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ABSTRACT 
Phosphate is an essential nutrient. In most soils it is limiting, which has resulted 

in that phosphate is supplied as fertilizer to increase crop yield. Through 

evolution, plants have adapted several mechanisms to increase phosphate 

uptake from the soil and to household with acquired phosphate. A recent 

discovered house-holding mechanism is that plants utilize the phosphate bound 

in the headgroups of phospholipids: under phosphate-limiting conditions, 

phospholipids can be replaced by the non-phosphate containing lipid 

digalactosyldiacylglycerol (DGDG), previously assumed to reside in plastid 

membranes. The extra-plastidial phospholipid-to-DGDG replacement occurs in 

plasma membrane, tonoplast and  mitochondria and has led to discoveries of 

new enzymes and metabolic pathways in plants.  

This thesis reports that phosphate limitation-induced  biochemical and lipid 

compositional changes in oat root plasma membranes occur prior to any 

morphological changes in the oat. The phospholipase kinetics suggests that the 

plasma membrane is continuously supplied with phospholipids and that the 

products of plasma membrane lipase activities, phosphatidic acid and 

diacylglycerol, both are removed from the membrane. Furthermore, the 

phospholipid-to-DGDG replacement is reversible and when phosphate is 

resupplied the proportion of phospholipids increases and DGDG decreases in the 

oat root plasma membrane. 

Membrane lipids are more than a two dimensional liquid where membrane 

proteins reside. The specific lipid composition and distribution enables the 

membrane to function as a barrier to solutes and the interactions between lipids 

and proteins are important for the correct function. The lateral and transversal 

lipid distribution in oat root plasma membranes shows that DGDG does not 

replace phospholipids molecule for molecule; whereas phospholipids occur in 

both leaflets of the plasma membrane, DGDG is almost exclusively localized in 

the cytosolic leaflet. Model membrane studies suggests that one of the reasons 

that DGDG is absent in the apoplastic leaflet is its incompatibility to properly 

interact with the high sterol content of this leaflet. 

The oat seed contains enough phosphate to complete an entire generation 

without any exogenously supplied phosphate. The overall seed yield is much 

lower in phosphate-limited oat compared to fully fertilized oat, but the seed 

quality (starch, -glucan, lipid, soluble protein) is very similar, including that the 

phospholipids-to-DGDG replacement is absent from the mature oat seeds, here 

membrane lipid composition is conserved. Oat thus produce a few seeds of 

acceptable quality rather than more seeds of poor quality.  
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ABBREVIATIONS  

16:0 Hexadecanoic acid (palmitic acid) 

18:0 Octadecanoic acid (stearic acid) 

18:1 cis-9-octadecenoic acid (oleic acid) 

18:2 All-cis-9,12-octadecadienoic acid (linoleic acid) 

18:3 All- cis-9,12,15-octadecatrienoic acid (linolenic acid) 

ASG Acylated sterolglucosides 

ACP Acyl carrier protein 

CDP Cysteine diphosphate 

Cer Ceramide 

CoA Coenzyme A 

DAG Diacylglycerol 

DGDG Digalactosyldiacylglycerol  

DRM Detergent resistant membrane 

ER Endoplasmic reticulum  

EST Expressed sequence tag 

FA Fatty acid 

GGGT Galactolipid:glactolipidglucosyl transferase 

GlcCer Glucosylceramind 

GPI Glycosylphosphatidylinositol 

GPAT  glycerol-3-phosphate acyl transferase 

GIPC glycosyl inositol phosphorylceramides 

IE Inner envelope 

Lo Liquid order 

Ld Liquid disorder 

LPAT Lyso phosphatidic acid acyl transferase 

LPCAT Lyso phosphatidylcholine acyltransferse 

LPEAT Lyso phosphatidylethanolamine acyltransferse 

MAM Mitochondria associated membrane 

MGDG Monogalactosyldiacylglycerol 

NPC4 Non specific phospholipase C 4 

OE Outer envelope 

PA Phosphatidic acid 

PAM Plasma membrane associated membrane 

PAP Phosphatidic acid phosphatase 

PC Phosphatidylcholine 

PE Phosphatidylethanolamine 

PG Phosphatidylglycerol 

PI Phosphatidylinositol  

PLA Phospholipase A 

PLAM Plastid associated membrane 

PLB Phospholipase B 

PLC Phospholipase C 

PLD Phospholipase D 

PS Phosphatidylserine 

SG Sterolglucosides 

TLC Thin layer chromatography 

UDP Uridine diphosphate 
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1. INTRODUCTION  
 
A membrane delimits the cell from the surrounding environment and inside the 
eukaryotic cell, other membranes delimits different compartment from the 
cytosol. The compartments have different cellular functions and require different 
concentration of ions, proteins, lipids and other molecules. The membranes are 
primarily composed of lipids and proteins and their composition varies between 
membranes. The lipid composition of membranes differs with plant development 
and between tissues and it adapts to changes in the environment. 

Phosphate is limiting in most soils. Contrary to animals, plants cannot move 
to more favorable conditions and have therefore developed strategies to cope 
with the immediate environment. In phosphate-limited soils, the root elongates 
and the root exudes organic acids to facilitate uptake. 
Recently, a house-holding mechanism involving phospholipids as a phosphate 
reserve was identified in plants. The mechanism replaces phospholipids with the 
galactolipid digalactosyldiacylglycerol (DGDG) and during phosphate-limited 
conditions, the replacement occurs in plasma membranes, mitochondria and 
tonoplasts. 

The aim of this thesis is to elucidate some of the mechanisms behind and 
consequences for the plant plasma membrane when phospholipids are replaced 
with DGDG. A key step in the use the phospholipids as a phosphate reserve, is 
the removal of the phosphate moiety form the phospholipid. This investigation 
was initiated in Paper I and extended to include different plant ages and 
different degrees of phosphate limitation in Paper II. The transient nature of the 
phospholipid-to-DGDG exchange was investigated in Paper II. The specific 
localization of DGDG in the plasma membrane was examined in Paper III, with 
analyzes of lateral and transversal distribution of the lipids. Furthermore, the 
consequence of elevated levels of DGDG in the plasma membrane was also 
investigated in Paper III, using model membranes. Previously it had been noted 
that oat grown without any exogenously supplied phosphate were able to 
produce grains. In Paper IV, the quantity and quality of grains produced in oat 
cultivated with different levels of phosphate was examined.  

 
 

2. BACKGROUND 
 
2.1 The biological membranes 
All living cells are surrounded by biological membrane and all eukaryotic cells 
have membranes that delimit their organelles from the cytosol. The main role of 
membranes is to create a barrier between the cytosol and intra-cellular 
compartments and the outside of the cell. The biological membrane model that 
has received the most recognition was put forward by Singer and Nicholson in 
1972 and is usually referred to “the fluid mosaic model”. Singer and Nicholson 
proposed that in aqueous environments polar lipids spontaneous arrange 
themselves in bilayers (Singer and Nicholson, 1972).  
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The two major groups of components in biological membranes are proteins 
and lipids. Proteins provide structural support to the cell and the membranes. In 
the membrane, proteins catalyze enzymatic reactions, facilitate transport of 
molecules across membranes and receive and propagate signals. 

 
 
 

 

 
 
Figure 1. Shapes and curvature of lipids. Dependent on the size of the headgroup (spheres) 
and the degree of unsaturation of the acyl chains lipids adopt different conformations in 
membranes. Enrichment of inverted or cone shaped lipids can induce curvature of the membrane.  

 
 
Lipids are soluble in organic solvents such as heptane, hexane, chloroform 

or methanol. Membrane lipids are usually comprised of two distinctive parts: one 
polar (hydrophilic) and one non-polar (hydrophobic). There are several different 
classes of membrane lipids, which differ in their basic molecular structure; 
glycerolipids, sphingolipids and sterols. The lipids in these groups can have quite 
different properties, such as chemical structure, shape, charge, polarity and 
rigidity. Depending on the arrangements of lipids with different properties and 
proteins, membranes can adopt different curvature and impose different 
conditions on its surroundings (Figure 1). 

The role of organelles is to organize, compartmentalize and regulate 
enzymatic activities. Organelles have different lipid and protein compositions, 
ions and co-factors. A biological membrane is not a tight seal; it is a selective 
barrier, which means that water, nutrients, signaling molecules and other small 
molecules can pass a membrane from the outside to inside of the cell or between 
different compartments in the cell. 

 
2.2 The plant cell  
Plant cells differ from other eukaryotic cells in several ways. The most profound 
is the presence of plastids, cell walls and a large central vacuole. Plastids 
originated as prokaryotic photosynthetic bacteria, which, according to the 
endosymbiotic theory were engulfed by a eukaryotic cell (Mereschkowski, 1905; 
Kim and Archibald, 2008). The plastid contains several functions central to plant 
cell metabolism and development. The plastids in green tissues are called 
chloroplast and contain the photosynthetic machineries 

Plants have a rigid cell wall, primarily made up of the linear polymer 
cellulose (Somerville, 2006). The central plant vacuole can occupy as much as 



 3 

90% of the cell volume. One of the most important functions of vacuoles is to 
regulate the osmotic pressure against the cell wall. This pressure, turgor, is the 
foundation for the rigidity of well-watered plants.  
 
2.3 The plasma membrane 
The plasma membrane is the cell’s outer membrane, it controls when and how 
molecules and signals are transported and propagated into and out of the cell. All 
solutes taken up by the cell must be actively or passively transported though the 
plasma membrane.  

The integrity of the plasma membrane is determined by its protein and lipid 
composition. When plasma membranes from different plant specis are compared 
the polypeptide patterns seem to be more conserved than the lipid compositions. 
(Larsson et al., 1990).  The most abundant lipids in the plasma membrane are 
glycerophospholipids, sterols, sterol derivatives and sphingolipids. Digalactosyl-
diacylglycerol (DGDG) is a minor constituent under normal growth conditions, 
but during phosphate-limited conditions it comprises up to 25 mol% of the root 
plasma membrane (Andersson et al., 2003; Papers I and III). 

In order to study the plasma membrane it is necessary to be able to isolate 
highly purified plasma membrane. This is accomplished by aqueous polymer two-
phase partitioning (Kjellbom and Larsson, 1984; Sandelius and Morré, 1989)  
 
2.4 Phosphate limited plant cultivation 
Phosphate is required in numerous molecules and processes in the cell and is a 
limiting factor in most of the arable land. Plants have evolved several strategies 
to obtain phosphate. These include longer roots and root hairs (Andersson et al., 
2003; Li et al., 2006). The increase in root hairs greatly contribute to an increase 
in surface area during phosphate limiting conditions compared to fully fertilized 
growing conditions (Jungk, 2001). Other strategies involve increased mycorrhizal 
symbiosis and exudation of organic acid into the soil to liberate bound phosphate 
(Raghothama, 1999; Raghothama and Karthikeyan, 2005). 

Phosphate is used as a fertilizer in agriculture to increase crop yields. Most 
of this phosphate is mined as rock phosphate. The rock phosphate is, like fossil 
oil, a finite resource and it has been proposed that there will be a shortage of 
rock-phosphate in 50-100 years. (Runge-Metzger, 1995; Vance et al., 2003). 
Once distributed in the field, surplus phosphate binds to aluminum or iron 
complexes, which renders the phosphate inaccessible to plants, or is leached into 
the ground water and oceans and cannot be processed and recovered to be 
reused. It is therefore vital that we learn how phosphate is utilized in the plants, 
so that we can household and use the available phosphate in the best way 
possible. 

