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1 
Introduction 

This thesis deals with various aspects of string/M-theory, which is currently the main 
candidate for a unified theory of all forces and particles in the Universe. In string theory the 
fundamental particles (fermions) and the force mediating particles (bosons) are described 
as different kinds of vibration of a fundamental string. This is analogous to a piano string, 
where different notes correspond to different vibrational modes of the string. Pursuing this 
analogy further [1], we could say that the basic particles in the universe correspond to the 
musical notes of the superstring, and the laws of physics correspon d to the harmonies that 
these notes obey. Finally, the universe itself co rresponds to a symphony of sup erstrings 
(and perhaps also higher-dimensional objects). 

String theory has now been around for more than 30 years. The history of string theory 
started at the end of t he 1960's with bosonic string theory, which was first invented as a 
model to describe strong interactions in hadron physics. This, unfortunately, did not work. 
The main reasons for this were t hat it was found that bosonic string theory has a spin 
2 particle in its spectrum and that it can only be a consistent theory in 26 dimensions. 
It was also found that QCD gave a better description of the strong force. However, th is 
did not mean that string theory was entirely forgotten. The reason for this was that since 
having a spin 2 particle in the spectrum, it might be a candidate for a quantum theory of 
gravity. However, bosonic string theory can not be the correct quantum theory of gravity , 
because it has a tachyon in its spectrum and no fermions. Instead, a. supersymmetric string 
theory might be a consistent quantum theory of gravity and of the other three fundamental 
forces of nature as well, since, as we will see below, a supersymmetric string theory has 
both bosons and fermions in the spectrum but no tachyon. That superstring theory is 
supersymmetric means that it has the same amount of bosonic (integer spin particles) and 
fermionic (half integer spin particles) degrees of freedom. 

In the beginning of the 1970's superstring theories were constructed, which contain 
both bosons and fermions and no tachyons and are consistent theories in 10 space-time 
dimensions. Unfortunately, it was at this point not clear if there existed anomaly free 
superstring theories. In fact, it was not until 1984, starting the so called 'first superstring 
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2 CHAPTER 1. INTRODUCTION 

revolution', that Green and Schwarz showed that a special type of superstring theory, 
called the type I theory, is free from anomalies if the gauge group is uniquely SO(32) [2, 3], 
More precisely, in [2] they showed that supersymmetric Yang-Mills theory coupled to N=1 
10-dimensional supergravity is anomaly free if the gauge group is SO(32) or E8xEg, where 
the former is the low e nergy limit of type I superstring theory, and the latter the low 
energy limit of he terotic string theory, which was later constructed in 1985 [4]. Note that 
there also exists a heterotic string theory with gauge group SO(32) [4]. Next, in [3], it was 
further shown that the full type I superstring theory is anomaly free. 

Superstring theory is a theory in 10 space-time dimensions. However, we know t hat we 
live in four (large) dimensions, three space and one time dimensions, and not 10. Then a 
relevant question is, how ca n string theory be a serious candidate for a unified theory of 
'everything', when it seems that it exists in the wrong number of dim ensions? The answer 
to this question is that it does not necessarily mean that all these 10 dimensions are large. 
For instance, six of them could be curled up so that they are small enough to be invisible 
at 'our' length-scales1. Moreover, the idea is that some superstring theory compactified 
on a six-dimensional compact space might be a candidate as a description of our universe, 
since this effectively gives a theory in four dimensions. At present it is not known how to 
choose the correct six-dimensional compact space. This is a very important problem to 
solve. 

Later, in 1994 the 'second superstring revolution' began with the important papers 
by Hull and Townsend [5] and Witten [6]. For example, it was conjectured that the 
five superstring theories are all connected to each other and a previously unknown 11-
dimensional theory called M-theory, through various dualities (S- and T-dualities). This 
implies that we n o longer have five inequ ivalent string theories but instead there should 
only exist one unique theory (M-theory), which in different limits gives the various string 
theories. Not much is known about this 11-dimensional theory except that it is not a string 
theory but a theory containing two-dimensional membranes. Moreover, at about the same 
time so called D-branes were discovered by Polchinski [7]2. These are non-perturbative 
extended objects, which are very important when, e.g., investigating duality conjectures, 
see chapter 2.2. Furthermore, at the end of 1997 Maldacena conjectured [9] that superstring 
theories in certain backgrounds are dual (equivalent) to superconformai field theories, which 
led to many interesting results. Around the same time it was also found that taking various 
limits of st ring theory with certain non-zero constant background fields turned on, leads 
to field theories with noncommutative coordinates, see chapter four and, e.g., [10, 11, 12], 

In this thesis we are mostly interested in two different but related areas, (1) dual 
string theory (or supergravity) descriptions (using the AdS/CFT correspondence [9]) of 
field theories, or open brane theories, with noncommutativity, (2) how t o use dualities in 
order to deform supergravity solutions, which correspond to bound states of branes. In the 
first case, we a re in particular interested in a six-dimensional theory containing light open 

xThe idea that there might exist extra dimensions is old and was first proposed by Kaluza and Klein 
around 1920 as a way to unify gravity and electro-magnetism. 

2Note that the concept of D-branes was first discussed much earlier in [8]. However, it was not until [7] 
that D-branes were really shown to be the objects that have Ramond-Ramond (RR) charges. 
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membranes, which is called OM-theory. One reason why this theory is considered to be 
interesting is because further knowledge of this non-gravitational open membrane theory 
might in the future lead to a better picture of the role of the closed membrane in M-theory. 
At present this is far from being understood. Moreover, OM-theory seems to live in a new 
interesting geometry which exhibits some kind of genera lized noncommutativity structure, 
which also makes a further study interesting. In the second case we are in particular 
interested in deformations of the M-theory M5-brane, using M-theory 'T-duality'. For 
example, in chapter 4.3 we discuss an intriguing connection between M-theory 'T-duality' 
and the open membrane metric and generalized noncommutativity parameter (which are 
relevant for OM-theory). 

This thesis is divided into two parts. The first one contains five chapters. The aim of this 
part is to give air i ntroduction to various aspects of string/M-theory in order to facilitate 
the reading of the second part, which consists of seven appended research papers. Of 
these, six are published in Journal of High Energy Physics (JHEP), while one is published 
in Classical and Quantum Gravity. 

In chapter two we give an introduction to perturbative and non-perturbative string/M-
theory. This is followed by chapter three where we in troduce bound states and describe 
how supergravity solutions corresponding to bound states can be generated using dualities. 
Next, in chapter four it is shown how string/M-theory together with non-zero constant 
background fields, in various low energ y limits, lead to non-gravitational theories. Some 
of th ese theories contain light open branes. The concept of def ormation independence is 
also introduced, both for open strings and open membranes. We end with a discussion and 
some conclusions in chapter five. 

As we have mentioned above, the first part of this thesis is an introduction, in order to 
facilitate the reading of a ppended papers. Note, however, that there are some new results 
in this introductory text, which were obtained after the papers were written. These results, 
which are discussed in section 3.2, 3.3, 4.2.2, 4.3.1 and 4.3.3, mostly concern Papers V and 
VII. 

Note that although we in this thesis discuss various aspects of M-theory, it is by no 
means a complete description of the present knowledge of string/M-theory. There are many 
important and interesting areas that we have chosen to ignore altogether. For example, 
in the last few years many interesting papers have been produced concerning tachyon 
condensation and string field theory. For a review see, e.g., [13]. Other areas that we choose 
to leave out are, e.g., string cosmology, PP-waves and compactifications of string/M-theory. 

Concerning the papers, we recommend the reader to read chapter two in the introduc
tory text before reading any of th e papers and also reading chapter three and four before 
reading Papers II-VII in sequence. However, most of Pa per IV can be understood without 
reading chapter four of the introductory text. 
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2 
Introduction to String/M-theory 

In this chapter we will give an introduction to perturbative and non-perturbat.ive string 
theory. For a more complete introduction to the many different aspects of string/M-theory 
we recommend the excellent books by Green, Schwarz and Witten [14], Polchinski [15] and 
Johnson [16]. 

We begin in the first section with an introduction to perturbative string theory, both 
the bosonic and the supersymmetric theory including a discussion of T- duality. There is 
also a brief account of supergravity in 10 and 11 dimensions. We continue in section 2.2 by 
discussing various important non-perturba,tive (S- and U-duality) dualities and introduce 
M-theory and branes. We conclude in section 2.3, with an introduction to the AdS/CFT 
correspondence. 

2.1 Perturbative string theory 

2.1.1 Bosonic string theory 

Here, we will give an elementary introduction to bosonic string theory. This introduction 
is incomplete, e.g., we have entirely ignored to introduce string interactions. For this and 
other omissions we refer to the standard text books [14, 15, 16]. 

We begin by describing a classical string propagating in a d-dimensional manifold M .  
The two-dimensional world volume (world sheet) E of the propagating string is embedded 
in the target space M through the map X : E —> M. We note that an open string is 
represented by a world sheet which has boundaries, while the world sheet of a closed string 
has no boundaries. 

For a classical string there are two equivalent actions, the Nambu and Goto action [17] 
and the Brink, Di Vecchia, Howe, Deser and Zumino action (BDHDZ) [18, 19]. The second 
action is sometimes called the Polyakov action [20], The Nambu-Goto action is given by 

5 



6 Chapter 2 Introduction to String/M-theory 

the area swept out by the world sheet 

St,a[X"] = —T j dA = -T f d2ay/-dethab = -T f d 2ayj-det(daX^dbX^ßiy) , (2.1) 
«/S •/ s « s 

where hab = daXßdbX' /rißu is the induced metric on the world sheet, T = (27ra')_1 is 
the tension of the string and a a, (a, b = 0,1) are the worl d shee t coordin ates, whil e Xß  

(ß, v = 0,1,..., d — 1) are the target space coordinates. 
The second action, which is equivalent to the first, is given by 

SBDHDz[X", lab} = J d2a^labdaX»dbX»riß„ = jf d2a^1
abhab , (2.2) 

where -yab is the auxiliary world sheet metric and 7 = det7ai). 
In order to show that the two actions are classically equivalent we start by obtaining 

the algebraic equation of motion for the auxiliary world sheet metric jab. Varying the 
action with respect of 7^, gives 

^SBDSBZPP, 7afJ = -f ^ d2a^i'ô1Yb (Kb - \lablcdhc^j , (2.3) 

where we have used that <577 = 77a6<577a& = • Demanding that the variation of 
the action is zero, implies that 

Kb - Tflabl^hcd = 0 , (2.4) 

which in turn gives that 

7abhab = 2^2 . (2.5) 

Inserting this relation in the BDHDZ action (2.2) we easily obtain the Nambu-Goto action. 
Hence, the two actions are classically equivalent. 

The BDHDZ action is invariant under the following symmetry transformations: 
(1) target space Poincare transformations 

X-* - > X'>> = + Aß , (2.6) 

where AM is a constant d-dimensional vector and is an SO(l,a!) Lorentz matrix. 
(2) world sheet reparametrisations 

SX" = £,adaXß , (2.7) 

and 
SYb = icddah - - dctbrc , (2-8) 

with parameters ^"(cr0,^1). 
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(3) Weyl transformations 
7a& -> 7a6 = e2lpJab , (2.9) 

where is a function of c ° and a1. It is easy to see that the BDHDZ action is invariant 
under this transformation, since >/—77°6 is invariant under Weyl transformations. 

One very interesting consequence of the symmetries (2) and (3), is that locally on E, 
the three components of 70& can be completely specified (two from using reparametrisation 
invariance and the third from using Weyl invariance). Usually, one chooses 7^ = 77^. We 
note that this is something which is unique for s tring actions and does not exist for, e.g., 
membrane actions1. Choosing 70& = T]ab we obtain the following action: 

SBDHDZ ,.Y"j = -| 'j d2o,fhdaX"dbX",hv . (2.10) 

From this action the equations of motion for the fields Xß are easily obtained, and given 
by the wave equation 

rfhdadbX> l(T>a)= 0, (2.11) 

where r = a0 and a = a1. Any solution to this wave equation can be written as a 
combination of a left traveling wave and a right traveling wave. Hence, 

= X£ (r + ct) + X£ (T  — a) . (2.12) 

For closed strings the XM fields obey periodic boundary conditions 

X"(r,0) = X"(r, TT), 
daX'^r,0) = d0X»(j, TT) , (2.13) 

while for open strings the Xß fields instead obey Neumann boundary conditions 

daXß(r, 0) = daXß{r, n) = 0 . (2.14) 

Open strings might also obey Dirichlet boundary conditions (XM(T,0) = Xß(r, n) = bß) in 
some directions. This case will be discussed more in subsection 2.1.4. 

Next, for the closed string a general solution (Taylor expanded) can be written as 
(remember that XM(r, a) = X£(T + a) 4- X£(T — a)) 

1 Irvr  

X£(o ) = r/ •' «Y* • 
Tly^O 

* £ { " ' )  = l-qß +  a'p"a+ +  i^Y,~e~2m'T+ ' (2'15) 
n^O 

where qß and pß are the center of mass position and momentum, a± = r ± <7, and 
are Fourier components. Since Xß is real we require that qß and pß are real and that 
a-m = (am)f and <*-m = (^)f• 

*Nor on higher genus surfaces in string theory. 
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For open strings we instead have the following general solution 

XM(r, a) = q11 + 2a' t + ^ — e~mT cos na . (2-16) 

Note that for the closed s tring there are both left and right moving oscillators, while for 
the open string there is only one type of oscillators. 

