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ABSTRACT 

 
The immune response induced by vaccination with Bacille Calmette-Guérin 
(BCG) is not fully understood, and the interpretation of the tuberculin skin test 
(TST) is still under debate. This thesis was based on questions raised while 
implementing protective measures for healthcare workers and others at risk of 
exposure to tuberculosis (TB) in Sweden, a country where the prevalence of TB 
is low. 
 
The present distribution of TST reactions in healthy young adults was analyzed, 
as well as the influence of various background factors on TST reactivity. Forty-
two percent of BCG-vaccinated subjects had TST reactions ≥10 mm, while 
most unvaccinated subjects were non-reactive. BCG vaccination, geographic 
origin and age had decisive influence on TST reactivity. Most TST reactions in 
unvaccinated Swedish subjects were probably caused by cross-reactivity with 
non-tuberculous mycobacteria. Furthermore, the scar rate and TST reactivity 
after BCG vaccination was analyzed in children and adults. Vaccination of 
adults resulted in consistent scar formation, while scar prevalence in previously 
vaccinated children was low. There was a positive correlation between scar 
presence and TST reactivity in children as well as adults. Vaccinated subjects 
without a scar were TST positive more frequently than those non-vaccinated, 
indicating a systemic vaccine reaction in the absence of a local reaction. 
 
New opportunities to elucidate the above-mentioned issues have evolved from 
insights in the immunology of TB. A T-helper 1 (Th1) response is known to 
confer protection against TB. Markers of a Th1 response are e.g. production of 
interferon-gamma and lymphocyte prolipheration after in vitro stimulation of 
peripheral blood mononuclear cells with tuberculin. These immune correlates 
were analyzed in relation to TST reactivity in previously BCG-vaccinated 
healthcare workers without known exposure to TB. Subjects with large positive 
TST reactions mounted a stronger Th1 response than TST negative subjects. 
Moreover, the corresponding in vitro analyses were performed before and after 
BCG vaccination of TST negative young adults. Both primary vaccination and 
revaccination caused a significant increase of the Th1 response, suggesting a 
protective effect against TB. 
 
In conclusion, a history of BCG vaccination and/or the presence of a BCG scar 
are strong predictors of TST reactivity in our setting. A BCG scar can be used 
as an indicator of a technically correct vaccination in adults but does not have 
the same implication after vaccination of children. IFN-γ has a decisive role in 
the Th1 response and in resistance against TB, but protective immunity against 
TB is more complex than the effects of T cell derived IFN-γ production only. 
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The in vitro results should therefore be evaluated with caution. Yet, TST 
reactivity was associated with a protective immune response in vitro in BCG-
vaccinated adults without known TB exposure, and a corresponding response 
was induced by primary vaccination as well as revaccination of young adults. 
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LIST OF PUBLICATIONS AND PRESENTATION OF THE THESIS 

 
This thesis includes the papers listed below and a review concerning BCG 
vaccination, the tuberculin skin test and some epidemiological and 
immunological aspects of tuberculosis. Methods used in the four papers are 
described in the review, and the results are related to findings in the literature. 
The papers are referred to by roman numerals I-IV. The review is followed by a 
presentation of the aims of the thesis, brief summaries of the studies, and a short 
discussion of main results and key issues of the thesis.  
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BCG-vaccinated healthcare workers. Fjällbrant H, Ridell M, Larsson LO. Eur 
Respir J 2001;18:376-380. (Reproduced with permission from the editor) 
 
IV. Primary vaccination and revaccination of young adults with BCG: a study 
using immunological markers. Fjällbrant H, Ridell M, Larsson LO. Scand J 
Infect Dis 2007;39:792-798. (Reproduced with permission from the editor) 
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ABBREVIATIONS 

 
AIDS acquired immunodeficiency syndrome 
BCG Bacille Calmette-Guérin 
CD cluster of differentiation 
CFP-10 10 kDa culture filtrate protein 
DTH delayed-type hypersensitivity 
ELIspot enzyme-linked immunospot assay 
ESAT-6 6 kDa early secretory antigenic target  
HCW healthcare workers 
HIV human immunodeficiency virus 
IFN-γ interferon-gamma 
IGRA IFN-γ release assay 
IL interleukin 
kDa kilodalton 
LTBI latent tuberculous infection  
M. Mycobacterium 
MDR-TB multidrug-resistant tuberculosis  
MRC Medical Research Council 
NTM non-tuberculous mycobacteria 
OT  old tuberculin 
PPD purified protein derivative 
PPD-B PPD-Battey 
PPD-S PPD Standard 
QFT  QantiFERON-TB Gold In-Tube 
RD1 Region of Difference 1 
SCID severe combined immunodeficiency 
TB tuberculosis 
Th T-helper 
TNF-α tumor necrosis factor alfa 
TST tuberculin skin test 
TU tuberculin units 
WHO  World Health Organization 
XDR-TB extensively drug-resistant tuberculosis 
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INTRODUCTION 
 
After his grand discovery of Mycobacterium tuberculosis in 1882, the German 
microbiologist Robert Koch produced a liquid from culture filtrates of tubercle 
bacilli and used it for treatment against tuberculosis (TB) by subcutaneous 
injection (1). Unfortunately, his hopes for a remedy for the disease would soon 
be crushed. However, the potential of his liquid, “Tuberculin”, as a diagnostic 
agent was discovered by Clemens von Pirquet (2), and in 1910 Charles 
Mantoux introduced the intradermal tuberculin skin test (TST) (3). This test 
could discriminate between subjects infected with M. tuberculosis and non-
infected subjects. 
 
It was apparent from many years of experience that people who remained 
healthy after infection with tubercle bacilli were relatively resistant to TB on re-
exposure. The corresponding conclusion was drawn from studies of animals 
with healed tuberculous lesions that were challenged with tubercle bacilli. 
These observations inspired attempts to produce a non-virulent strain of the 
tubercle bacillus that would be capable of inducing protection against TB, 
without conferring risk of the disease. Albert Calmette and Camille Guérin of 
the French Pasteur institute finally succeeded in 1921, after a 13-year long 
attenuation process of a bovine strain of the tubercle bacillus (M. bovis). The 
strain was sub-cultured for 231 serial passages in a medium consisting of beef 
bile, potato and glycerine, while it gradually lost its virulence (4). The new non-
virulent strain was designated Bacille Calmette-Guérin (BCG) and was 
originally given orally. The presently used intradermal route was developed in 
Göteborg by Professor Arvid Wallgren, starting in 1927 (5). 
 
Two major principles of BCG vaccination adopted by Professor Wallgren were 
to only vaccinate TST negative subjects and that the immunizing effect was to 
be confirmed by a positive TST. His intention was to achieve a vaccination 
procedure analogous to the events of natural infection with tubercle bacilli. (The 
term “infection” in this review refers to infection without current signs or 
symptoms of disease.). It was observed that healthy subjects with a positive 
TST due to tuberculous infection were at reduced risk of developing TB from 
subsequent exposure compared with subjects who were TST negative. 
Subsequently, these observations were confirmed in several studies of 
healthcare students and healthcare workers (HCW) (6, 7). Although a 
corresponding association between resistance against TB and TST positivity 
induced by BCG vaccination was demonstrated by a study from Norway (8), the 
results of subsequent BCG trials have not supported this finding (9, 10). 
Consequently, the value of the TST as a correlate of protective immunity has 
been a subject of debate for many years. 
 

11



 

   

The role of BCG in healthcare programs is also a subject of debate. There is no 
doubt of a relatively high efficacy of BCG vaccination in e.g. Scandinavia (8, 
11-14), Great Britain (15), Northern United States (16, 17) and Canada (18), but 
the overall impression of the many vaccine trials in different parts of the world 
is one of variable and often contradictory results (19). BCG confers a high 
degree of protection against severe disseminated forms of TB in children (20), 
but a variable and incomplete effect against pulmonary TB in adults (21), the 
disease manifestation that propels the TB epidemic. In addition, waning of 
protective efficacy has been demonstrated in several BCG trials (22). These 
inadequacies of BCG have impelled a quest for new TB vaccines (23) as well as 
the practice of repeated BCG vaccination in many countries (24, 25). 
 
Health authorities have the obligation to safeguard HCW and other 
professionals at risk of exposure to contagious TB. A wide range of alternative 
strategies are employed in different countries (26, 27). In Sweden, the choice 
has been selective BCG vaccination of students and professionals at risk, in 
addition to other occupational safety control measures. A TST is generally 
performed before the decision of BCG vaccination. The interpretation of the 
TST in this situation is complex, as well as the question of who will benefit 
from immunization with BCG. 
 
New opportunities to evaluate protective immunity have evolved from insights 
in the immunology of TB. There is a continuous search for accurate correlates 
of immune protection (28, 29), which can be employed in the evaluation of new 
vaccines. Such immune correlates may also shed some light on the many 
questions involved in evaluating the immune status by the TST and in deciding 
on BCG vaccination. 
 
This review discusses the issues regarding interpretation of the TST and the 
value of BCG vaccination in subjects at risk of TB exposure in a low-endemic 
setting. The focus is on evaluations of the immune response against tuberculin 
and BCG. The perspective is epidemiological as well as clinical and practical. 
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TUBERCULOSIS 
 
 
GLOBAL EPIDEMIOLOGY OF TUBERCULOSIS 
 
In 1993, the World Health Organization (WHO) declared TB a global 
emergency. During the following years, the TB epidemic in many parts of the 
world continued to increase. The total number of new TB cases is still rising 
due to population growth, but the global TB incidence rate, which peaked in 
2004, leveled off during 2005 and 2006. It is estimated that 1.5 million people 
died from TB in 2006 and 9.2 million new cases were diagnosed (30). 
 
TB is a leading cause of death in developing countries, in which approximately 
95% of all new cases of TB and 98% of deaths occur. Although the highest rates 
per capita are in Africa, half of all new cases occur in six Asian countries (India, 
China, Indonesia, Pakistan, Bangladesh and the Philippines). In developing 
countries TB affects mostly young adults in their most productive years, thereby 
contributing to the unfavorable socio-economic development in many areas. 
 
According to a recent estimate, nearly one third of the world’s population is 
infected with tubercle bacilli (31). Co-infection with human immunodeficiency 
virus (HIV) multiplies the risk of progression to disease (32) and is therefore an 
important contributor to the global TB epidemic. The association with HIV is 
especially strong in sub-Saharan Africa, where rates of HIV infection among 
TB patients exceed 50% in several countries (33). The impact of the “cursed 
duet” of TB and HIV on the welfare of this region has been devastating. 
 
Drug-resistant strains are an increasing problem, emerging from the misuse of 
TB drugs (34). Multidrug-resistant TB (MDR-TB), resistant to the key drugs of 
the standard treatment regimen, was seen in 5% of the cases in 2006 (35), with 
the highest rates in countries of the former Soviet Union and China. Treatment 
of MDR-TB is protracted, costly, poorly tolerated and less effective than 
treatment of non-resistant strains (36). Cases with resistance also to the major 
second-line drugs are denoted extensively drug-resistant TB (XDR-TB) and 
have recently emerged in all regions of the world (35). XDR-TB is extremely 
difficult to treat (37) and threatens to derail the recent progress in TB control. 
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EPIDEMIOLOGY OF TUBERCULOSIS IN EUROPE AND SWEDEN 
 
The incidence of TB in industrial countries decreased rapidly during the 20th 
century (38). In many European countries the decline has halted during recent 
years, and some countries have seen an increase of TB rates. The development 
of the TB epidemic in Sweden parallels these trends. After a century of rapid 
decline, the number of TB cases in Sweden leveled off during the 1990’s to a 
rate between 400 - 500 cases per year, corresponding to an incidence of 
approximately 5 per 100 000 (39). As in many other low-endemic countries, 
most TB cases occur in young immigrants and elderly native-born individuals. 
The incidence of TB among immigrants reflects the incidence of their native 
country (40, 41), and remains high several years after arrival (42, 43). 
Immigrants constitute an increasing part of the Swedish TB cases (78% of the 
TB cases in 2007), thereby counteracting the continued decline in the Sweden-
born population. 
 
Despite one of the lowest TB rates in the world, the Swedish TB program has 
obvious problems. The last three years have involved a marked increase in the 
TB incidence (39). A large cluster of isoniazid-resistant TB has been reported 
(44), indicating ongoing transmission among immigrants. The incidence of 
resistant and multi-resistant strains is increasing (45), the rates of completed 
treatment have been low and contact-tracing inadequate (44). In addition, the 
favorable situation with very little TB naturally leads to an unawareness of the 
diagnosis of TB. Consequently, outbreaks have occurred due to prolonged 
doctor’s delay, e.g. affecting non-vaccinated children at day-care centers (46). 
 
 
BACTERIOLOGY 
 
TB is caused by bacteria of the Mycobacterium tuberculosis complex (47), 
which includes the major pathogen M. tuberculosis, as well as M. africanum 
(48, 49), M. bovis (50), M. bovis BCG, M. canettii (51), M. caprae (52), M. 
microti (53) and M. pinnipedii (54). Other members of the genus 
mycobacterium (55) are M. leprae, the causative agent of leprosy, and the large 
group of non-tuberculous mycobacteria (NTM). 
 
Mycobacteria are acid-fast rod-shaped bacteria, 2-5 μm long. All 
Mycobacterium species share a characteristic lipid-rich cell wall, thicker than in 
many other bacteria, composed of mycolic acids, complex waxes, and unique 
glycolipids. The unusual cell wall structure endows mycobacteria with 
resistance to dehydration, acids and alkalis and most antibiotics. The cell wall 
also helps mycobacterial pathogens to survive within macrophages (56). 
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M. tuberculosis is a strict aerobe with a slow growth rate. The doubling time is 
12-24 hours in vitro as well as in vivo. Consequently, identifiable mycobacterial 
colonies may not appear for 4 to 6 weeks on solid media. 
 
NTM were previously denoted atypical mycobacteria, since they were observed 
as rare and divergent findings in mycobacterial cultures in which M. 
tuberculosis was the dominant species. As the multitude of NTM species were 
discovered, it became clear that “atypical” was a better term for the species of 
the M. tuberculosis complex: they are unique among mycobacteria as obligate 
parasites that survive only in humans or animals, in which they often cause 
disease, while the abundance of NTM are low-virulent opportunists ubiquitous 
to the environment. Thus, an alternative and more descriptive label for NTM is 
"environmental mycobacteria". Common habitats are natural waters, drinking 
water and soil (57). Currently, more than 125 NTM species have been identified 
(58). 
 
 
TUBERCULOSIS TRANSMISSION AND HOST DEFENSE 
 
The major route of TB transmission is by inhalation of tubercle bacilli from 
aerosols, expectorated by individuals with TB in the airways when they cough, 
sneeze, talk or sing (59, 60). The smaller particles in the aerosols are rapidly 
dehydrated, forming tiny droplet nuclei (about 5 μm in diameter) which may 
remain airborne for many hours. When inhaled the droplet nuclei are 
sufficiently small to reach the distal airways, whereas larger particles are 
deposited on the walls of more proximal airways and cleared by the mucociliary 
apparatus. The less common route of infection with tubercle bacilli is by 
ingestion. In areas where dairy products are not properly treated and bovine TB 
has not been eliminated, ingested M. bovis organisms may cause direct infection 
of the gastrointestinal tract. 
 
In the alveoli the bacilli are phagocytosed by macrophages. Tubercle bacilli 
have the ability to survive and even multiply within macrophages through 
evasive strategies that are not clearly understood (61). Depending on the 
capacity of the host’s innate resistance, to which e.g. natural killer cells and 
neutrophils are also believed to contribute, the bacilli can be killed in a process 
leading to apoptosis – a programmed series of events intrinsic to all cells that 
leads to cell death without causing inflammation and tissue destruction. 
Establishment of infection and further immune events may thereby be prevented 
(23). Inhibition of apoptosis has been suggested as a central strategy of tubercle 
bacilli for intracellular survival (62, 63). 
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If the bacilli are able to survive initial defenses, intracellular proliferation may 
cause cellular necrosis and release of the organisms. Subsequent production of 
chemokines and cytokines attract other immune-effector cells which engulf the 
bacilli, resulting in further intracellular growth, necrosis, inflammation and local 
spread of the infection. In this ongoing pathological process, tubercle bacilli are 
transported to regional lymph nodes by dendritic cells - a subset of phagocytic 
cells specialized in activating naïve lymphocytes after migrating from the 
infectious site (64, 65). Processed peptide antigens from the bacillus are 
presented in conjunction with major histocompatibility complex molecules on 
the surface of dendritic cells, allowing interaction with receptors of naïve T 
cells (66). Following antigen encounter the T cells undergo rapid proliferation 
and differentiate into effector cells (67), that subsequently migrate to the site of 
infection. 
 
The activation of T cells in the lymph nodes normally takes place within 3-8 
weeks after infection. Activated T cells are the core of the specific cell-
mediated immunity that eventually can limit multiplication of bacilli and spread 
of the infection. In parallel, delayed-type hypersensitivity (DTH) develops 
against tuberculous antigens (see next page), as illustrated by a positive TST 
(64). 
 