All of the papers in this thesis deal with oat that has been subjected to 
different levels of phosphate limitation. Oat seeds were imbibed in de-ionized 
water over night and planted in vermiculite. Vermiculite is an inert material 
suitable for nutrition studies. All nutrients available to the plants are supplied as 
nutrient solution mixed from inorganic salts, as previously described (Norberg 
and Liljenberg, 1991). Oats were grown in a growth chamber with 16/8 h and 
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18°/15°C day/night regime with humidity set at 70%. To induce phosphate 
limiting conditions potassium phosphate was replaced by potassium chloride. 
Several different concentrations of inorganic phosphate were used during the 
different experiment, ranging from 0 mM to 1.5 mM. The different concentrations 
are referred to as a percentage, with 100% representing 1.5 mM inorganic 
phosphate.  

 
2.5 Why oats? 
Oat in a self-pollinating monocotyledon, which grows in temperate climate and is 
tolerant to cold and wet climate. All of these traits make it an ideal crop for 
Swedish climate and is frequently used in Swedish agriculture as a rotational 
crop. Oat is used as feedstock for animals and as oatmeal for humans and is rich 
in the soluble fiber -glucan (3-4% w/w), which has the beneficial health 
properties of lowering cholesterol (Brown et al., 1999). It is also used as a 
thickening agent in low fat foods (Bräutigam et al. 2005) The dicotyledon 

Arabidopsis thaliana has become the weapon of choice for plant researchers to 
elucidate plant functions. It has a relative short generation time with high seed 
production and a sequenced genome. The major drawback of working with oat is 
that its hexaploid genome is not sequenced. Expressed sequence tag (EST) 
libraries are available to some extent (Bräutigam el al., 2005), but classic plant 
molecular biology in oat is still quite hampered. Advantage of oats compared to 
Arabidopsis includes larger root and shoot biomass to facilitate large-scale 
isolation of membranes. The oat seed contains enough phosphate to sustain an 
entire generation (Paper IV).  

Even though much knowledge and information can be extracted from 
studies using Arabidopsis there are differences between species. To understand 
oat during phosphate limitation, it is necessary to work with oat. Initially, we 
used the oat variety Vital (Papers I and II) but decided to switch to Belinda 
(Papers II-IV) due to that Vital was removed from the agricultural market and 
we wanted to work with a variety relevant for Swedish agriculture.  
 
 
3. MEMBRANE LIPIDS 
 
As mentioned in the previous sections there are several different classes of 
membrane lipids. In this section, their synthesis and bilayer properties will be 
discussed.  
 
3.1 Glycerolipids 
Glycerolipids share a similar backbone consisting of a glycerol molecule. They 
have two acyl chains, usually 16 or 18 carbons long, bound to two of the three 
hydroxyl-groups on the glycerol backbone through an ester bond. These two 
positions are referred to sn-1 and sn-2. At the third hydroxyl-group (sn-3) there 
can be a myriad of different polar molecules such as sugars, phosphocholine, 
phosphoethanolamine and phosphate to name a few.   
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Dependent on the degree of desaturation of the acyl chains at position sn-1, 
sn-2 and the polar moiety attached to the sn-3 position, the glycerolipids have 
quite different properties such as, size, shape and charge (Figure 1). 

The fatty acid synthetase (FAS) in the plastid stroma, produces 16:0-ACP 
(acyl carrier protein) and 18:0-ACP (Ohlrogge and Browse, 1995), which is 
desaturated to 18:1-ACP by FAB2 (Lightner et al., 1994). The 16:0 and 18:1 acyl 
chains are transferred from ACP to Coenzyme A (CoA) and exported to the ER as 
acyl-CoA to react with glycerol-3-phosphate to produce phosphatidic acid (PA). 
In the past years a second pathway for exporting fatty acids from the chloroplast 
has come to light, namely that newly synthesized acyl chains are initially 
incorporated into the phospholipid phosphatidylcholine (PC; Bates et al., 2007). 
The authors propose an acyl editing mechanism involving lyso PC acyl 
transferases for incorporation of acyl chains into PC.  
 

 

 

 
Figure 2. Structures of the common glycerolipids in plants. All gycerolipids are based on a 
diacylglycerol backbone. The shaded regions indicate the different headgroups common in plant 
glycerolipids 
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3.2 Phospholipids 
Glycerophospholipids are the most prevalent membrane lipid in animal cells and 
in extra plastidial membranes in plant cells. In this thesis glycerophospholipids 
will be referred to as phospholipids. The polar headgroup is made up of a 
phosphate to which one of several other molecules can be bound, such as 
choline, ethanolamine, serine and glycerol, to produce an array of phospholipids 
(Figure 2). Beside the function as major membrane constituents, phospholipids  
serve as signaling molecules, protein co-factors and as substrates in various 
reactions. More and more cellular responses are attribute to various 
phospholipids signaling, such as programmed cell death (Park et al., 2004) and 
root elongations (Li et al., 2006). Especially PA seems to be involved in many 
different responses and for reviews on the subject on PA as a singling molecule 
see (Munnik, 2001; Munnik and Testerink, 2008)  

Most of the plant cell phospholipids are syntheses in the ER with the initial 
step being the formation of lyso-PA from acyl-CoA and glycerol-3-phosphate via 
glycerol-3-phosphate acyl transferase (GPAT; 1 in Figure 3). A second acyl chain 
is added by lyso PA acyl transferase (LPAT; 2 in Figure 3) to produce PA. From 
PA, numerous pathways are possible; phosphatidylglycerol (PG) and 
phosphatidylinositol (PI) are produced by cytidine-diphosphatediacylglycerol 
(CDP-DAG; produced from PA) and glycerol or inositol, respectively (3 in Figure 
3). Phosphatidylserine (PS) is synthesized in similar reactions with serine and 
UDP-DAG (4 in Figure 3). Phosphatidylethanolamine (PE) is produced through 
decarboxylation of PS, (5 in Figure 3). Diacylglycerol (DAG) is produced from PA 
by a phosphatidic acid phosphatase (PAP) (6 in Figure 3). The Kennedy pathway 
produces PC and PE by the transfer of phosphocholine or phosphoethanolamine 
from CDP-phosphocholine or CDP-phosphoethanolamine to DAG (7 and 8 in 
Figure 3), for details see Ohlrogge and  Browse, (1995). In yeast, PE can be 
converted to PC by a series of three methylations, but if this is actually true for 
plants is not certain (Kanipes and Henry, 1997; 9 in Figure 3).   

 
 

 
 
Figure 3. Pathway of phospholipid synthesis in ER.  See text for the identification of the 
indicated reaction  
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Desaturation of phospholipid acyl groups in ER occur primarily by FAD2 
where a double bond is introduced into 18:1 at position 12 to form 18:2 
(Okuley et al., 1994) and FAD3 introduces a third double bond at position 15 to 
form 18:3 (Browse et al., 1993). Both FAD2 and 3 only desaturate acyl chains 
attached to lipids in a membrane and have a preference to PC compared to other 
phospholipids (Ohlrogge and Browse, 1995).  

 
3.3 Galactolipids 
The galactolipids MGDG and DGDG (Figure 2) are the most abundant lipids on 
earth and comprises circa 70% of thylakoid lipids. These lipids are almost 
exclusively found in photosynthesizing organisms, which indicate that they are 
important in the photosynthetic machinery. Photosynthetic organisms have 
greater requirements of membrane lipids than other eukaryotes due to the large 
surface area of the thylakoid membrane. Galactolipids make up the majority of 
lipids in the chloroplast but since glucose and not galactose is the most abundant 
sugar in the plant cell, it has been puzzling why MDGD and DGDG are 
galactolipids and not glucolipids. Structural information regarding Photosystem I 
(Jordan et al., 2001) and light harvesting complex II (Nussberger et al., 1993) 
revealed close interaction between the galactolipid headgroup and proteins (Kelly 
and Dörmann, 2004). In transgenic Arabidopsis producing glucose-galactose-
DAG instead of galactose-galactose-DAG (DGDG) displayed hampered 
photosynthetic activity (Hölzl et al., 2006). Galactose and glucose have different 
orientation of the C4 hydroxyl group (Figure 4) and there are indications that the 
specific orientation of the C4 hydroxyl group in galactose is involved in stabilizing 
the LHCII (Hölzl et al., 2006). With an increasing number of structures of 
membrane bound proteins solved by x-ray crystallography, more lipids are 
recognized as an intricate and vital part of membrane proteins (Nussberger et 
al., 1993; Jordan et al., 2001). 

In plants there are two different pathways by which galactolipids are 
produced: the eukaryotic and the prokaryotic pathway. In the former the 
glycerolipid backbone is assembled in the ER and then transported to the plastid 
for further synthesis to MGDG and DGDG. It is not entirely clear which lipid(s) 
is/are transported from ER to plastids, PA (Awai et al., 2006; Lu et al., 2007; 
Benning 2008; Paper II), DAG (Williams et al., 2000); Paper II), lysoPC 
(Mongrand et al., 1997; 2000; Moreau et al., 1998) and PC (Roughan et al. 
1980; Hellgren and Sandelius, 2001a; Andersson et al., 2004). 
 

 
 
Figure 4. Galactose and glucose. Shaded region “highlights” the difference in hydroxyl group 
orientation between galactose and glucose.  
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In the other pathway, the prokaryotic, the galactolipid backbone is 
assembled inside the plastid followed by the formation of MGDG and DGDG. By 
analyzing the fatty acid composition of galactolipids it is possible to identify if the 
galactolipid backbone is assembled in the ER or the plastid (Heinz and Roughan, 
1983; Mongrand et. al, 1998). Galactolipids completely assembled in the plastid 
have C16 fatty acids at the sn-2 position; usually 16:3 while ER derived 
galactolipids have C18 as the most abundant fatty acid in the sn-2 position, 
usually 18:3. Plants with only the eukaryotic pathway are referred to as 18:3-
plants and plants with both the eukaryotic and prokaryotic pathways are referred 
to as 16:3-plants. In 16:3 plants, a PAP also generates DAG but the assembly of 
PA occurs entirely inside the plastid. The resulting DAG is the backbone for 
galactolipids synthesis. The main galactolipid MGDG is synthesized by the 
addition of galactose from UDP-galactose onto a DAG backbone (Neufeld and 
Hall, 1964; Ongun and Mudd, 1968) and DGDG is synthesized by the addition of 
an additional glucose from UDP-galactose onto MGDG (Dörmann et al., 1999; 
Kelly et al., 2003). Most plants (including oats) are 18:3-plants but Arabidopsis 
is a 16:3-plant (Mongrand et al., 1998). 

 
3.4 Sphingolipids 
Sphingolipids have three basic components; a polar headgroup, a long chain 
amino alcohol and a fatty acid (Figure 5). Sphingolipids with a polar headgroup 
consisting different sugar compounds such as mannose, galactose or glucose are 
referred to as cerebrosides. Ceramides with a polar headgroup of phosphorylated 
inositol and complex sugar moieties are referred to as phytoglycolipids or 
glycosyl inositol phosphorylceramides (GIPC; Lester and Dickson, 1993; Sperling 
and Heinz, 2003; Markham et al., 2006). 

The first step in sphingolipid synthesis is the condensation of an acyl-CoA 
and a serine, which occur in the cytosolic leaflet of the ER. A ceramide is formed 
by N-acylation of the nitrogen on the serine (Lynch and Fairfield, 1993; Lynch, 
2000). In animal cells, glucosylceramind synthetase is localized in the cytosolic 
leaflet of the Golgi apparatus (Futerman and Pagano, 1991; Jeckel et al., 1992; 
Marks et al., 1999), but in plants a fluorescent protein tagged enzyme appeared 
to be localized in the ER (Hillig et al., 2003). Further additions of sugars to the 
GlcCer headgroup occur at the luminal leaflet of the Golgi apparatus (Pomorski et 
al., 2001). There are several other modifications to sphingolipids other than 
alteration of the glucosylated-head-groups such as desaturation of the acyl 
chains, normally at positions 4 and 8, and hydroxylation. For details regarding 
sphingolipid metabolism see the reviews by Sperling and Heinz (2003) and Lynch 
and Dunn (2004). 