The fields Xß, together with the conjugate momentum El'1 = TdTXß, obey the following 
equal time Poisson brackets [14]: 

{X»,ITV)} = -rTSfr - J) , 
{x"(<r),xV)} = {npW,n>')} = o. (2.17) 

This implies that the oscillators have the following Poisson brackets: 

{04,o£} = imrfv5m+n {qß,p"} = -rf" . (2.18) 

The Poisson brackets for is the same as above, while the Poisson brackets for one 
with one à"n is obviously zero. Note also that for the open string the zero oscillator (zero 

mode) is aft = p^V^öü, and = PßJ~^ for the closed string, which is identified from 

(2.15) and (2.16). 
Before we quantize the theory we turn to the constraints of the theory. Varying the 

action with respect to the world sheet metric should give zero, since this gives the equation 
of m otion for 7ab. This implies that the energy momentum tensor must be zero, because 
[14] 

To6 = -|-^| I . (2.19) 
T v/7ô7af> 

7=v 

A short calculation leads to the following constraints 

T++ = ±(TTT+TTcr) = d+X»d+X"Vß„ = (dtX?)2 = 0, 

= \(TTT-TTa)=d.X^X"r,l iU = (drX£)2 = 0, (2.20) 

where d± = \{dT ± da). We also obtain that T+_ = T_+ = 0, because the energy mo
mentum tensor is traceless (which should be obvious from (2.3)). Furthermore, the energy 
momentum tensor can be expanded in a Fourier series, with the following Fouri er coeffi
cients [14]: 

Im = ? I e~zlmaT—da - - > \am-n-an , Lm = — / e" ,noT++da = - > , 
, pTX 1 00 

PTT ^ ^ 
• / e~2imaT—da = -£ am-„-an , Lm = - e2im"T++da 
Jo —^ 0 —00 

(2.21) 

2 

for closed strings, and [14] 

/*7T 1 OO 
L m = T  (e*1m°TL_ + e imaT++)da = - am.n • an , (2.22) 

J0 Z -00 
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for o pen strings. Here we have defined am~„ • an = dm-n^bv- Next, using (2.21) and 
(2.18) we obtain the following Poisson brackets: 

} — i{m n)L(m . j_n)  — i(rn , {Lm , Z/n} ~ 0 . (2.23) 

This means that Lm  satisfies the Witt algebra. From the constraint equation (2.20) we see 
that Lm = 0 and Lm = 0 for all values of m. In particular, this implies that LQ = 0, i.e., 
for an open string 

2 OO OO oo 

Lo = -  a-n • a» = «W a_ra • an  = — a'M2 + ̂  a_n • a„ = 0 . (2.24) 
—oo n= 1 n=l 

(Note that for an open string the Hamiltonian is H = L0) .  Hence, for an open string the 
mass-squared for open string states is given by 

! M 

M 2  =  - ^ a _ n - a „ .  ( 2 . 2 5 )  
n=l 

Quantization 

Next, we a re going to quantize the string using the old covariant approach. For an 
introduction to light-cone quantization and the more modern BRST quantization we refer 
to [14, 15, 16], where also a more thorough introduction to covariant quantization can be 
found, for both open and closed strings. 

To quantize the string we turn the Xß etc into operators, which have non-trivial com
mutators given by letting the Poisson brackets (i.e., (2.17), (2.18) and (2.23)) become 
commutators, i.e., {A, B} —* — i[A, B], This leads to the following commutation relations 

[x"(a.).n'V)! = arsfr - <?'), [x»,x>')] = [n»,nV)] = o , (2.26) 

or equivalently 
K, an] = «rW) Pv] = irT , (2-27) 

with similar commutators for Ô&. Comparing with ordinary quantum mechanics it is quite 
clear that and {m > 0), respectively, behave as creation and annihilation 
operators. 

In our Fock sp ace we define the state |0; k >= eîfc ?|0 >, to be an eigenstate of the 
center of mom entum operator pß with momentum kß. Note that |0 > is the ground state, 
which is annihilated by both pß and a^, m> 0. Note that also |0; k > is annihilated by 
for m > 0. Using atm any number of times gives the entire Fock space. This is, however, 
not the physical Fock spac e, because we have, so fa r, not included the quantum version of 
the classical constraints. The quantum constraints on a physical state are [14] 

Lm|phys > = 0 , m > 0 , 

(L0-a)|phys> = 0, (2.28) 
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with similar constraints for Lm. For the constraint including L0 we had to introduce a 
constant a because of an ambiguity in the normal ordering. 

For the closed string the right and left moving parts can be treated separately except 
for the level matching condition (L0 ~ Â))|phys >= 0. The physical motivation of this 
constraint is that the combination L0 — L0 generates translations in a. However, the 
physics should be invariant under a translation, since there is no physical information in 
how the string is parametrized. 

The Lm obeys the following Virasoro algebra: 

[Lm.: -^n] = (j^ '^)L(m—ri} ~ i~ l)<5m+n • (2.29) 

Here the central charge is c = d .  
So far, we have let the dimension d  of space-time be arbitrary. However, it can be 

shown (see, e.g., [14, 15, 16]) that in order for negative norm states (coming from the fact 
that rf° = —1) to decouple from the physical spectrum, we must restrict the dimension 
to be d = 26 and a = 1, or d < 26 and a < 1. Here we choose to set d = 26 and a = 1 
unless otherwise specified, because this is the only case where there are massless states in 
the spectrum. It is also only this case which is equivalent with light-cone quantization [15]. 
Moreover, for d < 26 and a < 1 there is no known consistent way to introduce interactions 
in the theory [15]. 

This leads to the following mass shell constraint ( a  =  1): 

1 CO 1 M2 = ̂  ( £ '<*-» •- 0 = -
1} ' (2-3°) 

n= 1 

for the open string, and 

o , 00 \ 2 
M 2  =  (̂ ^ a _ n - a n ' + ^ â _ „ - â n - 2 j  = ~ ( N  +  N- i )  , (2.31) 

n=1 n=l 

for the closed string, where N  =  N  due to the level matching condition. 
Next, we investigate the spectrum of the closed string. The ground state is given by 

N — N — 0, i.e., by |0; k >. Hence, the mass squared is M2 = which means that the 
ground state is a tachyon and the theory is unstable. This is very disturbing and possibly 
implies that bosonic string theory is not a consistent theory. However, recently the tachyon 
has been interpreted as a signal that we are in the wrong vacuum of the theory [21], which 
means that bosonic string theory still might, be a consistent theory. The bosonic string 
theory is also interesting as a toy model, since the full superstring theory, as we will see in 
the next subsection, is a consistent theory with no tachyon in its spectrum. 

The next level is the massless level and contains a graviton g^, a dilaton <j> and an 
antisymmetric two form B^. These are obtained by acting on the ground state |0; k > in 
the following way: 

a'ljäijlO;* > , (2.32) 
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where i , j  =  1 , . . . ,  2 4  a n d  o b v i o u s l y  N =  N = 1. This gives a total of 24 2 massless states. 
From the symmetric and traceless part we obtain the graviton gßV, while the trace gives a 
dilaton <f> and the antisymmetric part gives an antisymmetric two form Note that in 
(2.32) we have used creation operators which only have transverse indices, since this gives 
the correct physical spectrum. This is clearly an effect of t he quantum constraints (2.28), 
and that this is true is obvious if one choose to quantize the string in light-cone gauge, 
see, e.g., [14, 15, 16]. Next, continuing by acting with more creation operators will give 
massive string states. 

We see from the above investigation that bosonic string theory contains a graviton. 
Hence, it automatically includes gravity. We note that only closed bosonic string theory 
and not open string theory has a graviton in its spectrum, because in closed string theory 
we a ct with both a'_1 and àJ_1 on |0; k >, while in open string theory we only act with 
£-a_i (where is a polarization vector), which gives a massless vector and not a graviton. 
In open string theory there is obviously also a tachyonic ground state. 

Background fields 

Next, we in clude non-trivial background fields. To be more specific: so far we have 
had a flat target space. However, it is also interesting to investigate what happens if we 
let the string propagate in a curved target space, as well a s including other non-trivial 
background fields. For the closed bosonic string we found that the massless fields are given 
by a metric gß„, an antisymmetric two form B and a dilaton <j>. It is therefore interesting 
to couple these background fields to the closed bosonic string. This is achieved by the 
following non-linear sigma model [22]: 

5 = r^f<P<r(y / = ^d a X»d b X v ^(X)  +  é*da X' t d b X' 'B l u t {X)  

where R^ is the two-dimensional Ricci scalar computed from the world sheet metric jab-
Note that the last term is higher order in a'. 

At the classical level the first two terms of the action (2.33) are obviously Weyl (con-
formally) invariant, while the third is not. However, although the action is not classically 
Weyl invariant it is still possible to make it invariant at the quantum level. T his is obtained 
by d emanding that the three beta functions (functionals) for the three background fields 
are zero. Note that from the two-dimensional world sheet point of view of, the background 
fields can be seen as coupling constants (coupling functionals). A perturbative calculation, 
using a' as an expansion parameter, leads to the following beta functions [14] 

ß$  =  R v v  -  +  2ü, l l ) , . o  +  0(a ' )  ,  

= \D"H^p-B"4>H^P + 0{a') , (2.34) 

ß W  = -R  +  ~H 2  -  4+  A{d^) 2  + O(a ' )  ,  
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where HßVp = and Rßl/ is the target space Ricci tensor, computed from the 
background metric gßv. Next, demanding that all the beta functions are zero, implies that 
the right hand sides in (2.34) must be zero. This give the equations of motion for the 
background fields to lowest order in a'. Hence, for the action (2.33) to be Weyl invariant 
at the quantum level we get constraints on the background fields. Interestingly, these 
equations of motion can be obtained from the following 26-dimensional action (in the 
string frame): 

S = ~èëj d26x̂ e-2*(R + W)2 - Y2
h2) • (2-35) 

In the Einstein frame this action is given by (using that gßU = eëg^) 

5 = 'h J d2&x̂ (R, - - ̂ H2) . (2.36) 

Both of t hese actions are of cou rse equivalent. However, d epending on the situation 
one or the other might be more useful. For example, in T-duality calculations the string 
frame action (2.35) is easier to work with. 

2.1.2 Superstring theory 

We found in the last subsection that bosonic string theory has a serious drawback, namely 
the tachyon in its spectrum. Furthermore, there are also no fermions present in bosonic 
string theory. Hence, it can not be a candidate for a unified theory of nature. In this 
subsection we will solve both these problems by introducing the superstring, which in
cludes both fermions in the spectrum and removes the tachyon. It is also both space-time 
supersymmetric and world sheet supersymmetric. 

There are two different but equivalent formulations of superstring theory. (1) the Neveu-
Schwarz-Ramond (NSR) [23] formulation, and (2) the Green-Schwarz formulation (GS) 
[24], The NSR formulation has manifest world sheet supersymmetry and is covariant. It 
is also space-time supersymmetric. This, however, is difficult to show in this formulation. 
The GS formulation, on the other hand, has manifest space-time supersymmetry, while 
world sheet supersymmetry arises as a consequence of K-symmetry. It is, however, not 
possible to use covariant quantization when quantizing the GS model. One instead must 
use light-cone quantization. This is a drawback, since covariance of the theory is not 
manifest in this approach. 

In this thesis we will c oncentrate on the NSR formulation of t he superstring. For an 
introduction to the GS model and for a more thorough introduction to the NRS model we 
refer to the standard text books [14, 15, 16]. Moreover, unless otherwise specified we deal 
with open superstrings. 

We begin by generalizing the bosonic string action (2.10), in the following way [14]: 

s = [ êo\dax»daxv - vi'YdaVÀ > 
2tt 

(2.37) 
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where we for simplicity have set a' = 1/2. We are using the same conventions as in [14], 
as well as suppressing a two-dimensional index in ipß .  Here a = 0,1, p° = a2  and p 1  = ia l .  
Note that pa obeys {pa,/cr} = —2rfJ. Furthermore, in this basis the world sheet spinor 
ip w hich has two components i/1- and ip+, is a real Majorana spinor. Note also that the 
anticommuting field ipß transform as a vector of SO(l,d — 1). 

When quantizing this theory we have the same commutators as before for the fields X ß ,  
see (2.26). For the fermion fields we instead have the usual equal time anticommutating 
relations 

(V'A(O-), VbW)} = nrfSABÖ{a -  a') . (2.38) 

As in the bosonic case we have negative norm states since ?700 == — 1. In the bosonic case 
these states were removed by imposing the constraints (2.28) and by choosing d = 26 
and a = 1. To remove the un-physical states from the fermion fields we have to use a 
new symmetry. This new symmetry is (world s heet) supersymmetry, which is a symmetry 
between the (bosonic) Xß and the fermionic tpA fields that mixes them. For the action 
(2.37) the supersymmetry transformations, which leaves the action invariant, are given by 

ÖX» = , 5ijf  = -ipaedaX" , (2.39) 

where e is a constant infinitesimal anticommuting Majorana spinor. 
Next, using the Noether method (see [14]), we obtain the following (conserved) super-

current 

JAA = ̂ PÄPA4'A<L)XLT , (2.40) 

where we us e light-cone index for the spinor index A = +, —. The classical constraint is 
that the supercurrent is zero. 

