal value of 8 has been of great 
interest in literature, as discussed in Section 5.1.1 concerning the ARL criterion. In Figure 3 it 
is demonstrated how different values of 8 influence the ability of detection at different time 
points. Small values of 8 result in good ability to detect early changes while larger values are 
necessary for changes that occur later. This illustrates the importance of the choice of 8 also 
for the ED criterion. 
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Figure 6. The expected delay, relative to LR, for fixed false alarm probabilities as functions 
of : for different variants of EWMA. The upper row is for 8= 8* while the bottom row is for 
the optimal value of 8. The values of < and P(tA<ϑ) are fixed for each column.  
 

The minima of ED with respect to 8 are rather flat as demonstrated in Figure 5. The 
minimal value of ED can thus be determined accurately, but there is an uncertainty on the 
corresponding 8. This also means that an exact value of the optimal value of 8 is not very 
important. However, an approximate value is important since the optimal value differs much 
between situations and the ED can be very large far away from the optimal value. The values 
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of 8 which give the minima of ED with respect to 8 are determined by quadratic 
interpolation for the neighboring observed values of 8. The optimal value of 8 increases with : 
and decreases with <. 

The formula for 8* is suggested to achieve approximations of LR. Since this formula is a 
result of several approximations, it can only be expected to give rough approximations of the 
optimal values of 8 for different situations. However, as can be seen in the upper row of 
Figure 6, the formula results in very good properties for the modifications (within 5% of the 
value of the LR-method) for most cases studied. Comparison of the upper and lower row of 
Figure 6 reveals that the loss by the use of 8* instead of the exactly optimal value of 8 is small 
and less than 5% for the modifications, for all cases studied. This is also true for the EWMAa 
for large changes, which are the only cases where EWMAa should be used, as will be 
demonstrated below. Thus, the formula is useful for the choice of value of 8. 
 
5.2.2 Comparison between methods.
In this section we compare how well the methods perform when the optimal value of 8 for 
each method and situation is used. These minimal ED values are presented in the bottom row 
of Figure 6. They are presented in relation to the minimal possible values which are achieved 
by the LR method. 

All the methods studied perform considerably better than the Shewhart method, except for 
large changes, where the differences are less. The Shewhart method is not included in Figure 
5 and 6 since the values are too high to be included in the scale suitable for the other methods. 

The EWLR method is very good for small values of :. The minimal value of ED is within 
8% of that for LR for all cases studied, and for most cases much smaller. The LinLR method 
could be expected to be better than the EWLR method since the approximation of the weights 
is avoided. This approximation could be expected to have most effect for small values of : 
where small values of 8 are used. However, the improvement compared to EWLR is slight. 
Thus, there is no indication of a need to modify the EWMA alarm statistic. 

EWlnLR has the smallest values of ED, except for very small values of :, where all the 
modifications are very close to the LR method. The minimal value of ED is within 5% of LR 
for all cases studied. 

The EWMAa method is very bad for small changes. However, for large values of : 
EWMAa is slightly better than the EWLR method and approximately equal to the EWlnLR 
method. 

The three different cases studied have different false alarm properties. The largest ARL0 is 
for < = 0.1 and P(tA<ϑ) = 0.1. The smallest is for < = 0.01 and P(tA<ϑ) = 0.75. 

For the cases studied, all methods (with the optimal value of 8) have expected delays 
between the LR and Shewhart methods. The intervals between these two are illustrated in 
Figure 4. 