Standard lipid isolation protocols are based on chloroform/methanol 
mixtures (Bligh and Dyer, 1959; Kates, 1986), which extract neutral lipids, 
sterols, galactolipids and most phospholipids. Some sphingolipids are extracted, 
but not GIPC. This may lead to a systematic underestimation of the sphingolipids 
content in membranes. Protocols were developed and evaluated to analyze the 
GIPC content in plant tissues (Markham et al., 2006). When one of the GIPC 
optimized protocols for plant tissue was used on oat root plasma membranes, no 
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significant amount of GIPCs were detected (Paper III). The functional and 
structural aspects of sphingolipids in a membrane environment will be discussed 
in a later section (“…along the membrane”) 

 

 

 

Figure 5. Structures of sphingolipids. All sphingolipids are based on a ceramide backbone to 
which polar headgroups are attached. White hexagon represents inositol and black hexagons other 
sugars (glucose, galactose, etectera) 

 
3.5 Sterols  
Sterols and sterol derivatives are major components of the plant plasma 
membrane (Yoshida and Uemura, 1986; Norberg and Liljenberg 1990; Hartmann 
and Benveniste, 1987; Benveniste, 2004; Papers I and III) and can function as 
substrate in the cellular development process. (Heinz et al., 1975; Heinz, 1996; 
Warnecke et al., 1997; Peng et al., 2002).  All sterols share a four ring-
structure; to which 8-10 carbons are attached at carbon 17 (C17) and a hydroxyl 
group at C3 (Figure 6). The hydroxyl group is the polar headgroup of sterols and 
interacts with the polar headgroups of glycerolipids and sphingolipids at 
membrane surfaces. Free sterols are synthesized through the isoprenoid pathway 
in the ER, for review see Benveniste, (2004). The main functions of free sterols 
are to fine-tune the biophysical properties of membranes such as fluidity and 
permeability (Hartmann, 1998; Ikonen, 2008).  The three major plant sterols in 
oat root plasma membranes are campesterol, -sitosterol and stigmasterol 
(Papers I and III; Figure 6). The reason why plants have several types of free 
sterols is not known, but some different properties have been observed between 
the different sterols. Campesterol and -sitosterol reduce the fluidity and 
permeability of membranes in a similar fashion to cholesterol, where as 
stigmasterol has the opposite effect and reduce the order of the acyl chains 
(Hellgren and Sandelius, 2001b; Paper III).  

In plants have several sterol molecular species while in animals there is 
only cholesterol (Benveniste, 2004). Free sterols are synthesized in the ER but 
are rapidly transported to Golgi apparatus and finally to the plasma membrane 
via the secretory pathway. In barley roots and other tissues the proportion of 
free sterols increases from ER-to-Golgi-to-plasma membrane (Heinz et al., 
1975). It has been postulated that regions in the ER contain a high proportion of 
sterols to facilitate protein insertion (Bretscher and Munro, 1993)  

Sterol derivatives have additional moieties attached to the sterol backbone 
via an ether bond to the hydroxyl group at C3 (Figure 7). Sterol glycosylation 
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which, produces sterol glucosides (SG) is localized in the plasma membrane 
(Marie et al., 1978) but some activity has been found to occur in the tonoplast 
and Golgi apparatus (Green, 1983). In oats, steryl glucosides are synthesized by 
membrane bound enzymes, which transfer glucose from UDP-glucose to a sterol 
backbone (Warnecke and Heinz, 1994). The most common sugar in SG is 
glucose, but others also occur (Heinz, 1996). Steryl glucosides can be further 
acylated to form acylated steryl glucosides (ASG; Heinz et al., 1975). 
Information regarding the synthesis of ASG is a bit scarce and there is no 
consensus regarding which substrate donates the acyl chain to SG to form ASG. 
In Vicia faba and carrot, steryl glucoside acyl transferases were soluble and the 
acyl chain was donated by galactolipids with a preference of DGDG over MGDG 
(Eichenberger and Siegrist, 1975; Heinz et al., 1975). However, in Solanum 

melongena the activity was membrane associated and the acyl chain originated 
from phospholipids and not galactolipids (Potocka and Zimowsk, 2008). Acylation 
of sterols produce steryl esters, but these are not structural membrane lipids and 
are out of scope the for this thesis. 
 
 

 
 

Figure 6. Structures of common plant sterols and cholesterol 

 
 

The functional information of sterol derivatives is also somewhat limited. SG 
can act as primer molecule for cellulose synthase (Peng et al., 2002). ASG 
replace phospholipids in detergent resistant membranes (DRMs, see section 
“…along the membrane”) in oat roots during phosphate limiting conditions 
(Paper III).  
A potential problem in sterol analysis on isolated membranes is the technique 
used to isolate the membrane fraction. During protoplast isolation from leaf cells, 
most if not all free sterols disappears (Kesselmeier et al., 1987). A possibility is 
that they are converted to SG to be used as a primer for cellulose synthesis to 
counter act the cell wall degrading enzymes employed in protoplast isolation. 
When plant tissue is homogenized with an ultra-turax or in a blender (which 
could be considered as a mechanical damage) similar responses might be an 
issue. However,  since mechanical isolations usually are done at 4° C, the 
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activities of the enzymes involved (UDP-glucose: sterol glucosyltransferase and 
cellulose synthase) are hampered. A possibility is that they are converted to SG 
to be used as a primer for cellulose.A possibility is that they are converted to SG 
to be used as a primer for cellulose synthesis to counter act the cell wall 
degrading enzymes employed in protoplast isolation. When plant tissue is 
homogenized with an ultra-turax or in a blender (which could be considered as a 
mechanical damage) similar responses might be an issue. However, since 
mechanical isolations usually are done at 4° C, the activities of the enzymes 
involved (UDP-glucose: sterol glucosyltransferase and cellulose synthase) are 
hampered. It is thus possible that the free sterol:sterol derivatives ratio in 
isolated membranes are a reflection of the membrane isolation technique and not 
necessarily an accurate description of the membrane composition. Comparisons 
of sterol and sterol derivatives from protoplasts, homogenized and untreated 
plant tissue should give some insights on how to limit isolation induced 
alterations in lipid composition.  
 

 
 

Figure 7. Structures of sterol derivatives. 

 
 
 
4. THE PHOSPHATE CONNECTION 
 
During phosphate-limited growth conditions, a significant proportion of the 
phosphate in phospholipids are used as a phosphate reserve (Essigmann et al., 
1998; Härtel et al., 2000; Andersson et al., 2003; Papers I-III). The liberated 
phosphate is used in molecules and processes that cannot be replaced by 
phosphate-free alternaties, such as DNA, ATP or phosphorylation of proteins, to 
name a few. During this process the galactolipid DGDG replaces phospholipids in 
many different membranes. In this section I will address our and others results 
on phosphate limitation in the context of membrane lipids. 

 
4.1 Phosphate limitation induces DGDG synthesis  
For a long time galactolipids were believed to be restricted to plastids. By 
default, researchers ascribed DGDG as plastidial contamination when detected in 
isolated extra-plastidial membrane fractions. In the past decade it has become 
clear that DGDG is a native constituent of extra-plastidial membranes especially 
during phosphate limiting conditions (Härtel et al., 2000; Andersson et al., 2003; 
Jouhet et al., 2003; 2004; Gaude et al., 2004; Nakamura et al., 2005; Papers 
I-III). 
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DGDG is formed by glycosylation of MGDG (Dörmann et al., 1999). In 
Arabidopsis there are three genes responsible for MGDG synthetase, MDG1, 
MGD2 and MGD3 (Dörmann et al., 1999; Awai et al., 2001; Kelly and Dörmann, 
2004). MGD1 is localized in the inner plastid envelope (type A) and MDG2 and 
MGD3 (type B) are in the outer envelope (Awai at al., 2001). In the 16:3 plant 
Arabidopsis, type A MDG-synthetase produces the majority of MGDG in 
photosynthetic tissues. Type B have a preference for eukaryotic lipids, which 
have the glycerol backbone assembled in the ER, and has higher expression in 
non-green tissue (Awai et al., 2001). Several mutants in galactolipid synthesis 
have been identified in Arabidopsis. In the mdg1 mutant there was as reduction 
of 75% of MDGD in the leaves, indicating that MDG1 is responsible for the 
majority of the MGDG in Arabidopsis (Awai et al., 2001).  

DGDG is synthesized by DGD1 and DGD2 (Kelly et al., 2003). In the dgd1 
mutant the amount of DGDG was reduced by 90%, indicating that DGD1 is the 
enzyme that synthesizes the bulk of the thylakoid DGDG during normal growing 
conditions (Dörmann et al., 1995). The dgd1 mutant has a severe phenotype 
with stunted growth, pale leaves, reduced photosynthetic capacity and a 
“wrapped” thylakoid structure (Dörmann et al., 1995). The pho1 mutant is 
deficient in xylem loading of phosphate and thus, no phosphate can be 
transported to the leaves (Poirier et al., 1991). When the two mutants dgd1 and 
pho1 were crossed, the DGDG levels were restored up to 60% of wild type levels 
(Härtel et al., 2000). This resulted in the identification of DGD2, a second gene 
involved in DGDG synthesis, which is highly active during phosphate-limited 
conditions (Kelly et al., 2003). The dgd2 mutant showed no visible phenotype 
under normal growth conditions (Kelly et al., 2003). In the double mutant 
dgd1dgd2, there were minute proportions of DGDG present. Both dgd1 and dgd2 
were null mutations (Kelly et al., 2003) and thus there must be a third enzyme 
with the capacity of synthesizing DGDG. This enzyme is galactolipid:glactolipid-
glucosyltransferase (GGGT). This enzyme,catalyzes the formation of DGDG and 
DAG from two MGDG molecules (van Besouw and Wintermans, 1978). However, 
it is not believed to be involved in the bulk synthesis of DGDG, as DGDG 
synthesized by GGGT have the two galactose moieties in a different conformation 
of compared to “normal” DGDG (Figure 4).  

All of the enzymes involved in DGDG syntheses during phosphate limitation 
are localized in the outer envelope: MGD2, MGD3, DGD1 and DGD2 (Kelly et al., 
2003; Kelly and Dörmann, 2004). In oat, all lipids precursors for MGDG synthase 
are derived from the ER since there is no active prokaryotic pathway for 
galactolipid synthesis. The current model on how DGDG is synthesized during 
phosphate limited conditions is depicted in figure 8 (see also Paper II). 

Arabidopsis, Phaseolus vulgaris (bean) and oat show increased levels of 
DGDG in roots and shoots under phosphate limiting conditions compared to fully 
fertilized plants (Härtel et al., 2000; Andersson et al., 2003; Li et al., 2006b; 
Russo et al., 2007; Paper II). The increase in DGDG is also evident in cell 
cultures of Arabidopsis and Acer pseudoplatanus (sycamore maple) from 
phosphate limiting compared to fully fertilized conditions (Jouhet et al., 2003; 
Jouhet et al., 2004). To further elucidate if the increase of DGDG during 
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phosphate limitation is a universal feature, we cultivated several additional 
different plant species representing both 16:3 and 18:3 plants and analyzed 
shoots and roots for DGDG content (Paper II). All shoots and roots showed an 
increase in DGDG content when the plants were grown on phosphate-limited 
media compared to fully fertilized conditions (except for Phleum vulgare). The 
changes in shoots were less pronounced, due to the abundance of chloroplast 
DGDG in shoot tissue (Paper II). These results significantly expand the list of 
plant species that increases the DGDG content during phosphate limited 
conditions compared to fully fertilized conditions 

 
Figure 8. DGDG synthesis during phosphate limited cultivation of oats. PA and DAG 
removed from the plasma membrane are transported to the plastid envelope, where they are 
transported through the outer envelope (1a & 1b). PA is further transported into the stroma 
possibly via the TGD-complex (2) followed by dephosphorylation by a stroma localized PAP (3). 
DAG is then transported to the intermembrane space (4) where a galactose is added from UDP-
galactose by type B MDGD-synthetase (5). After transfer of MDGD to the cytosolic leaflet of the 
outer envelope (6); a second galactose is added from UDP-galactose by dgd2 (7). 

