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Abstract 
 
A system for detecting changes in an on-going process is needed in many situations. On-
line monitoring (surveillance) is used in early detection of disease outbreaks, of patients 
at risk and of financial instability. By continually monitoring one or several indicators, 
we can, early, detect a change in the processes of interest. There are several suggested 
methods for multivariate surveillance, one of which is the Hotelling’s T2. Since one aim 
in surveillance is quick detection of a change, it is important to use evaluation measures 
that reflect the timeliness of an alarm. One suggested measure is the expected delay of an 
alarm, in relation to the time of change (τ) in the process. Here we investigate a delay 
measure for the bivariate situation. Generally, the measure depends on both change times 
(i.e. τ1 and τ2). We show that, for a bivariate situation using the T2 method, the delay 
only depends on τ1 and τ2 through the distance τ1-τ2.  
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1. Introduction 
 
In many situations it is important to monitor one or several processes in order to detect 
important changes as soon as possible. In on-line monitoring we have repeated decisions: 
at each new time point, a new observation becomes available and a new decision has to 
be made in order to decide whether the process has changed or nor. In this situation the 
methodology of statistical surveillance is appropriate. Examples of different areas where 
statistical surveillance has been used is turning point detection (see (Neftci 1982), 
(Hamilton 1989), (Royston 1991), (Baron 2002), (Bock, Andersson and Frisén 2007), 
(Andersson 2004) and (Andersson, Bock and Frisén 2004). Another area is detection of 
growth retardation of foetuses, see (Petzold, Sonesson, Bergman and Kieler 2004). Yet 
another is detection of an increased level, emerging from a source and spreading spatially 
((Järpe 1999)).  
  In industrial quality control, statistical surveillance has been used in the form of 
control charts, such as xbar-charts, s-charts and R-charts. These charts were developed 
for the univariate case and often only the last observation is used (the Shewhart method 
((Shewhart 1931)). 
  The time scale can differ from one application to another (daily, weekly, monthly), but 
common to all surveillance is the repeated decisions: at each new time point another 
observation becomes available and once more we have to decide whether the change has 
occurred or not. There is always a risk of a false alarm. A “good” alarm system should 
not have too many false alarms. But we must also consider that we want a system with 
high detection ability if there really has been a change – we want to detect a change 
quickly. When evaluating surveillance systems, we often use other measures than size 
and power, instead there is a trade off between false alarms and delay of motivated 
alarms (see e.g. (Frisén 1992) and (Frisén 2007)). The false alarms are often measured by 
the average run length, ARL0. For the motivated alarms it is important to consider how 
long it took until a signal was called, for example measured by the expected delay time.   
  In many situations we monitor several processes, which can change at the same time 
or at different times. There are several approaches to multivariate surveillance, see 
(Sonesson and Frisén 2005). One approach is to reduce the multidimensional data at each 
time point, to a scalar. The Hotelling’s T2 is an example of this approach ((Hotelling 
1947)).    
  In this paper we present a delay measure for the multivariate situation. We also show a 
result regarding the delay of the T2 method, when monitoring a bivariate process, where 
the change times are not equal.  
 
1.1 Model and method 
 
First we study the univariate surveillance situation. At some unknown time tau there is a 
change in μ (the expected value of X). In the simplest case the change can be a shift in 
the mean, i.e. 

   
0

1

μ(s)=μ , s  τ
μ(s)=μ , s  τ
⎧ <
⎨

≥⎩
       

exemplified in Figure 1. 
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Figure 1: The vector μ, as a function of time, for τ=1 (left) and τ=3 (right). 
 
Another example is a change from a constant level to an increasing, unspecified function 
so that the vector μ is 

   
0

0 0

μ(1)=...=μ(s-1)=μ(s)=μ ,  s  τ
μ(1)=...=μ( -1)=μ andμ <μ( )<...<μ(s),  s  ττ τ
⎧ <
⎨

≥⎩
       

 
which is exemplified in Figure 2. 

 
Figure 2: The vector μ, as a function of time, for τ=1 (left) and τ=3 (right). 
 