At the site of infection, activated T cells interact with infected macrophages. 
Interleukin (IL) -2, IL-12 and IL-18 released by the macrophages induce T cell 
production of interferon-gamma (IFN-γ), the key cytokine in the protective 
immune response (61, 68) with decisive influence on the further events of cell-
mediated immunity. IFN-γ stimulates the phagocytosis of tubercle bacilli within 
the macrophage, thereby converting the macrophage from immunologically 
naïve to a specifically immunocompetent effector cell. In addition, IFN-γ 
stimulates the macrophage to release tumor necrosis factor alfa (TNF-α), which 
promotes the formation of granulomas by T cells and macrophages. The ability 
of the granulomas to control the spread of the bacilli determines the fate of the 
infection. The tubercle bacilli are mainly contained in the characteristically 
necrotic centre of the granulomas, thereby limiting further replication and 
spread of the organism (69, 70). The crucial role of TNF-α in this process is 
illustrated by the rapid reactivation of TB in treatment with TNF-α-blocking 
agents (71). 
 
Unlike many other pathogenic bacteria, which contain endotoxins and 
exotoxins, the pathologic effects of tubercle bacilli are largely mediated by the 
immune response of the host. There is a complex balance between control of 
infection and tissue destruction in TB. According to findings in mice, this 
balance is dependent on the type of T cell response against the infection. T-
helper 1 (Th1) responses are characterized by the production of IFN-γ, IL-2 and 
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Interleukin-12 and are considered to be required for protection against 
intracellular infections (72). T-helper 2 (Th2) responses, characterized by the 
production of IL-4, IL-5, IL-10 and IL-13, protect against e.g. helminth 
infections and are involved in atopic reactions (72). In humans, TB is 
characterized by decreased levels of Th1 cytokines compared to the levels in 
subjects with latent TB who are capable of controlling the infection (73-75), and 
it is clear that a Th1-response is a crucial component of human protective 
immunity against TB (61). Results regarding Th2 cytokines in TB patients have 
been conflicting (75, 76). However, recent studies indicate that previous 
inability to demonstrate IL-4 in human disease may have been due to technical 
difficulties (77), and that IL-4 may have an important role in the pathogenesis of 
human TB. Rook and colleagues suggest that the production of IL-4 
superimposed on Thl activity can convert the response from protective to 
pathological (77) (see p. 59). The competitive inhibitor of IL-4, IL-4δ2 (78, 79), 
was increased in healthy individuals with LTBI (73), suggesting that long-term 
control of LTBI is associated with inhibition of the Th2 response. According to 
this theory, disease progression involves a shift form Th1 to Th2, with increased 
IL-4 activity and a decrease in IL-4δ2 (77). 
 
Views regarding the significance of DTH for resistance against disease are 
divergent (see p. 64). DTH is a Th1 response that involves cytotoxic 
mechanisms leading to the killing of infected macrophages (80). The 
detrimental effects of DTH in the lungs develop if large amounts of tubercle 
bacilli are present (81). When many bacilli accumulate within the macrophages, 
the cytotoxic response kills not only the infected macrophages but also some of 
the surrounding tissue, thereby forming the caseous center of the granuloma. 
When bacilli escape from the edge of the caseum, they are ingested by nearby 
macrophages. If these macrophages do not control growth of the bacilli, the 
cytotoxic immune response again kills the bacilli-laden macrophages (and 
surrounding tissue), thus enlarging the caseous center. In hosts that develop 
poor activation of macrophages, this process may occur repeatedly and lead to 
extensive tissue destruction. DTH is the principle mechanism behind tissue 
destruction in TB, but without DTH the control of bacillary growth would be 
reduced (80). 
 
Antibody responses are considered to contribute little to protection against TB. 
However, mycobacterium-specific antibodies may be capable of enhancing both 
innate and cell-mediated immune responses (80). In a recent study, BCG-
induced antibodies improved phagocytosis by macrophages and increased 
proliferation and IFN-γ production of mycobacterium-specific T cells (82). 
 
When the infection is not properly contained, bacilli may spread systemically 
from the primary lesion and regional lymph nodes to multiple organs. In some 
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individuals, proliferation of bacilli continues until the infection becomes severe 
enough to cause disease - so called primary TB. However, in the majority of 
infected subjects, cell-mediated immunity is effective enough for the infection 
to subside to a state in which tubercle bacilli remain dormant within the 
infectious foci. In this form of latent TB, viability of the bacilli is maintained 
and reactivation may occur later in life. A small number of antigen-specific T 
cells survive and become long-lived memory T cells (83). 
 
Progressive, uninterrupted invasion by tubercle bacilli occurs mainly in infants, 
small children and immunocompromised individuals, particularly in those with 
HIV infection. Manifestations of primary TB are meningitis, miliary disease 
and pleuritis, as well as primary progressive forms of pulmonary and lympho-
glandular TB. 
 
Risk factors for reactivated disease are HIV infection, diabetes mellitus, end-
stage renal disease, silicosis, certain malignancies, malnutrition, old age and 
immunosuppressive treatment. Individuals with apical fibronodular scarring of 
the lungs after previous (generally subclinical) TB are at particular risk. The 
lungs, lymph nodes and bones are the most common sites of reactivated disease. 
 
 
OCCUPATIONAL RISK OF TUBERCULOSIS IN HEALTHCARE 
WORKERS 
 
The risk of tuberculous infection and disease is generally considered to be 
higher among HCWs than in the general population. Studies of HCWs in 
developing countries demonstrate a substantially increased risk (96). However, 
in high-income countries the risk compared to the surrounding community is 
variable (97, 98). A recent review found that the occupational risk for HCWs of 
high-income countries can be considerable in facilities with many TB patients, 
particularly if the infection control measures are inadequate (98). Casual 
contacts with patients in healthcare settings involve a relatively low risk of TB 
transmission (99), whereas the risk is substantial in connection with autopsy and 
TB laboratory work (100), as well as in aerosol-generating procedures such as 
bronchoscopy, intubation, suctioning of the airways and sputum induction. 
Furthermore, the risk of nosocomial transmission of TB is augmented by an 
increasing proportion of immigrants and a rising prevalence of HIV infection 
and drug-resistance. 
 
Prevention of TB transmission in health care settings (99, 101) include a 
hierarchy of three strategies, of which administrative measures are considered 
crucial, engineering measures valuable and personal respiratory protection 
possibly effective under certain circumstances (27, 98, 102). Administrative 

18



 

measures refer to actions promoting e.g. early diagnosis and efficient treatment, 
engineering measures principally involve adequate isolation of contagious 
patients, and personal respiratory protection refers to the use of mask 
respirators. 
 
Protection of HCW by BCG vaccination is an additional component of the 
administrative strategy that has sparked intense debate during the years (103-
115). Several controlled studies in HCWs have reported a protective effect for 
BCG vaccination (reviewed in (26)). However, due to the induction of TST 
reactivity, the BCG strategy is in conflict with the alternative measure of 
periodic tuberculin skin testing, which aims at treating latent TB in subjects 
with TST conversion (101) (see p. 37). The TST program has been widely 
practiced in the United States, emphasizing the possibility of surveillance as a 
major advantage (116). In other low-endemic countries BCG vaccination is 
recommended (117, 118) in agreement with the principle of optimizing 
individual protection of individuals at increased risk of exposure. Both sides of 
the debate address well-known shortcomings of the opponents’ strategy. 
 
Decision analyses comparing BCG vaccination and periodic tuberculin skin 
testing of HCWs in the United States have favored the use of BCG (107, 108, 
111), even assuming low levels of BCG effectiveness. However, these 
conclusions have been vigorously debated by Reichman and colleagues (113, 
115, 119). Lately, the emergence of MDR-TB has renewed interest in the BCG 
strategy (106, 112, 120), since treatment of latent forms of MDR-TB is 
insufficiently documented and may be complicated (36). Furthermore, a recent 
study suggests that longitudinal TST studies are valuable for surveillance of the 
occupational risk of TB even in BCG-vaccinated populations (121). 
 
 
NON-TUBERCULOUS MYCOBACTERIAL INFECTION AND  
DISEASE 
 
Natural and indoor water sources are considered the primary reservoir for most 
human NTM infections (57). Transmission occurs either through inhalation or 
ingestion. There is no evidence of human-to-human transmission of NTM (58). 
Infections with NTM are common in populations where the bacilli are abundant 
in the surroundings (84-87), but latent NTM infections have not been observed 
(88). An increase in infections (89) as well as in NTM disease (58, 90-92) 
during the latter part of the 20th century has been reported. In Sweden, 
infections with NTM are common in children (93), and the incidence in children 
of lymph node lesions and soft tissue lesions appear to have increased after the 
general BCG-vaccination of newborns was discontinued (94). 
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Pathogenesis and host defense mechanisms of NTM disease are similar to TB 
(95). The most common clinical manifestation of NTM in industrialized 
countries is lung disease similar to TB in middle-aged and older individuals. 
Other important manifestations are cervical lymphadenitis in small children, 
skin/soft tissue diseases, and disseminated disease in immunocompromised 
hosts (58).  
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THE TUBERCULIN SKIN TEST 
 
 
TUBERCULIN PRODUCTS AND THEIR STANDARDIZATION 
 
The first tuberculin was prepared by Robert Koch by filtration of heat-sterilized 
cultures of M. tuberculosis grown on veal broth, followed by evaporation of the 
filtrate to 10% of its original volume (1). This type of tuberculin contained 
remains of veal broth and therefore frequently induced non-specific reactions. 
Replacing the veal broth with a synthetic culture medium improved specificity. 
Such products are called Old Tuberculin (OT). In the 1930’s, Florence Seibert 
developed a technique of precipitation with ammonium sulphate to isolate 
proteins from autoclaved culture filtrates of tubercle bacilli. Results with this 
new type of tuberculin denoted Purified Protein Derivative (PPD) proved more 
reproducible and specific than OT. In spite of the designation “purified protein 
derivate”, polysaccharides are present in addition to proteins, even in modern 
PPD products (122). Heat-sterilization coagulates much of the culture proteins, 
leaving relatively small proteins with a molecular weight in the range of 10 kDa 
(123-125). The small size of the proteins explains why PPD is not 
immunogenic, i.e. that a TST does not induce hypersensitivity to PPD on 
following tests in individuals previously non-sensitized to mycobacteria (122, 
126). 
 
After careful standardization, a large batch of PPD was eventually produced by 
Seibert in 1939, termed PPD Standard (PPD-S) (127). In 1952 a portion of this 
batch was adopted as an international standard by the WHO. Even today, all 
other PPD:s should be standardized against this product.  
 
On request from the United Nations International Children’s Emergency Fund 
(UNICEF) a large batch of tuberculin PPD was produced by Statens Serum 
Institut in Copenhagen, which was taken into use in 1958. In line with previous 
PPD products from Statens Serum Institut, the new batch designated PPD RT23 
was precipitated by trichloracetic acid. Its total dry weight was 670g, 
theoretically corresponding to approximately 17 billion tests. The purpose of 
such a large batch was to meet global demands for an extended time, thereby 
improving comparability of TST data. PPD RT 23 is still used today worldwide, 
and the supply will continue to fulfill the demands for the foreseeable future 
(Hasløv K, personal communication). 
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Operating characteristics of a diagnostic test 
 
Diagnostic accuracy 
 
The sensitivity of a test is the percentage of people with a given condition who 
have a positive result (“true positives”). If false negative results are uncommon, 
the sensitivity is high. The specificity of a test is the percentage of people 
without a given condition who have a negative result (“true negatives”). False 
positive results decrease the specificity of a test.  
 
Predictive ability 
 
The predictive value of a positive test result (the positive predictive value) is the 
percentage of positive results that correctly identifies the presence of a given 
condition. The negative predictive value is the percentage of negative results 
that correctly excludes the presence of the condition.  
 
Influence of prevalence 
 
The sensitivity is only associated with individuals having the condition, whereas 
the specificity exclusively deals with individuals without the condition. 
Consequently, these test qualities are not affected by the prevalence of the 
condition in the population. In contrast, the positive and negative predictive 
values are dependent on the prevalence of the condition; with increasing 
prevalence the positive predictive value is enhanced (as the rate of true positive 
results increases) and the negative predictive value is reduced (as the rate of true  
negative results decreases). 
 
 
 
Doses of PPD:s are for practical purposes expressed in Tuberculin Units (TU). 
1TU is defined as a specified amount of the dry substance of protein (0.02 μg 
for PPD-S as well as for PPD RT23). The optimal dosage of PPD-S was 
determined by testing individuals with high as well as low likelihood of 
tuberculous infection with increasing doses (128). A dose of 5 TU caused a 
positive reaction in nearly all TB patients and many TB-exposed contacts, 
whereas increasing doses did not evoke more positive reactions. In contrast, 
reactivity in unexposed subjects was low and increased slightly with increasing 
doses up to 5 TU, whereas higher doses sharply enhanced reactivity. 

22



 

Consequently, 5 TU of PPD-S was the best compromise between sensitivity and 
specificity and became the recommended standard dose. 
 
During the efforts to standardize PPD RT23 against PPD-S (129), it became 
obvious that it was impossible to define doses that were equipotent in all 
situations; the potency ratios differed with the type and level of TST sensitivity 
in the populations tested. Since the primary purpose of tuberculin skin testing is 
to measure the prevalence of tuberculous infection, priority was given to 
populations with sensitivity assumed to be mainly caused by such infections. In 
a subsequent survey of TB patients and non-vaccinated recruits in the United 
States, the potency of 2 TU of PPD RT23 was relatively equipotent to 5 TU of 
PPD-S (130), i.e. the sensitivity was similar. However, in the US survey as well 
as in the standardization studies (129), the specificity of PPD RT23 was 
markedly lower, with considerably larger reactions than PPD-S in populations 
with high rates of NTM infections. The reactions were also larger to PPD RT23 
in BCG-vaccinated populations according to the standardization studies (129). 
 
In spite of these differences, 2 TU of PPD RT23 has eventually become 
generally accepted as an approximate equivalent of the 5 TU dose of PPD-S and 
is now recommended by WHO and the International Union Against Tuberculosis 
and Lung Disease (IUATLD) for skin test surveys (131). However, in e.g. India, 
the dose of 1 TU of PPD RT23 is recommended, due to its observed higher 
specificity and equal sensitivity in national surveys (132). 
 
TST surveys in South Korea have questioned whether PPD RT23 has lost 
potency over time (133). In response, Statens Serum Institut has published its 
quality control data, indicating no decline in potency, but rather pointing to 
local problems in the dilution or other handling of PPD RT23 (134). Additional 
recent studies indicate that the potency of PPD RT23 is preserved (132, 134-
136). 
 
 
SENSITINS 
 
Sensitins are antigen preparations from culture filtrates of mycobacteria mainly 
used for skin testing and capable of eliciting DTH reactions in hosts sensitized 
to mycobacteria of the same or related species. In other words, tuberculins are 
sensitins. However, the term sensitin is generally used only for preparations 
derived from NTM.  
 
Sensitins are produced from different species of NTM in the same way as 
PPD:s. Commonly used sensitins are PPD-B from M. intracellulare (the 
“Battey antigen”), M. avium sensitin RS10 and M. scrofulaceum sensitin RS95. 
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The two latter sensitins were produced by Statens Serum Institut until 2003. 
Although sensitins are PPD:s, the term PPD generally refers to tuberculin PPD, 
which is also how the term is used in the present paper.  
 
Comparative skin testing with sensitin and tuberculin can be used to 
differentiate between infection due to NTM and tubercle bacilli. This method 
has been useful in epidemiological (86-88) as well as in clinical studies (137, 
138). However, the diagnostic efficacy was less in other clinical studies (139, 
140), and the clinical routine use of sensitins has been limited.  
 
 
IMMUNE RESPONSE TO TUBERCULIN 
 
An intradermal injection of tuberculin induces a DTH reaction in subjects 
previously sensitized to mycobacteria. DTH reactions, which also include 
contact hypersensitivity and granulomatous hypersensitivity, are characterized 
by a cell-mediated response with delayed onset, and reflect the presence of 
memory T cells (long-lived antigen-specific CD4 cells) which initiate the 
reaction.  
 
The histological and immunological events of the TST reaction were recently 
reviewed by Vukmanovic-Stejic (64). After the injection of tuberculin, dendritic 
cells and Langerhans cells residing in the skin become activated through innate 
immune mechanisms and begin to phagocytose antigenic material. The 
subsequent cellular infiltration into the skin is biphasic: an early non-specific 
reaction dominated by neutrophils and monocytes is followed by a slower 
antigen-specific recruitment of T cells. Initially, macrophages are activated by 
IFN-γ to produce TNF-α and IL-1. These pro-inflammatory cytokines and 
chemokines act on endothelial cells in the capillaries to express adhesion 
molecules, which in turn bind to receptors of neutrophils and recruit them to the 
inoculation site. This non-specific reaction also occurs in unsensitized subjects. 
The influx of neutrophils begins within a few hours and is followed by an 
increasing infiltration of monocytes. Antigen presented by the resident innate 
immune cells lead to the activation of antigen-specific T cells, which begin to 
accumulate around dermal blood vessels after about 12 hours. Whether T cells 
are activated in the skin or in draining lymph nodes has not been established. 
After 24 hours the majority of infiltrating cells are macrophages, whereas T 
cells are in majority after 48 hours. The cellular infiltrate subsequently disrupts 
the collagen bundles of the dermis and expands the tissue. The peak of the DTH 
reaction occurs 48-72 hours after the tuberculin injection (141). The cellular 
infiltrate may then be palpable as an induration of the skin and is often 
accompanied by edema and erythema due to dilatation and congestion of the 
capillaries. Formation of vesicles and bullae indicates a high degree of 
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tuberculin sensitivity and the presence of tuberculous infection (142, 143). In 
such individuals the reaction may become severe enough to cause ulceration 
and necrosis at the test site (the Koch phenomenon). 
 