From the action (2.37) we obtain that the equations of motion for the fermion fields 
are given by the two-dimensional Dirac equation pada4>ß = 0. In the basis given above 
this implies that similar to the bosonic case, we obtain two decoupled equations 

d+iit = 0 , = 0 , (2.41) 

which means that il't and ip£ describ e right- and left-moving modes, respectively. Next, 
rewriting the supercurrent as2 J+ = ip^d+X11, and J_ = ip^d-Xß, we can summarize all 
the classical constraints as follows: 

0 = J+ = J_ = T++ = T . (2.42) 

The next step is to obtain the full quantum constraints. However, before doing this 
we take a look at the various boundary conditions that the fermion fields must obey. We 
note that for the Xß fields we have the same boundary conditions, equations of motion 

2Here we have renamed J+A —• J+ and similar for J-A, since only the positive chirality spinor compo
nent of J+A is non-zero, see [14]. 
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and mode expansions as in the bosonic case3. For the fermion fields an investigation leads 
to the following possible boundary conditions [14]: 

ip+(r, 0) = V_(t, 0) , ir) = tt) . (2.43) 

The two cases are named Ramond (R) boundary conditions (for the plus case) and Neveu-
Schwarz (NS) boundary conditions (for the minus case). In the (R) case the mode expansion 
of the fermion fields is given by 

=  ( 2 - 4 4 )  

^ nez 

where the sum runs over the integers. In the (NS) case we instead have 

= \ E K*~ira±, (2-45) 
* n€Z+1/2 

where the sum runs over the half integer numbers. This means that the theory has two 
different sectors, (R), which gives space-time fermions and (NS), which gives space-time 
bosons [14]. That the two sectors give fermions and bosons, respectively, will b e obvious 
when we investigate their spectrum below. 

The operators dfn and obey the following anticommutating relations: 

= tT<W, 
= r)»»6r+s . (2.46) 

For the closed st ring we obtain similar expressions. Note, however, t hat in this case we 
have different mode operators for ip^ and (i.e., we have and and d[\ and 
respectively). This naturally leads to four sectors, since a closed s tring can be seen as 
built from different parings of left- and right-moving modes. These four sectors are called 
(RR), (R-NS), (NS-R) and (NS-NS), where the first and last give space-time bosons and 
the second and third space-time fermions. 

Next, we obtain the super-Virasoro operators from the energy momentum tensor and 
the supercurrent. From the energy momentum tensor we get as in the bosonic case the 
infinite set of operators Lm (which will be different for (R) and (NS) boundary conditions), 
while from the supercurrent we get the infinite set of operators Fm for (R) boundary 
conditions and Gm for (NS) boundary conditions. The Lm has the following definition in 
terms of a f^, d>^ and [14]: 

OO ^ OO ^ 

Lm 2 ^ ^ • Q—n ' ^ "I" 2^^ ' ^
J

~
n * ' (-^) ' 

— OO —OO 

^ 00 ̂  ^ ]l 
Lm = 2 ^ y * ®—n ' ®m+n • ^ ^ (^* 2^^ * ^~r ' ̂ m+r ' ' (2.47) 

-00 r€Z+1/2 

3Note, however, that the energy momentum tensor is not the same as in the bosonic case due to the 
fermion terms, see, e.g., [14]. This implies, as we will see below, that the expressions for Lm must be 
modified. 
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while for F m and Gr we obtain 

^ OO 
Fm 7^ ^ ̂  n " dm+n ? (-^) Î 

Gr = lf^a_n-br+n, (NS). (2.48) 

We note that for L m it is only necessar y to use normal ordering when m = 0. 
The above given operators obey the following Virasoro algebra [14]: 

[^mi -^n] r^)L/(m+n) ~1~ 5 

[^mj -^n] ~ ^2^ [w+n) > (2.49) 

[-^m? -^n] ~b —m , 

for (R) boundary conditions (the fermionic sector), and 

[•^mi -^n] ^-^(m+n) "l" ~1Tl(^îïl 1 )^m+n j 

[^m; Gr] = (~7?7. r)G(m+r) , (2.50) 

[Gr,a]=2L(r+s) + ^(r2-i)5m+n, 

for (NS ) boundar y conditions (the bosonic sector). 
Similar to the bosonic case in section 2.1.1, we have the following quantum constraints 

on physic al states for the open sup.erstring in the (R) sector 4: 

Fm|phys > = Lm|phys >= 0 , m> 0 , 

L0|phys> = 0, (2.51) 

and for the (NS) sector 

Gr|phys > = Lm|phys >= 0 , m > 0 , r > 0 , 

(£o-^)|phys> = 0. (2.52) 

It can also be shown that one has to choose the dimension o f space-time to be d = 10, in 
order to decouple all negative norm states [14]. 

4See, e.g., [14] for a derivation of the non-trivial L0 constraints, and that the dimension of space-time 
must be d = 10. 
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The above constraints Imply that the mass spectrum in the (R) and (NS) sectors, 
respectively, is given by 

a'Ml = Na + Nd, a'Ml = Na + Nb - i , (2.53) 

where we from (2.47) have obtained that 

OO OO oo 

Na ^ a_m • <y.m , Nd ^ ; rnd—m • dm , ^ ^ rb— r • br . (2.54) 
m= 1 m—1 1/2 

We build our Fock space, in the (NS) sector, by using creation operators (i.e., using the 
eight transversal components of) atm and btr on the ground state |0; k >NS. As usual for a 
ground state, o^[0; k >NS= 0 and 6{f|0; k >NS= 0, for m > 0 and r > 0. In the (NS) sector 
the ground state is a singlet with mass squared — 5^7, i.e., it is a tachyon. This might sound 
disturbing, however, as we will see below, this state is not included in the final spectrum, 
because it is removed by the GSO projection. 

In the (R) sector the Fock space is obtained by using the creation operators (i.e., using 
the eight transversal components of) a^Lm and dtm on the ground state |0; k >R. Here the 
ground state is massless but not a singlet. The reason for this is that in the (R) sector there 
is a fermionic zero mode dfi, which obeys {c?Q,dg} = which means that 7^ = \Z2dg 
obeys an SO(l,9) Clifford a lgebra. Moreover, D% commutes with Lq5, which means that 
|0; k >R and dg |0; k >R have the same mass. We therefore conclude that the ground state 
is a massless SO (1,9) spinor with 8 on-shell degrees of freedom . Note also that in the (R) 
sector there is no tachyon in the spectrum. 

So far, there are a few drawbacks with our open superstring theory. (1) There is a 
tachyon in the (NS) spectrum. (2) It can be shown that the theory, at this point, is not 
space-time supersymmetric. These two problems are solved by the so called GSO projection 
[25], The GSO projection also renders the theory modular invariant, which is e ssential in 
order for a superstring theory to be consisitent. 

The GSO projection demands that states with odd fermion number should be removed 
from the spectrum. A further investigation shows that the fermion number F is given by 

F = nb - 1 , (NS) , 

F = nd + 5 , (R) . (2.55) 

Here rib and is the number of cr eation operators 6_r and cLm, respectively, that have 
been used on the ground state. Furthermore, <5 = 0,1, for the (R) sector vacuum with 
positive and negative chirality, respectively6. From this condition we obtain that the 

5This is easily obtained by using that [eL„ • dn, d0] = 0, if n 7^ 0. 
6Note that here we could instead have set 6 = 1,0, for the (R) sector vacuum with positive and negative 

chirality, respectively. The only difference from this would have been that the massless multiplet below 
would have been 8V ® 8C instead. Physically there is n o difference. Note, however, that this difference is 
important when constructing a closed string theory from two open strings, since we have two choices, (1) 
both open strings have the same chirality or (2) they have different chiralities, see below. 
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tachyon is removed, since nj, = 0. Hence, in the (NS) sector the true ground state is a 
massless vector with eight degrees of freedom (&11/2|0; k >NS). This means that the GSO 
projected open string has a ground state with eight bosonic and eight fermionic degrees 
of f reedom. Hence, the massless spectrum is space-time supersymmetric. Next, since the 
little group for SO(l,9) is SO(8), the ground state multiplet can therefore be written as a 
8V © 8S representation of SO(8). 

The closed superstring can now be built from two open superstrings, which means that 
the spectrum is the direct product of two open string spectra. For example, the maximally 
supersymmetric type II string theories A and B, are obtained by using open strings with the 
same chirality (IIB) and different chirality (IIA). In the two cases we obtain the following 
massless spectrum: 

(8V © 8S) ® (8V © 8C) , (HA) , 

(8V © 8S) (x) (8 V © 8S) , (IIB) . (2.56) 

From this we obtain that both the type II theories have the same NS-NS sector, namely 

8V C8V = 10 28 © 35v , (2.57) 

which are identified with the dilaton </>, the NS-NS two form BßU and the metric gßu .  Note 
that this is the same spectrum as the closed bosonic string. 

In the R-R sector we instead obtain different results for IIA/B, namely 

8S ® 8C = 8V ® 56t , (IIA) , 

8S ® 8S = 1 © 28 © 35c , (IIB) . (2.58) 

These fields are identified with the vector C(i) and three form C@) f or type IIA and with 
the axion C(0), the two form C@) an d four form (with self-dual fields strength) for type 
IIB. The NS-NS and R-R sectors give a total of 128 bosonic degrees of freedom in both 
cases. 

The fermionic R-NS and NS-R sectors are given by 

8V <g> 8C = 8C © 56s , 

8V cg> 8 S = 8S © 56c , (2.59) 

for type IIA, while for type IIB we have two copies of the second one in (2.59). This 
means that for IIA we have two spinors and gravitinos with different chiralities, while 
they have the same chiralities for IIB. The total number of fermionic degrees of freedom is 
128. Hence, the massless spectrum for both type IIA/B superstring theory are space-time 
supersymmetric. 

In the last subsection we saw that gravity coupled to a two form and a dilaton is the 
massless limit of closed bosonic string theory. Here, we have obtained that in the maximally 
supersymmetric case there are two different massless limits, IIA/B. This indicates that N=2 
type IIA/B supergravity is obtained in the massless limit of type IIA/B string theory, since 
they have exactly the same spectrum as the massless part of the IIA/B spectrum. 
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Name IIA IIB I HetA HetB 
string type closed closed open and closed closed closed 

oriented oriented non-oriented oriented oriented 
10D N = 2 N = 2 N = 1 N = 1 N = 1 

SUSY non-chiral chiral 
10D none none 50(32) SO( 32) Es x Eg 
gauge group 

Table 2.1: The five consistent string theories. Here SUSY means the number of supersymmetries. 
HetA is the heterotic string theory with gauge group SO(32), while HetB is the one with Eg x Eg. 

There are also three other interesting superstring theories, that we have not mentioned 
so far. These are the two heterotic theories and the type I theory. The massless part 
of these theories can be identified with the two heterotic supergravity theories and type 
I supergravity, which all have N=1 supersymmetry. For an introduction to these string 
theories and more on the type II theories we refer to the standard text books [14, 15, 16], 
see also the next subsection for a very short introduction to the type I and the heterotic 
string and supergravity theories. 

In table 2.1 we summarizes the five superstring theories. From this we see, e.g., that 
all five string theories contain closed strings, while type I also contains open strings. Note 
however, that open strings can exist in the type II theories if they end on D-branes, see 
below. 

2.1.3 Supergravity in 10 and 11 dimensions 

We saw in the subsection 2.1.1 that the massless sector of bosonic string theory can be 
described by a 26-dimensional target space action. Similar, in the last subsection we 
identified the massless sector of type IIA/B string theory with type IIA/B supergravity. 
In this subsection we are going to give a brief introduction to these supergravity theories 
as well as the different N=1 supergravity theories and the unique supergravity theory in 
II dimensions. 

(1) N=1 d =  11 

We begin by discussing the N=1 supergravity theory in 11 dimensions [27], The massless 
on-shell multiplet consists of a. graviton guN, a three form A3 and a gravitino ip%j. This 
multiplet is supersymmetric, since it has 128 bosonic degrees of freedom (44 + 84) and 128 
fermionic degrees of f reedom. The bosonic part of the action is given by 

s=à? J *• v=»(* -T^)->hIF^F'AA" <2-60) 

where F4 = dA3. This action if further supplemented with a Bianchi identity dF± = 0. 
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This theory is interesting for various reasons. In this thesis we will focus on the fact that 
the d — 11 supermembrane couples to the above 11-dimensional supergravity background, 
as well as the fact that there are solutions to the 11-dimensional supergravity equations 
of m otion that correspond to solitonic membranes and 5-branes. Furthermore, and most 
importantly, as we will see in the next section, it has been conjectured tha,t 11-dimensional 
supergravity is the low ener gy limit of a yet fairly unknown theory, called M-theory [6]. 
This non-perturbative theory is conjectured to give all pe rturbative string theories, in 
different perturbative limits. All these issues will be discussed in the next section. 

