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Aim of this study and the findings in brief 

Cells of the prokaryote model organism, Escherichia coli, (E. coli) exhibit an 

elevated oxidation of proteins during growth arrest; a phenomenon that has been 

suggested to trigger the deteriorative process in these cells that has been referred 

to as 'conditional cell senescence'. The aim of this work was to search for 

systems involved in counteracting and protecting the cell against such oxidation 

and to elucidate to what extent protein oxidation triggers the induction of the 

defence systems during conditional senescence. The results generated may 

hopefully inspire researchers interested in the senescence of mandatory aging 

organisms to look for similar pathways and phenomenon. 

The data obtained in approaching the questions and aims has been 

summarized in 5 papers and the findings included in these papers are briefly 

outlined below: 

(PAPER I (10)): Protein oxidation (carbonylation) in growth arrested cells is 

shown to occur in the absence of increased oxidative stress. Instead, it is 

demonstrated that elevated protein carbonylation is a result of increased 

mistranslation and consequentially increased production of aberrant proteins, 

which are sensitive targets of carbonylation. This carbonylation of aberrant 

proteins leads to increased production of heat shock proteins (Hsps), such as the 

chaperones Hsp70 (DnaK) and Hsp60 (GroEL). 

(PAPER II (53)): This paper demonstrates that the accumulation of carbonylated 

proteins in growth arrested cells can be counteracted by overproduction of the 

Hsps. DnaK, together with the Lon and ClpQY proteases, is shown to be major 

executers of this protection. Elevated Hsps are demonstrated to reduce the half-

life of the oxidized proteins during conditional senescence. 
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(PAPER III (114)): In this paper, we used Salmonella enterica serovar 

Typhimurium LT2 to demonstrate that random mutations achieved during 

evolution interact such that their combined effect on fitness is mitigated 

(antagonistic epistasis). The levels of GroEL and DnaK were found to be 

elevated in lineages with many point mutations. Also, ectopic overproduction of 

GroEL was demonstrated to increase fitness in such strains. These data suggest 

that chaperones may buffer the cell against the fitness cost caused by the 

accumulated mutations and provides a mechanistic, physiological, explanation 

for antagonistic epistasis. 

(PAPER IV (54)): This paper provides evidence for further links between 

protein oxidation and Hsps by showing that induction of the heat shock regulon 

in response to increased mistranslation requires oxidative modification of the 

malformed proteins. This is shown to be true both for cells entering stationary 

phase and for cells in which the ribosomes display reduced translational fidelity 

due to genetic manipulations, e.g. mutations in the ribosomal accuracy centre. 

(PAPER V): This work established that mistranslated and oxidized proteins, in 

addition to affecting Hsp regulation, also affect stationary phase elevation of the 

transcription factor, SigmaS (os) and induction of the os regulon. 

Mechanistically, this effect of mistranslation on os acts via titration of the ClpP-

protease (ClpXP is responsible for os degradation). as is a key player in 

switching gene expression from growth/reproduction related activities towards 

those of maintenance and is essential, similar to the Hsps, to counteract protein 

oxidation upon entry of cells into stationary phase. We present a model for the 

sequence of events leading to os accumulation in response to starvation. 
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Introduction 

Why and how organisms age is a question that strikes the very heart of biology. 

Ageing and senescence has been referred to as a gradual decline in the cellular 

capacity to maintain homeostasis (122, 164, 174) that depend on both genetic 

and stochastic factors. Despite considerable efforts, no unifying explanation for 

the mechanisms of ageing exists. However, one theory that has gained in 

credibility is the 'free radical hypothesis of ageing'. This theory states that there 

is a causal relationship between damage caused by reactive oxygen species 

(ROS) and lifespan (72, 177, 178). 

Organisms that proliferate in an oxygen containing atmosphere are 

continuously exposed to ROS. In addition, many stressful conditions induce the 

formation of ROS, but ROS is also, inevitably, produced during normal, 

oxidative metabolism. Hence, a large number of both constitutively expressed 

and stress responsive genes are involved in diverse defence systems against 

ROS and harmful oxidation. However, these defence systems eventually fail in 

fully counteracting oxidation with devastating consequences upon the 

individual. There are several lines of data of which each are suggestive, that 

together make a cumulative force, that supports the 'free radical hypothesis of 

ageing': (I) Oxidatively damaged macromolecules like DNA, lipids and proteins 

accumulate with age in all organisms examined thus far; e.g. yeast, worms, flies, 

and mammals, including humans (1, 110, 157, 176, 178). (II) Oxidatively 

modified proteins lose their functional and structural integrity (17, 110, 200, 

201). (Ill) There is a close association between life expectancy and oxidative 

protein damage in house flies and bacteria (39, 175, 202). (IV) Overproduction 

of anti-oxidant defence systems e.g. Superoxide dismutase (Sod) prolongs 

lifespan by over 40% in the fruit fly, Drosophila melanogaster (146). Likewise, 

manipulations such as caloric restriction (40% reduction of food calories 

compared to ad libitum fed control group) in mice, reduces protein oxidation in 

mitochondria and increases lifespan (107). (V) Several gerontogenes (genes that 
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prolong lifespan upon altered expression) have been identified and their function 

in the nematode, Caenorhabditis elegans and D. melanogaster support the 

strong correlation between longevity and oxidative stress. 

The evolutionary reason for a failure of oxidative stress defence systems 

to fully combat age-related oxidation of target macromolecules might be 

explained by the 'disposable soma theory of ageing'. This theory states that 

living organisms are subjected to a trade-off between growth/reproduction and 

maintenance. This reasoning is built upon the assumption that the resources 

distributed between these two activities are limited in an individual and that an 

elevated allocation of resources to one activity has to be 'paid-off by a 

reduction in resources for the other. Thus, for a multicellular organism where the 

soma and germ line are distinct, reproduction will be at the cost of maintenance 

of the soma and long term survival (100). As stated by the free radical 

hypothesis of ageing, the key defence of organisms' maintenance system is 

protection against ROS and oxidative damage. Thus, the disposable soma theory 

and free radical hypothesis of aging complement each other and are certainly not 

mutually exclusive. 

In bacteria such as E. coli, the distribution of resources towards 

growth/reproduction and/or maintenance is conditional in the sense that, as long 

as the environmental conditions (e.g. nutrient availability) are favourable for 

growth, resources are primarily diverted to growth and reproduction. The cells 

divide in a symmetrical fashion, evenly distributing their cytoplasmic 

components including damaged molecules, between the two daughters. Thus, 

there is no age distribution or separation between germ-line and soma and 

consequently no theoretical basis for a limitation in replicative potential or 

mandatory ageing process. Nevertheless, a recent study pointed out that cell 

division of the rod-shaped E. coli creates two daughter cells with one old pole 

and one new (the latter is formed at the site of division) (183). Old poles can 

exist from many divisions and was considered a defining character of an ageing 
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parent, repeatedly producing rejuvenated offspring. At first glance, old pole cells 

seemed to be associated with a slightly reduced growth and division rates (183), 

but later these deviations were argued to fall within the expected variation of 

length and age at division (198). Therefore there is yet no evidence for a 

catastrophe-like cell death through ageing in bacteria. 

However, upon nutrient restriction, cell division ceases and the cells enter 

a growth arrested state. In these cells, a deteriorating process that has been 

referred to as conditional senescence sets off (134). Eventually this leads to 

sterility (i.e. inability of the cell to resume growth and form colonies upon 

nutrition) and finally to a total collapse (death) of the cell (39). This process 

share several features and characteristics with mandatory ageing of eukaryotic 

cells of multicellular organisms. For example; the time-dependent increase of 

intracellular oxidation damage and its target specificity, the role of antioxidants 

and oxygen tension in determining lifespan and, also, the regulated switch of 

focus from reproduction towards maintenance related activities during nutrient 

depletion (14, 15, 100, 135). 
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The experimental system 

Bacterial deterioration in stationary phase has been used here as a simple model 

for alterations leading to cell senescence. Thus, I will give a brief introduction to 

the model organism and the experimental test system (stationary phase) used. 

The model organism 

The closely related gram negative, enteric bacteria; E. coli and Salmonella 

enterica serovar Typhimurium LT2 (S. typhimurium) have been used as model 

organisms in this work. Major molecular processes, e.g. DNA-replication, 

transcription/translation, protein management, stress protection etc. are highly 

conserved among biological kingdoms, and many of the studies upon which our 

understanding of these processes is based have been carried out using 

prokaryotic organisms like bacteria. In this respect, both E. coli and S. 

typhimurium are well established laboratory organisms. In addition, they are fast 

growing, have modest requirements needed for cultivation and are amenable to 

genetic manipulation (their whole genomes are sequenced) and molecular and 

physiological analyses. As outlined below, stationary phase bacteria exhibit 

increased oxidative damage to their proteins, a feature they share with 

mandatory ageing organisms. We used the simple prokaryotic model system to 

address the question of why such oxidation increases upon stasis, what 

protective devises the cell can muster against such damage, and to what extent 

the damage triggers alterations in gene expression, especially of the protective 

régulons. For this work, the capacity of the facultative anaerobe E. coli to grow/ 

reproduce and persist in the absence of oxygen has been of particular value. 

Stationary phase 

In natural bacterial habitats, such as the intestine for E. coli, nutrient availability 

differs vastly from almost infinite to very poor and the bacteria have to adapt 
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quickly to the new condition in order to compete and survive. Upon starvation, 

E. coli enters a growth arrested state, the so-called 'stationary phase' or 'stasis' 

(Figure 1). Since stationary phase cells have limited ability to replace damaged 

molecules, the demand for maintenance functions increases in this phase. 