 

 
In Arabidopsis leaves, phosphate limitation caused an increased ratio of 

16C/18C fatty acids (Härtel et al., 2000). In oat tissue there is a decrease in 
18:3 and an increase in 16:0 and 18:2 fatty acids (Paper I) and similar changes 
in DGDG fatty acid composition were observed in the roots of the plants 
investigated in paper II.  All investigations thus show that DGDG from 
phosphate limited cultivation has a fatty acid compositions more similar to 
phospholipids compared to thylakoid DGDG.  

There are several reports on the presence of a  glucose moiety in the 
diglycosyldiacylglycerols  (Jamieson and Reid, 1976; Gaude et al., 2004; Paper 
II). It ranges from 2-24 mol% but without any real consensus as to the 
abundance of glucose in the diglycosylacylglycerol in plant species, tissue or 
growing conditions.  

When lipid analyses are done on tissues, it is not possible to determine if 
the increase in DGDG is in the plastid or in extra plastidial membranes, but it is 
safe to say that the increase of DGDG in phosphate limited plants appears to be 
a wide-spread feature in plants. 
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4.2 Extra-plastidial DGDG  
To further analyze the localization of DGDG in plant cells, several different 
techniques can be used to fractionate the plant cell into organelles and individual 
membrane fractions. Most fractionation protocols are based on either density 
(differential centrifugation) or surface properties. Aqueous two-phase partition 
has been extensively used to isolate highly purified plasma membranes 
(Kjellbom and Larsson, 1984; Palmgren et al., 1990; Andersson et al., 2003; 
Mongrand et al., 2004; Papers I-III) but it can also be used to separate several 
different cellular membranes using a 10-step counter current procedure (Larsson 
et al., 2007; Paper I).  

In highly purified plasma membranes from oat roots, the proportion of 
DGDG in the glycerolipid fraction increased from 8 to 70 mol% when the oat 
variety Vital was grown in phosphate free media compared to fully fertilized 
conditions (Andersson et al., 2003). A similar response was also evident in the 
shoots. When the DGDG increased, all phospholipid classes in the plasma 
membrane decreased. in oat grown under phosphate limiting condition compared 
to fully fertilized cultivation conditions (Andersson et al., 2003). 

In oat root plasma membrane isolated from oat grown under phosphate-
limited conditions, the fatty acid composition of DGDG was very different from 
chloroplast DGDG and more similar to that of plasma membrane phospholipids 
(Andersson et al., 2003; Paper I. 

DGDG has also been found in the mitochondrion of Arabidopsis cell cultures 
(Jouhet et al., 2004) and in periobacteroid membrane of nitrogen fixing nodule of 
soybean and lotus (Gaude et al., 2004). To asses if any additional extra plastidial 
membranes could replace phospholipids with DGDG, we fractioned microsomes 
from oat roots grown with or without phosphate with a 10-step counter current 
two-phase partitioning (Paper I). A significant proportion of DGDG was found 
also in the tonoplast wheras ER and Golgi membranes were clearly less affected 
by phosphate limitation in this respect. 

Two decades ago, a few researchers found DGDG in extraplastidial 
membranes and did not regard it as plastid contamination due to the lack of 
correlation between the proportions between DGDG and MDGD which would 
indicated plastid contamination (Liljenberg and Kates, 1985; Rochester et al., 
1987). In the recent years, DGDG is frequently detected in plasma membranes 
isolated from fully fertilized plants and is regarded as a natural lipid constituent 
of pant plasma membrane (Mongrand et al., 2004; Laloi et al., 2007; Lefebvre et 
al., 2007; Papers I-III). 

A more in-depth analysis of the lipid compositions in the plasma membrane 
during phosphate limiting conditions is presented in papers I and III. Both 
papers show that the major changes are an increase in DGDG and a reduction of 
phospholipid in phosphate limited oats. Furthermore, other sugar-containing 
lipids increased (glucosylcerobrocides, SG and ASG). The differences in lipid 
compositions between paper I and III can probably be attributed to that 
different oat varieties and lipid extraction protocols were used in the two studies. 
Inherent problems with chloroform:methanol lipid extraction protocols are that 
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they do not extract all sphingolipids resulting in an underestimation of the 
sphingolipid content (Sperling et al., 2005). Protocols designed to extract highly 
polar sphingolipids from leaf tissue (Markham et al., 2006) was used to extract 
lipids in paper III.  

 
4.3 Degradation of phospholipids 
Phospholipases are a group of enzymes that hydrolyze specific bonds in 
phospholipids. There are four different classes; A, B, C and D and their modes of 
actions are shown in figure 9. Phopholipase A (PLA) hydrolyses the acyl chains in 
phospholipids rendering a lyso-PL and a free fatty acid. Within the PLA class 
there are two different types of enzyme; PLA1, which hydrolyses the acyl chain at 
the sn-1 position and PLA2, which hydrolyses the acyl chain in the sn-2 position. 
Furthermore, PLB has similar mode of action as PLA but has no specificity for 
either sn-1 or sn-2 position. Phospholipase C (PLC) removes the headgroup of PC 
(Nakamura et al., 2005) and phopshoinositol lipids (Pical et al., 1992). 
Phospholipase D (PLD; Wang, 2000) hydrolyses the bond on the other side of the 
phosphate producing PA and part of the headgroup (choline, ethanolamine, 
inositol, glycerol etc.). PLD has a second mode of action, base exchange, which 
exchange the headgroup of the phospholipid to a primary alcohol (Ella et al., 
1994). The base exchange is also involved in headgroup conversion between PS 
and PE, which normally occurs in ER but also can take place in plasma 
membrane (Vincent et al., 1999). Phosphatidic acid phosphatase (PAP) removes 
the phosphate from PA resulting in free phosphate and DAG. 
 
 

 
Figure 9. Mode of action for different phospholipases 

 

 

Since there is a 75% reduction of the oat root plasma membrane-localized 
phospholipids during phosphate limited conditions ,we decided to analyze the 
occurrence of phospholipases in the oat root plasma membrane (Papers I-II). 
When radiolabeled PC, PE or PA were supplied to plasma membrane isolations, 
there was an eight to ten fold increase in PLD and PAP activities in plasma 
membrane isolated from phosphate limited compare to fully fertilized oat 
(Papers I-II). In Arabidopsis, phosphate limitation induced putative non-
specific-PLC4  (NPC4) in the plasma membrane (Nakamura et al., 2005). The 
antibody, raised towards the 120 amino acids of the C-terminal of NPC4, reacted 
with phosphate limited oat plasma membrane, indicating that an NPC4 ortholog 
is also present in oat (Paper I). Contrary to the findings in phosphate limited 
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Arabidopsis; no PLC activity could be detected in fractions isolated from oat 
during phosphate limited (Papers I and II). 

To identify the enzymes involved in phosphate limited oat plasma 
membrane, all plasma membrane proteins from phosphate-limited oat were 
solubilized with deoxycholate and separated with gel electrophoresis. The gel 
was cut into 24 pieces and proteins were extracted. Each of the fractions was 
assayed for PLC, PLD and PAP activity. The highest activity for PLD and PAP were 
located in the same fraction. In this fraction, no PLC activity could be detected 
but western blot analysis and mass spectrometry revealed the presence of NPC4 
(Figure 8 in Paper I).  

A complication in detecting any NPC4 activity in phosphate limited oat root 
plasma membrane is the differences in enzyme activity between PLD and PLC. 
The PLD activity in phosphate limited oat plasma membrane is 50 times higher 
than apparent endogenous PLC activity in the plasma membrane of phosphate 
limited Arabidopsis (Nakamura et al., 2005; Papers I and II). If NPC4 in oat 
has comparable enzyme kinetics to NPC4 in Arabidopsis, then any PLC activity 
would be masked by the PLD activity in phosphate limited oat root plasma 
membrane. To further investigate the presence of any PLC activity in phosphate 
limited oat plasma membrane, a competition assay was used. The purpose of 
this assay is to saturate the reaction with exogenously supplied unlabeled PA, 
thus diluting the radiolabeled PA produced by PLD from radiolabeled PC.   With a 
large pool of non-radiolabeled PA and a small pool of radiolabeled PC, the 
production of radiolabeled DAG via PLD and PAP would be slowed down due to 
the competition between radiolabeled and non-radiolabeled substrates. When 
non-radiolabeled PA was added to radiolabeled PC, there was only a slight 
decrease in radiolabeled DAG formation indicating that PLC is not involved in 
phospholipid degradation in phosphate limited oat plasma membrane (Tjellström 
and Sandelius, unpublished). 

In Arabidopsis, 12 different PLDs have been identified (Wang, 2005) and at 
least two, PLD 1 and PLD 2, are involved in metabolizing PC to PA in response to 
phosphate limitation (Wang, 2001; Li et al., 2006; Li et al., 2006b). PLD 1 is 
localized in the plasma membrane while PLD 2 is localized in the tonoplast and 
more specifically to an area loosely associated with mitochondria (Yamayro). 
Thus PLD 1 is a likely candidate for the PLD activity in oat root plasma 
membrane. However, the molecular mass of PLD 1 (123kDa) is quite different 
from the region on the native gel electrophoresis, where PLD activity was 
detected in the 50-55 kDa region (Figure 8 in Paper I). This indicates that there 
are other phospholipases than PLD 1 involved in degrading phospholipids in oat 
root plasma membrane from phosphate-limited oat. Mass spectrometry analysis 
on fractions 10-13 (Fig 8 in Paper I) revealed several putative additional 
phosphoesterases and phospholipases from phosphate limited oat root plasma 
membrane. In order for the cell to utilize the phosphate in phospholipids, it 
needs to be liberated. PLD does not fulfill this function as it results in the 
formation of the phospholipid PA but there is no accumulation of PA in the 
plasma membrane of phosphate-limited oat (Paper I).  In the measurement of 
PAP in paper II, the activity is not high enough to metabolize the PA produced 
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by PLD. In short, PLD produces more PA than PAP can handle. This is true in 
assays were PC is supplied exogenously (Papers I-II) but there is always the 
possibility that we misjudge the enzyme activities. Perhaps the activities of PLD 
and PAP will match each other in vivo, when the substrate resides in the plasma 
membrane.  If the lipase assays reflect the true activities, there will be an 
accumulation of PA in the plasma membrane, if PA is not removed and 
transported from the plasma membrane to another membrane with additional 
PAP activity.  

The similarities in fatty acid composition between plasma membrane 
localized phospholipids and extra-plastidial DGDG (Andersson et al.,2003; Paper 
I) infers that DGDG is synthesized on a DAG backbone that is derived from 
plasma membrane phospholipids; the plant recycles the DAG backbone (Paper 
II). Which lipid and how the transport proceeds between plasma membrane and 
the plastid envelopes, is obscure. In paper II we propose that PA or DAG is 
transported from the plasma membrane via ER (possibly via membrane contact 
sites). PA could be transported into the plastid stroma via the TGD complex 
(Benning, 2008). PA is degraded to DAG by a chloroplast inner envelope localized 
PAP (Lu et al., 2007; Benning, 2008).  In Paper II we suggest that this DAG is 
used as the backbone for the phosphate limited induced synthesis of DGDG via 
MGDG synthetase type B (MDG2/3) and DGDG synthetase (DGD1/2).  