Now we turn to the bivariate case. At each decision time, a new bivariate observation 
becomes available, and at decision time s we have the observations (X,Y). At an 
unknown time τX there is a change in μX and correspondingly for the process Y.  
  The two processes X and Y have the same variance (i.e. Var[Y(t)] = Var[X(t)] = σ2) 
and have covariance ρ⋅σ2 (i.e. E[(X(t)- μX(t))(Y(t)- μY(t))]= ρ⋅σ2). The variables X(s) and 
Y(s) are (possibly) dependent but not X(s) and X(s-j) or Y(s) and Y(s-j) or X(s) and Y(s-
j).  
  At an unknown time τX there is a change in μX and correspondingly for the process Y. 
Thus, for the same value of τ (τX=τY), X and Y have the same distribution. When ρ=0, X 
and Y are independent, conditional on τ. The aim is to detect the first change in either μX 
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or μY, when these processes may change at different time points τX and τY. We study the 
situation when the τ values are not identical or have known lags).  
  An early multivariate surveillance method is the T2 method of (Hotelling 1947). The 
covariance matrix is assumed to be known, see e.g. (Alt 1985).  

    T2(s) = 
0 2 0 2 0 0

2 2 2 2 2 2

( ( ) ( )) ( ( ) ( )) 2 ( ( ) ( ))( ( ) ( ))
(1 ) (1 ) (1 )

x s s y s s x s s y s sμ μ ρ μ μ
ρ σ ρ σ ρ σ
− − − −

+ −
− − −

>k. 

 
The alarm limit, k, is chosen to give a specified false alarm property, e.g. a specific 
ARL0. The time of alarm, tA, is defined as 
   tA = min{s: T2(s)>k}. 
 
1.2 A measure of delay in multivariate surveillance 
 
For an on-line system, the ability to detect a change quickly is important, i.e. we want a 
short delay of a motivated alarm. For most surveillance methods, the delay of an alarm 
depends on when the change did occur, in relation to the start of the surveillance. In the 
univariate situation, the delay can be measured by the conditional expected delay, defined 
as   
    CED(t)= [ , ]A AE t t tτ τ τ− ≥ = .  (1) 
 
Many evaluations are made using only τ=1, e.g CED(1) which is equivalent to ARL1-1. 
However it is important to consider other change point times also.  
  In the multivariate situation where we want to detect the first change, τ(1), the delay 
depends on both change points, τX and τY. In (Wessman 1999) and (Andersson 2007) the 
following delay measure was suggested 
    CED(t1, t2) = E[tA-τ(1)⏐ tA≥τ(1), τX=t1, τY=t2].  (2) 
 
 
1.3 Results 
 
A simulation study reveal the following, regarding the CED(t1,t2) of the T2 method (the 
complete study is presented in (Andersson 2007)). Below, CED curves for ρ={0, 0.5} are 
presented.  
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Figure 3: CED(t1,t2) for T2 when t1={1, 5, 10}. Left: ρ=0.0, right: ρ=0.5.  
 
 
The graphs above indicate that, for T2, the CED(t1,t2) only depends on the distance (t1-t2). 
This will be generally proven below.  
 
1.3.1 The delay of the T2 method for a bivariate process 
 
The CED(t1,t2) in (2) is based on the motivated alarms, i.e. alarms after time τ(1), so that 

   CED(t1, t2) =
(1)

(1) (1)( ) ( )A A
i

i P t i t
τ

τ τ
∞

=
− ⋅ = ≥∑ =

(1)

(1)
(1)

( )( )
( )τ

τ
τ

∞

=

=
− ⋅

≥∑ A

Ai

P t ii
P t

. 

 
1.3.1.1 Simultaneous change points 
 
First we consider the situation with simultaneous changes, τX=τY=t. Then τ(1)=t and the 
conditional expected delay equals 
   CED(t,t) = 

   ( )1 ( ) ( ) ( 1 ) ( 1) ...
( )

− ⋅ = + + − ⋅ = + +
≥ A A

A
t t P t t t t P t t

P t t
= 

   1 ( ) ( )
( )

∞

=

⎛ ⎞
− ⋅ =⎜ ⎟⎜ ⎟≥ ⎝ ⎠

∑ A
A i t

i t P t i
P t t

. 