 
5.3 Minimax 
Examples of CED(ϑ) curves are given in Figure 3 where it is obvious that for EWMA the 
maximal value is not always for ϑ=1. Thus, ARL1 does not reflect the maximal value. This 
means that for EWMA it is not possible to restrict attention to ARL1 in order to determine the 
minimax optimal EWMA.. The maximal CED(ϑ) with respect to ϑ was first noted and then 
the minimal value with respect to 8 was determined. These minimax values of 8 and also the 
optimal values with respect to the ED criterion are given for some cases in Figure 7. It is 
clearly seen that the values of 8 by the two criteria are closely related. When the CED curves 
are flat, as they are for large values of λ, the minimum ED and the minimax values of CED 



 19
occur for the same value of 8. As expected, the difference between optimal values of λ with 
respect to these two criteria diminishes when µ increases as large values of λ are then optimal 
according to both these criteria. This is not at all the case for the formal ARL criterion where 
8=0 is the solution as proved by Frisén (2003). Thus, the exact ARL optimality differs much 
from the minimax optimality, while the optimal value of 8 for the minimax and the ED 
optimality are related. The Shewhart method, which is very bad by the other criteria, is nearly 
as good as the LR method by the minimax criterion. The EWMA method with a value of 8 
near 8* is the best of the examined methods by this criterion. 

Most minimax studies in the literature are for a fixed ARL0 and not for fixed P(tA<ϑ) as 
here. This makes a difference as is seen in Figure 2. However, the slight difference in the 
present situation is in a direction to strengthen the above conclusions. 
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Figure 7. The optimal value of the parameter 8 of the EWMA method for the ED criterion 
and for the minimax criterion. The symbol “x” is used for the ED criterion and the symbol “G” 
is used for the minimax criterion. The dotted curves are for the situation with P(tA<ϑ) = 0.25 
and < = 0.1. The solid curves are for the situation with P(tA<ϑ) = 0.75 and < = 0.01. 
 
6. DISCUSSION 
There are two necessary conditions for a method to satisfy an optimality criterion. One is that 
the different observations at every fixed decision time, s, have optimal relative weights. The 
other one is that the alarm limit, as a function of s, is optimal. The alarm limit determines if 
the unavoidable false alarms will be spent early or late. For the conventional EWMA, the fact 
that both the weights and the alarm limit are completely determined by the parameter 8 
hampers the possibility to optimize both at the same time. This is true for all optimality 
criteria. In earlier attempts to achieve an optimal EWMA the alarm limit has usually not been 
questioned and the optimal weighting has been determined given this limit as a function of s. 
The idea of a constant probability of the EWMAe statistic to exceed the alarm limit might 
seem appealing. However, for surveillance, this does not correspond to suggested optimality 
criteria. Besides, the asymptotic version completely destroys this property for small values of 
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8. Here we examine both the weights and the limits. 

The result of this paper that the optimal value (zero) of 8, according to the ARL criterion, 
implies very bad properties demonstrates that the ARL criterion can be questioned as a formal 
criterion. Sometimes it is claimed that the ARL criterion which concerns ϑ=1 contains 
enough information since no great differences between the properties for different values of ϑ 
exist. This is true for very large values of 8, but certainly not for all values of 8. For the 
detection of small changes (e.g., :=0.5), and the small values of 8 of EWMA suitable for that 
case, the conditional expected delay is strongly dependent on the time of the change. This is 
illustrated in Figure 3. In this figure it is also demonstrated that the ARL criterion differs 
much from the minimax criterion. We suggest that when immediate change (τ=1) is the main 
interest, methods for sequential testing of hypotheses such as the SPRT-based LCUSUM 
method, and not EWMA, should be used. 

For the ED criterion it is necessary with some knowledge of the parameter < in the 
distribution of the time of the change. In practice some knowledge should be available and 
should influence the choice of method. However, exact knowledge is rarely available. Frisén 
and Wessman (1999) demonstrated that the LR method is very robust with regard to <, (no 
major effects were demonstrated for < less than 0.1). The lack of need of a distribution for the 
change point is an advantage for the ARL- and minimax optimality. However, the robustness 
of the LR method makes this disadvantage of the ED criterion less important. Besides, it is 
not self evident that the possibility to optimize a method for a parameter should be seen as a 
disadvantage even though it is hard to specify which value is of most interest.  