There is a phospholipase activity in the plasma membrane of phosphate-
limited oat even when though the absolute amount of phospholipids is strongly 
reduced (Papers I-II). Phospholipids are constantly supplied to the plasma 
membrane as vesicles transporting components to the membrane and vesicle 
cargo to the cellular exterior. This could explain the constant degradation of 
phospholipids in the plasma membrane in phosphate limited oat (Paper II).  
 
4.4 Phosphate threshold 
When plants are grown in climate chambers they are quite pampered; light, 
temperature, humidity and nutrients are controlled. They are never exposed to 
drought, wind, rain, pathogens or a cloudy day unless the experimental design 
requires it or unintended problems occur. To simulate phosphate-limiting 
conditions we omitted phosphate from the nutrient media. However, it is not 
very probable that plants would ever encounter such extreme growing 
conditions. Therefore we decided to investigate at what level of phosphate 
availability the phosphate limitation occurred. We have analyzed growth (roots 
and shoots), seed quality (starch, -glucan lipids, soluble protein, phosphate, 
C/N ratio), seed quantity, phospholipase activities in the plasma membrane and 
DGDG/PC ratio from oat cultivated with different levels of phosphate (Paper II 
and IV). In Arabidopsis the phosphate threshold for DGDG accumulation was 
between 0.1 and 1 mM exogenously supplied phosphate after the Arabidopsis 
plants were primed by pre-cultivativtion on phosphate rich media for ten days 
prior to transfer to phosphate limited media (Härtel et al., 2000). Oat has a 
relatively large seed, compared to Arabidopsis and  contain approximately 1.5 
μmol phosphate (var. Belinda) (Paper IV). Oat is able to sustain normal shoot 
growth without visible symptoms for up to two weeks without supplied 
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phosphate. There are however clear symptoms of phosphate limitation when 
roots are analyzed for length, DGDG/PC ratio and plasma membrane localized 
phospholipase activities, which are all increased after two weeks of phosphate 
free cultivation (Paper II). However, oat is able to sustain an entire generation 
and produce seeds without any exogenously supplied phosphate (Paper IV).  

In the experiments with different degree of phosphate limitation the % 
represent phosphate content in the nutrient solution (100% =1.5 mM 
phosphate). Plants grown without phosphate (0%) have shorter, thinner and 
more rigid leaves. In plants grown in 3% phosphate for 4 weeks, the shoots 
became as tall as in oat grown with 100% phosphate, but the roots showed 
increase length, which is an indication of phosphate limitation (Andersson et al., 
2003; Li et al., 2006; Paper II). At 5% phosphate in the nutrient solution, the 
roots did not elongate more that the control plants (100%; (Paper II). During 
the first four weeks of cultivation,10% phosphate (0.15 mM) is enough to sustain 
similar growth as with the oat supplied with 100% phosphate (Paper II). During 
longer cultivation times, differences regarding shoot length and biomass became 
more pronounced and there were clear differences between the different 
phosphate limitation treatments (Paper IV). 

The phospholipid-to-DGDG exchange was monitored in oat roots by 
measuring the DGDG/PC ratio at seven time points with ten different 
concentration of phosphate (Paper II). The phosphate threshold for oat (var. 
Belinda) was at 30% phosphate. With 10 % phosphate there was a clear 
increase in DGDG/PC ratio, after 15 days of growth. The times and nutrient 
solution correlated better to a PLD activity rather than a plasma membrane 
localized PAP activity, indicating the need for additional PAP activity to supply 
DAG for DGDG synthesis (Paper II). 

Plants were also maintained in the growth chamber to complete one 
generation. This resulted in that that oat grown in all different levels of 
phosphate (0, 3, 5, 10, 30 and 100% phosphate) set seeds. After seven weeks 
the 0% phosphate treatment begun to set seeds and within one week the plants 
cultivated in 3, 5 and 10% followed. Plants grown in 30 and 100% phosphate 
lagged another two weeks behind. After 5 months, seeds were collected and 
analyzed (Paper IV). 

Measurements of total seed yield (i.e. mass and number of seeds per plant) 
indicated that more than 30% phosphate does not improve the yield (Paper IV). 
Between 0 and 10%, the plant tissue (not including seeds) was almost devoid of 
phosphate, most of the phosphate hade been allocated to the seed (Paper IV). 
Starch content showed a gradual increase from 0-to-100% phosphate, but total 
% of carbon remained similar. Other parameters investigated, lipids, -glucan, 
protein and C/N ratio showed small differences between the different growth 
conditions. It should be noted that the polar lipid composition seems to be 
unaffected between the seeds from the different degree of phosphate limitation. 
Apparently, in seeds, the phosphate allocated into phospholipids remains 
constant (per dry weight) regardless of the amount of phosphate in the seed. 
The differences in phosphate contents between the different seeds are correlated 
to the amount of phosphate in the water-soluble faction (Paper IV). It is clear 
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that during phosphate limiting growth condition, membranes in vegetative 
tissues, replace phospholipids with DGDG to utilize the phosphate elsewhere, but 
during seed formation, phosphate is re-allocated to phospholipids and there 
appears to be no phospholipid-to-DGDG replacement regardless of the degree of 
phosphate limitation (Paper IV). 

 
4.5 The transient nature of phospholipids  
To investigate if the phosphate limitation induced phospholipid-to-DGDG 
replacement was reversible, we re-supplied phosphate to the growth media of 
phosphate limited plants (Paper II). Lipid class analysis showed that after 7 
days, the levels of all lipid classes had begun to adapt to the new growing 
conditions (Paper II).  The most dramatic effect was on DGDG and 
phospholipids. Phospholipid content had tripled and DGDG content had halved in 
oat root plasma membrane after one week of phosphate resupply (Paper II). 
Since the root mass had increased after resupplied phosphate, there would have 
been an increase in “new” plasma membranes that would be largely devoid of 
DGDG. It is therefore uncertain whether the reduction of the proportion of DGDG 
in is due to removal of DGDG from the “old” plasma membrane or a dilution due 
to the phospholipid rich “new” plasma membrane.  

In experiment where radiolabel phosphate was supplied to 4 weeks old oat 
plants cultivated with or without phosphate there was a rapid incorporation of 
phosphate into phosphate limited plants compared to fully fertilized plants 
(Paper II).  For phosphate limited oat the majority of the radiolabel in the lipid 
fraction was initially recovered in PC. At later time points PE+PG (which co-
migrated on the TLC plate) became the predominantly labeled lipid classes. 
Uptake of radiolabel phosphate in fully fertilized plants showed that only minute 
proportions of the radiolabel was recovered in PC, instead almost all of the lipid 
incorporated radiolabel was recovered in PE+PG fraction. This corresponds well 
with previous reports of the turnover of PE+PG, which increased while turnover 
of PC decreased with age in pea leaves (Hellgren and Sandelius, 2001b). 
Phosphatidic acid (PA) remained at a constant low level in both treatments, 
probably because PA is an intermediate and plays a central role in the 
phospholipid synthesis pathway and are involved in many signaling events which 
require tight control (Munnik and Testerink, 2008). 

 
4.6 Acyl transferase activities 
Lyso phospholipids acyltransferases is a group of enzymes, which are involved in 
creating and maintaining phospholipid diversity (Hishikawa et al., 2008). The 
mode of action is an exchange of an acyl chain from a phospholipid with an acyl 
chain from  acyl-CoA. Phosphate limited oat plasma membranes have three-fold 
higher lysoPC acyltransferase (LPCAT) and lysoPE acyltransferase (LPEAT) 
activity compared to plasma membrane from fully fertilized oat (Tjellström 
unpublished). This indicates that modification of exiting phospholipids in the 
membrane in part of the response to phosphate limitation. 

It has been shown that the synthesis of ASG involves an SG acyl 
transferase activity (Heinz et al., 1975; Heinz, 1996). The relative proportion of 
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ASG is higher in plasma membrane from phosphate-limited compared to fully 
fertilized oats (Paper III). In the former, the SG acyl transferases activity 
showed a three-fold increase in activity compared to the latter, using acyl-CoA as 
substrate (Tjellström, unpublished). 

 
 

5. MOVEMENTS OF LIPIDS… 
 
In the cell there are requirements for lipids to be transported between, across 
and along the membranes. The lipid compositions of plant membranes are 
constantly changing and any lipid compositions reported here and elsewhere are 
merely an average of membranes from different cell types at a specific time and 
growing conditions.  
 
5.1 …between membranes 
In the basic textbook model, vesicles transport both membrane constituents 
(lipids and membrane proteins) and cargo (proteins, ions, sugars, etcetera), 
between the compartments of the eukaryotic cell. Many of the membrane 
constituents are made in the ER and transported as vesicles to plasma 
membrane and tonoplast via the Golgi apparatus. Also, there is evidence 
emerging of a vesicle transport route, similar to the secretory pathway, inside 
chloroplasts  (Morré et al., 1991; Räntfors et al., 2000; Andersson and 
Sandelius, 2004; Andersson et al., 2001). The vesicular transports to the plasma 
membrane influence the localization of lipid in the plasma membrane. Lipids 
localized in the cytosolic leaflet of the Golgi apparatus will initially end up in the 
cytosolic leaflets in the plasma membranes and lipids in the leaflet facing the 
Golgi lumen facing will end up in the apoplastic leaflet, as depicted in figure 10.   

Lipid can also be transported at membrane contact sites, which are 
connections between membranes, where the ER membrane usually acts as one 
of the membranes. Mitochondria-associated membranes (MAMs) are the 
connections between ER and the mitochondria in animal cells (Vance, 1990) and 
yeast (Gaigg et al., 1995). They are involved in transporting PS to the 
mitochondria. After carboxylation to PE, this lipid is transported to the ER via 
MAM (Achleitner et al., 1999). MAM are also involved in facilitating Ca2+ 
transportation between ER and mitochondrion in HeLa and rat liver cells via a 
voltage dependent anion channel mediated by the chaperone glucose response 
protein 75 and an inositol 1,4,5-triphosphate receptor (Szabadkai et al., 2006).  
The plant ER contains many discrete functional domains (Staehelin, 1997) but 
most of the domains are not very well characterized, thus many functions are 
rather speculative. Experiments using optical tweezers demonstrate that there is 
a physical connection between plastids and ER. The plastid associated 
membranes (PLAM) are probably attached via a protein-protein interaction 
(Figure 11). The interaction could only be disrupted after treatment with trypsine 
and are believed to be involved in transport of lipids to and from the ER and 
plastids (Andersson et al., 2007). 
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Figure 10. Generation of lipid asymmetry via the secretory pathway. Multiple sugar 
moieties are added to ceramides in the lumen leaflet of the Golgi apparatus (A). In vesicle 
transported from late Golgi to plasma membrane the Golgi lumen leaflet is the inside leaflet of the 
vesicle (B & C). Fusion with the plasma membrane results in that the Golgi lumen leaflet ends up 
as the apoplastic leaflet of the plasma membrane (D & E). Due to the large and polar headgroup 
(black hexagons) it is unlikely that the lipid can move between the leaflets. The dashed line 
represent membrane that originates from the lumenal leaflet of the Golgi apparatus and solid lines 
represent membrane that originates from the cytosolic leaflet of the Golgi apparatus. 
 
 

The transport requirements, varies dependent on different circumstances. 
In early development there are increased requirements for import and exports of 
solutes and lipids between the ER and the chloroplast. There is an increase in 
young compared to old pea chloroplasts in lyso-phospholipid acyl transferase 
activity (Kjellberg et al., 2000) and furthermore, the number of contact sites 
between ER and chloroplasts was also higher in young compared to old 
Arabidopsis chloroplasts (H Tjellström, R Wellander, M Göksör and AS Sandelius 
unpublished). These experiments support that PLAMs are involved in 
chloroplast/ER transport. 