(2) N=2 d= 10 

In 10 dimensions there are two maximally supersymmetric supergravity theories, with 
32 supercharges, called type IIA and IIB. Prom the last subsection we know that these 
theories are the low energy limit of type IIA and IIB string theory, respectively. The field 
content for these two theories is given in (2.57), (2.58) and (2.59). For type IIA theory the 
bosonic part of the action is given by (in the string frame) [16] 

5iia = 2^/^^(e-^iR + m)2 - y2Hl) - - ̂ F4
2) 

-  4 ^ / ^ 4 A F 4 A B 2 ,  ( 2 . 6 1 )  

where F,\ = dC3 + H3 A C\ , F2 = dC\, H3 = dB2 and 4> is the dilaton. For type IIB the 
bosonic part of the action is given by (in the string frame) [16] 

SlIB = ^fdwx^(e-2*[R + m)2-~HÏ]-\(daf 

- Y^[F3 +aH3}2 -—F^ + ~ J (c4 +-B2 AC2^j/\ F3 A H3 , (2.62) 

where F5 = dC4 + H3 A C 2, F3 = dC2, H3 = dB2, a is the RR axion and <fi is th e dilaton. 
In order to obtain the correct number of degrees of freedom we also have to demand that 
the four form C4 has a self-dual field strength. This self-duality constraint is imposed, by 
hand, at the level of th e equations of m otion. 

At this moment we will leave the IIA/B supergravity. However, in the next section 
we will return to them and see how the type IIA theory is related to 11 dimensional 
supergravity, and how the type IIB theory can be seen to be S-duality invariant. 

(3) N=1 d= 10 

Next, we take a look at the three supergravity theories, in 10 dimensions, which have 
N=1 supersymmetry. The first one is the type I theory. This is the low ener gy limit of 
type I string theory. The massless sector consists of one gravitino and one spinor, as well 
as a graviton, dilaton and an RR two form. These are massless modes from the closed 
unoriented type I string. However, there is also a massless gauge field (and its super 
partner), with gauge group SO(32), from the massless sector of an open superstring. This 
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open string sector is added to the closed str ing, because t he type I closed st ring is not 
consistent in it self, see, e.g., chapt er 7.1 in [16]. This leads to a massless supermultiplet 
with N=1 supersymmetry. The bosonic part of the type I action is given by 

5i = b J dl°x^~9(e'2'[R+m)2] ~T2P'~ ie^TrF2) - (2-63) 

where F3 is the modified field s trength for the two form, see [16], (f> is t he dilaton and 
F2 = dA + A A A, where A is the gauge potential in the adjoint representation of SO (32). 

For those familiar with D-branes (see next subsection and section 2.2) it might be 
interesting to know th at the type I string theory can be obtained from type IIB string 
theory by adding a single space-filli ng 09-plane and 16 D9-branes. Here t he 09-plane 
turns the IIB theory into type I unoriented string theory, while adding the 16 D9-branes 
on which open s trings end, gives the open string sector. The number of D9-branes has to 
do with the fact that 16 is the rank of SO (32), see [16]. 

The heterotic string theories [4] were the last two string theories to be invented. These 
are a bit special, since the left-moving and right-moving sectors are not chosen to be the 
same as they are for typ e I and II theories. Instead, we choose to combine a left-moving 
bosonic string with a right-moving superstring. We note that although there is a bosonic 
part included in the heterotic string, there is no tachyon in the spectrum, which is a result 
of the level matchin g condition. Since the bosonic string lives in 26 dimensions and the 
superstring in 10, we have to compactify 16 dimensions on a torus T16, for the left-moving 
bosonic string. This introduces a gauge field A. Furthermore, since we have compac tified 
16 dimensions the rank of th e gauge group for th e gauge field A has to be 16. Naively, 
this would lead to an abelian gauge group U(l)16. However, if one choose the torus to 
be "self-dual"7 (see, e.g., [16]) one obtains a non-abelin gauge group. The possible gauge 
groups have been shown to be SO (32) and Es x Es [4]. For a further discussion abou t 
heterotic string theory see, e.g., [4, 14, 15, 16]. 

The two heterotic supergravity theories are obtained as the low energy limit of heterotic 
string theory with gauge group SO(32) and Es x E$, respectively. T he bosonic part of th e 
actions is given by 

S. = J d10xV=-ge-2* (R + 4(9</>)2 - yHt - ̂ TrF2) , (2.64) 

where H% is th e modified field s trength for th e two form, see [16], <j) is the dilaton and 
F2 = dA + A A A, where A is the gauge potential with gauge group SO(32) or Es x E8, 
respectively. Hence, the total field content is essentially the same as for th e type I string, 
except that we here have two possible gauge groups SO (32) and Es x Es. It is interesting 
to ask if thi s similarity between the heterotic theory with gauge group SO (32) the type I 
theory means that they are somehow related? The answer to this question seems to be 
yes, as we will see in the next section when we discuss S-du ality. 

'To be more specific: the torus X1G = R16/A, where A must be an euclidian, even, self-dual lattice. 
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2.1.4 T-duality 

In the final subsection on perturbative string theory we will discuss a duality between 
two different theories (or the same theory), compactified on a circle with radii R and 
respectively. This duality is called T-duality and does not exists for ordinary field theories, 
since only an extended object, like a string, can wound around a compact dimension, see 
below. 

Closed strings 

We start with a discussion about closed bosonic str ing theory compactified on a circle. 
Recall the mode expansion for the field Xß for a closed bosonic st ring: 

qpl1 fl1 /yf I /y! 

X»(R,A)  = X£(A+ )+X£(A-)  = y + Y + ̂ _(^ + ̂ )r+^/|(â0^^)C7+(oscillators) . 

(2.65) 
We have chosen to only look at the zero modes since the oscillators are not important in 
the following discussion. In the above equation we have used, from the discussion in section 

2.1.1, that ctg = aoM = (Hence, the forth term in (2.65) is really zero.) This is 
required for X p to be single valued when performing a periodic shift in a. 

Next, we investigate what will happen if we let, e.g., x25, be periodic x25 ~ x25 + 2-irR, 
where R is the radius of the circle. This has two consequences: (1) the momentum p25 is 
quantized as 

P 2 5  = ^,  (2 .66 )  

where n is an integer, and (2) we can no longer demand that A"25(r, a + 2n) = X 2 5 ( t,  a). 
Instead we relax this condition and instead demand that 

X 25( T ,  (7 + 27r) = X25(r, <J) + 27T WR , (2.67) 

since the string can wind around the compact direction. Here w is an integer, the winding 
number. This means that for w ^ 0 we have a ^5 ^ Qq5. Using equations (2.65)-(2.67) we 
obtain the following two coupled equations for the zero modes oft5 and äg5-

a f + à f  = 
2 n a' 
~R\ 

äf - af = wR\j— t. (2.68) 

Solving these equations give 

9, rn wR\ [a* 
~ \R ~ ~är) V J ' 

-25 = (n , ä» = I <2Ä,> 
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Next, considering the mass spectrum in the 25 uncompactified dimensions, we find [16] 

=  ^ ( ä f ) 2 + i ; ( J V - l ) ,  ( 2 . 7 0 )  

which can be rewritten in the following more symmetric way 

9  n 2  W2R2 2 . , r  - tnmi\ M2 = —+ —- + -(7V + iV-2}, (2.71) 
Rz az a' 

where we have used that the level matching condition has been changed to nw+N — N = 0. 
In (2.71) we have two different contributions from the compactification, (1) the usual 

Kaluza-Klein states with mass ~ l/R and (2) the stringy winding states with mass ~ R. 
With stringy we mean that these states are included due to the extended nature of strings. 
We a lso see that the Kaluza-Klein and the winding states have the opposite dependence 
of the radius R. This leads us to ask if there exists a symmetry between these states? The 
answer to this question is yes, and it is easy to see that the spectrum (2.71) is invariant 
under the following symmetry transformation: 

n —> w , tr —> n , R —>• R! = — . (2.72) 
K 

For the zero modes this implies that oiff —> -af and <5Q5 -4 âf, when we go fr om radius 
R to radius R' — This transformation between the two dual compactifications is called 
a T-duality transformation. For the field X25 this implies that 

X'25 = XL
25(a+) - X f { o ~ )  . (2.73) 

A consequence of this is that closed bosonic string theory compactified on a circle with 
radius R is equivalent to closed bosonic string theory compactified on a circle with radius 
a' 
R • 

We have seen above that for closed bosonic string theory compactified on a circle there 
exists a T-duality symmetry, which maps a compactification on a circle with large radius 
to one with a small radius. This indicates that there exists a minimum radius, R = Va', 
where the theory is self-dual, since R' = ~ = R. However, although perturbative string 
theory seems to indicate a minimum radius, this does not mean that this is true when 
incorporating also non-perturbative effects. In fact it is believed that so called D-branes 
can probe smaller length scales, see, e.g., [16]. 

In the above discussion we note that for n = w = 0 and N = N — 1, we obtain the 
usual massless Kaluza-Klein states, which are obtained by using oscillators in the compact 
direction. This leads to two U(l) vector fields (from the off-diagonal components of th e 
massless graviton and NS-NS two form) 

A* - r,(g ~ ~ — -(g + B)m,25 , (2.74) 
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where /i = 0,1,..., 24. There is also a scalar which is identified from the graviton, as 
4>25 = I log 525,25- We note that the vev of th is scalar is proportional to the compactified 
radius R. As a summary: for closed bosonic string theory compactified on a circle w ith 
radius R, the massless spectrum is given by a graviton dilaton, NS-NS two form 
B and from the fact that we have a compactified dimension, we have two vectors with 
U(l)LxU(l)R gauge symmetry and a scalar </>25. Moreove r, at the self-dual radius R = \fa', 
it can be shown that there are extra degrees of freedom t hat enhance the gauge symmetry 
for the vectors to SU(2)LxSU(2)R. What happens is that we also have massless fields 
coming from the levels 

n  =  w  =  ± l ,  N  =  1  , N  =  0  • ,  n  =  — w  = ±1 , N  =  0 , N = 1 ,  (2.75) 

since these values implies that M2 = 0, which is obtained from (2.71), using R = \fa'. 
From (2.75) two vectors combine with U(1)L to form SU(2)L, while the other two com
bine with U(1)R to form SU(2)R. Hence, for t he massless vectors, we have enhanced the 
gauge symmetry from U(l)LxU(l)R to SU(2)LxSU(2)R. Note that this gauge symmetry 
enhancement happens in a very similar way to how the gauge groups SO (32) and Es x Eg 
are obtained for heterotic string theory. 

If one T-dualize in more than one dimensions, say n, then the T-duality group is 
0(n,n;Z). For supergravity the T-duality group is instead O(n,n;M), which is discussed, 
together with transformation properties for bac kground fields, in chapter 3. For a further 
discussion on T-duality for closed bosonic string, see, e.g., [15, 16] . 

Open strings 

Next, we give a brief introduction to T-duality for open bosonic strings. From (2.16) we 
obtain that compactifying in the x25 direction we have the following open string expansion 
in this direction: 

rv25 

X25(T,  a) = x23 + 2A'p25r + _S_ E -MT  cog n(J ^ (2.76) 

where p25 = g. To obtain the T-dual field X'25 we use (2.73), which for an open string 
gives 

25 

X/25(t, a) = a/25 + 2a'^-a + V2a' ^n_e^nr g-n n(J _ (2.77) 
R ^ n 

n^O 

We no te that compared to (2.76) we no longer have any r dependence in the zero mode 
sector. Furthermore, at the endpoints A — 0, IT, the oscillator term vanishes. Hence, the 
endpoints of th e open string does not move in t he x25 direction. This means that instead 
of satisfying a Neumann boundary condition in the x25 direction, the open string satisfies 
a Dirichlet boundary condition 

X'25(T ,  tr) - X™{R,  0) = = 2TrR 'N  , 
H 

(2.78) 



24 Chapter 2 Introduction to String/M-theory 

where we have used (2.77) and (2.72). This formula can be seen as defining an open string 
"wind i ng"  n umbe r  n  €  Z .  

To conclude: we have started with an open string that obeys Neumann boundary 
conditions in all 26 dimensions, i.e., its endpoints can move freely in all 26 dimensions. 
After T-duality in one directions (x25 ), the boundary condition in the T-dualized direction 
has changed to Dirichlet boundary condition. Hence, the endpoints of the open string can 
now only move freely in 25 dimensions. This means that in this case the open string can 
been seen as ending on a hyperplane with 24 spatial dimensions. Before the T-duality 
it is possible to view the string as ending on a space-filling 25-dimensional hyperplane. 
Furthermore, the winding number n tells us the "difference" betw een the two hyperplanes 
which the open string end on. For example, n = 0 implies that the two endpoints end on the 
same hyperplane. Note that the hyperplanes are identified periodically in the x25 direction, 
with period 2irR'. Moreover, it should be obvious that T-duality in k dimensions implies 
that the T-dualized open string ends on a hyperplane with 25 — k spatial dimensions. 
This hyperplane has been named Dp-brane where p = 25 — k and k is the number of 
dimensions that have Dirichlet boundary conditions. The number of dimensions with 
Neumann boundary conditions is obviously p + 1. 

T-dual superstring theories 

We end this subsection with a brief discussion about T-duality for superstring theories. 
For t he five superstring theories it can be shown that type IIA and IIB are T-dual, when 
compactified on a circle w ith radius R and R! = %, respectively, see, e .g., [15, 16]. This 
implies that type IIA and IIB string theory are equivalent theories when compactified 
down to nine or less dimensions. For a type II string theory compactified on an n-torus, 
the T-duality group is 0(n,n;Z). 

A few indica tions that the IIA/B duality is correct are given by (note that the duality 
has been rigourously proven, see, e.g., [16]): 

1. Using supersymmetry, we obtain from the bosonic case that when T-dualizing type 
IIA string theory compactified on a circle wi th radius R, there is a parity transfor
mation for one of the fermions, which means that the fermions after T-duality have 
the same chirality (as in type IIB). 