 
The probability in the denominator, ( )AP t t≥ , equals 
    ( )AP t t≥ = ( 1)AP t t> − = 

   2 2( (1) ... ( 1) )P T k T t k< ∩ ∩ − < =  

    
1

2

1
( ( ) )

t

i
P T i k

−

=
<∏ . 
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The probability is independent of time, so we denote 2( ( ) )<P T i k  by p0. Thus 

   ( )AP t t≥  =
1

2 0

1
( ( ) ( ) ( ) )

t
X Y

i
P T i k i iμ μ μ

−

=
< = =∏ = (p0)t-1.  

For the probability in the nominator, ( )AP t i= , we have 
    ( )AP t i= =  

   
1

2 2

1
( ( ) ) ( ( ) )

i

j
P T j k P T i k

−

=

⎛ ⎞
⎜ ⎟< ⋅ >
⎜ ⎟
⎝ ⎠
∏ . 

We are interested in CED(t,t). For a value i, the probability is divided into time points 
before t and time points after t 

   
1

2 0 0

1
( ( ) , )

t

j
P T j k μ μ

−

=

⎛ ⎞
⎜ ⎟<
⎜ ⎟
⎝ ⎠
∏ * 

     
1

2 1 1( ( ) ( 1), ( 1))
i

j t
P T j k j t j tμ μ

−

=

⎛ ⎞
⎜ ⎟< − + − +
⎜ ⎟
⎝ ⎠
∏ * 

     2 1 1( ( ) ( 1), ( 1))P T i k i t i tμ μ> − + − + .  

We denote 2 1 1( ( ) ( 1), ( 1))P T j k j t j tμ μ< − + − +  by p11(j-t+1) and 

2 1 1( ( ) ( 1), ( 1))P T j k j t j tμ μ> − + − +  by q11(j-t+1). Then  

    ( )AP t i=  = ( )
11

0 11 11( 1) ( 1)
−

−

=

⎛ ⎞
⎜ ⎟⋅ − + ⋅ − +
⎜ ⎟
⎝ ⎠
∏
it

j t
p p j t q i t . 

 
Thus, the conditional expected delay equals 
    CED(t,t) = 

   1 ( ) ( )
( ) A

A i t
i t P t i

P t t

∞

=
− ⋅ =

≥ ∑ = 

   ( )
11

0 11 111
0

1 ( ) ( 1) ( 1)
( )

−∞
−

−
= =

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥− ⋅ ⋅ − + ⋅ − +⎨ ⎬⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
∑ ∏

it
t

i t j t
i t p p j t q i t

p
= 

  11 11
0 1

( ) ( 1)
i

i j
i p j q i

∞

= =

⎛ ⎞
⎜ ⎟⋅ ⋅ +
⎜ ⎟
⎝ ⎠

∑ ∏ . 
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Hence CED(t,t) is independent of t. If μ1 is constant (i.e. μ1(s-τ+1) = μ1 for s≥τ), the 
probabilities are constant over time  

   2 1 1( ( ) , )P T j k μ μ< =p11, 

   2 1 1( ( ) , )P T i k μ μ> =q11, 

 
and for this situation the CED(t,t) equals  

   ( )11 11
0

i

i
i p q

∞

=
⋅ ⋅∑ . 

 
1.3.1.2 Different change points 
 
Second, we look at different change times, τX=t1 and τY=t2, where t2>t1 and hence τ(1)=t1, 
τ(2)=t2. The conditional expected delay equals  
   CED(t1, t2) = 

   
(1)

(1) (1)( ) ( )A A
i

i P t i t
τ

τ τ
∞

=
− ⋅ = ≥∑ = 

   
1

1
1

1 ( ) ( )
( ) A

A i t
i t P t i

P t t

∞

=
− ⋅ =

≥ ∑ = 

         

   
2

1

1

1
1

1 ( ) ( )
( )

t

A
A i t

i t P t i
P t t

−

=

⎛
⎜ − ⋅ =

≥ ⎜
⎝
∑ +

2

1( ) ( )A
i t

i t P t i
∞

=

⎞
⎟− ⋅ =
⎟
⎠

∑ . 