The connection between ER and plasma membrane (plasma membrane 
associated membranes; [PAM]), was first discovered in yeast (Pichler et al., 
2001) but is also present in plants, which was visualized by confocal microscopy 
(Figure 11; A-C from Larsson et al., 2007). Biochemical studies on PAM showed 
enrichment in LPCAT activity compared to the bulk plasma membrane, indicating 
the possible involvement of PAM in membrane remodeling (Larsson et al., 2007; 
Hishikawa et al., 2008).  

Lipid transfer proteins are proteins that bind lipids in a hydrophobic pocket 
and are able to transport lipid monomers across an aqueous environment 
between different membranes. The lipid binding protein could work as a shuttle 
or as a bridge between the two membranes (Figure 12). It has been proposed 
that the actual connections between membranes in membrane contact sites 
involved lipid binding proteins.  

A PLAM fraction was isolated from rapidly expanding pea leaves with a 
protocol initially developed for MAM isolation (Graigg et al., 1995; Andersson et 
al., 2007). The PLAM sub-fraction had a different polypeptide pattern and lipid 
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composition compared to ER and chloroplast envelope membranes (Andersson et 
al., 2007). In an attempt to identify any bridging-complex proteins or lipid 
metabolizing enzymes involved in the PLAM-chloroplast interactions, membrane 
factions from ER, PLAM, outer envelope (OE) and inner envelope (IE) of the 
chloroplast were analyzed. A few proteins, including several unidentified ones, 
were most abundant in PLAM, but no plausible candidates for bridging-complex 
have yet been identified (Bräutegam, Breuers, Tjellström, Froehlich, Ohlrogge, 
Sandelius and Weber, manuscript). 
 

 

 
 
 
Figure 11. Visualization of membrane contact sites. Plasma membrane associated 
membranes (PAM) in transgenic Arabidopsis containing green fluorescent protein (GFP) in the ER 
lumen. Isolated plasma membrane vesicles are visualized by the red fluorescent dye FM 4-64 (A), 
ER is visualized in green by GFP in the ER lumen (B) and the overlay demonstrates co-localization 
(C). Plastid associated membranes (PLAM) in transgenic Arabidopsis (D & E) are visualized by GFP. 
In Pisum sativum (garden pea) (F), where the ER membrane is visualized by the green fluorescent 
dye DiOC6 (F). In C-F chloroplasts are visualized through chlorophyll auto fluorescence. Panels A-C 
are from Larsson et al., (2007),BMC Plant Biology 7: 64 
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Figure 12. Possible mechanisms for lipid trafficking at membrane contact sites. A lipid 
transfer protein binds to a donor compartment via a membrane receptor and extracts a lipid (A, 
state 1). The lipid transfer protein transfers the lipid through the cytosol, binds to a receptor at the 
acceptor compartment and inserts the lipid into the acceptor compartment’s cytosolic leaflet (A, 
state 2). In (B) a bridging complex binds to two membranes, generating a physical interaction 
between the donor and acceptor membrane. Lipids are transported via a lipid transport protein, 
bound to both compartments. From Holthuis and Levine (2005) Nature Reviews Molecular Cell 
Biology 6: 209-220; with minor modifications. 
 
 
5.2 …across membranes 
Biological membranes are composed of two lipid leaflets with embedded and 
associated proteins. The two leaflets have different lipid compositions and this is 
important for the membrane to function as a “water-tight” barrier (Hill and 
Zeidel, 2000). Hill and co-workers found that the exo-plastic (apoplastic) leaflet 
had 18-fold reduction in water permeability compared to the cytosolic and is the 
major water barrier in the plasma membrane of epithelial cells (Hill and Zeidel, 
2000; Krylov et al., 2001).  

Lipid asymmetry is generated in the membrane as lipids are synthesized. At 
the site of lipid synthesis, lipids are inserted in the membrane resulting in a local 
increase of the specific lipid in the synthesizing leaflet. It is necessary for 
membranes to be able to facilitate distribution of the newly synthesized lipids 
within the membrane, otherwise the membrane will grow asymmetrically. 
According to the fluid mosaic mode proposed by Singer and Nicholson (1972), 
membranes are a two dimensional liquid in which the lateral movement of lipids 
is somewhat unrestricted.  However, the transport of lipid over the membrane 
from one leaflet to another (flip-flop) is much slower. Spontaneous flip-flop is 
thermodynamically unfavorable in lipid vesicles, due to the fact that the polar 
headgroups have to move through the hydrophobic center of the lipid bilayer. 
There are however difference between different lipid species, headgroup size and 
polarity. As a general rule of thumb, lipids with larger and more polar 
headgroups, such as PC and DGDG, takes longer time for the flip-flop movement 
than for a lipid with a small and less polar headgroups such as ceramides 
(Contreras et al., 2003). In liposomes, the flip-flop movement for phospholipid 
analogues was drastically increased when protein helices were included. The flip-
flop rates were both dependent on the type and concentration of the helices (Kol 
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et al., 2001, 2003). A corresponding mechanism could be present in biological 
membranes but it is generally assumed that the lipid asymmetry is generated by 
enzymes that facilitate a higher lipid transport rate than the spontaneous flip-flop 
movement. The enzymes that are involved in maintaining the transversal 
asymmetry of phospholipids are called flipases and flopases. Flipases move lipids 
from the cytosolic leaflet to the non-cytosolic leaflet and flopases move lipids 
from the non-cytosolic leaflet to the cytosolic leaflet. Several enzymes that are 
involved in maintaining the PL asymmetry have been identified from human, 
yeast cell (Devaux et al., 2006). To date, only one has been identified in plants, 
ALA1. It is believed to be involved in aminophospholipid (PE and PS) 
translocation in Arabidopsis during cold stress (Gomes et al., 2000). In 
erythrocytes, PS is almost exclusively located in the cytosolic leaflet. As a result 
of ageing or cell death PS accumulate in the exoplasmic leaflet and this results in 
removal of the erythrocytes by macrophages (Zachowski, 1993). Scramblases 
are the third class of lipid translocators that transports lipids across membranes 
and as the name infers, they scramble/shuttle the lipids unspecifically between 
the cytosolic and the apoplastic leaflet (Zwaal et al., 2005).  

The modes of action for the flipase, flopase or the scramblases are not 
known, there are two models that appeal to me see figure 13 (Vishwakarma et 
al., 2005). In the first model a membrane protein is modified so that the polar 
lipid headgroup can interact with the transmembrane region, which enables 
movements of lipids from cytosolic to apoplastic leaflet through lateral 
movement in the membrane (Figure 13A). The other model proposes that a 
protein forms a pore in the membrane where the polar headgroup can move 
through the pore while the acyl chains are inside the membrane (Figure 13B). 
The selectivity of the transporters is probably based on headgroup size, shape 
and polarity. The mechanism presented in figure 13A could be involved in 
reducing tension between the two leaflets for examples during lipid synthesis, 
which cause asymmetric lipid distribution. It is probably more rapid compared to 
the pore model but with reduced selectivity.  

 Under phosphate limited growing conditions, oat root plasma membrane 
retains the phospholipid asymmetry (Paper III) but the proteins involved here 
are not yet identified. Ongoing proteomics of plasma membrane isolated from 
oat grown with and without phosphate using iTRAQ profiling will hopefully reveal 
candidate proteins.  

A key step in assessing lipid asymmetry in the plasma membrane is to 
isolate highly purified plasma membranes exposing either the cytosolic or the 
apoplastic (exofacial) leaflet. For plant plasma membranes this is accomplished 
with aqueous polymer two-phase partitioning (Palmgren et al., 1990). 

It is possible to deduce the lipid asymmetry in membranes by analyzing the 
rate by which a fluorescent lipid analogue is translocated between the two 
leaflets. The environments inside and outside the membrane vesicle are 
different; in one the fluorescent probe fluoresces and in the other the 
fluorescence is quenched. By comparing the differences in transportation rate; 
both from inside to outside and vice versa it is possible to deuces the asymmetry 
of the lipid (Zachowski, 1993; Lenoir et al., 2007). 
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Figure 13. Models for transversal movements of lipids. A protein interacts with the polar 
headgroups so that the two leaflets connects, which facilitates transversal movement via lateral 
diffusion (A). In (B) a protein pore shields the polar headgroup from the hydrophobic interior 
during the lipid movement between the leaflets (B).   

 
 

An alternative method is to modify the lipids with chemicals or enzymes  
(Zachowski, 1993). The labeling agent is added to vesicles exposing the cytosolic 
leaflet and vesicles exposing the apoplastic (exofacial) leaflet. The amount of 
labeling agent is quantified in both vesicle populations, which corresponds to the 
relative distribution of the analyzed lipid between the leaflets (Zachowski, 1993). 
To determine the lipid distribution over the plasma membrane we used lipid 
specific antibodies, chemical labeling and a phospholipases assay using PLA2 
(Paper III). When two different surfaces are labeled the membrane 
environments will inherently be different. The two vesicle populations expose 
different surfaces and present different environments to the agent and thus 
there are two different environments for the agent to work in.  Therefore there 
are uncertainties in interpreting asymmetry.  

In animals, glycolipids are primarily localized in the exofacial leaflet of the 
plasma membrane. The reason for this originates from the site of synthesis of 
complex sphingolipids in animal cells two or more sugar-moieties in the 
headgroup (Jeckel et al., 1992; Schulte and Stoffel, 1993; Burger et al., 1996). 
They are added to the lipid backbone in the lumenal leaflet of the Golgi 
apparatus and due to the large and polar headgroup, they cannot spontaneously 
transverse the Golgi membrane (van Meer and Holthuis, 2000). The sphingolipid 
transport from Golgi to the plasma membrane occurs via vesicular transport or 
via transfer proteins  (Holthuis and Levine, 2005). The Golgi lumen leaflet will 
end up as the apoplastic leaflet and the cytosolic Golgi leaflet becomes the 
cytosolic leaflet of the plasma membrane (Figure 10).  

The transmembrane distribution of DGDG and GlcCer were analysed by lipid 
specific antibodies (Paper III). DGDG was almost exclusively localized in the 
cytosolic leaflet. With the assumption that a lipid with multiple sugars primarily 
localizes in the apoplastic leaflet (c.f. above), the almost exclusive cytosolic 
localization of DGDG was unexpected (Paper III).  When the site of synthesis of 
DGDG and possible transports routes are taken into account the localization of 
DGDG makes more sense. DGDG is synthesized in the cytosolic leaflet of the 
outer plastid envelope (Froehlich et al., 2001; Kelly et al., 2003), possibly 
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followed by transport to the outer leaflet of the ER via contact sites. Regardless 
of whether the transports from the ER to the plasma membrane are via PAM 
(Larsson et al., 2007) or through a vesicular mechanism (Bonifacino and Glick, 
2004), DGDG will end up in the cytosolic leaflet of the plasma membrane, at 
least 90% in root plasma membrane in phosphate limited oat.  

For GlcCer, the distribution in the plasma membrane shifted towards the 
apoplastic leaflet but in phosphate limited oat the majority of GlcCer was now 
localized in the cytosolic leaflet (Paper III), which agrees with the literature on 
animals that GlcCer, which can transverse membranes and are present in both 
membrane leaflets (van Meer and Holthuis, 2000).  

Most of the information on phospholipid asymmetry over the plasma 
membrane is derived from animal cells (Lenoir et al., 2007) and even though 
there are some general “truths” such as that aminophospholipids are primarily 
localized in the exofacial leaflet, there are not really any consensus between 
different species, tissues and cell types (Devaux, 2006). 