2. For the massless RR fields, Ci and C3 transform into C0, C2 and C4 , under T-duality. 
For the explicit transformation rules we refer t o chapter 3 equation (3.5). That this 
happens can be motivated from the analysis of T-duality for open strings. There we 
found that under T-duality a hyperplane, i.e., a Dp-brane, on which open strings end 
transforms into a D(p — l)-brane or a D(p + l)-brane, depending on if t he T-duality 
is performed in a direction parallel to the Dp-brane or transeverse, respectively. This 
happened because the open string boundary conditions are changed in the T-dualized 
directions. Moreover, in type II string theory it can be shown that the massless RR 
fields couple to D-branes, e.g., C3 couples to a D2-brane. Hence, under T-duality, the 
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RR fields C i and C3 transform into Co, Ci and CJ, since the corresponding branes 
DO and D2 should transform into D(—1), D1 and D3-branes. 

3. Both type IIA and IIB have the same NS-NS sector. Therefore using the result for 
closed bosonic s tring theory, indicates that the NS-NS sectors are T-dual. 

It can also be shown that the two heterotic theories are T-dual to each other, when 
compactified on a circle with radius R and R' = respectively. In this case the T-duality 
group for a heterotic string theory compactified on an ra-torus is 0(n+ 16,n;Z) [28]. Here 
the extra 16 emerges because the left-moving modes are bosonic and already compactified 
in 16 directions. 

To conclude: we have found that of the five perturbatively inequivalent superstring 
theories in 10 dimensions, there are only three perturbatively inequivalent superstring 
theories below 10 dimensions. This leads us to ask the following question: If we also are 
able to incorporate non-perturbative results, is it then possible to obtain that all st ring 
theories, in fact, in some sense, are equivalent, e.g., can they be shown to be different 
perturbative limits of the same non-perturbative theory? As we will see in the next section, 
the answer to this question is most likely yes. 

2.2 M-theory and duality 

In this section we will discuss non-perturbative aspects of str ing theory. The topics will 
be: (1) p-branes, which are non-perturbative extended objects (particle (p = 0), string 
(p = 1), membrane (p = 2), etc.), that correspond to solitonic solutions in the supergravity 
theories discussed so far in this thesis. (2) S-duality, which is a duality between theories at 
strong and weak coup ling, respectively. (3) U-duality, which essen tially is a combination 
of S- and T-dualities. (4) A new non-perturbative theory in 11 dimensions, called M-
theory, which is not a string theory but a theory containing membranes and 5-branes, 
and has 11-dimensional s upergravity as its low energy limit. For other introductions to 
non-perturbative string theory, see, e.g., [15, 16, 29]. 

2.2.1 Branes in 10 and 11 dimensions 

A p-brane is an object that is extended in p  space dimensions, e.g., a string is a 1-brane, 
a membrane is a 2-brane, etc. That these objects exist in string theory was hinted in 
subsection 2.1.4, when we discussed T-duality for open strings. They can also be argued 
to exist from using supergravity, since there exist solitonic solutions in supergravity, which 
have the interpretation that they have been generated from a stack of p-branes. Further
more, all the p-branes that we discuss in this subsection preserve half of t he target space 
supersymmetry, which means that they are BPS objects. This implies that these objects 
have the minimum value of the mass that is allowed by supersymmetry. That they are BPS 
is very important, since this implies that they receive no quantum corrections, perturba
tive or non-perturbative, to their mass [32], as long as supersymmetry remains unbroken. 
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For e xample, this means that p-branes are very useful for investigating strong-weak cou
pling conjectures. A concrete example is S-duality in type IIB string theory, where we 
can compare the tensions between a fundamental string and a D-string, and find that 
they transform into each other under S-duality. Here the BPS property of the two strings 
implies that their tensions are valid for any value of t he closed string coupling constant. 

p-branes in 11 dimensions 

We begin in 11 dimensions, and claim that 11-dimensional supergravity indicates that 
there exists a membrane (2-brane) and a 5-brane in 11 dimensions. The reason for this 
is the following: in 11-dimensional supergravity there is a three form As, and similar to 
how a point particle couples to a one form and a string to a two form (i.e., the NS-
NS two form), it should be possible for a membrane to couple to the three form A3. 
Furthermore, if this is true it should be possible to obtain a solitonic supergravity solution, 
which interpolates between a vacuum with SO(l,2) xSO(8) symmetry (since a membrane 
breaks SO(l,10)-+S(l,2)xSO(8)), for r ~ 0, and flat 11-dimensional space-time, for r —> 
oo. Here r is the radius for the eight-dimensional space transverse to the membrane. Now 
the question is, c an we obtain a solution of th is type to the 11-dimensional supergravity 
equations of mo tion? The answer is affirmative and the solution is given by 

ds2 = H'irj^dx^dx" + H^5mndxmdxn , /x, u = 0,1,2, m,n = 3,..., 10 , 

R6 

A3 = H~1dx° A dxl A dx2 , II — 1 !—-(r , (2.79) 

where H is a harmonic function on the transverse space. A derivation of this solution 
can be found in [33, 34]. We note that it is possible to add an arbitrary constant to 
the three form, since this does not effect th e solution. The above solution can be shown 
to preserve half of the supersymmetry. It is easy to see that this solution interpolates 
between AdSi x S7 (r ~ 0) and flat 11-dimensional space-time (r —> 00). At r = 0 there is 
a coordinate singularity. However, in the interior there is a true time-like singularity [34]. 
The interpretation of this supergravity solution is that at r = 0 there is a membrane or a 
stack of N membranes on top of each other. Since the membranes are solitons they obey 
the no-force condition, which means that they do not attract or repulse each other. This is 
an effect of th e gravitational attraction being exactly compensated by the non-zero three 
form. Note that all BPS branes obey the no-force condition. 

The membrane couples electrically to the three form, which indicates that some other 
extended object couples magnetically to it. This must be a 5-brane, since a 5-brane in 11 
dimensions couples magnetically to a (ll-7)-form field strength, which appear in the dual 
version of the supergravity theory [35]. The corresponding supergravity solution should 
therefore interpolate between a vacuum with SO(l,5) xSO(5) symmetry, for r ~ 0, and flat 
11-dimensional space-time, for r —> 0 0. This solution looks very much like the membrane 
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solution (2.79), and is given by [36] 

ds2 = H'^rj^dx^dx" + Hiômndxmdxn , fi, v = 0,1,..., 5 , ra, n = 6,..., 10 , 

where H is a harmonic function on the transverse space and 73 is the three form dual to 
the six form, i.e., 73 = 3i?3£3, where de3 is the volume form of the four-sphere. Again 
the solution is half supersymmetric and interpolates between AdS7 x S4 (r ~ 0) and flat 
11-dimensional space-time (r —» 00). A difference between the 5-brane and membrane 
solutions is that the 5-brane solution is completely non-singular everywhere, see, e.g., [34]. 

Since the solitonic membrane and 5-brane are infinitely extended objects they naturally 
have an infinite mass. However, they still have a finite tension, which are T2 = (2^3 an(^ 

T5 = > f°r the membrane and 5-brane, respectively. Here dp is the 11-dimensional 

Plank length, which is the only length scale in 11-dimensional supergravity. 
Similar to the string we can also write down actions for the membrane and the 5-

brane, that generalizes the BDHDZ action (2.2). These actions govern the dynamics of th e 
membrane and the 5-brane. An important difference between the membrane action and 
the string action is that the latter is Weyl invariant and the former is not. The membrane 
action is also much harder to investigate, since it does not give a free theory, but a highly 
non-linear theory. In subsection 2.2.3 we continue to discuss the membrane action. 

Concerning the 5-brane we would like t o mention that it is described, at low energy, 
by a six-dimensional superconformai (2,0) theory, where the massless multiplet consists of 
five scalars, one two form with self-dual field strength and four chiral fermions, which gives 
a total of 8+8 degrees of freedom. For a single 5-brane the (2,0) theory is free, while for a 
stack of 5-branes on top of each other it is a very complicated interacting theory. For more 
on these fairly unexplored theories, see, e.g., [30, 16, 57], while for a new and interesting 
approach to the (2,0) theory, see [37]. 

In 11-dimensional supergravity there are also two other solutions which preserve half 
supersymmetry. These are the plane wave and the Kaluza-Klein monopole, which are 
purely gravitational solutions, i.e., the three form is zero, see, e.g., [38]. 

p-branes in 10 dimensions 

We have seen above that 11-dimensional supergravity admits half supersymmetric so
lutions, which correspond to a membrane and a 5-brane. This leads us to expect, together 
with the results obtained earlier, that in type IIA/B supergravity there should exists half 
supersymmetric solutions corresponding to other branes. In subsection 2.1.4, T-duality for 
open branes suggested that in type IIA/B there should exist DO, D2-branes in type IIA 
string theory, and D(-l), D1 and D3-branes in type IIB string theory. However, since these 
branes couple electrically to the relevant RR potentials, there should also exist various 
higher-dimensional D-branes that couple magnetically to the RR one and three forms in 
IIA and to the zero and two forms in IIB. Note that the D3-brane in type IIB couples both 

r 
(2.80) 
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electrically and magnetically to the RR four form, since the five form field strength is self-
dual. This leads us to conjecture that for type IIA supergravity there should exist solutions 
which correspond to Dp-branes for p = 0,2,4,6, while for type IIB for p = — 1,1,3, 5, 7. 
In fact, this is true and a generic Dp-brane solution of type IIA/B supergravity can be 
written as (in the string frame) 

ds2 = H~i(-(dx0)2 + • • • + (dxpf ) + H^(dr2 + r2dfl2s_p) , 

e 2 ^  = g2E^ , H = 1  + 2  ,  ( 2 . 8 1 )  

l . o  .  -  1  
C = ——dx° A • • • A dxp + —(7 — p)gN{a')L^EeT-p . 

9 H 9 

Here de- v is the volume element on the transverse (8— p)-sphere, H is a harmonic function 
on the transverse space and g is the closed string coupling constant. This supergravity 
solution corresponds to a stack of N Dp-branes (0 < p < 6)8 on top of each other, aligned 
in the x\ i = 1,... ,p, directions, with horizon at r = 0. Furthermore, the solitonic solution 
interpolates between AdSp+2 x S8~p times some power of the dilaton (r —> 0) and flat 10-
dimensional Minkowski space-time (r —> 00). Note that only for p = 3 there is no dilaton 
factor, i.e., the D3-brane solution interpolates between AdS$ x S5 and flat space-time. The 
tension of a Dp-brane is given by [16] 

Tp = -rr , (2.82) 
(27t )Pg(a')^r 

where g is the closed string coupling constant. We see here that the tension is inversely 
related to the string coupling constant. This means that Dp-branes are solitonc objects. 

For small fluctuations around a D-brane the world volume dynamics is described by 
the Dirac-Born-Infeld action together with a Wess-Zumino action 

= -TjV-detG? + F) + TP J e f A C ,  ( 2 . 8 3 )  

where T = 2i:a'F + B is the gauge invariant world volume field strength and g and B are 
the pullbacks of the background metric and NS-NS two form. At low energy the dynamics 
of a Dp-brane can be described by maximally supersymmetric Yang-Mills theory in (p +1) 
dimensions. 

Now that we have obtained all the D-branes in type II supergravity we note that 
there must also exist half supersymmetric solutions, with non-zero NS-NS two form, which 
correspond to a string and a 5-brane, respectively. Indeed, these solutions exists, see, e.g., 
[16]. 

After the above discussion it should be obvious that for the type I and heterotic su-
pergravities there also exist string and 5-brane solutions. For a much more thorough 
introduction to D-branes, the DBI action, the boundary state formalism etc, see, e.g., 
[16, 40], 

£DBI,WZ 

8For the type IIB D7-brane solution, see, e.g., [39]. 
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2.2.2 S- and U-duality 

S-duality is a non-perturbative relation between two theories (or the same theory) at weak 
and strong coupling. For example, it has been conjectured that the maximally super-
symmetric superYang-Mills theory in four dimensions is S-dual to itself. This conjecture 
has been fairly well test ed, see, e.g, [41], but not rigorously proven. Under an S-duality 
transformation the elementary particles and the solitons are interchanged and the coupling 
constant is inverted. 

Type IIB S-duality 

Here it will argued that type IIB string theory is S-duality invariant. A first test of this 
conjecture is to check t hat the bosonic part of t ype IIB supergravity action is i nvariant 
under an S-duality transformation. In subsection 2.1.3 the type IIB supergravity action, 
in the string frame, is given in (2.62). In order to check S-d uality it is more appropriate 
to work with the Einstein frame action, which is obtained by a rescaling of the metric 
9nv = This leads to the following action 

S I I B  =  ^ r 2  J  dw x V ^ g ~ E ( R E - l ( d ^ - ^ ( d a f ~ ~ e ^ H !  

~ 12 + ~ 480 "F®) + 4^2 / + 2^2 A C'2) A A ' (2'84) 

where all metric dependence is in terms of </®. 
This action is invariant under the following transformation 

= B'2 = C2l C*2 ~ B2 , ~ Ft> , C=g%, (2.85) 

where r = a + is the complex "coupling constant". Note that the condition F5 = F5 

implies that C\ = C4+B2ACI, since FI = dC[+H'Z/\C'0 = dC'4-dC2AB2 = dC4,+H3AC2 = 
f5. 