Phases in a bacterial batch culture 

O) 

Time 

Figure 1. Schematic drawing of the phases of growth during bacterial batch 

cultivation. 1) Lag phase - inoculated bacteria adapt to the new media. 2) Exponential 

growth - reproductive growth and symmetrical cell division (in case of E. coli) 3) 

Transition phase - growth ceases due to e.g. depletion of an essential nutrient in the 

media. Cells go through profound rearrangements of their metabolism, gene 

expression and physiology in this phase. 4) Stationary phase - growth arrest and a 

non-reproductive phase - the 'conditional senescence' sets off and progresses with 

time. The cellular activities are diverted towards maintenance. 5) Death phase -

systemic collapse and loss of reproductive ability. In some cases, lysis of cells. 

Global regulatory networks control expression of various stress protective 

proteins and adjust gene expression toward maintenance related activities in 
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direct response to growth inhibiting environmental factors such as: high 

temperature, oxidative agents, osmotic fluctuation, DNA damage, and a plethora 

of other challenges (40, 66, 75, 85, 113). Many of these stress-specific defence 

systems are also induced in cells upon starvation-induced growth arrest; a 

phenomenon referred to as cross protection (84-86, 137, 139, 140). Cross 

protection leads to elevated resistance to a variety of external stresses like for 

example H^C^-treatment, heat and osmotic shock. 

It should be pointed out that cellular responses to starvation, to some 

extent, depend on which nutrient become exhausted and also that cells in 

stationary phase are physiologically different over time. Nevertheless there is a 

general, although not identical, response in terms of stress protein production 

upon nutrient depletion. 

The constituents and principle mechanisms as well as the targets of general 

stress protection systems are to a large extent evolutionary conserved and 

strongly analogous, e.g. among prokaryotes and eukaryotes (49, 164). This 

conservation suggests that starved and growth arrested cells encounter common 

intrinsic problems regardless of whether the cell is of prokaryotic or eukaryotic 

origin. Oxidative damage of cellular components by ROS seems to be one such 

problem (see next section) 

Physiological alterations in stationary phase - an oxidative stress 

defence? 

E. coli cells respond to aerobic carbon starvation by profound rearrangements of 

their metabolism in a way very similar to the metabolic swap that takes place 

during a shift of cells from aerobic to anaerobic conditions (140). This includes 

increased synthesis of specific glycolytic enzymes and strongly reduced 

production of enzymes in the TCA-cycle (137, 140). 
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The two-component regulatory system ArcA/ArcB is one of the major 

regulatory systems of this metabolic swap. It is activated in response to oxygen 

depletion when no or only poor electron acceptors are available, but it is not 

clear what the stimulus is for ArcA/ArcB activation upon starvation (82). 

However, the down-regulation of respiratory activity during starvation-induced 

growth arrest by ArcA is of vital importance, since deficiency of ArcA leads to 

high respiratory activity and poor survival of cells during carbon starvation 

(140). Interestingly, the shortened lifespan of arcA mutant cells could be 

counteracted by overproduction of SodA, suggesting that down regulation of 

respiration governed by ArcA, may be a way to decrease ROS production and, 

as a consequence, reduce oxidative damage during stasis (140). Thus, this might 

be the first line of defence of stationary phase cells to self-inflicted oxidative 

damage. 

In addition, growth arrested cells exhibit an elevated capacity to combat 

ROS enzymatically. Enzymes involved in ROS detoxification systems are 

induced or activated upon starvation and represent a second line of protection 

against oxidative injuries. Among these enzymes are SodA and SodB (MnSod 

and FeSod respectively), that aid the dismutation of superoxide ions (02 ~) to 

hydrogen peroxide (H202) and the H202 detoxifying proteins: alkyl 

hydroperoxide reductase (Ahp) and catalases (KatE) (45, 166). 

A third line of defence against cumulative, oxidative damage in growth 

arrested cells encompasses proteins involved in reduction, repair or removal of 

damaged molecules. Examples include methionine sulfoxide reductase and 

glutathione reductase that work in concert with glutathione, thioredoxin, 

glutaredoxin, and Hsps (141). Also proteins involved in DNA and lipid repair 

(e.g. RecA, XthA and RuvC, and Hmp and Blc, respectively) become elevated 

during cellular growth arrest (24, 45, 61, 120). 

Thus, similar to the ageing process of eukaryotes, oxidative damage to 

cellular macromolecules may be involved in the senescence process of 

9 



stationary phase E. coli cells (10, 39, 157, 174). In line with this notion, the 

mean lifespan of cells starved for exogenous carbon/energy (glucose) is around 

3 to 5 days in an aerobic environment, but under anaerobic conditions, the 

starved cells remains 100% viable during 10 days or more (44). In addition, the 

accelerated death-rate of aerobically starved cells with reduced ability to combat 

ROS enzymatically, caused by mutations in e.g. oxyR, katE and katG, could be 

counteracted completely by externally supplied catalase or by growth under 

anaerobic conditions (44, 46). Hence, it seems an inescapable conclusion that 

oxidative damage by ROS is a major problem of starving E. coli. 

Two major régulons defending the cell against conditional 

senescence 

There are two major regulatory networks responsible for expression of the genes 

involved in stress-protection during growth arrest. Both are induced upon 

starvation and are under control of sigma factors: Gs (G38) (encoded by rpoS) and 

oH (a32) (encoded by rpoH) (75, 84, 90, 91). Sigma factors bind to RNA 

polymerase (RNAP) and direct the polymerase to the specific promoters of the 

respective regulon genes (125). The os system is called the general stress 

defence regulon whereas the oH system is commonly known as the heat shock 

regulon. We initially focused on these two régulons because in their absence 

cells die off more rapidly in stationary phase (accelerated senescence) and the os 

regulon had been shown to mitigate starvation-induced protein oxidation (44, 

45). In addition, Hsps have been shown to extend the life span of higher 

organisms when ectopically overproduced (79, 185) and we wondered whether 

such effect on senescence could be linked to a possible role of Hsps in 

counteracting protein oxidation. Below follows a description of the régulons, 

some of their key members, physiological functions, and regulation. 
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The a32 regulon 

The o32-dependent genes were first discovered as a set of genes induced upon a 

temperature upshift (188). Therefore, they are named heat shock genes and the 

resulting proteins are named according to their molecular mass (kDa), e.g. 

Hsp70. The heat shock proteins (Hsps) are strongly conserved proteins, both 

with regard to their function and amino acid sequence, and they are present in all 

organisms (49, 93). 

The majority of the Hsps are chaperones and proteases involved in 

preventing protein injuries and in removal of damaged protein, but they also 

play diverse roles in unstressed cells (49, 127). They process unfolded, 

misfolded, damaged or aggregated polypeptide chains and support protein 

maturation and trafficking (127). The demand for these functions increases 

during environmental stress and stress-induction of Hsp genes is intimately 

associated with the accumulation of aberrant proteins in organisms from all the 

branches of the evolutionary tree, PAPER I, PAPER IV (10, 54, 127, 191). 

DnaK /Hsp70 

The most well characterized Hsps are the ubiquitous members of the conserved 

and large Hsp70 family of ATP-dependent molecular chaperones. All Hsp70 

proteins are structurally similar; they all contain an actin-like N-terminal 

ATPase domain of approximately 45 kDa (50, 51), an approximately 15 kDa 

substrate-binding domain (SBD), and a 10 kDa C-terminal domain that is 

involved in interaction with co-chaperones and probably have other functions as 

well (55, 210). Hsp70s participate in a wide range of activities such as, refolding 

of stress-denatured soluble proteins, resolubilization of aggregated proteins, 

native protein folding during protein synthesis, translocation of proteins across 

membranes, assembly and disassembly of protein complexes and they also 

regulate signal transduction pathways by controlling the stability and activities 
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of protein kinases and transcription factors (47, 191). Substrate proteins of the 

Hsp70 chaperone machinery usually expose hydrophobic amino acid residues, 

normally hidden in protein structure and these hydrophobic regions are 

recognized by the SBD of Hsp70 that constitutes a hydrophobic pocket (108, 

210). Binding and processing of target proteins depend on ATP-hydrolysis and 

interaction with co-chaperones, i.e. J-domain proteins (JDPs/Hsp40s) and with 

nucleotide exchange factors, both of which are parts of the Hsp70 chaperone 

system (47). JDPs are a heterologous group of multidomain proteins, defined by 

the highly conserved J-domain, essential for stimulating ATP hydrolysis of 

Hsp70s (22). 

E. coli contains three hsp70 genes encoding DnaK, HscA (heat shock 

cognate A) (Hsc66) and HscC (Hsc62) and six Hsp40 proteins (DnaJ, CbpA, 

DjlA, HscB (Hsc20), YbeV (Hsc56) and YbeS (81). Hscs are proteins with 

similar properties and functions as the Hsps, but are not inducible by 

temperature upshifts. DnaK is the major Hsp70 and the most well described of 

all Hsp70 proteins. DnaJ is the main co-chaperone of DnaK, but CbpA and DjlA 

has also been shown to interact with DnaK. HscA together with HscB has 

specialized functions in the biosynthesis of iron-sulfur proteins (171), while 

HscC, in cooperation with Hsc56 negatively modulates the activity of Sigma70 

(a70), the housekeeping sigma factor (6, 205). 

The basic principles of the major E. coli Hsp70 chaperone system 

(DnaK/J/GrpE) substrate interaction cycle (based upon the references (11, 47, 

71, 173)) are: (1) In the ATP-bound state DnaK has low affinity for target 

peptides. (2) ATP hydrolysis, which is highly accelerated by transient 

association with the Zinc-containing (48) co-chaperone DnaJ in the presence of 

substrate, converts DnaK to a substrate-high-affinity conformation. Since there 

are at least 10 times more DnaK than DnaJ in the cell, this step is rate limiting 

(13). DnaJ on its' own, associates with certain substrates (e.g. a32), before 
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binding to DnaK. (3) Substrate release from DnaK after ATP hydrolysis is 

triggered by the nucleotide exchange factor GrpE. 