 
TESTING TECHNIQUES 
 
The two major techniques currently used for tuberculin skin testing are the 
Mantoux method and the multiple puncture method. However, only the 
Mantoux method is included in official recommendations (117, 131, 144).  
 
The Mantoux method 
 
The Mantoux method involves a strictly intradermal injection of an exact dose 
of tuberculin. The preferred site of injection is the volar or dorsal aspect of the 
mid third of the forearm. A standard 1 ml graduated tuberculin syringe fitted 
with a short bevel needle (gauge 25-27) is recommended. Injection of 0.1 ml of 
PPD solution should produce a wheal of 6 to 10 mm in diameter if the injection 
is done correctly. If a wheal does not appear, the solution has been injected too 
deeply, and the test should be repeated on the other arm or at least 4 cm from 
the first injection site. 
 
The Mantoux test is read 48-72 h after injection by measuring the diameter of 
the induration in millimeters transversely to the long axis of the forearm. 
Standardization as well as information regarding the future risk of TB is based 
on TST reactions measured by this principle and at this time interval. 
Consequently, other time points of reading should be avoided, as well as other 
recordings of reaction size, such as the mean size of two induration diameters or 
the size of the erythema (145, 146). 
 
Tuberculin skin testing demands considerable skill to be reliable and the 
medical personnel should be specially trained for the method. The intradermal 
injection is a particular challenge in small children, but the major difficulty is 
reading and measuring of the induration. Test reading by inexperienced readers, 
such as patients, is strongly discouraged.  
 
The gold standard for measuring the induration is by palpation. The margins of 
the induration are found by drawing the index finger lightly across the reaction. 
The outer edges of the reaction are marked, and the induration is measured at its 
widest diameter with a flexible ruler. The standard deviation (the average 
variation of readings) of TSTs measured by the same experienced reader was 
1.3 to 1.9 mm in one study (148). Inter-reader variability resulted in slightly 
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larger standard deviations of 2.3 - 2.5 mm (149, 150). An alternative to 
palpation is the ball-point pen method (151, 152).  
 
Digit preference 
 
TST readers have a tendency to round off induration measurements to 
predetermined cut-off values or ending digits such as 0, 5 or even numbers. This 
phenomenon is known as digit preference (153) and is often revealed when a 
quantity of TST readings are displayed in frequency distributions. This problem 
can result in substantial misclassifications (154) but may be minimized by use 
of measuring callipers (141). In addition, the distortion by digit preference of 
frequency distributions and statistical analyses can be corrected by simple (I) 
(155) as well as more advanced statistical methods (153). 
 
The multiple puncture test and other testing techniques 
 
A multiple puncture test (such as the Tine test and the Monotest) introduces 
tuberculin into the skin either by a device with points coated with dried 
tuberculin or by puncturing through a film of liquid tuberculin. The advantage 
of these tests is the speed and ease with which they can be administered, even 
by unskilled personnel. However, the quantity of tuberculin introduced into the 
skin cannot be precisely controlled, and the sensitivity, specificity and 
reproducibility of the tests are generally lower than for the Mantoux method 
(141).  
 
Several other methods of skin testing have been used, e.g. the Heaf test (156), 
the Pirquet test (2, 157) and the Moro test (158). 
 
 
APPLICATIONS OF THE TUBERCULIN SKIN TEST 
 
The TST is often used in the diagnosis of active TB, but its main utility is in 
diagnosing latent tuberculous infection (LTBI). To increase the yield of TST 
activities, a targeted approach is recommended that identifies individuals with a 
high likelihood of LTBI and/or a high risk for progression to TB (159). The aim 
is to select high-risk subjects for preventive treatment or intensified 
surveillance. Several randomized trials have shown that treatment of LTBI, 
diagnosed by the TST, reduces the risk of TB by 60% to 90% (159). Situations 
in which the TST is utilized are mentioned below. 
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As an aid in the diagnosis of active TB 
 
The TST is often used in the work-up of suspected TB patients. However, 
the effectiveness of the TST in this situation is limited by its relatively low 
sensitivity in TB patients (160-162) (see p. 29). Furthermore, the TST does 
not allow a distinction between disease and LTBI. The utility of the TST as a 
potential indicator of disease is therefore mainly restricted to populations 
where the prevalence of LTBI is low, as in children from low-endemic 
countries. Difficulties in attaining microbiological confirmation increase the 
supportive role of the TST in the diagnosis of TB, as in children and in 
patients with extra-pulmonary disease. 
 
Contact tracing 
 
The TST has a particular high yield in close contacts and constitutes an 
essential tool in the measures for TB prevention when treatment of LTBI is 
implemented in newly infected individuals. The likelihood of LTBI among 
close contacts of a contagious TB case is generally 30-50% (163). Newly 
acquired tuberculous infection is associated with a high risk of progression 
to active TB the first 1-2 years after exposure (164) (see p. 38). Furthermore, 
the rate of active TB among close contacts has been estimated to 1-3%, more 
than 100-fold higher than in the general population of low-endemic countries 
(163-166).  
 
Regular surveillance of healthcare workers 
 
Periodic tuberculin skin testing can be used for surveillance of TST negative 
individuals at risk for exposure to M. tuberculosis. Annual TSTs are widely 
used for surveillance of HCW in the United States (159). 
 
Epidemiological surveys 
 
TST surveys undertaken in groups of e.g. school children provide 
information from which the average annual risk of infection can be estimated 
(167). This parameter is considered a reliable indication of the level of LTBI 
in a community (38). Furthermore, the trend of infection over time may be 
determined by repeated surveys at regular intervals. These epidemiological 
methods are important tools in the planning and evaluation of national TB 
programs.  

27



 

Selection of individuals for BCG vaccination 
 
The results of pre-BCG vaccination TSTs may be used as a basis for 
selection of individuals eligible for BCG vaccination. Pre-vaccination TST 
reactivity is associated with a reduced protective efficacy of BCG (see p. 57) 
and it is generally agreed that TST positive individuals do not benefit from 
BCG vaccination (168). In addition, vaccination of TST positive individuals 
is associated with more discomfort and an intensified local reaction (see p. 
48). 
 
Control of BCG vaccines and BCG vaccination procedures  
 
Tuberculin skin testing is used in the quality control of BCG vaccines (169). 
A proven ability to induce TST reactivity is generally required for a new 
BCG vaccine to be licensed. The TST is also used as a quality indicator of 
vaccination procedures: if the BCG vaccine is not handled properly in the 
field, it may lose its protective efficacy as well as its ability to induce TST 
reactivity (170, 171). 

 
 
SENSITIVITY OF THE TUBERCULIN SKIN TEST - REACTIVITY IN  
INDIVIDUALS WITH ACTIVE OR LATENT TUBERCULOSIS 
 
DTH to tuberculin usually develops 6-8 weeks after initial tuberculous infection 
(141). Although the sensitivity of the TST in a healthy young person is 
generally high, knowledge of the mechanisms behind false negative reactions is 
essential for correct interpretation of the test. 
 
False negative reactions 
 
It is commonly believed that DTH induced by tuberculous infection generally 
persists until old age (144). Reversion of TST reactivity is indeed common in 
the elderly (172, 173) but is also documented at lower rates in younger people 
(174, 175). The persistence depends on the infectious dose as well as on the 
extent of re-exposure to mycobacteria (174, 175). Many factors can diminish 
reactivity, from conditions that impair DTH (144) (see Table) to technical 
problems such as improper storage of the tuberculin reagent and errors in 
administration or reading. 
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Table. Conditions associated with diminished tuberculin skin test reactivity 
 
Viral infections (HIV, measles, mumps, chicken pox) 
Live virus vaccinations (measles, mumps, polio, varicella) 
Disseminated TB (Miliary TB, TB meningitis), tuberculous pleurisy 
Other extensive bacterial infections (typhoid fever, typhus, leprosy, pertussis) 
Chronic renal failure 
Malnutrition 
Diseases of lymphoid organs (Hodgkin’s disease, lymphoma, chronic 
leukemia, sarcoidosis) 
Immunosuppressive treatment (corticosteroids, chemotherapy, TNF-α blockers) 
Age (newborns, elderly) 
Stress (surgery, burns) 
 

 
An important factor to consider in non-reactive individuals is the possibility of 
anergy. Lymphocytes are said to be anergic when they fail to respond to their 
specific antigen. In cutaneous anergy, absence of DTH to an intradermal 
injection of tuberculin occurs in spite of the presence of tuberculous infection. 
Anergy can be associated with all the conditions mentioned in the above table 
and is generally an on-off phenomenon; the reaction is completely absent rather 
than decreased in size (141). 
 
TST anergy has been described in immunocompetent individuals with 
pulmonary TB (160, 176) and may lead to limited granuloma formation and 
poor clinical outcomes in TB patients (177). Anergy is associated with defective 
T cell responses including an antigen-specific impaired ability to produce IL-2 
and to proliferate in response to challenge with tuberculin (177). T cells from 
anergic patients produced IL-10 but not IFN-gamma and there is evidence that 
IL-10 mediates a direct anergizing effect on T cells (177). 
 
Tuberculosis patients 
 
The TST reactivity of TB patients has been studied in large international 
surveys using PPDs standardized to 5 TU of PPD-S (178). Patients with 
different forms of disease, of different races and ages, and from different 
countries produced reactions that formed remarkably uniform distributions, 
resembling the shape of a normal curve around a mode averaging 14-18 mm. 
Only few reactions measured <6 and >25 mm in these surveys. 
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It should be noted that the patients in the above-mentioned surveys were already 
on treatment. Studies of newly diagnosed TB patients have revealed higher rates 
of false negative reactions in the range of 15-50% (160-162, 179). In one of 
these studies reactivity was restored in most patients after two weeks of 
treatment (161). In a meta-analysis of 14 relatively small studies for evaluation 
of IFN-γ release assays (IGRAs, see p. 42), the pooled sensitivity of the TST 
was 71% (180). 
 
Common conditions associated with reduced TST reactivity in TB patients are 
advanced disease (160, 181), malnutrition (182) and advanced age. Studies of 
elderly patients have shown false negative rates of up to 30% (172, 173). In an 
international perspective, HIV infection is a frequent cause of anergy (183). 
With the mentioned exceptions in mind, it can be concluded that young HIV-
negative TB patients in good physical condition, without high or prolonged 
fever, will in most instances have a positive TST. 
 
Latent tuberculous infection 
 
When frequency distributions of TST reactions are compared between subjects 
with increasing likelihood of TB exposure, groups with the highest gradient of 
exposure show distribution modes corresponding to TB patients (184, 185). 
These findings indicate that TST reactivity in healthy individuals with 
tuberculous infection is no different from those in which the infection has 
progressed to disease. The same conclusion was drawn from a study of Alaskan 
Eskimos, among whom tuberculous infection was prevalent but exposure to 
NTM was rare (186). The data of healthy subjects showed a bimodal 
distribution of reactions with modes at 0 and 18 mm and only few reactions 
between 2 and 5 mm. The authors concluded that reactions of ≥5 mm were 
indicative of tuberculous infection. Other surveys of populations with 
corresponding mycobacterial exposure have showed similar normal 
distributions (178). 
 
There is no readily applicable gold standard available for the diagnosis of latent 
TB. Consequently, the sensitivity (as well as the specificity) of the TST in 
diagnosing latent TB is impossible to ascertain. In the absence of a gold 
standard, newly diagnosed active TB is commonly used as a surrogate for latent 
TB to estimate sensitivity (180). However, this is a poor surrogate because of 
the known reduction in cell-mediated response in TB patients, particularly at the 
time of diagnosis. Patients undergoing treatment for active TB who have 
clinically recovered are at present the closest approximate to healthy subjects 
with known tuberculous infection. The above-mentioned WHO study from 
1955 (178) mainly included such patients and showed a sensitivity of 98%. 
Furthermore, in three recent studies with corresponding patients, as well as 
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patients with completed TB treatment, the sensitivity was 95-96% (187). As in 
active TB, the expected sensitivity in populations with latent TB is reduced in 
immunocompromised subjects (see Table), such as in HIV infection (188, 189), 
chronic renal failure (190, 191) and hematological patients (192). 
 
Several prospective cohort studies are currently being conducted in different 
settings to estimate the risk for progression to active disease in individuals who 
have undergone testing with the TST and IGRAs (193, 194). These studies are 
based on the current gold standard for the diagnosis of latent TB: the 
demonstration of subsequent development of TB. This method has a high 
specificity but an expected sensitivity of only about 5% (the expected disease 
rate the first years after infection), although those diagnosed are the clinically 
most relevant, i.e. those in need of treatment or close follow-up of their 
tuberculous infection. For the identification of subjects with an effective 
immune response to tuberculous infection, other methods are warranted, 
possibly similar to in vitro correlates of vaccine-derived protective immunity 
(see p. 66). 
 
 
SPECIFICITY OF THE TUBERCULIN SKIN TEST - REACTIVITY IN 
INDIVIDUALS WITHOUT TUBERCULOUS INFECTION 
 
Some antigens in tuberculin are shared with NTM (123, 124, 195, 196) as well 
as with BCG (197). A tuberculin injection in subjects with NTM infection or 
previous BCG vaccination can therefore cause skin indurations due to cross-
reactivity (I) (198). The TST in BCG-vaccinated individuals will be discussed 
in detail below (p. 50). Cross-reactions in subjects with NTM infections are 
generally small (86, 184, 199). The overlap with reactions caused by 
tuberculous infection may nevertheless be considerable in areas where NTM are 
common in the environment (I) (93, 137, 199, 200). The larger the reaction size, 
the greater is the likelihood of tuberculous rather than non-tuberculous 
infection. Although a general maximum size limit for cross-reactions cannot be 
specified, NTM-induced TST reactions rarely reach the size of 15 mm (199, 
201, 202). 
 
False positive TST reactions due to cross-reactions with NTM and BCG result 
in a decreased specificity of the test. As mentioned above, the sensitivity of the 
TST in detecting tuberculous infection is well-standardized and relatively 
constant between different settings. In contrast, the specificity is less predictable 
and varies with the prevalence of BCG vaccination (198, 203, 204) and NTM 
infections (38, 141). In the absence of a gold standard for the diagnosis of latent 
TB, low-risk populations are used to estimate the specificity of the TST (I) 
(155, 180). The specificity of the TST is about 99% in non-BCG-vaccinated 
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populations with little exposure to NTM (144) but decreases to 95% where 
cross-reactivity with NTM is common (I) (155).  
 
Positive TST reactions are common after completed treatment of active and 
latent TB (164, 205). The possibility of false positive TST reactions after 
eradication of infection without treatment has been suggested (206), although 
the extent of this phenomenon is unknown. Consequently, estimates of the 
prevalence of LTBI may be exaggerated even when the influence of BCG 
vaccination and NTM infections has been accounted for. 
 
Comparative skin testing 
 
Comparative skin testing with sensitin and tuberculin has been used to evaluate 
the influence of NTM infections on TST reactivity. In this method, each antigen 
is injected simultaneously by the Mantoux technique on either forearm, and 
reactions after 48-72 hours are compared. The antigen that causes an induration 
larger than the other is denoted dominant and indicates the etiology of the 
infection.  
 
Epidemiological studies in the United States in the 1950’s showed that 
individuals who reacted with small reactions (ranging from 3-11 mm) to PPD-S 
had mostly sensitin-dominant or equal reactions (207). In contrast, individuals 
with PPD-S reactions of ≥12 mm or more were mostly tuberculin-dominant. 
The frequency of large reactions varied with other evidence of tuberculous 
infection, while the frequency of smaller reactions varied primarily with 
geography, suggesting non-tuberculous etiology. A following large survey of 
US navy recruits confirmed the association of tuberculin-dominant reactions 
with tuberculous infection: in individuals with TST indurations in the range of 
6-11 mm, tuberculin-dominant reactions were associated with a nearly 10-fold 
higher risk of TB than reactions that were sensitin-dominant (208). 
 
Varying criteria have been used to define a dominant reaction, based on size of 
the dominant reaction as well as on size difference (138, 139, 209). In addition, 
the sensitins and tuberculins used differ between studies. Sensitins produced 
from M. avium are the most widely used, since M. avium is generally the most 
widespread cause of NTM disease. Most patients with pulmonary disease 
caused by M. avium had M. avium-dominant reactions (138). This finding 
supports the use of M. avium-dominant reactions also in healthy individuals to 
indicate infection due to M. avium (199). Many NTM are antigenically closer to 
M. avium than to M. tuberculosis, and cross-reactions with M. avium sensitin 
are therefore more common than with tuberculin. Consequently, M. avium-
dominant reactions can be extended to indicate other NTM infections as well, 
rather than tuberculous infection (208). 
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A recent review by Farhat (198) concluded that NTM infections have little 
influence on TST reactivity in high- and medium-prevalence populations, but 
may be an important cause of false positive TSTs in low-prevalence areas where 
NTM infections are common. Thus, results from Sweden (I), the Netherlands 
(137) and southern parts of the United States (199) indicate that about 50% of 
TST reactions in adults of 10-14 mm are related to NTM infections. Significant 
influence of NTM infections on TST reactivity is also seen in Swedish children 
(93). According to the review by Farhat, on average only 2% of NTM-infected 
individuals in low- as well as high-prevalence countries have TST reactions 
≥10mm.  
 