 
Using the same notation as above, we have 1( )AP t t≥ = (p0)t1-1. For the probability 
P(tA=i), we have, for t1 ≤ i<t2  
    ( )AP t i= = 

   
1 1

2 0 0

1
( ( ) , )μ μ

−

=
<∏

t

j
P T j k * 

     
1

1
2 1 0

1( ( ) ( 1), )
i

j t
P T j k j tμ μ

−

=
< − +∏ * 

    2 1 0
1( ( ) ( 1), )P T i k i tμ μ> − + , 
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and for i≥t2 
   ( )AP t i= = 

   
1 1

2 0 0

1
( ( ) , )μ μ

−

=
<∏

t

j
P T j k * 

     
2

1

1
2 1 0

1( ( ) ( 1), )
t

j t
P T j k j tμ μ

−

=
< − +∏ * 

     
2

1
2 1 1

1 2( ( ) ( 1), ( 1))
i

j t
P T j k j t j tμ μ

−

=
< − + − +∏ * 

     2 1 1
1 2( ( ) ( 1), ( 1))P T i k i t i tμ μ> − + − + . 

 
Denote the probabilities by 

 2 1 1
1 2( ( ) ( 1), ( 1))P T j k j t j tμ μ< − + − + =p11(j-t1+1, j-t2+1), 

 2 1 0
1( ( ) ( 1), )P T j k j tμ μ< − + =p10(j-t1+1), 

 2 1 1
1 2( ( ) ( 1), ( 1))P T j k j t j tμ μ> − + − + =q11(j-t1+1, j-t2+1), 

 2 1 0
1( ( ) ( 1), )P T j k j tμ μ> − + =q10(j-t1+1). 

 
Thus, for t1 ≤ i<t2 and for i≥t2 we have the two following expressions 

   P(tA=i) = 1

1

1
1

0 10 1 10 1( ) ( 1) ( 1)
−

−

=

⎛ ⎞
⎜ ⎟⋅ − + ⋅ − +
⎜ ⎟
⎝ ⎠
∏
i

t

j t
p p j t q i t   

and       
   ( )AP t i= =  

  
2

1

1 2

1 1
1

0 10 1 11 1 2 11 1 2( ) ( 1) ( 1, 1) ( 1, 1)
− −

−

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⋅ − + ⋅ − + − + ⋅ − + − +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∏ ∏
t i

t

j t j t
p p j t p j t j t q i t i t . 
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The expression for CED(t1, t2) can be partitioned into one sum for t1 ≤ i<t2 and another 
sum for i≥t2. The first sum can be expressed as 

   
2

1

1

1( ) ( )
t

A
i t

i t P t i
−

=

⎛ ⎞
⎜ ⎟− ⋅ =
⎜ ⎟
⎝ ⎠
∑ = 

   ( )
2

1

1 1

1 11
1 0 10 1 10 1( ) ( 1) ( 1)

− −
−

= =

⎛ ⎞
⎜ ⎟− ⋅ ⋅ − + ⋅ − +
⎜ ⎟
⎝ ⎠

∑ ∏
t it

i t j t
i t p p j t q i t = 

  ( )
2 1

1

1
1

0 10 10
0 1

( ) ( 1)
− −

−

= =

⎛ ⎞
⎜ ⎟⋅ ⋅ ⋅ +
⎜ ⎟
⎝ ⎠

∑ ∏
t t it

i j
i p p j q i . 

 
The second sum can be expressed as 

   
2

1( ) ( )A
i t

i t P t i
∞

=

⎛ ⎞
⎜ ⎟− ⋅ =
⎜ ⎟
⎝ ⎠
∑ = 

   ( ) 1

2 1

2 11
1 0 10 1( ) ( 1)

−∞
−

= =

⎛ ⎞
⎜ ⎟− ⋅ ⋅ − +
⎜ ⎟
⎝ ⎠

∑ ∏
tt

i t j t
i t p p j t * 

    
2

1
11 1 2 11 1 2( 1, 1) ( 1, 1)

−

=

⎛ ⎞
⎜ ⎟− + − + ⋅ − + − +
⎜ ⎟
⎝ ⎠
∏
i

j t
p j t j t q i t i t  = 

  ( )
2 1

1

2 1

11
0 10 11 2 1 11 2 1

1 1
( ) ( , ) ( 1, ( ) 1)

− −∞
−

= − = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ − + ⋅ + − − +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∏ ∏
t t it

i t t j j
i p p j p t t j j q i i t t . 