Unfolding or refolding of a denatured protein might involve several 

cycles of binding and release of the substrate and also cooperative shuttling of a 

substrate between different chaperone systems. Such substrate shuttling has been 

demonstrated to occur for example between the DnaK/J/GrpE and GroEL/ES 

(Hsp60/10) chaperone systems in E. coli (124) Together with ClpB, the 

DnaK/J/GrpE system also take part in resolubilization of aggregated proteins. 

ClpB is a chaperone that belongs to the Clp/HsplOO family of the AAA+ 

(ATPases associated with diverse cellular activities) protein superfamily. Other 

members of this family are for example Hspl04 (that is essential for the 

acquisition of thermotolerance in yeast), HsplOl in the plant Arabidopsis 

thaliana and Hsp78 in mitochondria (103, 147, 152). 

GroEL/Hsp60 

Besides the DnaK/J/GrpE machinery, the GroEL/ES barrel-shaped, ATP-driven 

chaperonin is essential for proper protein folding in E. coli. Deletion of either 

groEL or groES in a dnaK mutant strain background results in extensive protein 

aggregation (48) and together these two complexes constitute the major 

chaperone systems of E. coli (15-20% of total protein at 46°C) (7). GroEL/ES 

folds many unrelated polypeptides and belongs to the Group I chaperonins 

found in bacteria, mitochondria and chloroplasts, while Group II chaperonins is 

found in the cytosol of eukaryotes such as yeast (CCT) and archeae (170, 192). 

GroEL/ES is the best characterized chaperonin and it is composed of two rings, 

each of which consists of seven subunits, arranged back to back (170). 

Substrates are trapped to one of the GroEL (eis) rings via hydrophobic 

interactions after which binding of the co-chaperone GroES (a single heptameric 

ring of 10 kDa) forms a lid of the cavity. Together with binding of ATP, this 

induces strong conformational alterations that encapsulate and promote folding 
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of the substrate peptide in the hydrophilic cavity. ATP is hydrolysed and this 

primes release of GroES from GroEL. Upon binding of ATP to the opposite 

GroEL (trans) ring, GroES, the product polypeptide and ADP are discharged, 

leaving GroEL ready for another round of substrate interaction. 

Lon 

ATP-dependent proteases are responsible for most protein degradation in cells 

(26, 62). The ATPase domain (that belongs to the AAA+ superfamily) and the 

proteolytic domain of these proteases can either originate from separate 

assembled subunits or be contained within the same polypeptide chain. The E. 

coli Lon was the first ATP-utilizing protease to be identified and it has since 

been found in most organisms (18, 193). ATP is not an absolute requirement for 

the enzyme, but protein degradation is stimulated up to nine-fold by ATP (18). 

Lon is an oligomeric multidomain protein with a highly conserved Ser-Lys 

catalytic dyad in the active site (21). Deletion of lon is detrimental for many 

species, since Lon specifically controls the stability of key proteins (62). For 

example, E. coli cells lacking lon are sensitive to DNA damage and UY light 

due to stabilization and accumulation of the cell division inhibitor SulA (199). 

Further, the transcriptional regulator of capsule production, RcsA, is also 

stabilized in lon mutants leading to excess capsular polysaccharide production 

and a characteristic, mucoid phenotype (199). Lysogeny of certain 

bacteriophages and the anti-toxin of the toxin/anti-toxin (TA) systems in E. coli 

are also controlled by Lon (64, 67). 

Lon is the primary protease degrading misfolded and aberrant proteins in 

the E. coli cytosol and extensive protein aggregation occurs in its absence upon 

a heat shock (161, 190). Since aberrant proteins are intrinsically sensitive to 

carbonylation this is in line with the results demonstrating that carbonylated 

proteins accumulate dramatically in growth arrested /o«-mutants (section 

'Protein oxidation - Repair and removal', PAPER II (53)). 
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In E. coli, Lon has been demonstrated to degrade ribosomal proteins after 

a nutritional down-shift (amino acid starvation); a process important for 

adaptation to the starvation condition by providing, the cell with an internal pool 

of amino acids (105). This process is highly stimulated by stress-induced 

accumulation of inorganic polyphosphate (polyP) that bind the ATPase domain 

of Lon (105). In addition, the ATPase activity of Lon is stimulated by non

specific binding of the ATPase domain to DNA and polyP inhibits such 

Lon/DNA interaction in a competitive manner (27, 133) thus indicating a 

complex regulatory network of Lon activity. 

ClpAP and ClpXP 

The Clp proteases are, after Lon, the major cytosolic proteases in E. coli. 

Together, Lon and Clp proteases are responsible for 70-80% of energy-

dependent proteolysis (119). Ortologs to the Clp proteins are found in most 

organisms (26, 52). In contrast to Lon, the Clp proteases contain the ATPase and 

the proteolytic activities on separate subunits. The proteolytic subunit ClpP is a 

serine protease where two heptameric rings form a proteolytic chamber with a 

narrow axial pore for substrate entry in each end. Small peptides can be 

hydrolyzed by ClpP, but larger peptides cannot enter the narrow pore without 

the assistance of an AAA+ superfamily chaperone, e.g. ClpA or ClpX. Both 

ClpA and ClpX are hexameric ring-shaped chaperones that upon binding to 

ClpP, form the ATP-dependent proteases ClpAP and ClpXP. In contrast to ClpX 

and ClpP, ClpA is not under control of a a32-dependent heat shock promoter 

(94), but it is required for optimal recovery from exposure to high temperature 

(187). 

ClpAP degrades a variety of proteins; e.g. proteins with abnormal N-

terminal amino acid residues according to the N-end rule (189), the TA system 

protein MazE, the PI phage-encoded RepA, abnormal canäväniné containing 

proteins, and ClpA itself (26, 62, 94). In vitro experiments suggest that substrate 
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specificity of ClpAP is modulated by interaction with ClpS, a small (106 amino 

acids) protein, encoded by a gene immediately upstream of clpA. For example, 

ClpS redirects the ClpAP proteolytic activity from degradation of SsrA-tagged 

polypeptides and ClpA itself towards aggregated or oligomeric proteins (41). 

The most important protease responsible for in vivo degradation of SsrA-

tagged polypeptides is ClpXP. ClpX also directs ClpP proteolytic activity 

towards processes involved in DNA damage repair and stationary-phase gene 

expression (165, 182). Five classes of ClpX-recognition signals has been 

discovered and it has been suggested that some of these signals might be hidden 

inside protein structure and only become exposed upon misfolding (52). 

Unfolding of protein substrates by ClpX probably occurs by iterative mechanical 

force and consumes four times the ATP required for translocation into ClpP and 

thus constitutes the rate limiting step for protein degradation (95). 

ClpXP/AP plays important roles in stationary phase adaptation and 

survival of growth arrested E. coli cells in several ways. ClpXP is the protease 

that carries out SprE(RssB)-dependent degradation of the stationary phase 

transcription factor CTs, and both ClpAP/XP specifically degrade numerous 

growth phase regulated proteins (34, 195). Absence of these proteases reduces 

both viability during growth arrest and the ability to resimie growth upon 

addition of nutrients (151, 209) 

HslVU/ClpYQ 

The Hsp protease HslVU (also called ClpYQ) is a bacterial homolog to the 

eukaryotic proteasome (167). The chaperone unit, HslU, share 50% sequence 

homology with ClpX, while the proteolytic subunit, HslV, display sequence 

similarity to the ß-subunit of the 20S proteasome and similarly contains a 

catalytic N-terminal threonine residue. HslU forms a single hexameric ring that 

bind the HslV dodecamer consisting of two stacked hexameric rings (31, 167). 

HslVU can partly compensate for a deletion of Ion, i.e. overproduction of 
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HslVU suppresses both the sensitivity to DNA damage, and excess capsular 

polysaccharide production, implying an overlap in substrate specificity among 

the proteases (92, 96). Similar to Lon and the proteasome, HslVU also 

participates in degradation of abnormal and oxidized proteins (19, 29, 92), and 

deletion of either Lon or HslVU augments protein carbonylation in growth 

arrested E. coli cells as described in section 'Protein oxidation - Repair and 

removal', PAPER II (53). 

Regulation of Hsps 

In E. coli, the cytoplasmic Hsps are under positive control of CT32, that binds to 

RNAP and directs the RNAP to specific heat shock promoters (68). 

Transcription by RNAP-a32 is negatively modulated by an Hsp feedback loop, 

involving the DnaK/J/GrpE chaperone system that binds a32 and eventually 

directs it to proteolysis (190,191). The major protease in this pathway is the (in

dependent zinc-dependent metalloprotease FtsH, but HslVU, other Clp proteases 

and Lon has also been reported to contribute to a32 degradation (92). The 

DnaK/J chaperones also recognize and bind to hydrophobic amino acid patches 

exposed by aberrant and denatured proteins. Since the. levels of DnaK/J are 

limiting in vivo (191, 206), increased levels of aberrant proteins consequently 

renders CT32 more stable by sequestering of the DnaK/J system (57, 68). 

Therefore, this model of Hsp regulation is referred to as the 'titration model ' and 

this regulatory mechanism constitutes a sensitive and tight control system that 

adjusts the Hsp levels to precisely fit the cellular demand under a specific 

condition (Figure 2). 
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Figure 2. Schematic representation of the 'titration model' for Hsp regulation. (1) 

Elevated levels of substrates (aberrant proteins, PA) sequester the DnaK/J/GrpE 

chaperone system (2) such that its negative effects on a32 is alleviated (68, 191). a32 

binds RNA polymerase (E) and (3) directs the polymerase to heat shock promoters, 

resulting in increased production of Hsps. Upon successful refolding/degradation of 

the aberrant proteins (4) by the Hsps, the DnaK/J/GrpE chaperone system again binds 

o32 and hereby strongly reduces Hsp production. This feedback loop provides an 

efficient mechanism for tight regulation and a fast shut off of excess Hsp production. 

For further details upon Hsp regulation, see text. 