 
THE DEFINITION OF A POSITIVE TUBERCULIN SKIN TEST  
 
The main purpose of the TST is to detect tuberculous infection. For individuals 
with a normal immune system, test sensitivity is high (178, 184, 187, 200), 
whereas the specificity varies depending on the rate of false positive tests 
induced by BCG vaccination or NTM infection. If such false positive reactions 
are common in low-prevalence settings (where true positive reactions due to 
tuberculous infection is rare) most positive TSTs will be false, and the positive 
predictive value will consequently be low.  
 
The sensitivity and specificity of the TST are also dependent on the cut-off 
value used to define a positive test. A higher cut-off value would result in fewer 
false positive reactions and an increased positive predictive value, although at 
the expense of decreasing test sensitivity. In contrast, if sensitivity is given 
priority, a lower cut-off value may be chosen, resulting in fewer false negative 
reactions. Sensitivity should be a priority in individuals with a high likelihood 
of tuberculous infection, such as close contacts to smear-positive patients, but 
also in individuals with increased risk of developing TB once infection is 
established. Examples of the latter are the immunocompromised and individuals 
recently exposed to TB. Such reasoning is the basis for the use of three different 
cut-off values, as is recommended in the United States for the 5 TU PPD 
products (144). Reactions of ≥5 mm are considered positive for those at highest 
risk, ≥10 mm for those at intermediate risk, and ≥15 mm for those at low risk. 
 
The cut-off value for a positive reaction for PPD RT23 is 6 mm as 
recommended by the manufacturer (210). This recommendation is based on the 
frequency distribution of TST reactions in TB patients and non-vaccinated 
individuals with low risk of NTM infection, as observed in the above-
mentioned epidemiologic studies from the 1940s and 1950s (178). The 
frequency distribution in such populations has its anti-mode at 5-6 mm, which 
constitutes a natural dividing-line between the infected and the non-infected 
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population. Consequently, sensitivity was the priority when the cut-off value of 
6 mm was recommended. However, in populations with high rates of BCG-
vaccination or NTM infection, a cut-off of 6 or even 10 mm may result in a 
large proportion of false positive reactions, i.e. the specificity may be low (I) 
(203, 204, 211). If the prevalence of tuberculous infection in such populations is 
low, the utility of the TST will be limited due to a low positive predictive value. 
In contrast, the positive predictive value using the 6 mm cut-off (or 5-10 mm for 
5TU PPD products) may still be high, in spite of a relatively low specificity, in 
e.g. individuals from high-prevalence areas or close contacts of smear-positive 
cases (187, 203, 212-214). Consequently, the official statement of the WHO 
regarding the TST (215) leaves no recommendation of a specified cut-off value 
for a positive test. Rather, it is stated that decisions of the cut-off value should 
be based on the distributions of reactions in TB patients and the general 
population, as well as on the purpose of the test. 
 
Considering the profound changes in the epidemiology of mycobacterial 
infections in many countries during the last decades, updated information on 
TST reactivity in the population is needed for evidence-based recommendations 
on the interpretation of the TST. Specifically, reconsideration of cut-off values 
requires quantification of the current sensitivity and specificity in the population 
(155). A study of the sensitivity of the TST is suitably conducted in TB patients 
or close contacts of patients with contagious TB. The specificity can be 
estimated in subjects with a very low risk of exposure to TB, in which nearly all 
TST reactions are non-specific (I) (155). With the sensitivity and specificity 
defined, predictive values of positive and negative test results can be estimated 
for different assumed prevalences of tuberculous infection (155). Based on such 
estimates, appropriate cut-off values for a positive test can be chosen depending 
on the population tested and the purpose of the test. 
 
 
GENERAL EPIDEMIOLOGICAL FACTORS ASSOCIATED WITH  
TUBERCULIN SKIN TEST REACTIVITY 
 
The interpretation of the TST is complex, and knowledge of the influence of 
background factors facilitates the process. In addition to natural exposure to 
mycobacteria and previous BCG vaccination, other factors may be of 
importance, such as age, gender, country of birth, smoking habits and 
socioeconomic factors. The relative influence of these parameters varies 
between populations and is valuable to know for the clinician when assessing a 
TST reaction. 
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Age 
 
The abiltiy to mount a DTH response is not fully developed in newborns 
(216, 217). After infancy, this ability does not vary with age until after about 
65 years, when false positive TSTs due to anergy become increasingly 
common (141, 174, 213). However, TST reactivity increases with age, as the 
probability of mycobacterial exposure increases (I, II) (38, 204, 218-220). 
The prevalence of tuberculous infection increased markedly with age in 
European children at the start of the 20th century, and by the age of 20 almost 
everybody was infected (38). The age-related increase of tuberculous 
infection in high-endemic countries today is not as steep, with prevalence 
rates of 50% in 30-year olds in e.g. sub-Saharan Africa (38). After the rapid 
decline in TB rates in industrialized countries during the last century, TST 
reactivity in European children today is very low, as well as the age-related 
increase. These reactions are predominately caused by NTM infections, 
which also become more common with age (221-223). Recent findings 
suggest that the age-related prevalence of NTM infections continues to 
increase in adults (88) and contributes to the age trend in TST reactivity (I). 
 
Gender 
 
TST surveys in different settings during the pre-BCG era consistently 
showed that the prevalence of LTBI is higher among males than females 
after about 15 years of age (224). This gender difference may be a result of 
different social mixing patterns. An alternative explanation for these findings 
is that there are biological gender differences in DTH to mycobacterial 
antigens (225). Dolin reviewed the frequency distributions of TST surveys of 
non-BCG-vaccinated high-endemic populations (226) and found modes and 
antimodes for males and females at corresponding induration sizes. He 
therefore argued against a biological difference in DTH reactivity, but 
proposed that hormonal factors may protect post-adolescent females from 
infection.  
 
No gender differences were revealed in neither non-vaccinated nor BCG-
vaccinated children and adults in Sweden (I, II) (86). However, several 
studies of low-endemic populations with high rates of BCG vaccination have 
found larger TST reactions in males than females (204, 218, 219). The latter 
findings add support to the theory of a biological gender difference in DTH. 
Gender differences have also been shown in the development of active 
disease. Females in their reproductive years have a higher progression rate 
from infection to disease, whereas men have higher rates of progression at 
older ages (224). 
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Country of birth 
 
TST reactivity in immigrants reflects the TB incidence in their country of 
origin (I) (40, 41, 227-229). 
 
Socio-economic factors 
 
TB as a disease of poverty is a well-established concept (230). The 
correlation between prevalence of tuberculous infection and socio-economic 
factors was observed early in the 20th century (231). Later studies have 
pointed out that positive TST reactions are related to the socio-economic 
status of neighborhoods (232) as well as to crowded housing and the 
education level of parents (233).  
 
Smoking 
 
According to two recent reviews, smoking is a risk factor for tuberculous 
infection, as shown by a positive TST, as well as for active TB (234, 235). In 
addition, evidence suggest that passive exposure to tobacco smoke in 
children is associated with an increased risk of tuberculous infection (236) 
and pulmonary TB (237). 

 
 
INTERPRETATION OF REPEATED TUBERCULIN SKIN TESTS 
 
In addition to periodic TSTs in surveillance of individuals at risk, the TST is 
often repeated in contact tracing when an exposed person is TST negative at the 
first examination. The purpose of this procedure is to detect newly developed 
DTH to tuberculin, “TST conversion”, as a sign of recently acquired 
tuberculous infection. Theoretical aspects of the interpretation of repeated TSTs 
are discussed below. 
 
Biologic variation and differences in administration and reading of the TST will 
result in a standard deviation of less than 3 mm (238). Consequently, when 
repeated tuberculin tests are given, random variation should result in differences 
of less than 6 mm (representing 2 standard deviations) in 95% of subjects. A 
criterion of 6 mm is therefore appropriate to distinguish increases in reaction 
size due to random variation alone from true biologic phenomena (141). 
 
Although skin testing with tuberculin does not induce DTH to tuberculin on 
subsequent tests, waned hypersensitivity from remote mycobacterial infections 
can be boosted. Thus, the stimulus of a first test may increase the size of the 
reaction to a second test in subjects previously infected with mycobacteria 
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(tubercle bacilli, NTM or BCG) (239). According to one hypothesis, the booster 
phenomenon occurs when the number of memory T cells is too low for a full 
response to the initial injection of tuberculin. When the memory T cells 
proliferate during the initial response, more of them are available on the second 
test, which evokes a larger reaction (141). Boosting is maximal 1 – 5 weeks 
after the first test (240) and can be still be detected after one year (141, 241-
243). In one study a booster effect was detected up to five years after the first 
test (244). 
 
The booster phenomenon is sometimes defined as a negative TST reaction 
which becomes positive on subsequent testing in the absence of new 
mycobacterial infection (245), whereas most authors add the criterion of an 
increase by at least 6 mm to allow for the inherent variability of the test (241, 
242, 246-251). Unlike positive reactions to an initial TST, boosting is generally 
not associated with previous TB exposure (240, 247), since TST reactivity due 
to latent TB is relatively persistent (175). However, a strong correlation has 
been observed with a history of BCG vaccination (240, 243, 246-248, 252) and 
reactivity to antigens of NTM (240, 242, 247, 253). The prevalence of the 
booster phenomenon ranged from 6-31% in those of the mentioned studies 
which used the criterion of a 6 mm increase from a negative to a positive 
reaction (240, 246-248, 253). Boosting has been observed in BCG-vaccinated 
children (246, 248) but becomes more common with advancing age (241, 242, 
247). 
  
The term “conversion” refers to the development of DTH to mycobacterial 
antigens following BCG vaccination or infection with tubercle bacilli or NTM 
in a previously non-sensitized person. A commonly used operational definition 
for M. tuberculosis-induced conversion is an increase of at least 10 mm within a 
period of two years (144). Conversion in the context of TB exposure has 
important clinical implications, as it is associated with a high rate of TB the 
following two years (38, 164, 172, 254, 255).  The period between the last 
exposure and the second TST should be a minimum of eight weeks in order to 
detect all conversions (141). 
 
When initiating periodic skin testing, a two-step TST has been recommended in 
order to avoid future false TST conversions due to the booster phenomenon 
(144). In this method, individuals with a negative initial TST undergo a second 
test 1–4 weeks after the first test. The result of the second test is then taken as 
the baseline with which to compare future TST reactions (241, 249-251, 256, 
257).  
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FUTURE RISK OF TUBERCULOSIS IN NON-BCG-VACCINATED 
SUBJECTS RELATED TO TUBERCULIN SKIN TEST REACTIVITY 
 
A large number of studies from a wide range of different settings have 
established a positive association between TST reactivity and subsequent risk of 
active TB (reviewed in (141, 167, 258)). Most of these studies were carried out 
in non-BCG-vaccinated populations, or the results were controlled for the effect 
of BCG. The lifetime risk associated with a tuberculous infection, as determined 
by a positive TST, is often approximated to 10% (38, 144, 259). However, 
many factors modulate the risk of progression to disease in an infected 
individual, such as time since infection, age, size of the TST reaction and 
medical conditions. Consequently, a lifetime risk of 10% may be a substantial 
underestimate for many individuals (260). Furthermore, if a definition of a 
positive TST with low specificity is applied in studies of TB risk, non-infected 
subjects are included in the population defined as infected, and the incidence of 
TB will be underestimated. Such an effect can be seen in studies based on TST 
conversion, in which many subjects with false positive boosted reactions may 
be included (6).  
 
The time factor 
 
Individuals with recent infection, as defined by TST conversion, are at high risk 
for progression to disease shortly after infection has occurred. Fifty to eighty 
percent of the estimated lifetime risk occurs during the first 1-2 years after 
infection, after which the risk rapidly decreases (164, 167, 172, 254, 255, 259, 
261). Without intervention, 2 - 5% of contacts with newly acquired tuberculous 
infection develop TB within 2 years of the exposure. 
 
The age factor 
 
Studies performed in the early twentieth century showed that infants with 
tuberculous infection had a 40% risk of developing disease - often serious, life-
threatening forms - within 1-2 years (262). A high risk of TB related to a 
positive TST is also seen in children 1 – 4 years of age, at least in part due to 
the fact that their infections are recent (263). However, adolescents and young 
adults with a positive TST appear to be especially prone to disease progression 
(259, 263), whereas the ages 5-14 are relatively spared (262). In addition, Stead 
found a remarkably high risk of disease progression after TST conversion in the 
elderly, in which a positive TST without observed conversion also was 
associated with a high risk of TB (172). 
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The size factor 
 
Since large TST reactions are more likely to be caused by tuberculous infection 
than smaller reactions, there is a clear positive correlation between the size of a 
positive TST reaction and the risk of developing TB (258, 264, 265). The 
correlation may also be caused by a more active cell-mediated immune response 
in infections that will lead to disease (266), possibly due to a larger infecting 
dose (174, 175). Alternatively, the correlation is due to larger reactions among 
those with more recent infection (267), consistent with the finding that the 
influence of size on the risk of developing TB is particularly large in children 
and adolescents and decreases with age in adults (260). 
 
The health factor 
 
Multiple clinical conditions are associated with increased risk for TB in TST 
positive individuals (159). HIV infection is the strongest known risk factor. 
Some risk factors are especially important due to their high prevalence, such as 
diabetes mellitus and apical fibronodular changes on chest radiograph consistent 
with prior TB. Other conditions with increased risk of disease progression are 
chronic renal failure, silicosis, intravenous drug abuse, being under-weight, 
certain malignancies and immunosuppressive treatment. Among immuno-
suppressive drugs, TNF-α-blocking agents are associated with a particularly 
high risk (71). 
 
 
PROTECTIVE IMMUNITY AGAINST TUBERCULOSIS RELATED TO 
TUBERCULIN SKIN TEST REACTIVITY  
 
Protective immunity against reinfection with tubercle bacilli 
 
Animal studies have consistently shown that tuberculous infection confers 
effective immunity against developing TB from reinfection (268). 
Corresponding protection in humans with tuberculous infection, as indicated by 
a positive TST, has been observed following intense exposure to infectious 
cases (6). The protection is likely mediated by prompt activation of 
macrophages by memory T cells available after the previous infection (269). 
 
Among the first to systematically study this issue were Olaf Scheel and 
Johannes Heimbeck at Ullevaal Hospital in Oslo. They administered a 
mandatory TST program (using the Pirquet method) for student nurses at entry 
during the period 1924-1936, in which TB was highly prevalent in Norway. 
About half of the students were TST negative at the time of entry, but due to 
heavy exposure to TB at the hospital, nearly all of them became infected and 
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converted their Pirquet test during the 3 years of training (270). One third of the 
initially Pirquet negative students developed TB, half of them during their first 
year of training, whereas TB occurred in only 3% of the Pirquet positive 
students (after excluding those with a history of TB or evidence of TB on entry) 
(8). Likewise, analyses of hospital outbreaks of TB show a strikingly low risk of 
TB after exposure in TST positive individuals, before (271) as well as after (6) 
the introduction of preventive therapy for LTBI. 
 
It can be argued that those who have escaped infection without developing 
disease constitute a selected group with TB resistance better than average. 
However, as in the studies by Scheel and Heimbeck, TST negative individuals 
who were BCG-vaccinated had a similarly low risk of TB during follow-up as 
those with positive TSTs and thus achieved equal protection (8). It may 
therefore be concluded that the immune response to a tuberculous infection does 
indeed confer increased protective immunity against reinfection in a healthy 
person (6, 38, 144). This protective effect has been estimated to 80% from 
studies of healthcare students and workers (272) as well as from epidemiogical 
data (273), corresponding to the maximum protective effect of BCG vaccination 
(274) (see p. 55). 
 
Protective immunity from infection with non-tuberculous mycobacteria 
 
The potential of an immunizing effect of NTM against TB stems from the 
presence of shared antigens in NTM and tubercle bacilli (195), which are 
capable of eliciting cross-reactions with memory T cells primed by antigens 
from NTM. This phenomenon is termed heterolgous immunity (275) (as 
opposed to homologous immunity when the immune response is caused by 
reactivity to antigens from the same species).  
 
Several lines of evidence indicate that protective immune responses against TB 
can be evoked by heterologous immunity to NTM infections (275). Experiments 
in guinea pigs demonstrated that infections with M. avium and other NTM 
increased the animals’ resistance against subsequent challenge with M. 
tuberculosis in varying degrees (276, 277). Evidence in humans was found e.g. 
in large epidemiological studies in which individuals with small or 
intermediate-size TST reactions, indicative of NTM infection, were at lower 
risk of TB than those with no TST reactivity (202, 258, 266, 278).  In the 
previously mentioned study of US navy recruits, in which comparative skin-
testing was performed, the lowest TB risks were found in individuals with TST 
reactions of 6-11 mm whose reactions were sensitin-dominant (208). 
Corresponding protection was found in British adolescents who reacted only to 
the 100 TU dose of tuberculin (278) - reactions which are also indicative of 
NTM infection (184). Finally, a study by Ravn (279), using in vitro correlates 
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of protection (see p. 67), also supports the induction of a human protective 
immune response by NTM. 
 