The necessity to find the (approximately) optimal value of the parameter 8 in order to get 
good properties is a problem. For the ED criterion the suggested formula for 8* gives good 
values of the expected delay for all methods and cases studied here. The only exception is for 
the EWMAa for very small changes, where the EWMAa should not be used anyway. When 
conclusions are based on simulations, it is always a question about the generality of the 
results. As indicated above the results on the usefulness of the approximations of the LR 
method could not be guaranteed for extreme situations but the cases studied represent a 
reasonable variation in values of : and < of interest for practical applications.  

The EWMAa can be improved, with respect to the expected delay, by modifying the alarm 
limit to that of EWlnLR. The improvement is substantial for small changes, where it can be 
even slightly more improved by EWLR or LinLR. The LR method is of course best with 
respect to expected delay, but the approximations are nearly as good. 

For large values of : there is no great difference between the EWMAa and the other 
methods. Thus, for large values of : there is no need for the modifications. However, the 
modifications have clearly less expected delay than the EWMAa for small values of :. 

EWMAa with 8= 8* approximates the LR-method. Many of the CED-curves for this 
choice of 8 are rather flat and this adds to the explanation of the similarity between the 
minimax solution and the ED solution for EWMA. ARL optimality requires a small value of 8 
and the steep slope of the CED-curves for these small values explains the lack of 
correspondence between the minimax- and ARL optimality for the EWMA method. 
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APPENDIX. ACCURACY OF THE RESULTS FROM THE SIMULATION STUDY. 

When conclusions are based on simulations it is necessary to ensure that the number of 
replicates is enough. In many studies, including this one, different methods are evaluated with 
respect to some measure,  under the restriction that another measure, , has a specified 
value. In this appendix we describe the statistical technique used for calculation of confidence 
intervals of the results from the simulations and also exemplify the accuracy of the results 
displayed in the figures. The measure 

Pθ

θ  depends on the out of control run length distribution, 
which in turn makes  a function, (L)θθ , of the constant L  used in the alarm limit. The 
measure  could for example be the ARL1θ , CED or ED for different methods. The measure 

, which is specified to  for comparability is here ARL0P P*  or AP(t )< τ . Also this measure 
depends on the value of the alarm limit. The aim is to study the accuracy of the estimates of 
θ  for . By analyzing the accuracy in each step used to produce the results, and 
combining these, we get conservative confidence intervals for the points in the figures. 

P P*=

We start by studying the accuracy of the value of . Denote by  the value of  such that 
 and by  the value of  estimated by our procedure and for which 

L L* L
L´ LP(L*) P*= θ  is 

estimated. The procedure used here to estimate L  is to choose  and use 
simulations for each value of  to estimate the values of . We 

approximate  with a linear function locally, , and choose  accordingly 

to give . A confidence interval CI

* 1 2 nL ,L ,...,L
L 1 2P(L ),P(L ),..., P(L )n

1 1
ˆˆ ˆP(L) a b L= +P(L) L '

P̂(L ') P*= 1 for  (and thus also for ) can be 
constructed as consisting of those values of  which would not be rejected by the test of 

. The very large number of replicates ensures that the normal distribution can 
be used.  

L* L* L '−
L

0H : P(L) P*=

2A confidence interval CI  for  can be constructed using simulations for the chosen 
value . Also in this case we can use a normal approximation due to the large number of 
replicates.  

(L )́θ
L '

The last link is to determine how influential the error in  is with respect to the value ofL θ . 
Estimates of  for some values  of  around  are achieved by special 
simulations for the purpose of determining the accuracy. We approximate  locally by a 
linear function . A confidence interval CI

(L)θ L L '1 2 nL ,L ,...,L '

(L)θ
3

2(L*) (L´) b (L* L )́θ = θ + −  for 2b  in the regression 
can be constructed. 