There are also additional regulatory pathways of Hsp expression in E. coli. For 

example, a temperature-upshift rapidly increases translation of a32 by 

destabilization of the rpoH mRNA secondary structure, thereby increasing the 

ribosomal accessibility to the translation start site (128). In addition, the 

nucleotide exchange factor GrpE has been demonstrated to work less efficiently 
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during a temperature-upsift, leading to a higher fraction of DnaK being bound to 

ADP. DnaK-ADP has high affinity for substrates (169) and this altered activity 

of GrpE may ensure a very rapid and sensitive increase in Hsp production, via 

stabilization of a32, that precedes protein unfolding and a32 synthesis (169). 

Besides specific stress-induction, Hsp gene expression is induced upon 

cellular growth arrest in both prokaryotes and eukaryotes (84, 86, 118, 127, 

136). In E. coli cells, such induction can be counteracted by several means that 

reduce the production of aberrant proteins and/or oxidatively damaged proteins. 

Among these are; increased translational fidelity, overproduction of Sod and 

omission of oxygen, PAPER I, PAPER IV (10, 43, 54). The latter deserve some 

extra attention, since translational errors, such as nonsense suppression and 

frameshifting, were found to be substantially elevated in cells cultivated 

anaerobically, PAPER IV (54). Yet the demand for Hsp function is significantly 

lower in these cells than in those propagated aerobically. This strongly suggests 

that oxidative modifications of misfolded proteins promote a further loss of the 

proteins structural integrity and consequently increased exposure of hydrophobic 

surfaces. Such an increase in the target sites for the DnaK/J/GrpE chaperone 

system, render these proteins more efficient in sequestration of the DnaK 

chaperone system and stabilization of a32. This is further supported by the fact 

that ribosomal ambiguity mutations (rpsD) only enhance Hsp gene expression in 

cells propagated aerobically, PAPER IV (54). 

Another possible regulatory mechanism of Hsp expression in E. coli 

involves detrimental oxidation of DnaK itself. Such damage would also increase 

Hsp gene expression via stabilization of a32, provided that oxidized DnaK is 

non-functional. Indeed, a larger fraction of DnaK shows signs of structural 

aberrancy under aerobic conditions, PAPER IV (54, 184, 197). In line with this, 

a recent study shows that DnaK is reversibly inactivated upon heat stress in the 

presence of H202 (197). This inactivation was linked to H202 significantly 

reducing cellular ATP-levels leading to nucleotide deprivation of the N-terminal 
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ATPase domain of DnaK, which, as a consequence, becomes thermolabile and 

unfolded. It is noteworthy that in vitro refolding of the inactivated DnaK 

required the presence of a reducing agent: e.g. stress removal and addition of 

ATP was not enough, implying that the unfolded domain is oxidatively modified 

. t Other Hsp70 proteins in distantly related organisms are, similar to DnaK, 

intrinsically sensitive to carbonylation (23, 89, 157). This might point to a role 

of Hsp70 proteins in oxidation sensing/signalling that enables a rapid and direct 

elevation of Hsp levels in response to oxidativesstfçss. 

Hsps in disease and ageing 

The necessity of the Hsps function for maintaining protein as well as organismal 

homeostasis is underlined by the fact that altered expression of Hsps is 

associated with several diseases such as ischemia and reperfusion damage, 

cardiac hypertrophy, fever, inflammation, metabolic diseases, infection, cell and 

tissue trauma and cancer (126). Furthermore, studies have demonstrated that 

epistatic manipulation of Hsp levels can affect thé course of a disease-related 

injury. For example, hearts isolated from transgenic mice overproducing either 

human or rat inducible ITsp70, were strongly protected against ischemia and 

repcrfusion damage (117, 149). Such damage involves disruption of protein 

homeostasis and oxidative injuries caused by oxygen radicals produced during 

reperfttsion. Hsp70 might bind the misfolded and denatured proteins that appear 

during ischemia and promote their refolding and renaturation during reperfusion 

(117, 149). We have shown that misfolded proteins are sensitive targets to 

oxygen radicals, PAPER I (10, 42) and as denionstrated in Fredriksson et al., 

(2005), PAPER II (53), overproduction of the prokaryotic Hsp70 homologue 

DnaK, confers a general protection against protein oxidation in E. coli cells 

upon growth arrest caused by glucose deprivation; a condition known to elevate 

protein aberrancies, PAPER I (10). In addition, the Hsps most likely play 
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important roles during the course of several age-related neurodegenerative 

diseases, e.g., Alzheimer's and Parkinson's disease; disorders involving 

accumulation of aggregated and oxidized proteins (158). 

Hsps also seem to be implicated in the ageing or senescence process of a 

growing number of organisms. For example, the amount of Hsp70 mRNA 

declines with age in various rat tissues (16) and this was found, at least for liver 

and brain, to be a consequence of reduced activity of the heat shock transcription 

factor; HSF-1 rather than decreased HSF-1 levels (168). Aged humans also 

exhibit altered Hsp levels. For example, both Hsp70 and Hsp60 levels in serum 

have been shown to decrease with age (154). 

Experiments have repeatedly demonstrated that Hsp70 can affect survival 

and its levels are also affected by the oxidation status of the organisms. For 

example, elevated levels of Hsp70 can prolong lifespan in transgenic flies (185), 

and the worm C. elegans (204). In line with this, mild heat stress early in life of 

flies lead to elevated levels of Hsp70, improved longevity, and also enhanced 

capability to induce hsp70 and survive potentially lethal heat stress later in life. 

On the other hand, flies selected for longevity exhibited a reduced ability to 

produce Hsp70 in response to elevated temperature (77). In C. elegans, 

decreased transcription of the heat shock genes due to reduced activity of HSF-

1, causes a rapid-aging phenotype and shortened lifespan (59, 129), while 

overproduction of HSF-1, conveys heat and oxidative stress resistance, and a 

40% increase in lifespan (79). This effect was at least in part due to elevated 

expression of small Hsps (sHsps). A link between the normal ageing process and 

the diseases of ageing was also demonstrated, since reduced expression of sHsps 

was found to accelerate the onset of aggregation of Huntington's like 

polyglutamine-repeat proteins expressed in C. elegans (79). In D. melanogaster, 

overexpression of sHsps has been demonstrated to likewise extend lifespan and 

increase resistance to oxidative as well as thermal stress (104, 130). Specifically, 

overproduction of Hsp22 in the mitochondria of motorneurons was 
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demonstrated to increase the mean lifespan (30%) and resistance to oxidative 

stress (35%) (131). This is comparable tö the 40% increase in lifespan obtained 

by transgenic expression of human sodl in the motorneurons of flies (146). 

Conversely, prevention of Hsp22 synthesis reduces lifespan (130). 

Thus, an increasing number of studies points to a close connection 

between Hsps and protein oxidation, ageing and age-related disorders. The Hsps 

evidently have a role in cellular resistance against oxidative stress (79) and are 

increasingly expressed during oxidant exposure (5). In E. coli cells, stasis-

induced protein carbonylation is drastically mitigated by overproduction of the 

Hsps and DnaK is one key factor in this defence, PAPER II (53). In addition, 

Hsps are themselves targets of carbonylation, PAPER II (25, 53, 89) and it is 

conceivable that such damage to these cyto-protective proteins may eventually 

lead to a total collapse of the cell/organism. 

Hsps and buffering against accumulated mutations 

The strong link between protein aberrancy and Hsps and the ability of the Hsps 

to prevent accumulation of misfolded proteins, raises the possibility that these 

functions of the Hsps may have important consequences also in an evolutionary 

perspective. A key parameter in evolutionary biology is the relationship between 

the number of randomly accumulated mutations, e.g. point mutations, in a 

genome and fitness (98, 101). Point mutations may lead to increased protein 

misfolding and hence to reduced enzyme function and consequentially to 

reduced fitness. However, it is possible that increased numbers of point 

mutations also elevates Hsp production by sequestration of a32 by the mutated 

proteins (see section 'The o32-regulon - Regulation of Hsps'). The Hsps may 

'buffer' for the phenotypic consequences of the mutated genotype, i.e. enzymes 

carrying mutations (e.g. amino acid substitutions) will still be functional due to, 

for example, a high chaperone activity that continuously refold unstable 

domains of the protein. Also, enhanced proteolysis of misfolded and aggregation 
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prone polypeptide chains may prevent accumulation and oxidation damage of 

those protein species. 

Using S. typhimurium we demonstrated that random mutations achieved 

during evolution interact such that their combined effect on fitness is mitigated 

(Antagonistic Epistasis), PAPER III (114). The levels of GroEL and DnaK were 

found to be elevated under these circumstances and ectopic elevation of GroEL 

was found to buffer against the fitness cost caused by accumulated mutations 

(114). The elevated levels of Hsps in response to accumulated mutations provide 

a mechanistic, physiological, explanation for antagonistic epistasis. 

In addition, based on previous results and the data of this thesis 

(PAPERS I, II, and IV), demonstrating that aberrant proteins are more 

susceptible to oxidation and that Hsp chaperones are regulated by oxidation and 

involved in mitigating protein oxidation, it is possible that the buffering effects 

of Hsps on accumulated mutations are more critical and/or efficient during 

aerobic than anaerobic conditions. This remains to be elucidated. 
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The os-regulon 

The os-dependent genes are strongly induced when E. coli cells are exposed to 

various stress conditions as summarized in figure 3 (63, 75, 150, 194). 

Reduced High ceil Low High Low Carbon High 
growth rate density temperature osmolarity pH starvation temperature 

rpoS -J rpoS mRNA 

Transcription 

os-dependent genes 

Figure 3. Schematic representation and summary of the complex and multifaceted 

regulation of os, adapted from (75). gs is regulated at both the transcriptional, 

translational and post-translational level depending on the specific stress condition. os 

protein binds RNAP and directs the polymerases' transcriptional activity to expression 

of os-dependent genes. 