 
 
 
 
PROS AND CONS OF THE TUBERCULIN SKIN TEST  
 
Pros 
 
● Non-technological performance - does not require a laboratory 
● Low material costs 
● Well standardized 
● High sensitivity in healthy individuals 
● High specificity in non-BCG-vaccinated populations 
● High efficacy in populations with high prevalence of TB 
● Well-documented prognostic significance 
● Documented selective efficacy for treatment of LTBI 
 
Cons 
 
● Low sensitivity in the immunocompromised 
● Low sensitivity at diagnosis of active TB 
● Low specificity in BCG-vaccinated populations 
● Cross-reacts with NTM infection 
● Age-dependent results 
● Elicits a booster phenomenon at repeated tests 
● Instability over time (reversion in spite of LTBI) 
● Requires a second visit after 48-72 hours 
● Requires skilled testers 
● Reading susceptible to bias and digit preference 
● Reagent sensitive to heat and light 
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NEW IMMUNOLOGICAL DIAGNOSTIC TESTS FOR TUBERCULOUS 
INFECTION 

 
The TST was for nearly a century the only test available for the diagnosis of 
tuberculous infection. Recently, advances in immunobiology have led to the 
development of new diagnostic tools, the IFN-γ release assays (IGRAs). The 
basic principles for these tests and their performance are briefly reviewed 
below. 
 
During the attenuating process of the M. bovis strain that produced the new 
strain BCG, several genetic segments were lost, one of which is designated 
Region of Difference 1 (RD1) (280). Two highly antigenic proteins are encoded 
in this region: the 6 kDa early secretory antigenic target (ESAT-6) and the 10 
kDa culture filtrate protein (CFP-10). The ability of these antigens to stimulate 
IFN-γ production by T cells in vitro form the basis for the IGRAs. Two IGRAs 
are licensed for commercial distribution. T-SPOT.TB (Oxford Immunotec, 
Oxford, UK) uses an enzyme-linked immunospot assay (ELIspot) to detect IFN-
γ-producing T cells after separation of peripheral blood mononuclear cells. The 
other test, QuantiFERON-TB Gold In-Tube (QFT) (Cellestis, Victoria, 
Australia), uses an enzyme-linked immunosorbent assay (ELISA) to measure 
the production of IFN-γ by circulating T cells in whole blood. This latest 
version of QFT includes a third RD1 antigen, TB7.7 (281). 
 
The sensitivity of IGRAs in newly diagnosed active TB appears to be 
comparable to or slightly better than that of the TST (180). The sensitivity and 
specificity in diagnosing LTBI is difficult to determine in the lack of a gold 
standard. The fact that RD1 antigens are not shared with BCG substrains avoids 
false positive results in BCG-vaccinated subjects. IGRAs consequently have a 
higher specificity than the TST in populations with high rates of BCG 
vaccination (180, 282). The diagnostic antigens are generally absent in NTM 
(although ESAT-6 and CFP-10 are included in M. kansasii, M. szulgai and M. 
marinum), potentially causing lower rates of false positive results in areas where 
NTM exposure is common (201, 283). Other important advantages compared to 
the TST are avoidance of reading bias and booster reactions as well as the need 
for only a single visit.  
 
Obvious limitations of IGRA tests are the high material costs and the need for 
laboratory resources, and several uncertainties remain regarding test 
performance. Further evaluation is needed in children, the elderly, and in 
individuals with immunosuppressive conditions (180). A major disadvantage 
compared to the TST is the uncertain prognostic value for progression from 
tuberculous infection to active TB (284-286), and treatment efficacy of latent 

42



 

TB based on IGRA results waits to be demonstrated. Furthermore, there is 
uncertainty regarding the stability of IGRA results in serial testing (287) as well 
as regarding the performance in subjects with remote tuberculous infection. 
Nevertheless, the Center for Disease Control and Prevention (CDC) in the 
United States has recommended that QFT can be used in any situation where 
the TST is used, including serial testing of HCW (288). In Europe the 
guidelines from National Institute for Clinical Excellence (NICE) in the United 
Kingdom recommend that IGRA tests are used to confirm a positive TST (117). 
However, it should be remembered that in spite of the high specificity of IGRA 
tests, the positive predictive value will still be poor in low-prevalence settings. 
Consequently, IGRAs are not suitable for the purpose of non-targeted screening. 
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BCG VACCINATION 
 
 
BCG STRAINS AND VACCINE PRODUCTION 
 
The BCG strains in current use are all descendants of the original BCG strain 
produced by Calmette and Guérin in 1921. The original strain was sent to many 
laboratories around the world in which it was propagated under varying culture 
conditions. This went on for about 40 years and resulted in a variety of new 
BCG strains, until further changes could finally be prevented in the 1960’s by a 
combination of seed-lot and freeze-drying methods (289). The substrains had by 
then suffered spontaneous mutations in such a way that there were clear 
differences in the macroscopic properties of strains from the different 
laboratories (169). Eight mutations have been identified and are present at 
various degrees in the substrains in use today (290). The substrains differ in 
immunogenicity in animal models (291), but whether any substrain is superior 
to others in the protection of humans has not been determined (10). However, a 
difference has been observed between substrains and the incidence of adverse 
reactions (169). Other differences between substrains are reactogenicity 
(measured in terms of the size of the local lesion) and the ability to induce DTH 
(169). These qualities are also affected by considerable differences in the 
numbers of viable and dead organisms between different BCG products (169).  
 
 
VACCINATION TECHNIQUES 
 
BCG was first administered orally, but this route required large doses (292). 
Attempts with the subcutaneous route resulted in a high frequency of large 
abscesses. Arvid Wallgren in Göteborg therefore introduced the intradermal 
route (293), which produced a lower frequency of more superficial abscesses 
and eventually became the most common administration method. The 
recommended injection site is the deltoid insertion region of the upper arm 
(168). A raised pale bleb is the sign of correct injection. A 25-27 gauge needle 
and a low-volume syringe are recommended, capable of accurately delivering 
0.05 ml to infants and 0.1 ml to older children and adults.  
 
In addition to the intradermal method, percutaneous administration with 
multiple puncture devices is used in some countries. The relative efficacy of 
percutaneous vs. intradermal administration is unknown. Comparisons with 
TST reactivity and in vitro correlates of protective immunity (see p. 66) have 
shown divergent results (294-296). 
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BCG POLICIES AND COVERAGE  
 
Global policy and coverage 
 
Mass BCG vaccination was introduced in Europe during the 1940s, targeting 
newborns and school children who were TST negative. Large vaccination 
campaigns of children were subsequently spread around the world, followed by 
routine childhood vaccination in most countries. The United States (116), the 
Netherlands (297) and Iceland (298) never adopted a general BCG vaccination 
policy, due to skepticism about its efficacy and concern about interference with 
the TST.  
 
At present the WHO recommends neonatal BCG vaccination in countries with a 
high prevalence of TB (168). BCG vaccination is also recommended for 
children at increased risk of TB exposure in low-endemic countries and for 
those exposed to MDR-TB. Consequently, BCG is one of the most widely used 
vaccines in the world. Worldwide coverage is estimated at over 100 million 
doses per year, resulting in vaccination of 76% of all children born in 2002 
(299). 
 
Most countries follow the WHO recommendation to give only a single dose of 
BCG at birth or at earliest contact with a health service. However, many 
countries have developed their own policies, such as giving BCG to older 
children, targeting only high-risk groups, giving repeated vaccinations, or not 
using BCG systematically at all (11, 299, 300).  
 
Swedish policy and coverage 
 
In Sweden the numbers of newborns who were BCG-vaccinated increased 
during the 1940’s and reached 95% in the 1950’s and onwards (301, 302). In 
addition, primary and repeated vaccinations were offered to TST negative 7- 
and 15-year old school children as well as to military recruits. While these 
preventive measures were intensified, there was an ongoing rapid decline of the 
incidence of TB, and as early as 1955 Arvid Wallgren raised the question if the 
general BCG vaccination should be discontinued (303). Vaccination of 7-year 
old school children ended in 1965, but it was not until April 1975 that the 
general vaccination of newborns finally was replaced by selective vaccination 
of groups at increased risk of TB (12). Crucial to this decision was, in addition 
to the declining risk of infection, an increased frequency of BCG-induced 
osteomyelitis that occurred following the transfer of production of the Swedish 
BCG strain (304) from Göteborg to Copenhagen (305, 306). The production of 
this BCG vaccine was discontinued in 1979, and since then BCG Danish1331, 
produced at Statens Serum Institut, has been used. Due to a continued decline in 
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the risk of tuberculous infection and disease, vaccination of army recruits was 
ended in 1979 (302) and vaccination of 15-year old school children was ended 
in 1986 (307). 
 
Vaccination coverage of newborns fell to less than 2% following 1975, but after 
intensified information to healthcare providers the coverage gradually increased 
from 1982 (12). Levels around 15% were reached in the 1990’s and in 2007 the 
rate had increased to 18% (30), reflecting the increased proportion of immigrant 
families in Sweden. Romanus estimated that 88% of newborns belonging to the 
targeted risk groups were vaccinated during the period 1998-2002 (12). The 
recommended age of vaccination was changed in 1994 to 6 months or older, in 
order to avoid vaccination of infants with severe immunodeficiencies (308).  
However, neonatal vaccination is still recommended for children with 
particularly high risk of TB exposure, provided no signs of immunodeficiency 
are revealed among close relatives. Newborn children with known exposure to 
pulmonary TB are treated with e.g. isoniazid for 2-3 months, and a decision 
regarding BCG vaccination is delayed until at least 3 months of age. Children 
with a negative TST are then BCG-vaccinated, whereas those with a positive 
reaction complete the full course of treatment. 
 
All students and employees in healthcare settings were until recently included in 
the Swedish definition of groups at increased risk of TB exposure (309). 
However, in the recommendations from the National Board of Health and 
Welfare (Socialstyrelsen) from 2006 (118), BCG vaccination is encouraged 
only for workers and students at clinics of respiratory medicine or infectious 
diseases, TB laboratories and pathology departments. 
 
 
IMMUNOLOGICAL RESPONSE 
 
Systemic protective reaction 
 
In spite of its long history and extensive use, the protective mechanism of BCG 
is poorly understood. A few points from research in vaccine immunology will 
be mentioned. 
 
BCG vaccination normally leads to an asymptomatic bacteremia. Animal 
studies and autopsy studies of BCG-vaccinated children who died of other 
causes than TB indicate that BCG and granulomas are distributed widely in 
many organs (310). The fact that disseminated BCG infection can occur years 
after vaccination in HIV patients (311) suggest that viable organisms may 
persist for long periods. 
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Within 8 weeks of vaccination a cellular immune response to mycobacterial 
antigens can normally be detected in vivo by the TST, as well as by in vitro 
methods. Studies in neonates (295, 312-314), adolescents (315) and adults (IV) 
(279, 316) show that BCG vaccination induces a potent Th1-type memory 
immune response, characterized by mycobacterium-induced IFN-γ production 
and lymphocyte proliferation, as well as a specific cytotoxic T cell response 
(312). Thus, the immunological events of a tuberculous infection in a BCG-
vaccinated individual are similar to the events of a reinfection in a non-
vaccinated individual (317). 
 
Animal experiments suggest that vaccination with BCG protects against 
uncontrolled replication and dissemination of tubercle bacilli but not against 
acquisition of infection (318, 319). In humans, neonatal BCG vaccination is 
highly protective against disseminated and meningeal disease (20), but less 
protective against other forms of disease (274), implying a similar protective 
effect as in mice. Whether BCG protects against acquisition of infection has 
been difficult to investigate in humans, since studies using the TST cannot, in 
the individual case, reliably differentiate between tuberculous infection and 
BCG vaccination (214, 320). However, IGRAs have the potential to make this 
differentiation (see p. 42). In a prospective study of children with recent 
household TB exposure, Soysal and colleagues estimated the protective effect 
of BCG vaccination against infection, using ELISpot results as a marker of 
infection (321). They found that presence of a BCG scar was independently 
associated with a 24% reduction in risk of infection, suggesting that some of the 
protection provided by BCG vaccination may be attributable to prevention of 
infection. In contrast, an autopsy study of BCG-vaccinated and non-vaccinated 
subjects who had died from other causes than TB suggested that BCG does not 
prevent infection in humans; no decrease in the likelihood of primary lesions in 
the lungs was observed among the BCG-vaccinated subjects in this study (322). 
 
Post-vaccinal lesion 
 
The local response to an intradermal injection of BCG typically develops along 
a common course of events. The extent of the reaction is variable and may be 
influenced by the age and immune status of the vaccinee, the skills of the 
vaccinator, the BCG strain and dose of the vaccine (323). 
 
Vaccination of newborns and TST negative children regularly results in a local 
reaction with erythema and tenderness. In the second week, a small induration 
develops, followed by a softening process of the central area, which gradually 
turns into a yellow pustule during the second month and finally leads to the 
formation of a crust. When this crust falls off, an ulcer with a diameter of <10 
mm appears that slowly heals during the third month (316, 324, 325). In a few 
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cases (<5%) a transient, moderate adenitis may be seen in the regional lymph 
nodes (21), particularly in the axillary nodes. The size of the lesion has been 
used as a quality indicator of BCG products (169, 326) and of vaccination 
procedures in the field (170), in addition to the TST. 
 
BCG vaccination of subjects with tuberculous infection elicits a more rapid 
reaction called the Koch phenomenon (327). In this type of reaction, an 
induration develops within 48 hours, an ulcer within a week, and a crust within 
the next week. There may be more discomfort compared to TST negative 
subjects, but no increase in lymph node reactions or other adverse effects have 
been observed. The resulting scar is generally larger and there is a higher 
frequency of keloid formation (327-329). Repeated BCG vaccination in school 
children in Brazil caused an intense and early reaction similar to the Koch 
phenomenon, but the time of healing was not reduced compared to a first dose 
(324). 
 
BCG vaccination without a preceding TST was recommended by the WHO in 
1964 (330), with the intention to thereby increase vaccination coverage. 
However, in Sweden and other developed countries, increased scarring and 
intensity of the post-vaccinal reaction in TST positive subjects motivates a pre-
vaccination TST in older children and adults. 
 
Due to its ability to induce a Koch phenomenon, a BCG injection may be used 
to diagnose tuberculous infection. Although useful in children according to 
several studies (reviewed in (327)), an investigation performed by the WHO did 
not corroborate these findings (329). Furthermore, BCG vaccines are not 
standardized for diagnostic purposes; the extent of the lesion varies significantly 
between strains (329). Consequently, BCG as a diagnostic reagent is not 
officially recommended (329, 331).  
 
BCG scar 
 
The healing process of the post-vaccinal lesion generally results in a 
characteristic scar. The typical BCG scar is circular, superficial and slightly 
depressed, with atrophic, smooth skin and irregular edges. Scar formation is 
related to the extent of the post-vaccinal lesion (332, 333), and hence correlated 
to the same background factors, i.e. age and immune status at vaccination, the 
vaccination technique and the strain and dose of the vaccine (323). The scar one 
year after vaccination of Swedish adults was somewhat smaller than the lesion 
as measured after 2-3 months (II), whereas the opposite trend was observed in 
children in other studies (217, 332, 334). 
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A relatively low prevalence of scars was seen in BCG-vaccinated children in 
various countries (217, 225, 323, 335), whereas a scar was identified in more 
than 90% of children in other studies (336-339). The scar rates in Swedish 
children are among the lowest reported in the literature. Scars were observed in 
59% of children vaccinated as neonates in 1971 (340) and in 51% of children 
vaccinated at varying ages in the late 1980’s (II). Several studies indicate less 
scar formation after vaccination in the first month of life compared to later 
vaccinations (217, 225, 323, 341, 342), possibly due to a relative immaturity of 
the neonatal immune system (24, 217) and/or the low dose of BCG generally 
used in newborns (24). However, neonatal vaccination does not fully explain 
the differing scar rates between studies.  
 
The propensity of scar formation increases with age at vaccination (225). The 
prevalence of scars is generally >90% after vaccination of older children and 
adults (225, 334, 343), and consistent scar formation was seen after BCG 
vaccination of Swedish young adults (II). A likely reason for increasing scar 
formation with age is an age-related increase in mycobacterial exposure prior to 
vaccination, resulting in a memory response that amplifies the vaccine reaction 
and the following scarring process. Thus, scars were larger after vaccination of 
TST positive children than after vaccination of children who were TST negative 
(328, 329).  Likewise, BCG lesions (333) and scars (225) were larger after 
revaccination (i.e. after previous exposure to BCG) than after primary 
vaccination, and the size of the lesions correlated with the TST reactivity before 
vaccination in one study (333).  
 