Phospholipid asymmetry was analyzed by assessing the degradation rate in 
an assay when the substrates (i.e. endogenous phospholipids) were limiting 
when exogenous phospholipase was added (Paper III). The leaflet with the 
highest concentration of phospholipids will also have the faster reduction of 
phospholipid. After evaluating PLA2 and PLD as possible phospholipases it was 
decided that PLA2 was more suitable. The main reason was that we had obseved 
an increased PLD activity in the plasma membrane of phosphate limited oat 
(Papers I and II) which could have interfered with the measurements. In our 
study, no endogenous PLA2 activity was detected in either plasma membrane 
isolated from oat grown with or without phosphate. 

The only previously published study on phospholipid asymmetry in plant 
plasma membranes showed no differences between the cytosolic and apoplastic 
leaflets of mung bean hypocotyl plasma membrane (Takeda and Kasamo, 2001). 
In oat, there is an asymmetrical distribution of phospholipids in root plasma 
membrane, where 65 % are localized in the cytosolic leaflet. When oat is grown 
without phosphate in the nutrient solution, only 25 % of the phospholipids 
remain compared to fully fertilized oats, but the phospholipid distribution 
between the plasma membrane leaflets remained the same as in the fully 
fertilized oat (Paper III). As phospholipid degradation is accompanied by DGDG 
accumulation, it would be logical to expect that the DGDG replaces the 
phospholipids, but this was not the case. The phospholipids are reduced from 
both sides of the plasma membrane but the replacing DGDG only accumulate in 
the cytosolic leaflet (Paper III).  

The asymmetry of sterols and sterol derivatives has not been studied 
extensively in either animal or plant cells. The polar headgroup in free sterols (-
OH) is small, which allows the lipid to move through the hydrophobic area of the 
lipid bilayer. Due to sterol-sphingolipid interactions (Ikonen, 2008) free sterols 
are believed to have an asymmetry shifted towards the exofacial leaflet (Devaux 
et al., 2006). However a  recent reports indicate that the majority of cholesterol 
(60-70 %) is located in the cytosolic leaflet of in the plasma membrane of 
Chinese hamster ovary cells (Mondal et al., 2009). Sterol derivatives in plant 
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plasma membranes such as SG and ASG, in plant plasma membranes have a 
glucose moiety at the 3’-hydroxyl group. This results in a larger and more polar 
headgroup than free sterols, which hinders movement between the leaflets. 

To assess sterol distribution the chemical agent Filipin III was used. Filipin 
III labeling could not discriminate between free sterols and sterol derivatives 
(ASG and SG; Kleinschmidt et al., 1972; Paper III), so we could only obtain the 
information on the total distribution of the sterols backbone (total sterols) for the 
oat plant plasma membranes (Paper III). At high concentration (>10mg/mL) 
and long incubation times (>15 min) with Filipin III, lipid vesicles become leaky 
(Kleinschmidt et al., 1972). It has been shown that under these conditions, 
Filipin III can react to sterols located on the inside of the plasma membrane 
vesicles. We used a short incubation time (5 min) and a low concentration of 
Filipin (2 μg/ml), which according to experiments on liposomes, does not 
permeate the membrane (Kleinschmidt et al., 1972; Paper III). The distribution 
on total sterols was largely unaffected by phosphate limited growth. Since we are 
unable to discriminate between the different sterol classes (free sterols, SG and 
ASG), it is possible that individual sterol classes display other asymmetries than 
the bulk sterols. There is a slight increase of ASG in the plasma membrane of 
phosphate-limited oats and since total sterols are more abundant in the 
apoplastic leaflet there is probably an increase in ASG in the apoplastic leaflet in 
plasma membrane in phosphate-limited oat compared to fully fertilized oat. 
Paper III clearly shows that during phosphate limited conditions, phospholipids 
are replaced by different lipids in the two plasma membrane leaflets: DGDG in 
the cytosolic leaflet and ASG in the apoplastic leaflet. ASG has a smaller 
headgroup and DGDG has a larger headgroup than most phospholipids they are 
replacing. With increased proportion of DGDG in the cytosolic leaflet and 
increased ASG in the apoplastic leaflet then the plasma membrane will get an 
increased ability to bend inwards and perhaps facilitate endocytosis  (Figure 1).  

 
5.3…along membranes 
The lateral lipid movements are, contrary to the transversal lipid movement, 
relatively unrestricted. Membranes are not a homogeneous “liquid” were proteins 
reside. Lipids are also organized along the membrane. In a lipid mixture, certain 
lipids tend to aggregate into patches, both large and small.  

When cells were labeled with florescent probes, sensitive to the order of the 
lipid environment, the fluorescent probe associated to membranes domains with 
higher liquid ordered phase (Lo) compared to the rest of the membrane, which 
are more liquid disorder (Ld; Kim et al., 2007). In a Lo phase the lipid bilayer is 
more rigid and ordered compared to Ld. In model membranes sterols and 
sphingolipids have a tendency to cluster together and induce Lo. Patches in Lo-
phase in the plasma membrane, are usually referred to as rafts (Simons and 
Ikonen, 1997). In the plasma membrane, rafts are ascribed to be involved in 
numerous functions, such as exocytosis, endocytosis, cytoskeleton organization, 
signaling (Simons and Toomre, 2001; Parton and Richards, 2003; Salaun et al., 
2004). 
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The size, lipid and protein composition of the different phases (Lo and Ld) in 
the membrane varies depending on tissue and species and there is no real 
consensus on how many or how large they are or even if they exist in other 
membranes besides the plasma membrane. Labeling with the fluorescent dye 
Laurdan indicate that Lo domains can comprise of as much as 38 % of the 
plasma membrane of human cell line A431 (Kim et al., 2007).  

When plasma membranes are treated with high concentration of non-ionic 
detergent (usually 1% Triton X-100) at 4°C, certain membrane portions are 
resistant to the detergent and remain unsolubilised. This membrane fraction is 
usually referred to as detergent resistant membrane (DRMs) (Simons and 
Ikonen, 1997). Ever since the first DRMs were isolated and characterized there 
has been a debate whether DRMs actually represents membrane rafts or if they 
are artificial membrane fractions created as a result of the treatment with 
detergent at low temperature (Munro, 2003; Lingwood and Simons, 2007). The 
main evidence that DRMs are a representative in-vitro fraction of rafts is that 
lipids that induce Lo domains are found in both rafts and DRMs (Munro, 2003). In 
DRMs there is an enrichment of sterols and sphingolipids, although one report 
indicates that glycosphingolipids are not essential for the formation of DRMs 
(Ostermeyer et al., 1999). These lipids induce Lo phase in model membranes 
when analyzed with Lo phase sensitive probes (Duggan et al., 2008).   

Several reports on plant DRM proteomics have revealed that several 
signaling proteins are raft-associated (Shahollari et al., 2004; Borner et al., 
2005, Morel et al., 2006; Lefebvre et al., 2007). The mechanisms or physical 
constrains that guide raft-resident proteins to rafts are not completely 
understood. The thickness of the Lo phase domains in liposomes was calculated 
to 48 Å compared to 39 Å for the Ld by using lipid mixtures known to induce Lo 
and Ld respectively in combination with transmembrane helices with different 
length (McIntosh et al., 2003; Allende et al., 2004). It has been proposed that 
the thickness of the membrane would guide helices of specific length of either Lo 
or Ld membranes. However, experimental data on both plasma membrane (Ld) 
and DRMs (Lo) on tobacco plasma membrane and DRMs show that the 
transmembrane helixes have similar length (20-21 amino acids) and similar 
hydrophobicity according to the GRAVY index (Morel et al., 2006).  

Interactions between saturated acyl chains of glycerolipids, sphingolipids 
and sterols are the basis for the stability of rafts and DRMs. Hydrogen-bonding 
between the headgroups and hydrophobic interactions are the major chemical 
interactions that hold rafts together (Ikonen, 2008). The relative small polar 
headgroup of sterols (hydroxyl-group) is insufficient to shield the sterol ring 
structure from the aqueous environment. Close interactions with neighboring 
lipids with large headgroups provide additional shielding. Large headgroups like 
PC can provide shielding for two sterols while smaller headgroups like PE only 
provide sufficient shielding for a single sterol (Ikonen, 2008). 

The stability of rafts and DRMs is ascribed to sterols and sphingolipids. 
Methyl- -cyclodextrin is an oligosaccharide that binds sterols, and it can be used 
to extract sterols from the membrane. Experiments using cyclodextrin have 
illuminated the importance of sterols in raft/DRM stability (Roche et al., 2008). 
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Some reports indicate that cyclodextrin also can bind phospholipids (Quinn and 
Wolf, 2009), but when cyclodextrin was applied to plasma membranes from BY2 
cell cultures, only free sterols were extracted to any significant extent (Roche et 
al., 2008) As a result of the sterol depletion, the detergent resistance of the 
DRMs were abolished (Roche et al., 2008). There were only minor proportions of 
sterol derivates extracted by cyclodextrin. The functions of ASG and SG are not 
well understood, but they can reduce the phase transition and modulate the 
fluidity in lipid bilayers (Mudd and Kleinschmidt, 1970).  

One of the objectives in paper III was to investigate what happens to the 
phospholipids in DRMs when the DRMs are isolated from plasma membrane from 
phosphate limited oat. Is there a phospholipid-to-DGDG exchange in DRMs? We 
examined DRMs isolated from phosphate limited oat root plasma membrane and 
found that the phospholipid to DGDG replacement that is evident in the bulk 
plasma membrane does not occur in DRMs. Instead of DGDG, phospholipids were 
replaced by ASG (Paper III). 

In DRMs isolated from phosphate limited oat root plasma membrane only 
5% of the lipids were glycerolipids compared to 15 % of the DRM lipids in fully 
fertilized oat. This did not influence the yield of the DRM isolation, both plasma 
membranes had an average yield of 10% (w/w, protein) indicating that the 
integrity of the DRMs are not influenced by the proportions of glycerolipids 
(Paper III). It is clear that DGDG is less associated to DRMs than phospholipids. 
Weather this is due to the headgroup or the higher degree of unsaturation in the 
acyl chains in DGDG compared to phospholipids is in part addressed in the next 
section on lipid-lipid interaction. 

It is likely that DRMs represent a fraction of the plasma membrane with 
many similarities to rafts, regarding lipid and protein composition, but not 
enough information is available to conclude that DRMs actually are isolated 
membrane rafts. At best, DRMs represent a mixture of all rafts in all cell types 
used for the fractionation. Thus, the DRMs presented in paper III are a mixture 
of all rafts in all root cell plasma membranes. 
 
 
6. LIPID-LIPID INTERACTION  
 
Lipids interact with other lipids and proteins to generate a biological membrane 
Lipid-lipid interactions can be measured between headgroups or between acyl 
chains, but the headgroup influence how the acyl chains interact with each other 
and vice versa. The extent of the Lo (rafts) or Ld can be detected with 
fluorescent probes sensitive to the lipid order such as Laurdan (Parasassi et al., 
1991) or bis-pyren probes (Sunamoto et al., 1980; Xiang, 1993).  Laurdan 
senses the dipole moment of water molecules in its vicinity, which is correlated 
to the free volume between the headgroups of the lipids (Parasassi et al., 1991; 
Parasassi et al., 1998). Bis-pyren probes sense the order between the acyl 
chains in the lipid bilayer. In DGDG rich liposomes, there is a reduced order both 
between the headgroups (Szilágyi et al., 2008) and between acyl chains (Hincha 
et al., 1998; Paper III) compared to a liposomes with low DGDG content. The 
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studies of model membranes with DGDG showed that DGDG increases 
membrane permeability of solutes compared to PC, but not as much as MGDG 
(Hincha et al., 1998). Beside the difference in headgroup moieties between 
phospholipids and galactolipids, there are differences in the degree of 
unsaturation of the acyl chains.  In chloroplast MGDG and DGDG the majority of 
acyl chains are 18:3 and 16:3 (Mongrand et al., 1998) and a high degree of 
unsaturation have a destabilizing effect on membranes (Popova and Hincha, 
2005). Plasma membrane phospholipids contain on the other hand primarily 
16:0 and 18:2 acyl chains (Rochenster et al., 1987; Norberg and Liljenberg, 
1991; Andersson et al., 2003; Paper I) 
 

 
Figure 14. Different types of DGDG. The acyl chain composition of DGDG isolated from 
transgenic E.coli (A) roots from phosphate limited oat (B) and shoots for fully fertilized oat (C). 
Panl (D), shows the stepwise purification of root DGDG on TLC; I: crude lipid extract, II: after solid 
phase extraction-purification and III: after preparative TLC. Panel E, HP-TLC of the three different 
DGDGs. DGDG was identified by co-chromatography of authentic lipid standards. Tabulated values 
of acyl chain compositions are presented in Paper III. 
 