Gs is a key player in the switch of the cellular gene expression from 

growth/reproduction related activities towards those of maintenance and about 

10% of the E. coli genes are under direct or indirect control of gs (194). Cells 

lacking functional Gs caused by mutations in rpoS are poor survivors of stressful 

conditions as well as during growth arrest (106). 

It is not clear which members of the os-regulon are most important in 

defeating senescence, but since os-deficient cells have high levels of oxidatively 

damaged proteins (43, 44) and rpoS mutants fail to express oxidative stress 

defence genes such as superoxide dismutase (sodC) and catalase (katE), such 
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stress defence proteins are likely candidates. The link between os-mediated 

oxidation protection and growth arrest survival has been supported also by 

experiments in S. typhimurium (186) that also showed that os were assisted and 

complemented by another sigma factor, oE, in this role. The transcription factor 

oE regulates the expression of extracytoplasmic chaperones and proteases, many 

of which also participate in the biogenesis of the cell envelope in the absence of 

stress (162). Transcription of oB-regulated genes is triggered by misfolded 

proteins in the periplasm, severe heat stress, and by growth arrest (132, 162). 

Mutants lacking both os and oE loses viability almost immediately upon growth 

arrest under aerobic conditions, but survival of these mutants is completely 

preserved during anaerobic growth arrest (186). This reinforces the argument 

that oxidative damage is a major obstacle for prokaryote survival of growth 

arrest and also that os has an important role in preventing such damage. 

During growth/reproduction, os is a very unstable protein with a half-life < 1 

minute. The majority of the genes expressed during exponential growth, i.e. 

genes involved in substrate uptake, DNA replication, cell wall/membrane 

biosynthesis, ribosome production and also most genes of the protein 

synthesizing system, require the sigma factor, a70 (encoded by rpoD) for 

transcription initiation (113, 125). However, upon nutrient limitation, os is 

drastically stabilized (207) and transcription by RNAP primed with os increases, 

at the expense of o70-dependent gene expression (75, 88). This results in up-

regulation of stress-defensive and other maintenance-related genes, while 

expression of growth/reproduction related genes decreases (75). A key process 

for this metabolic switch is regulated CTs proteolysis (207). The protease ClpXP 

and the two-component response regulator RssB, a specific as recognition 

factor, are essential for this process (116, 148,151). 

Recent data demonstrate that protein oxidation is involved in the 

stabilization of Gs in growth arrested cells (PAPER V) and that this can be 
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linked to ribosomal fidelity. Mutations causing high translational accuracy, 

drastically attenuate induction of the rpoS regulon and prevents stabilization of 

as upon starvation. In contrast, mutations augmenting translational errors cause 

elevated levels of as. Altered translational fidelity affects as stability 

independently of the as recognition factor RssB. Instead, protein stability 

measurements and genetic suppression suggests that Gs becomes stabilized upon 

starvation as a result of ClpXP sequestration and this sequestration requires 

oxidative modifications of the mistranslated proteins (Figure 4). 

Figure 4. Schematic model of stabilization of os via increased protein oxidation. 

Increased translational errors result in enhanced production of aberrant proteins (PA), 

and as a consequence in elevated levels of oxidized proteins (PA ox). The oxidized 

proteins efficiently sequester the ClpAP and ClpXP proteases leading to stabilization 

of Gs, independently of RssB. 

In addiditon to os, maintenance-related gene expression and activities also 

requires the alarmone ppGpp that is synthesized upon carbon and amino acid 

Translation 
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starvation (113). Cells deficient of ppGpp are unable to switch from 

growth/reproduction to maintenance related gene expression and die quickly 

upon starvation (113). This may, at least partly, be due to that ppGpp is essential 

for both GS-dependent and o32-dependent activities (113). Mechanistically, this 

can be explained by the fact that ppGpp, binding directly to the RNA 

polymerase, lowers the affinity of the polymerase to a70, while the affinity for Gs 

and a32 is increased (Figure 5) (88). Interestingly, ppGpp-deficient cells also 

have high accumulation of oxidized proteins, further establishing the role of 

global alterations in gene expression upon starvation in mitigating oxidative 

damage (Manuel Ballesteros, personal communication) 

ppGpp 

RNAP 

1 f 
Growth/reproduction Maintenance 

Figure 5. During starvation, production of the alarmone ppGpp (¥) is increased, 

resulting in strongly elevated transcription of maintenance related genes by RNAP-os 

and RNAP-o32 at the expense of growth related RNAP-o70-dependent genes. However, 

some genes involved in maintenance are under control of a70 and expression of those is 

also elevated in a ppGpp-dependent manner (see Magnusson et al for a review (113)). 

The trade-off between reproduction and maintenance is mechanistically linked to the 

fact that RNAP is limiting and ppGpp affects sigma factor competition such that 

elevated ppGpp favours Gs and a32 binding to RNAP. 
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Taken together, oxidized proteins seem to enhance both a32 and os-dependent 

gene expression via sequestration of Hsp chaperones and proteases upon entry 

of cells into stationary phase. This leads to a precise adjustment of gene 

expression such that the production of Hsps and antioxidant enzymes is in 

equilibrium with the degree of oxidative damage (Figure 6). 

Elongating 
peptide Ribosome 

mRNA 

DnaJ 

Stress ftal 
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stress-genes 
77777771-

hsp-genes 

Figure 6. Schematic representation of events linked to irreversible protein oxidation 

(carbonylation) in growth arrested E. coli. 1) Mistranslation increases as a 

consequence of starvation and the ribosomes produce aberrant proteins (PA) which 
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themselves are not good substrates for the DnaK/J/GrpE chaperone system, unless they 

2) become oxidized by reactive oxygen species (ROS). 3) The oxidized proteins (pA"ox) 

are high-affinity substrates for the DnaK/J/GrpE chaperone system that presumably 

direct them to proteolysis since carbonylated proteins cannot be repaired. 4) This 

sequesters the DnaK/J/GrpE chaperone system and the proteases leading to 

stabilization of o32 that bind RNA polymerase (E) and directs the polymerase to the 

Hsp genes resulting in increased Hsp production. 5) In addition, DnaK itself can 

become oxidatively damaged and unable to bind a32. 6) os becomes stabilized via 

titration of ClpP and 7) similarly binds RNAP leading to 8) elevated expression of 

general stress defence proteins, e.g. KatE, other antioxidant enzymes, and maintenance 

genes. The mechanisms described, ensure that irreversibly damaged proteins, via 

oxidation, are rapidly delivered to proteases and are not incorporated into cellular 

machines involved in information transfer such as DNA/RNA polymerases and 

ribosomes, and at the same time the general stress defence and protein protection 

capacity of the cell become adequately elevated. 
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Protein oxidation 

In view of the fact that the major stationary phase régulons described in this 

thesis is involved in protecting the cells against protein oxidation, the generation 

of such damage and its consequences for the cell deserves some special 

attention. 

Proteins are the major constituents of most biological systems whether 

this are at the tissue, biological fluid, or cellular level (36), and they participate 

in almost every cellular process. Hence they are absolutely essential for 

biological life and a general increase in damage of proteins most likely makes 

cells more vulnerable to (accidental) death. Everyday wear and tear exposes 

proteins to a wide variety of potentially damaging events and factors, e.g. ROS, 

mechanical and chemical injuries, temperature- and pH-changes. ROS appears 

to be of special interest since a substantial number of reports point out various 

types of oxidative protein damage as being important in the process of ageing 

and senescence (10, 39, 157, 174). In addition, erroneous de novo protein 

synthesis and misfolding affect protein quality (62). 

ROS-production can be induced by many stressful conditions and via 

many pathways (15, 164). However, ROS is also a bi-product of normal aerobic 

metabolism formed by incomplete reduction of molecular oxygen (02) to water 

(H20) (164). There are many types of ROS generated within a cell and their 

reactivity and stability differs vastly. The most unstable and reactive and hence 

most detrimental ROS is the hydroxyl radical OH"- (164). While cells are 

equipped with multiple protection systems for the less reactive ROS, e.g. singlet 

oxygen, superoxide ions (02~')> hydrogen peroxide (H202), OH"' thwarts the 

antioxidant systems and reacts quickly with the nearest target at rates limited by 

diffusion (164). Reaction with ROS by cellular molecules can lead to the 

formation of many other types of radicals that in turn react further, thus 

exacerbating the initial damage. 
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Damaging protein oxidation - carbonylation 

Oxidative reactions, such as disulfide bridge formation between thiol-groups (-

SH) on cysteine residues, are essential during native protein folding but also for 

regulation of protein activity. For example, intramolecular disulfide bridge 

formation is required to induce homodimerisation and thereby activation of the 

chaperone holdase Hsp33 (65, 83), which is important during heat and oxidative 

stress (197). Also the transcription factor OxyR that regulates expression of 

oxidative stress defence genes (e.g. katG, gorA) is regulated by a similar 

mechanism, involving internal disulfide bridge formation (208). 

However, ROS cause a wide variety of illegitimate modifications on 

proteins. Among these are; hydroxylation of aromatic groups and aliphatic 

amino acid side chains, nitration of aromatic amino acid residues, nitrosylation 

of sulfhydryl groups, sulfoxidation of methionine residues, chlorination of 

aromatic groups and primary amino groups, and carbonylation (179), of which 

the latter, carbonylation, has gained attention in ageing and disease research. 

Protein carbonylation, as the name indicates, is an oxidative formation of 

carbonyl groups (aldehydes and ketones), on primarily lysines, arginines, 

prolines and threonines (179), but can also target cysteines, histidines and 

lysines via lipid peroxidation and non-enzymatic glycation/glycoxidation (179). 

The quantitatively most abundant products of the carbonylation reaction are 

glutamic semialdehyde from arginine (Figure 7 A) and proline, and aminoadipic 

semialdehyde from lysine (156). Being structurally different from their original 

amino acids, these compounds alter the chemical and structural properties of a 

protein (110, 174). 