BCG scars can usually be distinguished from vaccinia scars as well as scars 
from bites and other injuries. Although some scars may be doubtful regarding 
their etiology, and a significant proportion of false positive scar readings was 
observed in one study (323), a typical scar is a useful indication of past BCG 
vaccination (24, 338). However, absence of a scar does not exclude past 
vaccination. Consequently, case-control studies based on BCG scars as proof of 
previous vaccination may underestimate vaccination efficacy, since the group 
defined as non-vaccinated may include a significant proportion of vaccinated 
subjects (II) (225). 
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Tuberculin skin test reactivity 
 
As previously mentioned (on p. 31), tuberculin skin testing of BCG-vaccinated 
individuals can induce skin indurations caused by cross-reactivity between 
antigens present in tuberculin and BCG. False positive reactions due to previous 
BCG vaccination may cause considerable problems in the interpretation of TST 
results, in particular in low-endemic settings with high rates of BCG 
vaccination (204, 211). A typical situation in which this problem occurs is when 
the TST is performed in new HCW. Although general BCG vaccination was 
discontinued in Sweden over 30 years ago, many young people today have been 
BCG-vaccinated, e.g. immigrants and second generation immigrants. 
Knowledge regarding the influence of previous BCG vaccination on TST 
reactivity is therefore important. 
 
The effect of BCG vaccination on TST reactivity varies considerably between 
different settings and may depend on several factors: 

 
Genetic disposition and nutritional status 
 
A small percentage of individuals will not respond to tuberculin following 
primary or multiple vaccinations. A genetic regulation of DTH to tuberculin 
is suggested by studies of  human leukocyte antigen (HLA) class II 
phenotypes (344) and comparisons of TST reactivity in twins, siblings and 
unrelated children (345, 346). A poor response to tuberculin may also be 
caused by malnutrition, which has an inhibitory effect on DTH (347, 348).  
 
BCG substrain 
 
BCG substrains have varying ability to induce TST reactivity (10). Some 
potent strains can produce distributions of TST reactions similar to the 
distributions seen after tuberculous infection (332, 349), whereas others 
show lower conversion rates (10, 332). The Swedish BCG strain, used in 
Sweden until 1979, had a conversion rate of >90% (340). The conversion 
rate of the strain used in Sweden since then, BCG Danish 1331, is less (217, 
350), although not well known. 
 
Other vaccine-related factors 
 
Storage of a BCG vaccine at 30°C reduced most of its sensitizing potency, 
whereas storage at room temperature had a minor weakening effect (171). 
One hour of sun exposure reduced the viability of bacilli by a factor of 
x1000 and TST reactivity was reduced by half (171). A decrease in the 
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vaccine dose reduced TST reactivity, but the effect was modest (171, 351); 
decreasing the dose by half only reduced reactivity by 1-2 mm.  
 
Exposure to non-tuberculous mycobacteria prior to vaccination 
 
Guld showed that prior infections with NTM resulted in larger TST reactions 
after BCG vaccination (352). However, Andersen recently suggested that 
exposure to NTM prior to vaccination may accelerate the waning of TST 
reactivity in tropical areas (353) (see p. 58)). 
 
Previous BCG vaccination 
 
Nyboe found that TST reactivity two months after vaccination was stronger 
in revaccinated than in primary-vaccinated children (333). Furthermore, TST 
reactivity was clearly correlated with the number of BCG scars in two 
studies (243, 354), although the number of scars in these studies possibly 
was confounded with age when vaccinated or time since vaccination. The 
effect of revaccination on TST reactivity could not be separated from the 
effect of age at vaccination in school children and young adults in Canada 
(355). Revaccination is considered an important reason for large TST 
reactions in individuals from countries of the former Soviet Union and 
Eastern Europe (356), where repeated vaccinations are common (300). 
 
Age at vaccination and time since vaccination 
 
TST reactivity after vaccination in infancy wanes rapidly according to many 
studies (141). Vaccination after the first year of life generally results in more 
persistent reactions (141). The relation between the influence of age at 
vaccination and time elapsed since vaccination is illustrated by Farhat’s 
review of a large number of studies in which BCG-vaccinated subjects and 
controls were tuberculin skin-tested (198). In subjects who were BCG-
vaccinated in infancy, TST reactions ≥10 mm attributable to BCG occurred 
in 6% of subjects overall and in only 1% of those who were tested after more 
than 10 years. According to the same review, subjects vaccinated after the 
first year of life had TST reactions ≥10 mm attributable to BCG in 42% of 
all subjects and in 21% of subjects tested after 10 years or more. Only few of 
the reviewed studies included adults in low-endemic countries, in which 
considerable TST reactivity related to neonatal BCG vaccination has been 
observed (see below). 
 
In Swedish children with a BCG scar, positive TST reactions (≥6 mm using 
PPD RT23) were seen in 74% of preschool children and in 55% of children 
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aged 8-9 years (II). About half of the children had been vaccinated in the 
year of birth, suggesting a relatively slow waning process. 
  
Mycobacterial exposure after vaccination 
 
Waning of vaccine-induced DTH may be counteracted by subsequent 
mycobacterial exposure. Such influence on TST results is suggested by a 
study of children in Saudi Arabia (357). While TST reactivity was equal in 
BCG-vaccinated and non-vaccinated children at the age of 5 years, the 
increase of reactivity with age was more pronounced in the vaccinated 
children, so that the difference between the two groups became statistically 
significant in those aged 12 and 13 years. In low-endemic areas, a 
stimulating effect of mycobacterial exposure on BCG-induced TST 
reactivity is likely to be caused by NTM rather than by tubercle bacilli, as 
indicated by studies of Swedish children (358) and young adults (I). In the 
latter study, 62% of the BCG-vaccinated adults were TST positive (≥6 mm 
using PPD RT 23) and 42% had TST reactions of ≥10 mm. Corresponding 
figures of the non-vaccinated subjects were 5% and 3%, respectively. In the 
same study, vaccination in the year of birth resulted in considerable TST 
reactivity compared to non-vaccinated subjects. Other TST studies of adults 
in low-endemic countries have documented a substantial influence of 
neonatal BCG vaccination as well (218, 359). In conclusion, results from 
different settings indicate that mycobacterial exposure maintains or 
reinforces the effect of BCG on TST reactivity (203). 
 
Repeated tuberculin skin tests 
 
Repeated TSTs can increase and prolong BCG-induced TST reactivity due 
to the booster phenomenon (243, 246, 252, 360) (see p. 36). 
 
Type of tuberculin 
 
As previously mentioned (on p. 23), PPD RT23 was found to be more potent 
than PPD-S in eliciting reactivity in BCG-vaccinated subjects (129). A 
review of the effect of BCG vaccination on TST reactivity found a 
substantially stronger influence of BCG using PPD RT23 than for 5TU PPDs 
(361), while another review revealed no such difference (198). 

 
BCG-induced TST reactions are generally smaller than those induced by 
tuberculous infection (361), and a TST reaction of ≥15 mm is recommended for 
the differentiation between reactivity due to BCG vaccination and tuberculous 
infection in low-risk populations (159). This recommendation is based on a 
large number of studies and is supported by a recent meta-analysis (361).  
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The strong influence of BCG vaccination on TST reactivity in low-endemic 
settings reduces the utility of the TST in screening of tuberculous infection. 
However, there are situations and settings in low-endemic areas in which the 
expected rate of tuberculous infection is high, as in certain groups of 
immigrants and in close contacts of smear positive TB patients. In such settings, 
TST reactivity correlates well with risk factors of TB exposure and the 
influence of BCG vaccination is limited (213, 228). The relative usefulness of 
the TST is thereby maintained in spite of BCG vaccination, corresponding to 
the situation in high-endemic areas (187, 212, 214, 267) (see p. 34). 
Consequently, it is prudent to disregard the influence of BCG vaccination in the 
interpretation of the TST in such settings (159). Following this principle will 
lead to a proportion of false positive reactions depending on what cut-off value 
is used. A follow-up IGRA test offers an obvious opportunity to reduce the 
number of false positive assessments (362), although more longitudinal studies 
are needed to establish the prognostic value of these tests. 
 
Correlation between the BCG scar and tuberculin skin test reactivity 
 
A correlation between the presence or size of a BCG scar and TST reactivity is 
usually observed in vaccinated populations, after recent (217, 363) as well as 
remote vaccination (II), (248, 332, 364-367). The strength of the correlation is 
variable, and in some studies no correlation is seen (335, 337, 368). Some of the 
variation may be vaccine-related: the extent of the local reaction is proportional 
to the total bacterial mass, while TST reactivity is related to the number of 
viable bacilli (169). With this exception, the background factors that determine 
scar formation also determine BCG-induced TST reactivity in a corresponding 
manner. Furthermore, a large survey of BCG scars in Malawi found detailed 
age-sex patterns of scar size that followed the pattern of TST reactivity (225). 
These observations suggest that DTH is involved in the process of scar 
formation, consistent with the close association between scar formation and 
TST reactivity. 
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ADVERSE EFFECTS 
 
Experience from many decades of extensive use shows that BCG is a safe 
vaccine with a very low risk of severe complications.  
 
The events associated with the post-vaccinal lesion are normal reactions to the 
inoculated infection and are generally considered as mild, in spite of often 
protracted discomfort and the generally high frequency of scarring. Local 
reactogenicity differs between strains (169).  
 
The risk of suppurative lymphadenitis is increased in neonates (369) and is 
limited by the recommended dose reduction. Several outbreaks have been 
reported after shifting of BCG strain (169). A retrospective study by Romanus 
of Swedish children reported suppurative lymphadenitis in 0.9/1000 subjects 
(308). In the same study, vaccination site abscesses were noted in 0.4/1000 
subjects. Subsequently, Romanus presented preliminary prospective data in her 
thesis (370) indicating substantially higher rates of the corresponding adverse 
reactions. One percent of the children in the latter study were referred for 
medical advice concerning the vaccine reaction. 
 
BCG osteomyelitis is a generally rare complication which typically occurs 
within 7-24 months of vaccination (305). Outbreaks have occurred after shifting 
of BCG strain in Scandinavia (305, 306) and Czechoslovakia (369). In Sweden 
only a few cases of suspected osteomyelitis have been reported after 1979, none 
of them bacteriologically confirmed (12). 
 
Disseminated BCG infection is a potentially fatal complication in immuno-
compromised subjects. It was very rare before the era of acquired 
immunodeficiency syndrome (AIDS), when it generally was associated with 
other immunodeficiencies such as severe combined immunodeficiency (SCID), 
chronic granulomatous disease or IFN-γ receptor deficiency (371). Between 
1979 and 1991, 4 cases of disseminated neonatal BCG infection occurred in 
Sweden among 100000 infants vaccinated at birth (308). Three of the infants 
were subsequently diagnosed with SCID. No further cases of fatal neonatal 
disseminated BCG infection have been reported after the changing of the 
recommended age of vaccination to 6 months (12). 
 
A previously unrecognized high risk of disseminated BCG infection was 
recently estimated in HIV-infected infants in South Africa (372). The WHO 
therefore recommends that BCG should not be given to children who are known 
to be HIV-infected, but the vaccine is still recommended regardless of infant 
HIV exposure in settings with limited diagnostic resources (373). Finally, 
immune reconstitution infection syndrome (IRIS) is an important new 
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complication of BCG in HIV-infected children who are treated with anti-
retroviral therapy (374, 375). 
 
 
PRIMARY VACCINATION 
 
Protective efficacy 
 
The efficacy of BCG is consistently high against disseminated forms of TB in 
small children. Summary estimates of a BCG-induced protective effect against 
miliary or meningeal TB in randomized controlled trials was 86% (20) and in 
case-control studies 75% (20, 299). The 100 million BCG vaccinations given to 
children every year were estimated to prevent 30 000 cases of TB meningitis in 
infants during their first five years of life and an additional 11 000 cases of 
miliary TB (299). However, there is no epidemiological evidence of BCG-
induced protection in HIV-infected children (168). A possible explanation for 
this lack of protection is an HIV-related suppression of the T cell-mediated 
response against infection and hematogenous spread of tubercle bacilli (376).  
 
Studies of the protective efficacy of BCG against pulmonary TB reveal a 
striking variation from a negative effect to an efficacy of 80% in different 
populations and geographic regions (21, 377). Two large trials with apparently 
divergent results deserve particular attention: the British Medical Research 
Council (MRC) trial and the Chingleput trial in India.  
 
The MRC trial from 1950 studied the protective efficacy of the Danish BCG 
strain in British school children aged 14–15 years (378). Subjects with prior 
mycobacterial sensitization were excluded after skin testing with a high 
concentration of tuberculin (100 TU of Old tuberculin). Follow-up was 
comprehensive, and after 15 years the overall protective efficacy was 78% and 
the efficacy against pulmonary TB was 77% (15). Interestingly, percutaneous 
administration of heat-killed M. microti studied in parallel to BCG provided 
equivalent protection. 
 
The highly variable estimates of BCG efficacy against pulmonary TB found in a 
series of trials prompted what became the largest controlled BCG trial ever 
designed, starting in 1968 in the rural Chingleput district near Madras (379). 
281 000 individuals aged one month or more were randomly allocated to 
vaccination with either BCG Danish, BCG Pasteur 1173 or placebo. The 
assessment of vaccine efficacy was based on individuals with a TST reaction of 
≤7 mm to 3 TU of PPD-S, and only culture-confirmed cases of pulmonary TB 
were considered. Such cases are rare in children and consequently childhood 
forms of TB were not investigated. A paradoxical adverse effect of BCG was 
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demonstrated in vaccinated subjects during the first 5 years after vaccination: 
the TB incidence was nearly twice as high in those receiving BCG than in the 
non-vaccinated group (see p. 58). This difference was highly significant 
(p<0.01) (377). There was, in contrast, a 45% protective effect in the following 
5 years in children ≤14 years at vaccination, whereas BCG had no effect in 
those aged ≥15 years from 5 years after vaccination and onwards (377, 380). 
 
The effectiveness of the Swedish BCG vaccination program during the past 
decades has been evaluated by Romanus (12). Based on the observed increase 
of TB in children after 1975, the protective effect of the vaccine used in 1969 to 
1974 was estimated to about 85%. The effectiveness of the following selective 
vaccination program was about 82%, as indicated by a declining incidence of 
TB in parallel with the increasing BCG coverage of the population at risk. 
 
The maximum BCG efficacy level of around 80% is in the same range as the 
estimates of the protective effect of previously acquired tuberculous infection. 
That BCG vaccination can achieve a similar overall protective effect as natural 
tuberculous infection is illustrated by observations by Hyge of an outbreak of 
TB at a girls’ school in Denmark (14): one group of 105 TST positive girls and 
another group of 106 BCG-vaccinated girls produced two cases of TB each, 
whereas 94 TST negative girls produced 41 cases – morbidity rates of 2%, 2% 
and 44% respectively. 
 
Protection of adults 
 
Evidence from randomized controlled trials on the efficacy of BCG vaccination 
is mainly derived from studies of infants and school children. However, several 
early controlled studies in HCWs and other adults from the United States and 
northern Europe indicate that primary vaccination of young adults is efficacious 
(reviewed in (17, 26)). In Sweden, a large study by Dahlström and Difs of 
conscripts with an average age of 21 years showed a 5-year protective efficacy 
of 63% (13). Due to the relatively high TB prevalence at the time, many 
conscripts developed TB before the protective effect of BCG could set in. 
According to Dahlström and Difs, full BCG protection would be expected after 
6 months. If the TB cases that developed within 6 months of vaccination were 
subtracted, the protective efficacy was estimated to 77%. Dahlström later found 
that TB in BCG-vaccinated young adults has a milder course (381), and thus 
protection is not only a question of incidence but also of severity of disease. 
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Reasons for variability of protection 
 
A meta-analysis of the over-all BCG efficacy (274) has received much 
attention, as it meets the general desire to simplify a complicated issue. The 
analysis concluded that BCG on average reduces the risk of TB by 50%. Such a 
conclusion is not only statistically improper (21) (due to the highly significant 
variation in efficacy against pulmonary TB between populations) but may also 
be misleading (21), as it implies that the observed variability in BCG efficacy is 
attributable to chance variations between studies and not by true differences 
between settings. As exemplified by Fine (21): “The implied logic is 
comparable to calculating the mean of the per capita incomes of Burkina Faso 
and of Switzerland and concluding that the world is, on average, middle class.”  
 
Possible reasons for the variable results of BCG studies in different settings are 
mentioned below. 
 

BCG substrain variations 
 
Although different protective effects are not proven, the apparently different 
qualities between BCG substrains could contribute to the variability in 
efficacy of BCG trials. On the other hand, the same substrains have shown 
markedly different protection in different trials (e.g. BCG Danish in the 
British MRC trial and the Chingleput trial), and different substrains (or 
vaccines) have shown very similar protection in some trials (e.g. BCG 
Pasteur 1173 and BCG Danish in Chingleput, and BCG Danish and heat-
killed M. microti in the MRC trial). Thus, a major influence of different 
substrains on the variability in BCG efficacy is unlikely (382) and can 
certainly not explain all of the variation. 
 
Genetic and nutritional differences 
 
Host genetics as well as nutritional status of the vaccinees have been 
suggested to contribute to the variations in efficacy of BCG vaccination, but 
there is little evidence in support of these theories (21). 
 
Exposure to non-tuberculous mycobacteria 
 
As discussed in the previous section (on p. 31), infections with NTM can 
evoke varying degrees of protection against TB. Animal studies by Palmer 
and Long demonstrated that when BCG is superimposed on NTM infections, 
the resultant protective effect is only the same as that obtained with BCG 
alone (as opposed to the sum of both protective effects) (277). As stated by 
Palmer and Long: “All BCG can achieve is to fill the gap between what it 
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can do and what the atypical mycobacteria have already done.” This 
“masking hypothesis” (353) implies that if subjects infected with NTM are 
not excluded from BCG trials, NTM-induced protection in the unvaccinated 
control group will reduce the observed protective efficacy of BCG to a 
corresponding degree (275).  
 