 
The complete expression for the conditional expected delay is  
 
   CED(t1,t2) =  

   
2

1

1

1
1

1 ( ) ( )
( )

t

A
A i t

i t P t i
P t t

−

=

⎛
⎜ − ⋅ =

≥ ⎜
⎝
∑ +

2

1( ) ( )A
i t

i t P t i
∞

=

⎞
⎟− ⋅ =
⎟
⎠

∑ = 
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( )

( )

2 1
1

1

1
1

0 10 10
0 1

1
0

( ) ( 1)
− −

−

= =
−

⎛ ⎞
⎜ ⎟⋅ ⋅ ⋅ +
⎜ ⎟
⎝ ⎠

∑ ∏
t t it

i j
t

i p p j q i

p
+ 

        

    

( )

( )

2 1
1

2 1

1

11
0 10 11 2 1 11 2 1

1 1
1

0

( ) ( , ) ( 1, ( ) 1)
− −∞

−

= − = =
−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅ − + ⋅ + − − +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∏ ∏
t t it

i t t j j
t

i p p j p t t j j q i i t t

p
 

which equals 

  
2 1 1

10 10
0 1

( ) ( 1)
− −

= =

⎛ ⎞
⎜ ⎟⋅ ⋅ +
⎜ ⎟
⎝ ⎠

∑ ∏
t t i

i j
i p j q i + 

    
2 1

2 1

1
10 11 2 1 11 2 1

1 1
( ) ( , ) ( 1, ( ) 1)

− −∞

= − = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⋅ ⋅ − + ⋅ + − − +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∏ ∏
t t i

i t t j j
i p j p t t j j q i i t t . 

 
Denote t2-t1 by c. Then the conditional expected delay equals 
  CED(t1, t2)= 

   
1

10 10
0 1

( ) ( ) ( 1)
−

= =

⎛ ⎞
⎜ ⎟⋅ ⋅ +
⎜ ⎟
⎝ ⎠

∑ ∏
ic

i j
i p j q i + 

    
1

10 11 11
1 1

( ) ( ) ( , ) ( 1, 1)
−∞

= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⋅ ⋅ + ⋅ + − +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∏ ∏
c i

i c j j
i p j p c j j q i i c , 

 
which is independent of t1 and t2, and only depends on the distance (t2-t1)=c.  
 
 
For a constant μ1 (i.e. μ1(s-τ+1)= μ1 for s≥τ), the probabilities are constant over time  

   2 1 1
1 2( ( ) ( 1), ( 1))P T j k j t j tμ μ< − + − + =p11, 

   2 1 0
1( ( ) ( 1), )P T j k j tμ μ< − + =p10, 

   2 1 1
1 2( ( ) ( 1), ( 1))P T j k j t j tμ μ> − + − + =q11, 

   2 1 0
1( ( ) ( 1), )P T i k i tμ μ> − + =q10, 
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and then 
   CED(t1,t2)= 

  ( )
1

10 10
0

( )
c i

i
i p q

−

=
⋅ ⋅∑ + ( ) ( ) 1

10 11 11( ) c i

i c
i p p q

∞
−

=
⋅ ⋅ ⋅∑ . 

 
 
Thus when X is independent over time and likewise with Y, the CED(t1,t2) for T2 only 
depends on the distance between the change times, t2-t1=c.  
 
 
2. Summary 
 
On-line monitoring of multivariate data is considered and the situation when the 
processes under surveillance change at different time points is studied. In on-line 
monitoring, the delay of an alarm is an important evaluation measure. A measure of the 
expected delay is suggested, for the multivariate situation.  
   One approach to multivariate surveillance is to reduce the data at each time point, to a 
scalar and then monitor this scalar by univariate surveillance. Here we study one 
reduction, namely the Hotellings T2. We prove that the conditional expected delay for 
T2, in the situation with two processes, only depends on the distance between the change 
times. By using the T2 at each time point, we only include the information from the 
current time point. A univariate correspondence is the Shewhart method (for time 
independent data), where only the current observation is used. It has been shown, e.g. in 
(Frisén and Wessman 1999), that the conditional expected delay for the Shewhart 
method, is independent of the time of change (i.e. CED(i) in (1) is constant over different 
values of i).   
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