The confidence intervals from the three steps described above can then be combined to 
form a confidence interval for . Let the confidence interval CI1(L*)θ  for  be of 
confidence , the confidence interval CI

L´ L*−
2 (L )́θ1(1 )− α  for  be of confidence  and the 

confidence interval CI
2(1 )− α

3, for 2b  be of confidence 3(1 )− α . Then, we can combine these 
intervals to construct a confidence interval of confidence at least 1 2(1 )(1 )(1 )3− α − α − α  for 

 by taking  to be the lower limit and 
 to be the upper. We choose  

 which results in a confidence interval for 

2 3min{a b c; a CI , b CI , c CI }+ ⋅ ∈ ∈ ∈ 1

1
3

(L*)θ
2 3max{a b c; a CI , b CI , c CI }+ ⋅ ∈ ∈ ∈ 1 21 1 1− α = − α = − α

(L*)θ0.983=  of confidence at least 95%. 
Confidence intervals for  constructed in this way for some cases studied in the paper 
will now be exemplified. 

(L*)θ

Accuracy of the results in Figure 1: Figure 1 shows  as a function of  for the 
EWMAa method when =100. We exemplify the accuracy in Table A.1. For the 
determination of the alarm limit L  we have used 500.000 replicates for 25 neighbouring 

1ARL λ
0ARL

'
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values of . The confidence intervals for L 2b  are based on 10 values of  with 10.000.000 
replicates each. The estimates of  are based on 1.000.000 replicates. The conclusion that 

 should approach zero in order to minimize  when =100 is thus well supported. 
The width of the confidence interval is short compared with the thickness of the lines in 
Figure 1.  

L
(L )́θ

1ARL 0ARLλ

 
Table A.1. Examples of the components for the confidence intervals for different values of Figure 1. 

Confidence interval 
for  

Confidence interval 
for  

 Confidence interval 
for   

Confidence interval 
for L* L '− 2b 1ARL (L )́ 1ARL (L*) 

λ lower upper lower upper lower upper lower upper  
0.001 -0.00022 0.00029 18.75 21.73 2.00 2.02 2.00 2.02
0.010 -0.00044 0.00045 7.07 8.08 4.62 4.64 4.61 4.64
0.100 -0.00055 0.00058 2.42 4.49 5.64 5.66 5.64 5.67

 
Accuracy of the results in Figure 3: Figure 3 shows CED as a function of τ for the case 

when µ= 0.25, ν=0.01 and =0.75. As an example we calculate a 95% confidence 
interval for  for the LR method. For this case the determination of the alarm limit  
was based on 500.000 replicates for 24 neighbouring values of L . This resulted in a 
confidence interval for L  of (-0.06, 0.04). Again, the confidence interval for 

AP(t )< τ
CED(1) L '

2b* L '−  was 
based on 10 values of  with 10.000.000 replicates each. This results in a confidence interval 
of (0.39, 0.44) for

L
2b . A confidence interval of (17.23, 17.28) was constructed using 

1.000.000 replicates for the estimate of C  using the value  in the alarm limit. The 
width of the resulting 95% confidence interval for , (17.2067, 17.2887), is small 
compared with the line width in Figure 3.  

ED(1) L '
CED(L*)

Accuracy of the results in Figure 4: For the same case as exemplified for Figure 3 we can 
construct a conservative confidence interval for  

 

t 1

ED(L*) P( t)ED(t,L*)
∞

=

= τ =∑  

 
by using the confidence intervals calculated for ED(t) by the technique given for CED(t) 
above. Under the assumption that all the steps given above result in an approximately 
normally distributed estimator we can estimate the variance for the estimator of ED(t). The 
variance of the weighted sum ED(L*) has less variance than the component with the largest 
variance. The simulations indicate that this is the case for τ=1. Since , we can 
use the results from the example above and we have a 95% confidence interval for the ED for 
the LR method as (2.4976, 2.5796). The width of this confidence interval is small compared 
with the line width in Figure 4.  

ED(1) CED(1)=

The confidence intervals for the results in this paper are small enough using the chosen 
number of replicates to ensure that the results are reliable. In most cases the confidence 
intervals are shorter than the thickness of the lines in the figures. 
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