Furthermore, recent studies in mice indicate that NTM infections can 
provide sufficient immunity to inhibit BCG replication, leading to reduced 
vaccine-induced protection (383). According to this “blocking hypothesis” 
(353), immunity induced by NTM is capable of blocking growth of low-
virulent strains such as BCG, but not of more virulent strains such as 
experimental live vaccine strains (384, 385) or M. tuberculosis. As the 
“blocking hypothesis” implies less NTM-induced immunity against TB, it is 
more consistent with the high TB prevalence in tropical areas than the 
“masking hypothesis” (although it is possible that the TB prevalence in 
tropical areas would have been even higher without NTM-induced immunity 
(353)). 
 
The randomized controlled BCG trials which showed the highest protective 
efficacies are those which most effectively excluded prior mycobacterial 
exposure (377): the MRC trial by skin-testing with 100 TU (378), a trial of 
North American Indians by skin-testing with 250 TU (386), and a trial of 
infants in Chicago by vaccinating soon after birth (387). In less successful 
studies the subjects were selected on the basis of a negative reaction to 5 TU 
or 10 TU of PPD-S (84, 388-390). For example, over 90% of the adults 
included in the Chingleput trial showed skin-test reactivity indicative of 
NTM infection (positive reactions to PPD-B) (84).  
 
The results of the mentioned BCG trials as well as many other 
epidemiological studies of BCG-induced protection are consistent with a 
north-south gradient in the effectiveness of BCG, with poor efficacy in 
tropical and subtropical regions (353, 391). A corresponding gradient of 
NTM exposure is proposed as a plausible explanation to this phenomenon 
(274, 275, 353).  
 
Previous exposure to Mycobacterium tuberculosis 
 
The adverse effect of BCG in the first years of the Chingleput trial cannot be 
explained by the above mentioned factors. Furthermore, the consistency of 
this result over all age groups and its high statistical significance speak 
strongly against a chance finding. Springett and Sutherland suggested that 
subjects with LTBI who respond with weak DTH to the infection - and 
therefore would not be excluded from e.g. the Chingleput trial - may be at 
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increased risk of reactivation disease soon after vaccination (377). 
According to this hypothesis a BCG infection could intensify their cellular 
immune response, leading to exacerbation of disease. Such a phenomenon is 
in accordance with not only the early adverse effect in the Chingleput trial, 
but also with the low levels of efficacy observed in other trials. Interestingly, 
Dahlström found no adverse effect when vaccinating newly infected subjects 
in Sweden (381). This contradiction may be a consequence of differences 
between newly acquired and more remote infections. An alternative 
explanation is provided by differences between the settings in exposure to 
NTM and other agents such as helminths. 
 
Helminth infections 
 
Helminth infections such as filariasis and schistosomiasis are potent inducers 
of a Th2 response (392), as well as stimulators of regulatory T cell activity 
(393), and can thereby interfere with the expected Th1 response against 
BCG and other mycobacteria. Thus, BCG induced a Th2 response in a study 
of newborn infants who had been exposed in uteri to antigens from maternal 
helminth infections (394). In a study by Elias and co-workers (395), de-
worming of helminth-exposed BCG-vaccinated individuals improved PPD-
induced Th1 responses, and BCG vaccination boosted Th1 responses more 
in the treated group than in the placebo group. A subsequent larger study by 
the same group showed that an impaired BCG-induced Th1 response due to 
helminth infection was associated with enhanced production of the 
regulatory cytokine TGF-β, but not with Th2 activity (393). Although there 
is direct evidence of reduced BCG efficacy due to helminth infections in 
mice (396), corresponding evidence in humans is still lacking, and an 
ongoing study is investigating this possibility (397). 
 
Interactions between NTM and helminth infections 
 
Based on results from animal experiments and findings of large IL-4 
responses in TB patients in developing countries, Rook and co-workers 
hypothesized that NTM infections in these countries may prime Th2 
responses under the influence of helminth infections (392). Although the 
background Th1 activity protects against low-dose challenge with tubercle 
bacilli, they suggested that high-dose exposure may enhance pre-existing IL-
4 activity that compromises cell-mediated immunity and leads to disease 
progression. According to this hypothesis, BCG fails in these populations 
since an effective vaccine needs to block the Th2 response rather than to 
strengthen the Th1 response as achieved by BCG vaccination. 
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Differences in progression from infection to disease 
 
The hypothesis that a major action of BCG is to protect against 
hematogenous dissemination of tubercle bacilli implies that BCG would 
protect better against pulmonary disease due to endogenous reactivation than 
against disease attributable to exogenous reinfection (398). In areas where 
the probability of reinfection is high, the efficacy of BCG would then be 
lower than in areas where reactivation disease predominates. BCG efficacy 
would consequently depend on the TB prevalence in the population, but also 
on the virulence of the prevailing TB strains (see below). This hypothesis is 
consistent with data from the Chingleput trial, which showed a high risk of 
infection in the population, but a low incidence of TB among individuals 
who were initially TST negative, and a long interval between TST 
conversion and evidence of disease (398). However, the hypothesis is 
contradicted by the high BCG-related protection in North American Indian 
populations in which infection rates were very high (386), as well as by the 
MRC trial, in which BCG efficacy remained high in spite of a rapid decline 
in infection rate (15). 
 
Differences between M. tuberculosis strains 
 
Antigenic variation among M. tuberculosis strains may affect the immune 
response against tuberculous infection (399). Studies in guinea pigs showed 
that the M. tuberculosis strains from the Chingleput area were of low 
virulence (400) and could have an immunizing effect (380), suggesting the 
possible combination of masking of BCG efficacy with a relatively low risk 
of reactivation disease (380). In addition, Rhee and co-workers speculated 
that the extent of relatedness to BCG of the prevalent M. tuberculosis strains 
may be an important factor determining vaccine efficacy (401).  

 
No consensus has been reached regarding these competing hypotheses. It is 
likely that several factors contribute to the observed variation in BCG efficacy.  
 
Duration of protection 
 
A review of 10 randomized controlled BCG trials found that the changes in 
effect over time varied considerably between trials (22). Based on a summary 
estimate of the BCG efficacy after 10 years that did not show any significant 
protection, the authors concluded that “there is no good evidence that BCG 
provides protection more than 10 years after vaccination”. Analogous to the 
above-mentioned statement regarding over-all BCG efficacy (274) (see p. 57), 
such a conclusion does not include the possibility of true variations between 
settings. For example, there is very good evidence of longer protection in Great 
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Britain. An efficacy of 59% was demonstrated during the period from10 to15 
years after vaccination in the MRC trial (15) (compared to an 83% efficacy 
during the first five years (402)). The TB incidence decreased substantially 
during the trial, and there were too few cases for a reliable assessment of 
efficacy after 15 years (278). 
 
More recently, a 39% protection of neonatal BCG against all forms of TB 
lasting up to 20 years was demonstrated in children in Brazil (403). The longest 
demonstrated duration of BCG-induced protection was in a recent 60-year 
follow-up of a placebo-controlled trial among American Indians and Alaska 
Natives (404). The efficacy in the original study that started in 1935-38 was 
75%, based on radiographically diagnosed TB at about 11 years (405). The 
follow-up study, encompassing the period from 1948 to 1998, revealed a 
protective efficacy of 52%. A slight but not statistically significant waning of 
the efficacy was observed during the follow-up.  
 
Decreasing BCG efficacy may not only be caused by waning of BCG-induced 
protection in vaccinated subjects, but also by an increase in protection among 
those who are non-vaccinated, due to progressive exposure of the population to 
other immunizing infections. This is a likely contributing factor to a gradual 
decrease of protection in areas where NTM infections are common (275, 315).  
 
 
REVACCINATION 
 
Repeated vaccinations with BCG were previously standard in most national 
BCG programs. Many health authorities have chosen to discontinue 
revaccination in parallel with decreasing TB prevalence, but it is still 
extensively practiced in e.g. Eastern Europe and countries of the former Soviet 
Union (25). Given the absence of convincing evidence for the utility of repeated 
doses, the WHO has issued a statement discouraging revaccination (406). 
 
The practice of revaccination is motivated by studies showing significant 
waning of BCG-related efficacy over the years (22). Revaccination has also 
been justified by the gradual waning of BCG-induced TST reactivity observed 
in many populations (141), based on the opinion that post-vaccinal TST 
reactivity is correlated to protection. One school of thought behind repeated 
BCG vaccinations in Eastern Europe claims that persistent BCG infection is a 
prerequisite for maintenance of protective immunity, and that loss of TST 
reactivity indicates elimination of the bacilli and the need for revaccination 
(289). The need for persistent BCG replication for continuous protection is 
supported by results from animal models (353). However, the extent to which 
such persistence is required in humans is uncertain, and the significance of 
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BCG-induced TST reactivity for protection against TB is a subject of debate 
(see p. 64). 
 
The extensive use of repeated BCG vaccination contrasts the lack of solid 
evidence for its effectiveness. However, the documentation against 
revaccination has not been convincing either. There have been mainly 
observational studies regarding this issue. Analysis of routine data from 
Hungary showed a decline in incidence after revaccination was introduced 
(407), and data from Poland showed a higher TB incidence in those not 
receiving a second dose of BCG (408). There were, however, methodological 
problems in these two studies, as pointed out by the WHO (406). After the 
second dose of BCG was discontinued in Finland, the number of cases did not 
increase in the following cohorts of children compared to the earlier cohorts 
with revaccinated children (409). Although persuasive against a revaccination 
program in Finland, the number of cases in this study was too small for a 
general conclusion regarding revaccination (24). Finally, an observational study 
of children in Hong Kong (410) found no difference in TB incidence between 
participants and non-participants in a revaccination program.  
 
There have been only two randomized controlled trials of the effectiveness of a 
second BCG vaccination against TB. First, a trial in Malawi, where a previous 
survey of primary vaccination showed no protection against TB (411), reported 
no protection of a second vaccination (412). This result is not transferrable to 
countries where primary vaccination is effective. Interestingly, the study 
showed a 50% protective efficacy of revaccination against leprosy, for which 
primary vaccination in Malawi has a corresponding protective effect (411). 
Second, a cluster-randomized trial of a second BCG vaccination in more than 
200 000 school children in Brazil found no additional protection against TB in 
revaccinated children (413). The sample size in this trial was adjusted for the 
inclusion of children with LTBI, instead of attempting to identify such children 
by a TST (414). 
 
A study of revaccination of Swedish adults showed a pronounced and persistent 
increase in the Th1 response against mycobacterial antigens, with a magnitude 
equal to that of primary vaccination (IV). This increase in cell-mediated 
immunity is consistent with a protective immune response (see p. 66) to a 
second dose of BCG. Similar in vitro results were obtained in studies of adults 
in Japan and the US (415, 416), as well as in a study of revaccinated school 
children in Brazil during the mentioned BCG trial (417). 
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METHODS USED FOR ESTIMATING VACCINE-INDUCED 
PROTECTIVE IMMUNITY 
 
For a long time the only available alternative to large epidemiological studies 
for assessing the human response to BCG vaccination were analyses of skin test 
reactivity to mycobacterial antigens and measurements of the post-vaccinal 
lesion or scar. Results from such studies are briefly reviewed below and their 
relevance for estimating protective immunity is discussed. Knowledge emerging 
from studies of the immune mechanisms involved in the control of 
mycobacterial infections has lead to new tools for analysis of the immune 
response to BCG. In the quest for an improved vaccine, such biomarkers could 
be used to assess the potential efficacy of vaccine candidates in relatively small 
clinical studies, before the launching of large-scale randomized controlled trials. 
An overview of some new potential correlates of protection follows below. 
 
BCG Scar 
 
In a mixed population of vaccinated and non-vaccinated individuals, the 
presence of a typical BCG scar is a marker of some protection against TB in 
countries where BCG is effective. Whether or not the presence (or size) of a 
scar is associated with protection in BCG-vaccinated subjects remains to be 
conclusively determined (21). In a paper on TB prevention in Moscow, 
Mitinskaya briefly reported strong correlations between presence and size of 
BCG scars and TB morbidity, but the study design and analyses were not 
described (418). A study in Malawi found no evidence of a relationship between 
scar size and protection against TB (367). However, the possibility for this 
study to detect such a relationship was small, as BCG confers no significant 
protection against TB in Malawi (411). Furthermore, the results suggested an 
increased risk of TB with increasing scar size, possibly because presence of 
LTBI at the time of vaccination resulted in larger scars and a higher subsequent 
risk of TB. Such a correlation could partially mask a possible association 
between scar size and vaccine-induced protection. 
 
A study of Indian infants provides some evidence against a correlation between 
scar formation and TB protection: infants who did not develop a scar after 
vaccination had no reduction of cell-mediated immunity, as measured by PPD-
induced leukocyte migration inhibition (419). Epidemiological data from 
Sweden points in the same direction. The low rate of scar formation observed in 
Swedish children (II) (340) is in contrast to the high concurrent effectiveness of 
the selective BCG vaccination program (420). Furthermore, Swedish subjects 
without a scar after BCG vaccination were TST positive more frequently than 
non-vaccinated subjects (II), indicating that BCG produced a systemic reaction 
- as manifested by persistent DTH against tuberculin - in the absence of local 
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ulceration and scar formation. It has been suggested that ulceration of the lesion 
may fail to occur in spite of a local induration, and that bacilli may nonetheless 
multiply within the body and induce an immune response (25). An alternative 
explanation for absence of scars is the gradual disappearance of scars with time 
(II), particularly after infant vaccination (323). 
 
The tuberculin skin test 
 
The significance of DTH in protective immunity against TB has been studied 
and discussed for decades. Whereas some authors have argued that the killing of 
infected macrophages by DTH is a prerequisite for resistance against TB (421), 
others have claimed that an ideal vaccine should not induce TST reactivity 
(422), since DTH is involved in the process leading to tissue destruction and 
pulmonary cavitation in TB (81, 423). The complexity of this issue is 
demonstrated by the papers by Dannenberg, some of which have emphasized 
detrimental (81) and some favorable (424) effects of DTH. 
 
It is obvious that TST reactivity after BCG vaccination and resistance against 
TB often parallel each other. The assumption that TST conversion is a useful 
correlate of BCG-induced protection is strongly rooted in former literature (171, 
349, 425). It has therefore been common practice for many years to interpret a 
positive TST in BCG-vaccinated individuals as an indicator of protection (5, 
289, 426). However, evidence against this view has gradually accumulated over 
the years, and some contemporary authors claim that TST reactivity after BCG 
vaccination is not a correlate of protection (24, 422).  
 
Although TST reactivity and protection against TB generally overlap, animal 
studies show that they are dissociable phenomena. It is possible to produce TST 
reactivity in guinea pigs without increasing resistance against challenge with 
tubercle bacilli (427), and it is possible to induce resistance without TST 
reactivity (428), as in experimental NTM infection (277). Furthermore, DTH 
and protective immunity to TB in mice can be selectively transferred by 
separate T cell populations (429). 
 
Studies in guinea pigs show that waning and tuberculin-induced boosting of 
TST reactivity is not related to resistance (244). After demonstrating the booster 
phenomenon in BCG-vaccinated children, Guld and co-workers concluded that: 
“The very common practice of revaccinating on the basis of waning of 
tuberculin sensitivity, and of withholding vaccination from individuals who 
after tuberculin testing (…) fail to show waning of allergy, has therefore no 
scientific basis whatsoever…” (244). A following study by Nyboe showed that 
TST reactivity was increased after repeated vaccination of TST negative 
children as compared to primary vaccination (333). Likewise, repeated 
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vaccination of TST negative subjects are followed by a stronger and more rapid 
development of the post-vaccinal lesion compared to primary vaccinations (324, 
333, 430). These signs of increased immune responses after repeated 
vaccination are indications of maintained immunological memory in the 
presence of waned TST reactivity. Furthermore, the development of the BCG 
lesion after revaccination is no different in individuals who do not become TST 
positive after primary vaccination compared to in those with a positive reaction 
that has waned (381). 
 
There is little human epidemiological data to elucidate this issue. The only 
study that demonstrates a correlation between BCG-induced TST reactivity 
after BCG vaccination and resistance against TB is the one by Heimbeck on 
student nurses in Oslo 1927-1936 (8) (see p. 40). However, the vaccine quality 
was probably variable during the initial years of the study (431), the subjects 
were not randomized, and other methodological aspects of the study have been 
criticized (432). Such objections may explain why these results have been 
somewhat neglected in more recent literature (433). 
 
In the British MRC trial (434), more than 7000 of the BCG-vaccinated children 
were tuberculin skin-tested within a year. Follow-up results after 10 years 
demonstrated that BCG-induced TST reactivity was not correlated to the 
subsequent risk of TB. Technical variations in the production of different 
batches of vaccine resulted in varying TST reactivity but had no significant 
influence on the protective efficacy 
 
A review of controlled trials of BCG vaccination from different parts of the 
world showed no relationship between the average tuberculin conversion rate in 
each trial and the efficacy of the BCG strains (10). However, a tendency for a 
positive correlation of TST sensitivity and protection was found within each 
vaccine strain studied (10). Although this review is often used as evidence 
against a correlation, it leaves the possibility that a weak relationship may exist 
within certain settings. 
 