In contrast to other oxidative modifications of proteins, for example, 

methionine sulfoxide and cysteine disulfide bond formation, carbonylation is 

relatively difficult to induce and it is an irreversible modification (33). 

Carbonylation is thus detrimental to protein structure and enzymatic function 
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Figure 7. Schematic overview of carbonylation and derivatization of a protein amino 

acid (arginine) side chain, adapted from (97, 138, 155). A) Formation of one of the 

quantitatively most abundant products of the carbonylation reaction: glutamic 

semialdehyde from an arginyl residue via oxidation. B) For detection, the carbonyl 

group is derivatized by reaction with 2,4-dinitrophenylhydrazine to 2,4-

dinitrophenylhydrazone that can be detected by specific antibodies. 

A link between protein carbonylation and enzyme activity/stability was first 

established in studies on the bacterial glutamine synthetase activity (110). 

Glutamine synthetase is rapidly degraded in E. coli cells upon nitrogen 

starvation in a two-step-process: 1) Upon substrate limitation, the metal-
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nucleotide binding pocket of the enzyme's active site becomes available for 

oxidative attack leading to inactivation of the catalytic activity of the enzyme, 

decreased metal binding capacity, loss of histidine-269 and increased carbonyl 

content (of which arginine-344 in the active site is one target) (32, 112, 159, 

160). 2) Subsequent loss of an additional histidine residue results in proteolytic 

degradation of the modified enzyme (159). 

Protein carbonylation is commonly used today as a diagnostic bio-marker of 

oxidation damage on proteins (33). Carbonyl groups formed on oxidatively 

damaged proteins can be easily detected if first derivatized to 2,4-

dinitrophenylhydrazone (DNP-hydrazone) by reaction with 2,4-

dinitrophenylhydrazine (DNPH) (Figure 7 B). The carbonyl content of whole 

protein extracts can then be determined spectrophotometrically, or 

immunochemically using antibodies specific to the DNP moiety of the protein. 

The latter method, if combined with SDS-PAGE gel electrophoresis and 

Western blotting, allows the carbonyl content of individual proteins to be 

analyzed. 

Protein carbonylation and ageing 

Accumulation of carbonylated proteins has been demonstrated to occur during 

many disease conditions such as cancer, cataractogenesis, sepsis and also the 

age-related, neurodegenerative, Alzheimer's and Parkinson's diseases (33, 110). 

Protein carbonylation also increases with ageing and senescence in all organisms 

examined thus far; e.g. yeast, worms, flies, and mammals, including humans 

(14, 110, 157). In general, the carbonyl content increases at a rather modest rate 

during the first two thirds of the lifespan, but during the last third the rate is 

dramatically elevated (1, 60, 110, 143, 175, 181). This corresponds to the post-

reproductive age of the organisms analyzed. 
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It is not clear why carbonylated proteins accumulate with age. The classical 

antioxidants including superoxide dismutases, catalases and peroxidases seem to 

be key members of the cellular defence against protein carbonylation (138). Yet, 

there is no clear link between reduced activities or abundance of specific 

members of the various oxidant defence systems and increased oxidation in 

ageing cells. For example, catalase activity was demonstrated to either increase 

or decrease with age in a tissue specific manner and did not coincide with 

elevated protein carbonylation (176). Similarly, other antioxidants have been 

found to increase or decrease with age in the same tissue (9, 87). On the other 

hand, when the ability to withstand X-irradiation-induced oxidative stress was 

determined for whole body (house flies (2)) and various tissue-homogenates 

(176), oxidative damage increased linearly the older the originate of the 

flies/tissues. 

In growth arrested E. coli, the oxidant defence systems are elevated, yet 

the cells fail to prevent stasis-induced protein oxidation (43, 44, 76, 118). 

However, sterile cells that appear in subpopulations of starving E. coli cultures 

have been demonstrated to display decreased Sod activity ' and levels but 

increased KatE activity, implying an imbalance in their oxidant defence (39). 

These sterile cells also had strongly elevated levels of carbonylated proteins 

compared to the healthy fraction. In addition, it is possible that senescence can 

be caused by increased oxidative stress as a consequence of oxidative damage of 

the anti-oxidant enzymes themselves, but no evidence for this has yet been 

presented in the bacterial model system for conditional senescence. 

Another possible mechanism of increased carbonylation with age is elevated 

ROS production. Indeed, there are some evidence for a correlation between 

increased protein carbonylation and elevated mitochondrial ROS production in 

ageing organisms (109, 153). Among the suggested causes of this age-related 

inceased ROS production are mitochondrial dysfunction, increased intracellular 
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abundance of free iron, etc. (15, 38). In line with this notion, it has been 

suggested that carbonylated proteins accumulate in growth arrested cells (e.g. E. 

coli or somatic G0 cells) because such cells has an ongoing respiratory activity 

and therefore high production of ROS, but little or no ability to dilute any 

damage via de novo macromolecular synthesis and/or cell division. This idea is 

in line with the 'rate-of-living' hypothesis and in its simplest form it states that 

the higher the rate of respiration, the higher the oxidative damage and the shorter 

the lifespan. However, experiments in E. coli and yeast G0 cells do not support 

this notion, since there was no strict correlation between high respiratory 

activity, protein carbonylation and lifespan, PAPER I. (4, 10) In contrast to 

carbon- and nitrogen-starved E. coli cells, cells starved for phosphate maintain a 

high metabolic activity for extended periods of growth arrest, PAPER I (10, 61). 

However, while C- and N-starved cells rapidly accumulate high levels of 

carbonylated proteins, only a modest increase occurs in P-starved cells. Also, 

cell-viability (culture half-life) correlates inversely with protein carbonylation, 

but not with metabolic activity, i.e. P-starved cells survive much better during 

growth arrest compared to C- and N-starved cells, PAPER I (10). In addition, 

protein carbonylation in C-starved cells becomes elevated when respiratory 

activity drops to very low levels, PAPER I (10). From these results it can be 

concluded that high respiratory activity does not necessarily coincide with high 

levels of protein carbonylation in E. coli. 

In yeast, increased carbonylation was linked to an increased propensity of 

the mitochondria to produce ROS (4, 78), but, similar to E. coli, not to increased 

respiratory rate. Starvation for either carbon or nitrogen caused a drastic drop in 

respiratory rate, but also elicited a so-called respiratory shift from a 'state 3'-

type respiration to a 'state 4'-type. This shift uncouples electron transport in the 

respiratory chain and ATP-production and leads to increased membrane 

potential, high ROS production and elevated protein carbonylation. It is not 

known weather such a respiratory shift occurs also in starved E. coli. At any 
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rate, these results argue against the 'rate-of-living' hypothesis, but not the free 

radical hypothesis of ageing, since low oxidation damage correlates with long 

lifespan/starvation survival. 

Work on the E. coli model system also demonstrates that increased production 

of ROS is not a prerequisite for increased protein carbonylation. Instead, 

carbonylation can occur as a direct consequence of proteins becoming more 

susceptible to oxidative attack. Aberrant proteins are such targets (42). Analyses 

in E. coli have demonstrated that this pathway for carbonylation is more general 

i.e. targets a broader spectrum of proteins than the specific ageing/senescence-

associated carbonylation and highlights a link between translational accuracy 

and protein oxidation as described below, PAPER I, PAPER IV (10, 54, 138). 

Upon starvation-induced growth arrest, mistranslation, i.e. erroneous 

incorporation of amino acids in the polypeptide chain increases, PAPER I (10, 

12, 145). The most simple explanation for this is a starvation-dependent, 

reduced availability of charged tRNAs, reflecting a change of cellular 

metabolism, rather than an intrinsic change in ribosomal accuracy, PAPER 1(10, 

12, 142, 196). 

Starvation-dependent mistranslation results in many proteins being 

produced in different isoforms, which can be detected on 2D-gels. The different 

isoforms migrate differently from the authentic proteins during the isoelectric 

focusing. This phenomenon is referred to as 'protein stuttering' and is strongly 

associated with increased carbonylation of the mistranslated proteins, PAPER I, 

PAPER IV (10, 54, 145). Starvation-induced mistranslation, protein stuttering 

and protein carbonylation can all be alleviated by a mutation in the ribosomal 

protein S12 (the rpsL141 allele) that renders the ribosome hyper-accurate and 

less error prone, PAPER I (10). On the other hand, cells harbouring sloppy 

ribosomes caused by the rpsD12 allele of the ribosomal protein S4, shows 

increased mistranslation, protein stuttering and carbonylation, PAPER I, PAPER 
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IV (10, 54). Since the ribosomal accuracy mutations do not affect respiratory 

activity or the oxidant defence (Sod activity), PAPER I (10, 42), these 

experiments demonstrate that increased protein carbonylation does not, per se, 

require elevated production of ROS. Instead increased availability of targets for 

ROS (aberrant proteins) seems to be the key determinant for, at least, starvation-

induced general protein carbonylation in the early stage of E. coli stationary 

phase, PAPER 1(10, 42). The demonstration that aberrant proteins have elevated 

sensitivity to oxidative attacks resulting in carbonylation, is further supported by 

the fact that protein carbonylation is elevated by drugs such as puromycin and 

streptomycin that cause translational errors (42). 

It is not yet clear why aberrant proteins are more susceptible to 

carbonylation than native proteins, but possibly, misfolding of a protein exposes 

oxidation-sensitive amino acid residues normally buried in protein structure 

during the coupled translation folding process (69). 

Protein carbonylation - a general or selective event? 