If we restrict to the special case where the RR axion a = 0, we find that e*' = e 
Hence, we have a strong-weak coupling duality. Furthermore, note that 2«2 = (27r)7^2Q'4 

must be invariant under S-duality, which implies that the new length-scale a' is identified 
with 

&' = go! . (2.86) 

Here we have used that 2K'2  = (2ît)7p'2â'4 = (2Tr)7g2a/4 = 2K2, and g' = l/g. 
From the more general case, we see that the introduction of th e complex parameter r 

is appropriate. This leads us to suspect that the type IIB supergravity action is, in fact, 
invariant under a larger symmetry. We will now show that the action is actually SL(2,R) 
invariant. To make this invariance manifest, we rewrite the action in the following way: 

s™ " è? fdl°x^(R' - jiv^ww-1)2 -

- <2-87> 
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where H r  = (H3,  F3)  for r = 1,2, e.12 = 1, -F5 = rfC'4 4- \ t r s HT  A i?| (where C4 is the SL(2) 
invariant RR four form), and W is the following metric on the coset SL(2)/SO(2) 

1 { lT'2 Re(TA - (^ + e_<i> ae^ ff - fHl^I f? 88s! 
W VRe(r) 1 )  -  i ae^ e* J  '  H ~ \ H*)  '  (2'88) 

The action (2.87) is invariant under a general SL(2,R) transformation9 

W = AWAT , = (A1)"1# , (2.90) 

where 

A = J) , ad — bc= 1 , (2.91) 

where a, b, c and d are integers. The invariance of the action (2.87) is trivial for all terms 
except the last two. However, checking these terms explicitly shows that also they are 
invariant under the above transformation (2.90). Note that the S-duality transformation 
(2.85), corresponds to the case i = I = 0 and j = — k = 1 in (2.90). 

Since type IIB supergravity theory that is obtained in the low energy limit of type IIB 
superstring theory, has an SL(2,R) invariance, it has been conjectured that the superstring 
must be SL(2,Z) invariant [5, 6]. Note that the restriction to the subgroup SL(2,Z) is 
motivated from the fact that strings with fractional charge do not exist, see, e.g., [5, 6], 

Another non-trivial test of S -duality (we check the case (2.85) with RR axion a = 0) 
is to check that the tension for the various branes transform correctly. From (2.85) it is 
obvious that the fundamental string (Fl-string), with tension TP1 = 5^7 transforms into 
a Dl-brane. This means that the tension for a Fl-string before S-duality should be the 
same as the tension for a Dl-brane after S-duality. Checking this gives: 

r " - ^ - Ù  = T- '  <2-92» 

which shows that the tensions for a Fl-string and Dl-brane transform correctly. Next, 
the D3-brane should be invariant under S-duality, which means that its tension must also 
be invariant. This is easily seen to be true, since TD3 ~ l/(ga'2) = l/(g'à'2), where we 
have used (2.86). Finally, since the D5-brane and NS5-brane are the magnetic duals of the 
Dl-brane and Fl-string, respectively, they must transform into each other. Checking this 
claim for the tensions, gives 

^DS "  fry \5 l~ ,3  = 7Ö-TS~2 /3 = ^NS5 ' (2.93) (27T Yg'a'6  (2-n)bg2a'6  

which confirms that the NS5-brane transforms into a D5-brane. and vice versa. 

Note that the first transformation in (2.90) is equivalent to the following transformation of r:  

r '  =  ^.  ( 2 . 8 9 )  
CT+ d 
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For more on S-duality for the type IIB string, see, e.g., [5, 6, 15, 16]. 

Type I-SO(32) heterotic S-duality 

Next, we will argue that the type I string theory and the SO (32) heterotic string theory 
are S-dual to each other. Again we will show that this is true for the bosonic massless 
sector. 

In subsection 2.1.3 we saw that the supergravity actions for the type I and SO(32) 
heterotic strings are very similar. This leads us to ask if they can be related in some way. 
Since they are not T-dual, we will check if t hey might be S-dual. Again we rewrite the 
actions in the Einstein frame, gßl, = eig^u. This gives t he following type I and SO(32) 
heterotic supergravity actions: 

Sl = 2«? / - \{d4>f - - ie^TrF2) , (2.94) 

and 

SH32 = 7̂ 2 J d l0x^gl[RE - \{d(f>)2 - - ̂ e"*Tr.F2) , (2.95) 

respectively, which are easily seen to be S-dual under the following S-duality transforma
tion: 

4>H = -01 , #3 = Fs . (2.96) 

Note also that re is invariant under the above transformation, which can be used to show 
that the tensions for the strings and 5-branes transform correctly under the above S-duality 
transformation. 

Another evidence for this S-duality conjecture, is that the SO(32) heterotic string can 
be found to appear as a soliton in the type I theory, which is what one would expect since 
the solitonic and fundamental strings switch places under an S-duality transformation [42]. 
Moreover, another strong evidence is that the type I string has the same world sheet 
structure as the heterotic string, see [43] for details. 

U-duality 

U-duality [5, 6] is essentially a combination of S-dua lity and T-duality, e.g., U-duality 
implies that a theory A which is compactified on a space with large volume and has the 
closed string coupling constant gB, can be dual to a theory B which is compactified on a 
space with small volume and has the inverse coupling constant gs = l/gs. Note, however, 
that the T-duality and the S-duality groups together only form a subgroup of t he larger 
U-duality group. 

A more precise definition of U-duality than the above is given by [5]: The U-duality 
group for a compactified string theory is conjectured to be the full d iscrete subgroup of 
the non-compact symmetry group for the corresponding low energy supergravity theory. 

For example, this means that the U-duality group for type II (A or B) compactified on 
a two-torus, is given by SL(2,Z)x SL(3,Z), since the symmetry group of 10-dim ensional 
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Space-time Supergravity String theory Conjectured 
dimension d duality group T-duality group U-duality group 
10A S0(1,1)/Z - -

I OB SL(2,R) - SL(2,Z) 
9 SL(2,R) x 0(1,1) 2j2 SL(2,Z) x Z2 

8 SL(2,R)x SL(3,R) 0(2,2;Z) SL(2,Z)x SL(3,Z) 
7 SL(5,R) 0(3,3;Z) SL(5,Z) 
6 0(5,5) 0(4,4;Z) 0(5,5;Z) 
5 EÔ(6) 0(5,5;Z) ^6(6) (Z) 
4 ®7(7) 0(6,6;Z) K7 7 (Z) 
3 ^8(8) 0(7,7;Z) ^8(8) (2) 

Table 2.2: Duality symmetries for type II string theory compactified down to d dimensions. This 
table was obtained from [5]. 

type II supergra.vity compactified on a two-torus is SL(2,K)x SL(3JR). For type II string 
theory compactified on a n-torus the conjectured U-duality group is given in table 2.210. 

A simple example of U-duality is compactification of type II (A or B) string theory 
on a six-torus, which is U-duality invariant [5]. In this case we obtain from table 2.2 that 
E7(7)(Z) is the U-duality group, which has a subgroup SL(2,Z) x 0(6,6; Z), that correspond 
to the S-duality group times the T-duality group. 

Another U-duality conjecture is that heterotic string theory (any of the two) compact
ified on a four torus is dual to the type IIA string theory compactified on K3 [5, 6]. This 
means that the moduli spaces are mapped into each other except that the strongly coupled 
type IIA theory maps to the weakly coupled heterotic string theory and vise versa. Note 
that compactifying on a torus breaks no supersymmetry, while compactifying on K3 breaks 
half of the supersymmetry. Hence, the two compaetifications preserve the same amount 
of supersymmetry, which of course is necessary for them to be dual. Furthermore, this 
conjecture is very interesting because it relates type IIA string theory and heterotic string 
theory, which can not be related using perturbative dualities. 

A first test of this duality is to check that the low energy theories in six dimensions 
are the same. This w^as d one in [6]11, with the conclusion that the two six-dimensional 
theories are the same if we identify (f)H = — </>IIA an d getH = e_2^IIA (?6,iia, where $6,h and ge,uA 

are the string frame metrics. This confirms that we have a strong-weak coupling duality. 
It also means that the two theories have the same moduli space of vacua, see, e.g., [6]. 
Another consistency check is obtained from the result that w^hen the K3 becomes singular, 
the heterotic string gets an enhanced symmetry group. Here both the singularities and the 
enhanced symmetries have an A-D-E classification [6]. 

10For a similar table for the heterotic string theories, see [5]. 
"Note that already in [44] it was found that 11-dimensional supergravity compactified on K3 and 

heterotic supergravity compactified on T3 have the same moduli space. Obviously this means that type 
IIA supergravity on K3 and heterotic supergravity 011 T4, also have the same moduli space. 
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2.2.3 M-theory and strong coupling 

So far, we have explained why it has been conjectured that the type IIB string theory is 
S-dual to itself and that the type I string theory and the SO(32) heterotic string theory 
are S-dual to each other. This means that we have obtained some understanding of t he 
strong coupling regions of these three superstring theories. However, we have not said 
anything about the strong coupling regions of the Eg x Eg heterotic string theory or the 
type IIA theory. It is clear that if these two theories are compactified down to d dimensions 
(d < 10) the strong coupling regions can be understood, using U-duality results. However, 
the strong coupling limit of the uncompactified theories can not be understood in this way. 

In this subsection we are going to argue that the strong coupling limits of the type 
IIA string theory and the Eg x Eg heterotic string theory is the same theory. Namely, a 
non-perturbative theory in 11 dimensions, which contains membranes and 5-branes, but 
not strings, and has 11-dimensional supergravity as its low e nergy limit. We call this 
theory M-theory, where M stands for "magic, mystery or membrane according to taste" 
[45], To be more precise: one believes that M-theory compactified on a circle leads to 
the type IIA string theory and compactified on a line interval (which breaks half of t he 
supersymmetry) it leads to the Eg x Eg heterotic string theory. Furthermore, the radius 
of th e ll'th dimension is R ~ g, which means that for strong coupling the radius is large 
and we have to use M-theory in 11 uncompactified dimensions, while for weak coupling 
the radius is small and one can use a pert.urbative string theory description. 

The strong coupling limit of type IIA string theory 

We begin with a discussion of th e relation between M-theory and the type IIA string 
theory. We will give several convincing arguments why there must exist an 11-dimensional 
theory which is t he strong coupling limit of IIA string theory. 

Type IIA superstring theory has the following p erturbative and non-perturbative ob
jects: the fundamental string (Fl-string), the solitonic NS5-brane and Dp-branes, for 
p = 0,2,4,6. Above, we have given the tension (mass density) for these objects. For 
fixed a' the dependence on the closed s tring coupling constant is: Tpi ~ 1 for the Fl-
string, TNS5 1 /g1 for t he NS5-brane and TbP ~ 1/ff for the Dp-branes. Hence, at weak 
coupling the Fl-string is the fundamental object, which we quantize and use in perturba
tion theory, while the other objects are heavy solitonic objects. On the other hand, if we 
let the coupling g be large, things change dramatically. In this case the D0-brane will be 
the lightest object, with a mass (tension)12 

mDo = —7= • (2.97) 

Note that since the D0-brane is a BPS object this mass is correct for arbitrary value of the 
coupling constant. 

12Note the even though the tension for the NS5-brane scale as ÏnS5 ~ 1 /g2• it is still not the lightest 
object at strong coupling, since the effective lenght scale is <?nS5 ~ (ÏW-,)'-6 ~ g1^3v/a7, which is smaller 
than the D0-brane length scale rô 1. 
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Next, consider a bound state with an arbitrary number of DO-branes, say n .  Then we 
expect there to be an ultrashort multiplet with mass given by [15, 6] 

(2.98) "°nD O — i  v i  i vdo — / •  

g Vc t  

Furthermore, in the limit of large coupling, g  —> oo, the spectrum become continuous. 
Interestingly this is very reminiscent of wh at happens when one compactifies a theory on 
a circle with radius R (see the subsection about T-duality), where the momentum in the 
compactified direction becomes quantized as 

P = (2-99) 

Note that for R —> oo, the momentum becomes continuous and we have de-compactified. 
This suggests that the DO-brane spectrum can be viewed from an 11-dimensional perspec
tive as Kaluza-Klein states, where the 11-dimensional theory is compactified on a circle 
with radius R. Comparing the two relations (2.98) and (2.99), we find the following rela
tion between the radius of the new 11 'th dimension, and the string length and coupling to 
be [6] 

R =  g y /a '  . (2.100) 

Hence, for small radius we effectively have typ e IIA string theory with small coupling con
stant, while for large radius (large coupling constant) we have a new 11-dimensional theory, 
which is named M-theory. This is a truly spectacular result, which from a perturbative 
string theory perspective was very unexpected. 