In vitro correlates of protective immunity have been used to evaluate the TST in 
this context. The T cell proliferation and IFN-γ production induced by 
mycobacterial antigens (see below) were analyzed in Swedish BCG-vaccinated 
HCW without known TB exposure (III). The measured immune responses were 
significantly stronger in a group of TST positive subjects than in a matched 
group with TST negative reactions, indicating a stronger Th1 response in the 
TST positive group. These results are consistent with those of studies from the 
Unites States performed 3 months (435) and 1–3 yrs (296) after BCG 
vaccination. Furthermore, in vitro studies demonstrate that a systemic immune 
response may be present without skin test reactivity. Thus, antigen-specific 
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lymphocyte proliferation (436, 437) and IFN-γ production (438) are more 
sensitive indicators of T cell responses against mycobacterial antigens than the 
TST.  
 
Although people with a positive TST due to LTBI have some protection against 
developing TB from reinfection (see p. 39), the tuberculous infection confers a 
risk of reactivated disease (see p. 38). BCG-vaccinated subjects with LTBI are 
at risk of reactivation as well. This is illustrated by a large case-control study of 
children BCG-vaccinated at birth in the high-prevalence setting of Hong Kong: 
a clear positive correlation between TST reactivity and subsequent TB was 
demonstrated (267). The study confirms that a positive TST reaction in settings 
of TB exposure signals a significant risk of TB also in BCG-vaccinated 
subjects.  
 
TST reactivity is a dynamic process, influenced by a multitude of host factors, 
environmental factors and test-related factors (see p. 50). Consequently, the 
TST reactivity recorded at a given time point, e.g. soon after BCG vaccination, 
is more or less prone to change and may be different at a later occasion, as when 
the immune system is challenged by TB exposure. The possibility remains that 
TST reactivity at the time of exposure in BCG-vaccinated subjects is correlated 
to resistance against TB within specific settings. Such a correlation would be 
more difficult to demonstrate for the often labile TST reactions achieved by 
BCG vaccination than for the relatively persistent reactions due to LTBI. 
Considering the counter-evidence, however, a correlation is doubtful. 
 
In vitro correlates  
 
Acknowledging the insufficiency of the TST as a correlate of protection against 
TB, better correlates are much needed. The ability to stimulate T cell release of 
IFN-γ is at present the most extensively used surrogate marker of vaccine-
derived protective immunity. The rationale behind this method is the critical 
role of IFN-γ in resistance against mycobacterial disease, in which Th1 cell-
mediated activation of macrophages destroys intracellular tubercle bacilli. This 
key function of IFN-γ is clearly demonstrated by the susceptibility to 
mycobacterial infections of humans unable to produce or respond to IFN-γ due 
to mutations in genes involved in the Th1 cytokine pathway (371, 439).  
 
Human in vitro studies suggest that antigen-specific IFN-γ responses vary with 
the protective immune response against TB. More specifically, the increase of 
IFN-γ production in peripheral blood or separated mononuclear cells, induced 
by stimulation in vitro with mycobacterial antigens such as PPD, has been 
shown to correlate with the known protection against TB induced by BCG in 
various human populations. Thus, BCG vaccination of Swedish young adults 
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induced a pronounced and persistent increase in PPD-induced IFN-γ responses 
(IV). Ravn analyzed antigen-specific IFN-γ responses at different time-points 
following BCG vaccination of Danish subjects (279). IFN-γ responses increased 
more rapidly in subjects previously sensitized to mycobacterial antigens than in 
non-sensitized subjects, consistent with a memory T cell response induced by 
NTM. In contrast, a study from South India found that despite TST conversion 
after BCG vaccination, the PPD-induced IFN-γ response did not increase 
significantly (440), a finding consistent with the lack of BCG efficacy 
previously demonstrated in the same area (84). Studies of young subjects in 
Malawi and the United Kingdom also provide an illustration of contrasting IFN-
γ responses in populations with different degrees of BCG-induced resistance 
(315): an increase of the PPD-induced IFN-γ response was seen after 
vaccination in the United Kingdom but not in Malawi. 
 
Although the IFN-γ responses seem to correlate well with BCG-induced 
protection of the populations in these studies, it is also evident that the 
mechanisms of anti-tuberculous immunity are more complex than the effects of 
T cell-derived IFN-γ production. IFN-γ responses did not correlate with 
vaccine-induced resistance in recent experiments in mice (441-443) and results 
of recent human studies also question the reliability of IFN-γ responses as 
correlates of vaccine-induced protection. In the above-mentioned study of 
repeated BCG vaccination of school children in Brazil (417), the IFN-γ 
response increased significantly in half of the children, although revaccination 
provided no protection in the following evaluation of the trial (413). 
Furthermore, preliminary results from a study of South-African children BCG-
vaccinated at birth indicate that antigen-specific IFN-γ levels 10 weeks after 
vaccination did not differentiate infants who would develop disease before two 
years of age from those who were resistant against TB exposure in the 
household (444). 
 
Emerging evidence for important roles of CD8 cells, Th17 cells, γδ cells and 
regulatory T cells in TB defence (23) suggest that resistance against TB requires 
complex interactions between different T cell populations. Profiles of cytokine 
expression may therefore be more accurate as correlates of protection than IFN-
γ levels only (444). An alternative strategy is to identify correlates of 
susceptibility, such as antigen-specific IL-4–producing CD8 cells and γδ cells 
(74, 77). The balance between opposing cytokines is probably crucial for 
latency and disease progression (79). Furthermore, in vitro “killing assays” may 
be used to evaluate the capacity of post-vaccinal T cells to kill intracellular 
mycobacteria, and inhibition of mycobacterial growth in whole blood can be 
measured by various methods (29). 
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PROTECTION AGAINST OTHER DISEASES THAN TUBERCULOSIS 
 
Several studies suggest significant BCG-induced protection against 
mycobacterial diseases other than TB, analogous with NTM-induced 
heterologous immunity against TB. Furthermore, several epidemiological 
studies suggest a non-specific protective effect of BCG vaccination against 
various diseases. 
 
Leprosy  
 
BCG vaccination provides protection against leprosy to a varying degree. The 
efficacy ranges from 20-80% between different populations (411), a variability 
reminiscent of that found against TB. Studies in which protection against 
leprosy and TB were estimated in the same populations indicated better 
protection against leprosy (411, 445, 446) and, as previously mentioned, a 
protective effect of repeated vaccination was observed in Malawi against 
leprosy but not against TB (412). 
 
Disease caused by non-tuberculous mycobacteria 
 
Animal experiments have demonstrated that BCG vaccination can provide 
protection against NTM infections (447, 448). Epidemiological data support a 
corresponding effect also in humans. The discontinuation of BCG in Sweden 
was associated with a sharp increase in cervical lymphadenitis in children 
caused by NTM, in particular disease caused by M. avium (94). Although the 
observed increase may in part be explained by different forms of bias (94), the 
incidence of NTM lymphadenitis was considerably higher in non-vaccinated 
than vaccinated children during a subsequent 10-year period (1975-1985), and a 
decline was observed in children born to foreign parents in parallel with the 
increasing BCG coverage in this population (94). Observations in Finland (449) 
and the Czech Republic (450) support these findings.  
 
Marked differences between countries in the incidence of disseminated NTM 
disease associated with AIDS have been attributed to different BCG coverage in 
the populations (451). Thus, in the 1980’s the lifetime risk of NTM disease in 
AIDS patients was estimated to 50% in the Netherlands and 30% in the United 
States (both of which have very low BCG coverage) but only 10% in Sweden 
(in which BCG coverage was high). Finally, BCG-related protection against 
Buruli ulcer, a skin disease caused by M. ulcerans mainly seen in West Africa, 
was indicated by some studies (452, 453) but not by others (454).  
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Non-specific effects 
 
BCG is a powerful immune stimulator. Its non-specific immunostimulatory 
potential is successfully utilized in immunotherapy for superficial bladder 
cancer (455). The tumour-cytotoxic effects are thought to occur by cytokine-
mediated recruitment and stimulation of several lines of effector cells (455). 
Furthermore, BCG vaccination is claimed to confer non-specific preventive 
effects against several diseases in addition to TB and other mycobacterioses. 
Leukemia and other malignancies have been discussed in this context (456, 
457). A long-lasting stimulation of Th1 responses has been suggested to prevent 
disease caused by helminth infections (458). Furthermore, a BCG-related 
decrease in the frequency of atopic manifestations has been shown in many 
studies. BCG and other mycobacteria can both prevent and diminish allergic 
responses in animal models by boosting either Th1 responses or allergen-
specific regulatory T cells (459). Although several trials indicate a preventive 
potential, the effects of BCG vaccination on atopy in human trials remain 
controversial (459).  
 
Recent large cohort studies in West Africa suggest a protective effect against 
overall mortality in infants, which cannot be explained by protection against TB 
(460-462). These effects have been attributed to a BCG-induced activation of 
the antigen-presenting ability of dendritic cells, leading to a general promotion 
of Th1 responses (313), but also to promotion of Th2 responses to vaccine 
antigens including hepatitis B and oral polio virus (463). Reduced mortality is 
more likely to occur in areas with high infant mortality rates than in high-
income countries. Interestingly, the beneficial effects were often mostly 
pronounced among girls (462, 464, 465) and non-specific effects against 
mortality were also observed for measles vaccine (462). The validity of these 
observations has been questioned, e.g. due to possible confounding associated 
with the selective distribution of vaccines according to socio-economic status 
(460, 466). 

69



 

 
 
 
 
Pros and cons of BCG 
 
Pros 
 
● Highly effective worldwide against disseminated forms of disease in infants 
● Effective against pulmonary TB at northern latitudes 
● Effectivity no less against multi-drug-resistant forms of TB 
● Effective against leprosy 
● Potential beneficial effects against other diseases 
● Safe 
● Low cost 
● Scar as proof of vaccination 
 
Cons 
 
● Insufficient against pulmonary TB in areas close to the equator 
● Waning protective effect 
● Risk of disseminated BCG disease in HIV-infected infants and other 
immunodeficiencies 
● Frequent mild adverse effects 
● Difficult route of administration 
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AIMS 
 
The overall aims of this thesis were to study the effects of BCG vaccination on 
the protective immune response against TB and to analyze the implications of 
TST reactivity and presence of a BCG scar in healthy subjects. 
 
Specific aims were: 
 
• to analyze the distribution of TST reactions among BCG-vaccinated and 

non-vaccinated healthy adults (I) 
• to estimate the influence of various epidemiological factors on TST 

reactivity in healthy adults (I) 
• to analyze the scar rate and the correlation between scar presence and TST 

reactivity in BCG-vaccinated children and adults (II) 
• to analyze the association between TST reactivity and in vitro correlates of 

protective immunity in BCG-vaccinated adults (III) 
• to study the protective immune response to BCG vaccination and 

revaccination in adults (IV) 
 
 
DISCUSSION 
 
I. Tuberculin skin test reactivity of young adults in a country with low 
prevalence of tuberculosis 
 
Summary 
 
The distribution of TST reactions among BCG-vaccinated and non-vaccinated 
healthy young adults was studied, and the influence of various epidemiological 
factors on TST reactivity was estimated. Significant TST reactions were 
frequent in BCG-vaccinated subjects, whereas most unvaccinated subjects were 
non-reactive. BCG vaccination, a country of birth with medium/high incidence 
of TB, and increasing age were strongly correlated to TST reactivity. Sensitin-
dominant reactions were common in non-vaccinated subjects and were found in 
about half of those with TST reactivity. 
 
Discussion 
 
A strong influence of BCG vaccination on TST reactivity was demonstrated. 
The rate of 42% of TST reactions ≥10 mm in BCG-vaccinated subjects was 
higher than anticipated, considering the waning tendency of BCG-induced TST 
reactions. The influence of age, geographic origin and NTM infection was 
expected. NTM infections may explain much of the TST reactivity in BCG-

71



 

vaccinated subjects as well. The trend of increasing TST reactivity with age is 
probably related to increasing prevalence of NTM sensitization. The method 
used for detecting NTM infections is likely to provide a minimum estimate, 
considering that only half of the observed TST reactions in non-vaccinated 
Sweden-born subjects were sensitin-dominant in spite of the low risk of TB 
exposure. The TST results support 15 mm as an appropriate cut-off value in 
low-prevalence settings for a positive TST in healthy adults without known TB 
exposure. 
 
 
II. BCG scar and tuberculin reactivity in children and adults 
 
Summary 
 
TST reactivity and the presence of a BCG scar were retrospectively analyzed in 
BCG-vaccinated children and adults. Most adults had a BCG scar, whereas a 
scar was identified in only half of the children. There was a strong positive 
correlation between scar presence and TST reactivity at all ages, particularly in 
small children. Furthermore, vaccinated subjects without a scar were TST 
positive more frequently than non-vaccinated subjects. In a prospective part of 
the study, vaccination of adults resulted in consistent scar formation. 
 
Discussion 
 
An unconfirmed history of adult BCG vaccination is probably incorrect if there 
is an absence of a BCG scar. The corresponding conclusion cannot be drawn 
from the absence of a BCG scar in a child. Furthermore, lack of scar formation 
after vaccination of a healthy adult suggests that the vaccination procedure is 
inadequate or the immune response is divergent. 
 
Despite the low scar rate in children, the protective effectiveness of BCG in 
Sweden is high. Whether this paradox is due to a gradual disappearance of scars 
in children or the possibility of scar formation not being correlated to BCG-
induced protection is not clear. Nevertheless, the utility of the BCG scar as an 
indicator of vaccine-derived protective immunity is doubtful. The TST results 
suggest that BCG can induce a systemic immune response without a persistent 
scar being formed. 
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III. The tuberculin skin test in relation to immunological in vitro reactions 
in BCG-vaccinated healthcare workers 
 
Summary 
 
The immune response in vitro against mycobacterial antigens was studied in 
BCG-vaccinated healthcare workers without known TB exposure. Lymphocyte 
proliferation and IFN-γ production of peripheral blood mononuclear cells were 
analyzed after stimulation in vitro with mycobacterial antigens. The immune 
response was significantly stronger in a group of TST positive subjects than in a 
matched group with TST negative reactions. 
 
Discussion 
 
The study demonstrates a stronger Th1 response after BCG vaccination in a 
group of TST positive subjects than in a TST negative group. The results are 
consistent with those of BCG-vaccinated adults in the United States and support 
a correlation between TST reactivity and a protective immune response in 
BCG-vaccinated populations without known TB exposure. 
 
Subjects with large positive TST reactions were chosen in order to increase the 
probability of detecting a difference in Th1 responses in a relatively small 
sample of subjects. Thus, the study does not provide information of the Th1 
response in subjects with moderately positive reactions.  
 
IFN-γ has a decisive role in the Th1 response and in resistance against TB. T 
cell release of IFN-γ is at present the most extensively used correlate of 
vaccine-induced protective immunity. However, protective immunity against 
TB is more complex than the effects of T cell-derived IFN-γ production. It is 
therefore uncertain if the demonstrated differences in IFN-γ production in vitro 
reflect true differences in protective immunity. 
 
 
IV. Primary vaccination and revaccination of young adults with BCG: a 
study using immunological markers 
 
Summary 
 
The immune response induced by BCG vaccination was analyzed after primary-
vaccination and revaccination of TST negative young adults. PPD-induced 
lymphocyte proliferation and cytokine production of peripheral blood 
mononuclear cells were studied before vaccination, two months after 
vaccination and after one year. In the primary-vaccinated, as well as the 
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revaccinated group, lymphocyte proliferation and IFN-γ production increased 
significantly after two months and the increase was maintained after one year. 
 
Discussion 
 
Both primary vaccination and revaccination evoked a pronounced and persistent 
increase in the Th1 response. These findings are in line with in vitro results of 
other studies, but the high level of persistence after revaccination has not been 
reported elsewhere. Since primary BCG vaccination of adults is well 
documented in countries at northern latitudes, the immune response in the 
primary-vaccinated group was anticipated. The corresponding results for 
revaccination suggest a protective effect equal to that of primary vaccination. 
This result was less expected, considering the lack of conclusive evidence for 
the effectiveness of repeated vaccinations. 
 
 
CONCLUSIONS 
 
The influence of BCG vaccination and NTM infections on TST reactivity is 
considerable in our setting with low prevalence of TB. Consequently, the TST 
has poor specificity as an indicator of tuberculous infection in individuals 
without known TB exposure. 
 
Absence of a scar after BCG vaccination is common in Swedish children, 
whereas vaccination of adults results in consistent scar formation. There is a 
close association between scar presence and TST reactivity. The TST results 
suggest that BCG can induce a systemic immune response in the absence of scar 
formation. 
 
BCG-induced TST reactivity is related to in vitro correlates of protective 
immunity in our setting. Both primary vaccination and repeated vaccination of 
adults induced an in vitro response indicating enhanced protective immunity. 
The accuracy of the in vitro methods needs further evaluation. 
 
The majority of healthy individuals exposed to M. tuberculosis will not develop 
active TB. Unraveling the mechanisms behind resistance against disease is a 
major challenge in TB research today. Identification of reliable in vitro 
correlates of protective immunity may facilitate the development of an 
improved vaccine. 
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