 
 Bis-pyrene probes contain pyrene moiety (four fused benzene rings) 

attached to the end of each acyl chain of a lipid molecule. Pyrene probes respond 
to the free volume between the acyl chains in the lipid bilayer (Sunamoto et al., 
1980; Xiang, 1993). More free volume between the acyl chains correlates to a 
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less ordered membrane, which reflects a membrane that is also more permeable 
to small molecules (Xiang, 1993). The probes can assss the acyl chain order at 
different depths in a liposome monolayer.   

In paper III, PC with pyrene probes that sense below C9 or C16 were 
used. To provide DGDG batches with different acyl chain compositions for the 
studies on DGDG behavior in  liposomes, DGDG was isolated from transgenic 
Escherichia coli (Wikström et al., 2009), shoots of fully fertilized oat and roots 
from phosphate-limited oat (Figure 14). All three batches of DGDG lowered the 
order between the acyl chains in PC liposomes and the effects were most 
pronounced with the shorter bis-pyren probe sensing at a shallow depths in the 
liposome leaflet. However, importantly, DGDG isolated with the acyl chain 
composition most similar to plasma membrane phospholipids (from phosphate 
limited oat roots) had the least impact (Paper III).  

Since both DGDG and free sterols reduce acyl chain order, it was concluded 
in paper III that a membrane with high DGDG and free sterol contents in the 
same leaflet would create a membrane with too low acyl chain order. This would 
result in membrane that would be more permeable to solutes, which would be 
detrimental to the cell (Xiang, 1993). In the plant plasma membrane this is 
avoided as DGDG and sterols are enriched in opposite leaflets in the root plasma 
membranes (Paper III c.f. above).  

DGDG has a larger headgroup than phospholipids and this influenced and 
reduced the acyl chain order in the cytosolic leaflet of phosphate limited oat 
compared to fully fertilized oat (Paper III). To compensate the reduced acyl 
chain order in the cytosolic leaflet it is possible that the increase of ASG in the 
apoplastic leaflet increases the order in the apoplastic leaflet. 
 
 
7. FINAL REMARKS  
 
Some of the questions in this section have been addressed in previous sections 
but I wish to highlight what I see as the most interesting questions and ideas 
that have been raised from the work presented. 

What is the function of DGDG in the plasma membrane? We know that 
during phosphate limited growth it substitutes phospholipids (Andersson et al., 
2003; Papers I-III). DGDG has also been detected in fully fertilized plasma 
membrane in many studies from different plants and tissues, (Liljenberg and 
Kates, 1985; Norberg and Liljenberg, 1991; Andersson et al., 2003; Mongrand et 
al., 2004; Lefebvre et al., 2007; Papers I-III).There is some evidence that 
points to that it could function as an acyl chain donor to SG to produce ASG 
(Heinz et al., 1975; Potocka and Zimowsk, 2008). ASG is one of the lipids that 
have been neglected in the plant lipid field. It is synthesized by acylation of SG, 
but the localization of the enzyme(s) and the identity of the substrate(s), which 
donates the acyl chain to SG, seem to vary from species to species. As far as 
ASG function and how it behaves in a membrane environment, the information is 
almost non-existent. The small headgroup of ASG hints that it is likely be a cone-
shaped lipid. It would be interesting to see which lipids ASG associates within a 
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liposome preparation, does it partition into liquid order or liquid disorderd 
domains? 

The identities of the lipids transported during the phospholipid-to-DGDG are 
still not identified. Although acyl chain composition of plasma membrane 
localized DGDG from phosphate-limited oat have similarities to phospholipid acyl 
chain composition, it is not proven that the glycerol backbone from phospholipids 
are used for DGDG synthesis. Also the transport routes and the identity of the 
transported lipids (PA, DAG) are not yet identified. By following the phospholipid 
glycerol backbone it would be possible to elucidate the fate of the glycerol 
backbone during phosphate limited growth. It is also not known what happens to  
plasma membrane localized DGDG when phosphate is resupplied to phosphate-
limited oat. In addition to a dilution effect (cf. above), there is also the possibility 
that DGDG is degraded by galactolipases and removed from the plasma 
membrane.  

In animals, DAG binds to protein kinase C which activates a cellular 
response, but protein kinase C have not been found in plants, so the function of 
DAG as a signaling molecule or as a membrane constituent is largely unknown. 
Under normal growing conditions, any DAG in the plasma membrane is rapidly 
phosphorylated by DAG-kinase, rendering PA (Munnik and Testerink, 2008) With 
a increase in PAP activity in phosphate limited oat plasma membrane this would 
result in a futile cycle where DAG is phosphorylated and PA is de-phosphorylated 
and it seems highly unlikely that this would be the case.  

One of the more annoying questions that I have entertained for a long time 
now is: what is the phosphate liberated from the phospholipids used for? My 
usual answer is that it is used for molecules, which have no suitable non-
phosphate containing alternative, such as ATP and DNA. I believe that this hold 
true to some extent but it would be worth wile to investigate what the initial 
phosphate, liberated from phospholipids, is used for.  
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10. POPULÄRVETENSKAPLIG SAMMANFATTNING PÅ SVENSKA 
 
Under de senaste åren har jag fått frågan: MEN VAD GÖR DU EGENTLIGEN? ett 
antal gånger. Svaret har varierat förvånansvärt mycket med tanke på att jag 
gjort i stort sett samma sak hela tiden -här är ytterligare en variant: 

Runt om nästan allt finns det ett skyddande lager, vi har huden, 
karboncykeln har lacken och cellen har ett plasmamembran. Även om det finns 
en massa skäl att gå in på hur en karboncykel är uppbyggd och konstruerad för 
att bli lätt och vridstyv på samma gång så får det vänta till en annan gång och vi 
får fokusera på plasmamembranet. Det är uppbyggt av membranlipider och 
proteiner som skapar en barriär mot omvärlden.  

Plasmamembranet är till för att cellen skall kunna behålla vissa ämnen och 
se till att vissa ämnen inte kommer in. Detta membran är ca en miljondel av 
tjockleken av en tio-krona. Sammansättningen av membranlipider gör att denna 
tunna biologiska film klarar av att hålla vissa molekyler utanför och andra 
innanför och sammansättingen av membranlipider och membranproteiner 
regleras hela tiden för att vara optimal för rådande omständigheter. 

Membranlipider består av två delar som har olika egenskaper: huvudet som 
är vattenlösligt och svansen som är inte är vattenöslig. Då membranlipider 
blandas i vatten organiserar sig membranlipiderna så att svansarna pekar mot 
varandra och huvudgruppen pekar ifrån varandra. Det bildas ett membran, där 
huvudgrupperna skyddar svansarna från vattnet. När detta membran sluts bildas 
en sfär, vilket är grunden för bildandet av en cell. I en cell så finns det mer än 
1000 olika sorters lipider som delas in i lite större lipidklasser. Dessa klasser 
baseras i stort sett på vad det är för huvudgrupp och de två huvudgrupper som 
är mest intressanta för min forskning är fosfolipider som innehåller fosfat och 
galaktolipider som innehåller galaktos (ett slags socker).  

Fosfat är ett ämne som är nödvändigt för alla levande organismer, 
tillgången är dock begränsande i de flesta jordar. Eftersom växter inte kan flytta 
på sig till områden med mer fosfat så har de anpassat sig till de rådande 
förhållandena. Växter har blivit experter på att leta reda på mer fosfat och med 
att hushålla med den mängd fosfat som finns att tillgå. Genom att låta rötterna 
växa längre, så kan växten ”leta rätt” på mer fosfat eller så kan rötterna 
utsöndra vissa syror för att frigöra fosfat som är bunden i marken. En av 
mekanismerna för fosfathushållning som upptäcktes för tio år sedan är att 
växten kan använda sig av fosfaten som finns i fosfolipiderna. Då fosfattillgången 
är riktigt dålig så kommer växten att bryta ned fosfolipidrna och använda 
fosfaten till andra molekyler och en slags galaktolipid, DGDG, kommer att ersätta 
fosfolipiderna i membranet. Då havre får växa utan fosfat så ökar mängden 
DGDG i plasmamembranet med ca 800 % till en total halt av ca 25 mol%, på 
samma gång ser man en minskning av andelen fosfolipider om man jämför med 
havre som växt under fosfatrika förhållanden. 

Jag har bland annat studerat vilka enzymer som är inblandade i 
nedbrytningen och frigörandet av fosfaten från fosfolipider i plasmamembranet 
och korrelerat denna aktivitet till ålder, fosfathalt och mängd DGDG i havre. 
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Även om havre klarar sig utan tillsatt fosfat i näringslösningen så ser man 
att den mår mycket bättre om den har tillgång på fosfat. Den växer bättre, 
producerar mera frön och ser allmänt mer friskare ut än havre som vuxit utan 
fosfat.  

När jag tillförde fosfat till fosfatsvulten havre, kunde jag se att växten tog 
upp fosfaten och att fosfolipider bildades på nytt. Efter en vecka så började den 
före detta fosfatsvultna havren att se lite friskare ut. Mängden fosfolipider hade 
ökat och andelen av DGDG i plasmamembranet hade minskat. Genom att tillföra 
fosfat så hade jag vänt på förloppet Det visade sig att DGDG är acceptabel som 
ersättare för fosfolipider, men egentligen bara om nöden kräver det. 

Konsekvenserna av hög halt DGDG i plasmamembranet undersöktes genom 
att mäta hur DGDG interagerade med andra lipider som finns i 
plasmamembranet. Det visade sig att på ett membran med mycket DGDG har 
sämre egenskaper än ett membran med lite DGDG. Men detta undviks i havren 
genom att DGDG har en specifik lokalisering i plasmamembranet som minimerar 
dess påverkan på plasmamembranets integritet. 

Varför ska man bry sig om fosfat? I dagens jordbruk så använder man sig 
av NPK gödsel, som tillför kväve, fosfat och kalium, för att öka tillväxt och skörd. 
Det är dock bara en liten del av den tillförda fosfaten som växten tar upp, det 
mesta försvinner i avrinningen av ytvattnet eller binds upp i marken till järn- 
eller aluminiumrika jordpartiklar, viket gör den otillgänglig för växten. När fosfat 
sprids på åkern kommer den del som växterna inte tar upp således inte att 
kunna återvinnas utan går förlorad. Studier, som denna avhandling är till för att 
öka vår kunskap om vilka mekanismer som växter använder sig av vid upptag 
och hushållning av fosfat, då fosfaten som används som gödsel är en ändlig 
resurs, precis som den fossila oljan. Fosfaten i NPK gödsel bryts i dagbrott i 
norra Afrika och enligt vissa beräkningar så kommer fosfatmalmen att ta slut om 
50-100 år - vad skall vi då använda? Något att tänka på nästa gång som vi tar 
fram säcken med blåkorn…  
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