Since M-theory is the strong coupling limit of the type IIA string theory, it must be an 
inherently non-perturbative theory, with no arbitrary coupling constant, but only a length 
scale £p. The relation between this length scale and the IIA length scale and coupling can 
be obtained by comparing the 11 and 10-dimensional gravitational constants Kn and k10. 
These are related as: 

4 = 2,7/>>4, , (2.101) 

where 
24 = (27t)8^, 24 = (2tt)V«'4 • (2-102) 

Using (2.100)-(2.102), we obtain the following relation between £ p ,  a '  and g :  

l \  =  g 2 / 3 a '  . (2.103) 

Finally, by combining (2.100) and (2.103) one obtains that 

( R X  3/2 
~ R  '  9 = \ T )  

) . (2.104) 

Hence, when the 11-dimensional radius is much smaller than the 11-dimensional length 
scale we effectively have a 10-dimensional theory, which is type IIA string theory. 
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In subsection 2.1.2 we found that type IIA supergravity is the low energy limit of 
IIA string theory. This suggests that the low energy limit of the strong coupling limit 
of IIA string theory (which is M-theory) must be 11-dimensional supergravity. Hence, 
type IIA supergravity must be obtained from a dimensional reduction of 11-dimensional 
supergravity. To show this we start by recalling that the 11-dimensional supergravity 
action is given by (2.60). Reducing this action implies that we demand that no fields 
depend on the 10'th space direction xw. We choose to split the metric and three form in 
the following convenient way: 

ds2
n = e~2^ds\lA + é^{dx10 + Cpdx'')-'- , Aml0 = B,IV , Aßvp = Cßl/p . (2.105) 

Next, inserting this relation into the 11-dimensional supergravity action (2.60), gives, after 
a straight forward calculation, the type IIA supergravity action (2.61), in the string frame. 

A further test of the conjectured M-theory type IIA relation, is to show that all p-branes 
in IIA string theory have an M-theory interpretation [46]. However, before we can answer 
this question, we must discuss what possible branes can exists in M-theory. In subsection 
2.2.1 we found that there are half supersymmetric solutions of 11-dimensional supergravit}', 
which correspond to a membrane, 5-brane, wave and a KK6-brane. It therefore seems 
natural to expect that these branes exist in M-theory. They are known as the M2-brane, 
M5-brane, MW (M-wave) and KK6-brane. Note that only the M2-brane and M5-brane 
can be said to be completely 11-dimensional, since the MW and the KI<6-brane always 
have a compact direction. Above, we have argued that the D0-brane is obtained from the 
MW. Furthermore, the Fl-string and D2-branes are obtained from the M2-brane, where 
the M2-brane has one or zero directions in the ll:th direction (i.e., the 10'th space direction 
x10), respective^. Next, the D4-brane and NS5-branes are obtained from the M5-brane, 
where the M5-brane has one or zero directions in the ll:th direction, respectively. Finally, 
we obtain the D6-brane from the I<K6-brane. A further check of t he type IIA M-theory 
relation is that the tensions for the 10-dimensional branes are correctly obtained from the 
11-dimensional branes. That this is so, is easily checked and we have summarized this in 
table 2.3. 

Yet another test of the type IIA string theory/M-theory conjecture is that the membrane 
action under double dimensional reduction reduces to the string action (2.33). This will 
be shown here. For more details on the bosonic case and the full supersymmetric case we 
refer to the original paper by Duff, Howe, Imani and Stelle [47]. 

The bosonic part of the supermembrane action is given by 

+^eå'bedåXMd iXNd£XpA, 
O - M N P  (2.106) 

where jå-b is the auxiliary world sheet metric, 7 = det7aj, â, b are the three-dimensional 
world volume indies and M,N are the 11-dimensional target-space indices. 
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M-brane Tension Type IIA-brane Tension 
MW i 

R 
DO i i 

R q\/ a' 

M2 Fl 2n-H _ 1 
(27T)5?| 2rca' 

M2 D2 1 1 
(2tt)2£3 — (2tt )2ga'3/2 

M5 1 
(2tt)54; D4 27tR 1 

(:2ir)5£® 27T ga'6/2 

M 5 NS5 1 _ 1 
(27t)5£® (2n)5g2a'3 

KK6 (2TTR)2  

(2 *)Hl D6 (2ttR)2 _ 1 
(27t)8^9 (2ir)5ga'7/2 

Table 2.3: Relations between branes in type IIA string theory and M-theory. 

Next, we pe rform a double dimensional reduction of th e 11-dimensional M2-brane ac
tion. This is done by splitting the background metric and three form as in (2.105), and 
the world vo lume metric as follows [47]: 

dsl = e'2^ /3ds2 + e^ /3{dx10 + Cadxa)2 , (2.107) 

and demand that all fields are independent of t he target-space coordinate a:10 and world 
volume coordinate a2. We also demand that a2 = a:10. Performing the reduction, using 
(2.105) and (2.107), gives the string action [47] 

SP1 = ~ J + 7ab(Ca - Ca)(cb - Cb) 

+ e2(*-*>]- y/^ + ̂ daX^WB^ , (2.108) 

where we have used that TM2 = 2irRTFi and Ca = daX^C^. Prom this action it is easy to 
obtain the algebraic equations of motions for tp and Ca. These are given by 

Ca = Ca = daX»Cß , <p » 0 . (2.109) 

Hence, the world volume fields ip and Ca are the pullbacks of the background fields <p and 
C ft. Next, inserting (2.109) in (2.108) gives the following equivalent string action 

Spi = ~^fj d2a(V=yYbdaX»dbX"gß„ + eabdaX»dbXvBß„) , (2.110) 

which is the string action discussed in (2.33), except for the higher order dilaton term. 
Hence, the string action coupled to background fields can be obtained from dimensional 
reduction of the 11-dimensional M2-brane action coupled to the background 11-dimensional 
metric and three form. 

Although we have obtained a string action from a M2-brane action, we find it a bit 
disturbing that we di d not obtain the dilaton term. As a matter of fa ct, so far, there is 
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very little understanding of t he 11-dimensional origin of t he dilaton term at all. In our 
opinion this is an important problem to solve. 

In this subsection it has been found that type IIA string theory can be obtained from 
M-theory by dimensional reduction. We also know that type IIA and IIB string theory 
are T-dual when compactified on a small and large circle, respectively. This means that it 
must be possible to also relate M-theory and type IIB string theory. To do this we begin by 
compactifying M-theory on a torus T2, with radii Rlx and R10- This can be viewed as type 

g3 
IIA string theory compactified on a circle with radius R10. As before, we have that a' = 

( p  \ 3 / 2  

and gA = I -f1 ) , when comparing M-theory and type IIA parameters. Next, using T-

duality, the above picture must be equivalent to type IIB string theory compactified on a 
circle w ith radius RB = a'/R10. T-duality relates the type IIB coupling constant to the 
IIA coupling constant as follows [16]: gB = Using this and the type IIA/M-theory 
relations, we obtain the following re lations between M-theory and type IIB string theory 
parameters: 

9b = ̂ , RB = -̂ r • (2-m) 
itlO iT10iT1:L 

From these we see that if we let both R10 —> 0 and Rn —» 0, then RB —* oo. Hence, we have 
obtained type IIB string theory in 10 dimensions, since we h ave de-compactified the type 
IIB theory. We also see from (2.111) that the type IIB coupling is given by the radius of 
the ll'th dimension divided by the type IIA radius. This is interesting, because it means 
that type IIB S-duality (i.e., gB ~> 1 /gB), from an M-theory perspective, is nothing but 
switching place between the two radii of t he torus. It also implies that the entire SL(2,Z) 
invariance of type IIB string theory is a consequence of the modular invariance of the 
complex structure of t he torus, on which M-theory is compactified. This is an amazing 
result, which is totaly unexpected from a string theory point of view. 

The strong coupling limit of Es x Es heterotic string theory 

Next, we continue by arguing that M-theory on a line interval gives the E8 x E$ heterotic 
string theory, for s mall "radius" R. We begin by showing that the bosonic part of 11-
dimensional supergravity reduced on a line interval (half circle), which breaks half of the 
supersymmetry, gives the bosonic part of Es x Eg h eterotic supergravity. This reduction 
is simi lar to the reduction to type IIA supergravity, except for the following: Reducing 
on a line interval implies that the physics in 11 dimensions must be invariant under the 
following transformation: 

x10 = x10 + 2tt , x10 = -x10, x»= xß. (2.112) 

If we deman d that the action and ds2 are invariant under this transformation, we find the 
following transformation rules for the 11-dimensional metric 

9jw = 5V ' 9ii,io = 9ii,io , glo.io = <?io,io , (2.113) 
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and three form 
(2.114) 

Next, for the reduction to be consistent we demand that all fields must be the same in 
the two points xw and — x10. This means that only the parts of the metric and three 
form that are even under the transformation (2.112) can remain in the spectrum. Hence, 
the off-diagonal part of t he metric (which would give a vector) and the part of t he three 
form which reduces to a three form, must be discarded in the reduction. This leads to the 
following 10-dimensional bosonic action (use the type IIA action (2.61) with C\ = 0 and 
C3 — 0, which implies that the CS term is zero) 

This is however not the end of the story, because the supersymmetric version of this 
action has gravitational anomalies. These anomalies can be canceled by introducing into 
the 10-dimensional action a Yang-Mills term ~ f d10xTrF2 [48], with the correct gauge 
group. These gauge fields can be seen as living on the two 10-dimensional boundaries 
of the line interval. In order to precisely cancel the gravitational anomalies one has to 
choose the gauge group to be Es x Es, where we have one Es on each 10-dimensional 
boundary. Moreover, including a gauge field with gauge group Es x Es and the relevant 
higher order gravitational corrections (which implies that H3 —> H3, see [16]), gives the 
complete bosonic part of th e E8 x Es heterotic supergravity action (2.64). A derivation of 
this anomaly cancelation from a 11-dimensional perspective can be found in [48, 49]. That 
this works is an important test of t he conjecture relating M-theory on a line interval and 
Es x Es heterotic string theory. 

Similar to the type IIA case the "radius" Ii ~ g, which means that when compactifying 
M-theory on a line interval with a "small" radius (g « 1) we have a valid perturbative 
description using the Es x Es heterotic string theory, while for large radius (g » 1) we 
have to use M-theory, since the string theory is strongly coupled. 

In this section, we have discussed the strong coupling limit of all the five consistent 
superstring theories. A unifying picture has emerged, where the new central theme is 
a new and entirely non-perturbative theory in 11 dimensions, named M-theory. All five 
string theories have been argued to be different perturbative limits of M-th eory. This has 
of course not been rigorously proven. However, there are many convincing arguments why 
this conjecture must be true, of which we have discussed a few. 

In figure 2.1 we have summarized all perturbative and non-perturbative dualities in 
nine and higher dimensions. 

As is clear from the discussion above, M-theory is a non-perturbative theory with a 
length scale iv, but no coupling constant. M-theory contains M2-branes and M5-branes, 
which are each others electro-magnetic duals. It is also known that at low en ergy (i.e., 
when the dimensionless "coupling" Edp <<1, where E is the energy scale), 11-dimensional 

(2.115) 

M-theory 
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D=ll 

S-self-dual 
S-dual 

D—1ft ls—m \ heterotic 
V string J 

fSO(32J 
heterotic 
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type type 
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T-dual T-dual 
D=9 

Figure 2.1: The net of string dualities in higher dimensions. As shown, the perturbatively 
different string theories in 10 dimensions are connected by duality transformations using certain 
compactifications. Moreover, in 11 dimensions a new theory arises, which is called M-theory and 
whose compactification on the circle S1 or the finite line interval I gives rise to type IIA and 
Es x Eg heterotic string theory, respectively. This figure is taken from [50]. 

supergravity should give a good description of th e physics. Apart from this we know ve ry 
little about M-theory. For example, one of t he most interesting questions is: What are the 
relevant (fundamental) degrees of fr eedom of M-theory? In perturbative string theory a 
similar question is easy to answer, since at week coupling {g « 1) we have one fundamental 
object, the Fl-string and a bunch of soliton ic p-branes. Hence, in this case the answer is 
that the Fl-string gives the fundamental degrees of freed om (d.o.f.) of str ing theory. In 
the M-theory case this question is much harder to answer, since we have two objects, 
which have the same effective length scale, £p. At this stage we will leave t his question 
unanswered and just assume that the M2-brane gives a fairly good description of M-theory. 
Note, however, that the M2-brane action in general is a non-renormalizable theory [51]. 
This is however not the only problem. It is also very difficult t o quantize the M2-brane, 
since this is not a free theory, but an interacting one. Furthermore, it can also be shown 
that the spectrum of the super-membrane is continues [52]. We note that this does not 
mean that there is something wrong with the theory. It does, however, mean that the 
theory is very complicated. 

In 1996 there was a proposal for a non-perturbative definition of M-theory, the so called 
matrix theory proposal [53]13. Before discussing matrix theory we start by discussing 
the M2-brane action in light-cone coordinates, i.e., in the light-cone gauge. From this 

13Note that we here only give a very sketchy description of matri x theory. For a much more complete 
introduction we refer to the original BFSS paper [53], or for a more up to date review, we suggest [54]. 
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action we easily obtain the Hamiltonian in light-cone gauge. Unfortunately, this light-cone 
membrane theory is, contrary to the string, still very difficult to quantize due to non-
linearities. One way t o solve this is to use some clever regularization. If one assumes that 
the membrane world volume is S x i (where E is a Riemann surface), it is consistent to 
use a regularization procedure in which functions are mapped to finite N x N matrices. 
After this regularization we have a classical theory with a finite number of d.o.f., which can 
be quantized. Quantization gives a 0+ 1-dimensional supersymmetric U(N) theory, where 
the matrices X' (i = 1,2,..., 9) are in the adjoint representation. For larger and larger 
N one obtains a better and better description of the membrane, i.e., in the limit N —> oo, 
this 0+1-dimensional supersymmetric U(Ar) theory gives a microscopic description of th e 
supermembrane, in light-cone coordinates. 