The carbonylation that occurs in growth arrested E. coli cells subsequent to the 

initial burst of oxidation linked to mistranlation, is more 'specific' and targets 

fewer protein species. These targeted proteins are involved in a variety of 

functions such as stress protection, protein quality control, information transfer, 

energy transfer and metabolism, genome organisation and other, PAPER II (39, 

43, 44, 53, 184). Among target proteins are DnaK and GrOEL, elongation 

factors, EF-Tu and EF-G, the histone-like protein, H-NS, aconitase, glutamine 

synthetase, glutamate synthase, pyruvate kinase, pyruvate dehydrogenase (E2 

subunit) and TCA-cycle enzymes like malate dehydrogenase, PAPER II (43, 53, 

184). Several of these proteins have similarly been found to be carbonylated in 

oxidation stressed yeast (23); ageing flies (174, 200), plants (89, 102), and in 

human Alzheimer's disease brain (25). Considering the distant relationship 
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between these organisms, carbonylation sensitivity of proteins seems to be at 

least to some extent, evolutionary conserved. 

Although it is clear that proteins have different intrinsic sensitivity to 

carbonylation, the molecular basis for this selectivity is not fully understood. 

However, there are some factors that have proven to be involved. For example, 

it is likely that metal catalyzed oxidation, e.g. the Fenton reaction (Fe2+ + H202 

Fe3+ + OH- + OH ) (180) is a built-in problem for proteins containing 

transition metals, e.g. aconitase. However, some but not all of the identified 

carbonylated proteins are known to bind metals. 

The chemical composition of the polypeptide chain may be important, 

since carbonylation occurs preferentially on lysines, arginines, prolines and 

threonines as described. Proteins rich in these amino acids may have a high 

susceptibility to carbonylation. One such example may be the mitochondrial 

adenine nucleotide translocase (ANT) that becomes carbonylated in for example 

ageing house flies (201). ANT contains a relatively large number of lysines, 

arginines and prolines (201). 

The fact that misfolded and aberrant proteins are intrinsically sensitive to 

carbonylation indicates that the structure and conformation of a protein could 

affect oxidant susceptibility also of native proteins. It is possible that some 

proteins have a structure that is more prone to become oxidized, e.g. by having 

an intrinsically unstable composition or a tendency to change conformation, for 

example upon substrate release. Glutamine synthetase may be an example of the 

latter. It becomes oxidatively modified and subsequently degraded upon 

starvation for its substrate (32, 112, 160, 163) (see section 'Protein oxidation -

Damaging protein oxidation - carbonylation'). Enzymes are frequently found to 

be protected from degradation while bound to their substrates (123), but whether 

this also confers protection against oxidation remains to be elucidated. 

Another idea holds that proteins, e.g. enzymes of the TCA-cycle and 

electron transport chain, become oxidized simply because of their location in 
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close proximity of ROS generating sites (138). All these mechanisms are 

suggested to be implicated in senescence-related carbonylation of proteins, but 

the relative importance of these individual mechanisms remains to be elucidated. 

Removal and repair 

Degradation of oxidized proteins seems to be a universal and conserved defence 

mechanism against senescence-related cumulative oxidative protein damage 

among different cell types, and therefore reduced proteolytic capacity may be 

implicated in age/senescence-related accumulation of carbonylated proteins (56, 

121, 138,172). 

In mammalian cells, proteasomes and lysosomes are two of the major 

proteolytic systems. Loss/decline of function upon ageing and senescence has 

been reported for both (28, 122) and this correlates with the accumulation of 

damaged e.g. carbonylated and aggregated proteins. Interestingly, such proteins 

has, together with other oxidation derived aggregates e.g. lipofiiscin/ceroids, 

been suggested to eventually clog up the proteasome and thereby be a cause of 

age-dependent reduced proteolysis (28, 138). In addition, direct oxidative 

damage and other modifications of the proteasome, as well as an unbalanced 

expression of the proteasome subunits, may also cause age-related proteasome 

dysfunction (29). Interestingly, partial inhibition of the proteasome in young 

primary fibroblasts induced a premature ageing phenotype including 

accumulation of damaged proteins (29), while overproduction of proteasome ß5  

assembled subunit increased the amount of proteasome and conferred an 

ameliorated response to oxidative stress and higher survival rates (30) 

Another example that links protein oxidation and lifespan to proteolysis 

concerns the age-dependent carbonylation of aconitase in mitochondria. 

Decreased aconitase activity caused by carbonylation has been associated with 

shortened lifespan and senescence and has been linked to an age-dependent 

decline in the levels and/or activity of the mitochondrial Lon protease (19, 20, 
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37). Lon degrades moderately oxidized aconitase, while more severely oxidized 

forms thwarts the proteolytic apparatus and aggregate in electron-dense 

inclusion bodies within the mitochondrial matrix (17, 19). In addition to the 

decreased aconitase activity that may be detrimental itself as discussed in 

section 'Possible roles of carbonylation - some speculations - Regulation of 

specific pathways and enzyme function', such aggregation may eventually lead 

to mitochondrial collapse, elevated ROS production and increased oxidative 

stress. 

Also in growth arrested E. coli, the Hsp protease Lon is required to 

prevent accumulation of carbonylated proteins. Deletion of Ion strongly 

increased the accumulation of carbonylated proteins in growth arrested cells and 

deletion of hslVU, encoding the Hsp protease HslVU, had an even more 

pronounced effect, PAPER II (53). This increased carbonylation of proteins 

were, for the most part, non-specific in the sense that the same spectrum of 

oxidized proteins exhibited a higher load of carbonyls in both mutants, PAPER 

II (53). Since Lon is the primary protease degrading misfolded and aberrant 

proteins in the E. coli cytosol (161, 190), Lon may prevent accumulation of 

carbonylated proteins via at least two pathways, including direct degradation of 

carbonylated proteins and/or by preventing the formation of carbonylated 

proteins by proteolytic degradation of aberrant proteins produced via 

mechanisms not linked to oxidation. 

It has been argued that oxidative modification of a protein makes it more 

susceptible to proteolysis via mechanisms including unfolding of the 

polypeptide chain and exposure of hydrophobic patches normally hidden in 

protein structure (69, 138). Such hydrophobic patches favour recognition and 

degradation by for example the proteasome and the Lon protease (69, 70). This 

process may be enhanced by chaperone activities. 

In addition to proteolysis, protein repair systems may be implicated in 

preventing carbonylation of proteins. Once formed, protein carbonyls, similar to 
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most other types of oxidative protein damage, are irreparable. However, 

methionine sulfoxide, cysteine disulfides, and mixed disulfides are reversible 

types of oxidative damage which can be readily reduced back to the 

corresponding thiols by a battery of reductases and isomerases (36). Repair of 

such damage may decelerate carbonylation, by preventing transfer of oxidative 

damage within proteins, and also, if the oxidation induced a conformational 

change, by restoring protein structure. 

Molecular chaperones, of which many are Hsps (or Hscs) constitute 

powerful protein repair and protection systems. Chaperones participate in a 

plethora of protein management processes related to e.g. protein production, 

refolding, remodelling, and proteolysis. The chaperones (e.g. DnaK) identify 

substrate proteins, both by recognition of specific sequences on proteins, and by 

their affinity for hydrophobic domains (e.g. on misfolded proteins) (47, 52). 

Similar to proteolysis, the latter process may be enhanced by oxidation of the 

misfolded protein as indicated in, PAPER II (53). 

Overprodution of DnaK and its co-chaperone DnaJ in growth arrested E. 

coli, was demonstrated to strongly reduce protein carbonylation, despite the fact 

that such overproduction down-regulates the expression of all other Hsps, 

PAPER II (53). The underlying mechanism for the decreased carbonylation is 

not clear, but the DnaK/J system is not expected to repair or refold carbonylated 

proteins since the modification is irreversible. Instead, it may reduce the 

abundance of aberrant proteins available for oxidative attack and/or keep 

oxidized peptides and proteins in a soluble, protease-accessible state. 

How does DnaK discriminate between delivering a substrate protein to a 

refolding or proteolytic pathway? Maybe this process is simply stochastic and 

time-dependent. For example, carbonylation alters the chemical properties of 

amino acids. This may render proper refolding impossible and the substrate 

protein will thus remain in a partly misfolded state. Binding of DnaK may 

prevent aggregation of the polypeptide chain with other unfolded or damaged 
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proteins, and may also increase its accessibility to proteolysis via DnaK-

mediated unfolding. With time the likelihood of bumping into a protease by the 

chaperone/substrate-complex increases leading to degradation of the misfolded 

protein. By such a mechanism, carbonylation of a protein may ensure it is 

properly degraded. 

Taken together, protein management functions seem to be essential in the 

cellular protection against cumulative protein damage. Recent experiments in E. 

coli and other organisms provide data where the Hsps emerge as key players in 

protection against senescence-related protein oxidation PAPER II (53, 115, 129, 

131,204). 
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Possible roles of carbonylation - some speculations 

Evolutionary considerations 

At first glance, carbonylation of proteins may appear devastating for cells, 

tissues and the whole organism. Carbonylation induces enzymatic dysfunction, 

severe structural aberrancies, aggregation of proteins into proteolysis resistant 

complexes with strong cytotoxic effects and is strongly associated with disease 

and senescence. Therefore, an interesting issue is why natural selection has not 

been able to obliterate this process. 

For an organism that depends on aerobic metabolism, it may of course be 

an impossible task to fully combat oxidative damage of cellular components 

since oxygen is ubiquitously present. However, as demonstrated in this work, it 

is possible to drastically reduce protein carbonylation experimentally, e.g. by 

ectopic overproduction of the Hsps, PAPER II (53), by genetically increasing 

the accuracy of the ribosomes, PAPER I, PAPER IV (10, 54) and by other 

pathways as well (43). 

So why are not the defence systems against this deleterious modification 

of proteins at their maximum by nature? Possible explanations may be provided 

by the 'disposable soma' and 'antagonistic pleiotrophy' theories of ageing. The 

former suggest that the resources an individual can allocate to its activities is 

limiting such that growth/reproduction and maintenance are traded, one at the 

expense of the other (99, 100). Rapidly dividing cells may escape part of the 

'resource-cost' related to intracellular damage, simply by 'dilution' of the 

injured molecules by de novo synthesis and cell division; a possibility not 

available for post-mitotic cells. 

In nature, organisms do not usually die of old age, but are eaten, 

parasitized, or out-competed by others. The idea of antagonistic pleiotrophy 

holds that genes which' expression are beneficial during development and 

reproduction early in life, might have detrimental consequences later on (15, 
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100). Since a post-reproductive organism is under low (if any) evolutionary 

pressure, there is no strong selection against deleterious processes such as 

protein carbonylation late in life as long as it does not affect fitness (80). In 

addition, if cells/organisms can take advantage of carbonylation of proteins 

whilst still in the reproductive phase, evolution will not work against this 

mechanism, and carbonylation will occur also during non-reproductive stages 

despite the fact that it may have negative effects on the soma/individual. Such an 

advantageous role of protein carbonylation may be in protein quality control. 

Protein quality control 

Mistranslated and otherwise aberrant proteins are more sensitive to 

carbonylation than native proteins, PAPER I, PAPER IV (10, 42, 54) and 

carbonylated proteins are more susceptible to proteolytic degradation than their 

non-oxidized counterpart (17, 20, 42, 69, 70, 163). Carbonylation of 

mistranslated proteins could thus be a mechanism to avoid incorporation of 

injured proteins into cellular machines involved in information transfer (e.g. 

ribosomes and RNA and DNA-polymerases) (138). In line with this argument, 

the levels of carbonylated ribosomal proteins are relatively low in healthy, 

starving E. coli cells (39), but is strongly elevated in cells that have lost their 

reproductive capacity (see section 'Protein oxidation - Protein carbonylation 

and ageing'). The high load of carbonylation of ribosomal proteins in these 

sterile cells may result in ribosomal dysfunction. This could imply that impaired 

protein synthesis, at least partly, causes the sterility and subsequent death of this 

subpopulation of stationary phase E. coli cells. The accumulation of 

carbonylated ribosomal proteins may be a consequence of some sort of 

dysfunction in the proteolytic capacity of these cells and one candidate protease 

that could be involved is Lon. In E. coli, Lon has been demonstrated to degrade 

ribosomal proteins after a nutritional down-shift (amino acid starvation) (105) 

and deletion of Ion r esults in extensive accumulation of carbonylated proteins 
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and also reduced survival, PAPER II (53), non-published data, this work). It is 

possible that if Lon-functions are abated, this reduces starvation-induced 

degradation of ribosomal proteins, leading to their time-dependent 

carbonylation, and consequentially an error-catastrophe-feed-back loop as 

suggested by Orgel (144). Thus it is possible that carbonylation tags the protein 

for degradation and that this functions as a protein quality control. 

In eukaryotes, proteins are labelled for degradation by the proteasome by 

enzymatic addition of tails of the protein ubiquitin: a process referred to as 

ubiquitinylation (8). Whether carbonylation and ubiquitinylation work in concert 

or are completely separate processes for tagging a protein for proteolytic 

degradation is not clear (138), but carbonylated proteins can be recognized and 

degraded by the mammalian 20S proteasome independently of the 

ubiquitinylation system as well as in the absence of ATP (35). 

Protein carbonylation and reproduction 

If carbonylation is entirely bad, there may still be a threshold level which can be 

tolerated before systemic collapse and reproductive failure commences. 

Therefore, an investment in improved defence against carbonylation only 

maximizes fitness if the resources are not better invested in improving other 

capacities important for reproduction, e.g. speed, intelligence, eye-sight, beauty, 

etc. 

An interesting study in the plant A. thaliana demonstrated that protein 

carbonylation can be tolerated during pre-reproductive adulthood (89). In the 

first 20 days of the life cycle, carbonylation increased with time, but prior to 

bolting and flower development (89) there was a drastic reduction in protein 

carbonyls. It would be interesting to determine whether such reduction in protein 

carbonyls is a prerequisite for the production of reproductive organs and if the 

fitness of the offspring is ensured by this mechanism. Another example of 

keeping the offspring free of carbonylated proteins is seen in the yeast 
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Saccharomyces cerevisiae, which display asymmetrical cytokinesis. During 

such cytokinesis, the older mother cell retains the carbonylated proteins, a 

process that may ensure a full replicative life span of the daughter and/or its 

fitness (3). 

Together, these studies points to a mechanism that may serve to protect 

the offspring from inheriting carbonylation damage from the parent, and the data 

may be interpreted such that protein carbonylation, at least in yeast and A. 

thaliana have negative effects on early fitness. These results do not discriminate 

between the two possible interpretations, 1) that carbonylation of proteins is 

simply a negative consequence of the events and activities necessary for 

reproduction or 2) if there are, speculatively, beneficial roles of protein 

carbonylation during pre-reproductive adulthood. 

Carbonylation and autophagy-like mechanisms 

In E. coli, de novo protein synthesis is an absolute requirement for survival of 

growth arrest and starvation. Degradation of proteins that are either damaged or 

simply not longer needed may provide an internal source of amino acids for this 

translation, as described above. 

It is possible that carbonylation enhances such an autophagy-like 

mechanism by labelling of dispensable proteins and, due to the protein 

destabilizing effect of carbonylation (42), accelerates the proteolytic efficiency. 

In line with this, there is a burst in protein carbonylation early upon starvation, 

PAPER II (53) that targets a broad spectrum of proteins of which many are 

metabolically dispensible. As described in the section 'Protein oxidation -

Damaging protein oxidation - carbonylation', glutamine synthetase is 

carbonylated and subsequently degraded upon nitrogen starvation (110). It is 

possible that this apply also to other enzymes. 

Not only may carbonylation tag proteins for degradation during 

adaptation of E. coli to growth arrest. Also, resumption of growth may be 
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facilitated if an excess of energy/resource-consuming stress-proteins no longer 

needed are rapidly degraded. In line with this, Hsps, e.g. DnaK, are sensitive to 

carbonylation, PAPER IV (43, 54). However this reasoning leaves us with the 

question of how carbonylation can be selective (see section 'Protein oxidation -

Protein carbonylation - a general or selective event?'). 

It is possible that evolution has selected for protein structures and 

properties that affect their intrinsic susceptibility to carbonylation. If so, this 

suggests that cells may to some extent, 'direct' carbonylation and take advantage 

of such modification as an additional regulatory mechanism of protein stability. 

Regulation of specific pathways and enzyme function 

Most enzymes do not lose their catalytic functions during senescence (174). 

However, among those that do, there seems to be some conserved, interspecies 

target specificity of ageing/senescence related carbonylation, suggesting that 

carbonylation is not a random process. Among such targets are the TCA-cycle 

enzyme aconitase and the chaperone Hsp70, PAPER IV (20, 32, 54, 89, 200, 

201). These proteins are used as examples in the discussion below on possible 

benefits and drawbacks of specific senescence-related carbonylation. 

In eukaryotes carbonylation of mitochondrial aGonitase has been 

suggested to trigger ageing-related, deteriorative processes. Aconitase loses its 

catalytic activity when carbonylated. This may cause strong imbalance in the 

TCA-cycle (58) and accumulation of TCA-cycle intermediates that contributes 

to a decline in the overall efficiency of mitochondrial bioenergetics and diverts 

intermediates to other pathways. For example, citric acid and succinate have 

been identified as ligands for G-protein coupled receptors and the release of 

these TCA-cycle intermediates from mitochondria was suggested to provide a 

link between protein-specific carbonylation and age-related diseases such as 

diabetes, atherosclerosis and hypertension (73, 74, 203). 
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Carbonylation may also serve to immediately destroy a specific enzymatic 

activity to ensure a fast shut off of pathways that may otherwise cause damage 

during a certain condition. Results from studies in E. coli may be considered in 

this context. Several TCA-cycle enzymes become carbonylated upon aerobic 

starvation of E. coli, PAPER II (43, 44, 53, 184). Such damage of these enzymes 

may contribute to the metabolic swap (including strongly decreased respiratory 

activity) that occurs upon carbon-starvation, preceding the pathways down-

regulating TCA-cycle gene expression (10, 137, 140) (section 'The experimental 

system - Physiological alterations in stationary phase - an oxidative stress 

defence?'). This may secure a fast rearrangement of cellular metabolism in 

response to starvation. 

On the other hand, carbonylation of Hsp70 proteins during stress 

conditions may seem obscure considering its cyto-protective role in general and 

against cumulative protein carbonylation in particular, PAPER II (53). 

Carbonylation of Hsp70s may be accidental and detrimental, but there may as 

well be positive effects of such damage as implied in, PAPER IV (54), since 

Hsp70-proteins are part of the regulatory systems controlling the overall Hsp-

production. For example, in E. coli, oxidatively damaged DnaK may be unable 

to recognize and deliver o32 to proteolysis (see section 'The a32 regulon'). This 

may speed up or boost the induction of the heat shock proteins through a 

mechanism independent of increased o32-synthesis, but instead related to its' 

rapidly increased stability, PAPER IV (54). A similar positive effect may occur 

in eukaryotes upon carbonylation of Hsp70, since Hsp70 is a negative regulator 

of HSF activity. Thus, Hsp70 proteins may have a function as sensors of cellular 

oxidation status and the suggested mechanism for this would result in rapid 

adjustments of Hsp production PAPER IV (54). In addition, since in E. coli, 

both a32 and os are regulated at the level of stability, titration of their proteases 

by carbonylated (and other oxidized) proteins confers another, although indirect 

regulatory function of protein carbonylation, PAPER V (54). 
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Thus, by a process of conclusion, we arrive at the fact that protein carbonylation 

may be both a blessing and a menace. While it is obvious that carbonylation of 

specific enzymes severely affects metabolic and other pathways in cells and that 

this may exacerbate deteriorative processes, it is also possible that cells to some 

extent may take advantage of carbonylation in, for example, protein quality 

control and in regulatory functions. Further, the Hsps seems to be key players in 

the management of carbonylated proteins and have strong cyto-protective 

functions against its negative effects. 
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