Moreover, in 1996 that it was conjectured (the BFSS conjecture [53]) that the above 
0+1-dimensional supersymmetric quantum mechanics theory, in the limit N ^ oo, could be 
a candidate for a microscopic description of M -theory in light-cone coordinates. However, 
in [53] the starting point was not a membrane in 11-dimensions, but instead they considered 
M-theory compactified on a circle with radius R. From the discussion above we know that 
the momentum modes in the compact direction can be interpreted as the type IIA string 
theory D0-branes. In [53] it was argued that in the "infinite momentum frame" (i.e., take 
both p11 = (N/R) —• oo and R —> oo, in order to have 11 un-compactified dimensions), 
where the momentum is taken to be very large and the theory becomes non-relativistic, the 
dynamics should be described by the large N limit of a system of non-relativistic DO-branes. 
Such a system of DO-branes, in the non-relativistic limit, is given by the matrix quantum 
mechanics Lagrangian, which is obtained from dimensional reduction of 10-dimensional 
super Yang-Mills down to 0+1 dimensions, see, e.g., [15, 55]. 

What is very interesting is that both the regularization of the membrane, and the D0-
brane argument lead to two theories, which are equivalent in the infinite momentum frame. 
Hence, it seems to be possible (at least in the infinite momentum frame) to somehow view 
DO-branes as the fundamental constituents of M -theory and the membrane as built from 
an infinite amount of DO-branes. 

That M-theory in the infinite momentum frame can be described by supersymmetric 
matrix quantum mechanics has been tested in several ways, see, e.g., [53, 54, 51], but it 
is far from rigourously proven. There are, however, some problems with matrix theory: 
For example, it is not a theory where 11-dimensional Lorentz invariance is manifest. In 
fact, it has so far not been rigorously proven that matrix theory is Lorentz invariant at 
the quantum level [54, 51]. It has also not been possible to obtain the correct higher order 
corrections to 11-dimensional supergravity from matrix theory [54], It is not entirely clear 
why this does not work, and is an important problem to solve. 

To conclude: So far, there has been one really interesting non-perturbative proposal for 
a description of M- theory, namely Matrix theory. However, a t present it is very unclear if 
matrix theory gives a complete and correct description of M -theory. In fact, that matrix 
theory does not give a complete description of M-theory seems clear, since it fails to 
describe M-theory compactified on a n-dimensional torus, when n > 5 [54]. This suggests 
that matrix theory at most gives a correct description of a sector of M-theory. It is therefore 
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fair to say that the quest for a non-perturbative microscopic description of M-theory is far 
from over. 

2.3 The AdS/CFT correspondence 

In this section we will discuss the AdS/CFT correspondence [9] and try to motivate why it 
is believed to be correct. We begin by giving three versions of the correspondence. Next, we 
will give some convincing argument why at least the 'weakest' form of the correspondence 
seems to be valid. 

The AdSd+i/CFTd correspondence14 (sometimes called the Maldacena conjecture) was 
first proposed by Maldacena [9] and later more rigorously defined by Gubser, Klebanov and 
Polyakov [60] and Witten [61]. The correspondence describes a duality relation between 
a SCFT (superconformai field theory) living on the d-dimensional boundary (which is 
compactified d-dimensional Minkowski space-time) of AdSd+i, and a compactified string 
theory or M-theory with vacuum AdSd+1 x MD~^d+1\ where D = 10 or 11. 

The AdS/CFT correspondence in its strongest form is stated as follows (for AdS5 and 
a four-dimensional SCFT): The following two theories are equivalent (or dual), see, e.g., 
[59]: 

1. Type IIB superstring theory on AdS$ x S°, with N units of five form flux, where 
the radius of Ad.Sc, a nd S5 is R and g is the closed string coupling constant. 

2. TV = 4 superconformai Yang-Mills in four dimensions, with Yang-Mills coupling 
constant (?ym and gauge group SU(iV). 

The closed string coupling constant g, string length (a')1/2, radius R and RR scalar 
expectation value Co in 1 and the Yang-Mills coupling constant gyM and instanton angle 
61 in 2, are related as follows: 

= Sym i R = \^gN{a'f)1,A , C0 = 0j . (2.116) 

That these two theories are dual to each other implies that there exists a well defined 
map [60, 61] between the fields and correlation functions on the superstring side and the 
gauge invariant operators and correlation functions in the superconformai YM theory. The 
precise relation between a mode <p in s tring theory on AdS5 x S5 and the corresponding 
operator O in the H = 4 superconformai Yang-Mills theory, is given by [60, 61] 

(^exp J <A)C^cft = Zs(0o) , (2.117) 

where Zs(4>o) — exp(~is(</>)) is the string theory partition function, Is{4>) the string theory 
action and 4>o is the boundary value of <f>, see [61] for further clarifications. 

In the above version, the correspondence is assumed to be valid for any values of t he 
parameters in (2.116). The validity of this so called strong version of the correspondence is 

14For reviews, see. e.g., [56, 57, 58. 59]. 
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at the moment impossible to check. However, if we impo se restrictions on the parameters, 
it is easier to obtain relevant results. 

The first restriction that we impose is to take the integer N towards infinity and at the 
same time keep the't Hooft coupling A = gyUN fixed. Note that this implies that both 
the closed string coupling constant and Yang-Mills coupling constant are much less than 
one. With this restriction we have a correspondence between a classical string theory and 
M = 4 superconformai Yang-Mills theory. Note that l/.Y corrections to the YM theory 
corresponds to a loop expansion in powers of g on the string theory side, see, e.g., [59]. 
Although this version of t he correspondence is weaker it is still very difficult to perform 
any tests. However, see [62] for some interesting results. 

A further restriction is to take also the 't Hooft coupling A = g\u^ be large. 
Note that in this limit g is still small, which is seen from (2.116). This implies that we 
now have a correspondence between type IIB classical supergravity on AdS$ x Sh and 
M = 4 superconformai Yang-Mills theory with large 't Hooft coupling. It can be seen 
from (2.116) that an A-1/2 expansion on the YM side corresponds to an a'/R2 expansion 
on the supergravity side [57], since A-1/2 ~ a'/R2. This means that for large 't Hooft 
coupling, a'/R2 is very small, i.e., string theory can be approximated with supergravity. 
This version of the correspondence is the weakest form and the most well understood 
and investigated. There is now a fair amount of evidence that at least this version of 
the AdS/CFT correspondence is correct. In the reminder we o nly consider this version 
of the correspondence. An interesting consequence of the above discussion is that when 
supergravity is a valid approximation of str ing theory (i.e., a'/R2 << 1), (2.116) implies 
that the dual field theory is strongly coupled, since A >> 1. It is therefore possible to use 
perturbative supergravity calculations to obtain non-perturbative results in the dual field 
theory. 

We continue by giving the following a rgument why the AdS/CFT correspondence is 
expected to be valid. Consider a stack of N D3-branes in 10-dimensional flat space. Here 
closed strings perturbatively describe the excitations of e mpty space, while open strings 
ending on the D3-branes perturbatively describe the excitations of the D3-branes. For 
low energy the  physics  of  the  D3-branes  in  four  d imensions  i s  descr ibed b y a  U(A r )  J \ f  =  
4 superconformai Yang-Mills theory, which is d ecoupled from the massless closed string 
states. The massless closed string states can be described by 10-dimensional type IIB 
supergravity. 

Next, we describe the same set up but using a supergravity description. As been 
discussed in subsection 2.2.1, there exists a supergravity solution which corresponds to a 
stack of N D3-branes. The metric of this D3-brane solution is given by 

ds 2  = + h (da;3)2) + H^(dr 2  + r 2 df l l )  ,  
o4 

H = 1 + -JJ,- R 4 =^gN(a' ) 2 ,  (2.118) 

where H is a harmonic function on the six-dimensional transverse space and N is the 
number of D3-branes on top of each other. Note that the factor in front of (dt)2 = (da;0)2, 
implies that if an o bserver at a distance r from the stack of branes measures the energy to 
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be Er, then an observer at infinity measures = H~^Er. This means that close to the 
horizon (i.e., r ~ 0) there is a very large red-shift. The consequences of th is is that at low 
energy there are two decoupled theories. These are: (1) free supergravity in the bulk and 
(2) the near horizon region of the D3-branes. Excitations with long wavelength in the bulk 
are described by supergravity in flat space while excitations with any wavelength close to 
the horizon are described by the near horizon solution, which is AdS$ x S5. The precise 
near horizon limit is given by taking a' —»• 0, while keeping the energy and [9] 

Xß -, 9YM = ̂ 9 , U = —, , (2.119) 
cr 

fixed. Inserting this limit in (2.118) gives 

'a7 = [i{~idX°)2 + " ' + ̂ iX^ + + ̂ 2<i!^ ' ^2'120^ 

where RA = 2g\uN — 2À. This is an AdS5 x S5 solution, where the AdS^ a nd S5 spaces 
have equal radius R (in units of Va'). It is important to note that ds2/a' is fixed in the 
near horizon limit (2.119), which implies that the supergravity action is also fixed in the 
near horizon limit. This is easily seen from the gravity part of th e type IIB supergravity 
action (in the string frame): 

Sußg = J dl0X\frge~ 1,:'H . (2.121) 

Now inserting into the action that the metric scales as gMN ~ cJ (see (2.120) above), which 
implies that R ~ a'-1, and using that k ~ a'2, we obtain that SuBg is fixed in the near 
horizon l imit15. 

If we now compare the two descriptions we see t hat there are two decoupled theories 
in both cases, where the bulk supergravity is common to both of th em. This means that 
since both the open/closed string description and supergravity description are equivalent 
(dual) descriptions, we conclude that the U(Ar) Af — 4 superconformai Yang-Mills theory 
and type IIB supergravity on AdS$ x S5 are dual to each other. We note here that above 
when we formulated the correspondence it was stated that it relates an SU(N) field theory 
to a supergravity theory, but in the discussion here we used a U(iV) the ory. This might 
seem to be conflicting, however, both these statements are true considering the following: 
The correspondence is between an SU(N) Af = 4 superconformai Yang-Mills theory and 
type IIB supergravity on AdS5 x S5, if only the supergravity bulk modes are included. As a 
consequence the U(l) doubleton multiplet which is confined to the boundary of AdS$ is not 
included in the supergravity spectrum. However, if this U(l) part which is decoupled from 
the SU(Ar) part is included in the spectrum, then the supergravity solution corresponds to 

15If we als o consider p-form fields, (e.g., the NS-NS two-form S2) they must scale as ~ a'? 
in the near horizon limit, which is easily seen from the full supergravity action (2.62) and using how the 
metric scale. 
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a U( N )  field theory. Note that \J(N)=SV(N) xU(l). This means that the correspondence 
is valid for both U(7V) a nd SU(AR) field th eories. 

Next, we continue by giving further evidence for the correspondence. For the corre
spondence to be correct it is necessary that the global symmetries are the same for the two 
theories. The continuous global symmetries of SU(A R) J\f = 4 superconformai Yang-Mills 
theory are given by the superconformai group SU(2,2|4). The maximum bosonic subgroup 
is given by SU(2,2)XSU(4)R ~SO(2,4)XSO(6)R. Here SO(2,4) is the four-dimensional con-
formal group, while SO(6)R is the R-symmetry group. On the supergravity side we identify 
the conformai group with the AdS5 isometry group, while SO(6) is the isometry of S°. The 
two sides also have the same amount of supersymmetry, which implies that all the global 
continuous symmetries SU(2,2|4) can be found on both sides of the correspondence. Both 
sides are also believed to have a non-perturbative SL(2,Z) duality symmetry, which acts on 
the complex coupling r. Here r is the following combination of the closed string coupling 
constant g and expectation value of the RR scalar Co [59]: 

T = ^  +  i .  ( 2 . 1 2 2 )  
2?r g 

It has also been shown that additional discrete symmetries, which arise if the theories 
are compactified on non-simply connected manifolds, can be matched between the two 
sides [65]. 

As we mentioned above, it is possible to match operators in the field theory with 
supergravity fields in the bulk. The relation between the mass M of the supergravity fields 
and the dimension A of th e operators, is given by [59] : 

= A(A - 4) , 

A — 2 , (2.123) 

=  ( A - p ) ( A + p - 4 )  ,  

= A(A — 4) , 

where m is the inverse of t he AdS$ radius R. For a further discussion about the duality 
between SU(AT) M = 4 superconformai Yang-Mills theory and type IIB supergravity on 
AdSb x S\ see, e.g., [56, 57, 58, 59], 

The AdS/CFT correspondence is also expected to be valid in certain cases for M-
theory. In particular, M-theory compactified on AdS4 x S7 is conjectured to be dual to a 
three-dimensional M = 8 superconformai field theory with supergroup OSp(4|8) [9], while 
M-theory on AdS7 x Si is conjectured to be dual to a six-dimensional interacting Af = (2,0) 
superconformai tensor theory with supergroup OSp(6,2|4) [9]. These conjectures are not 
as well tes ted as the conjecture in AdS5 but are believed to be correct. The reason that 
the conjecture in AdS5 is better tested, is because the AT = A SYM theory is much better 
understood than the field theories in three and six dimensions. 
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We note here that for all cases that we have discussed so far, the correspondence is 
between maximally supersymmetric theories. For less than maximum supersymmetry the 
AdS/CFT correspondence is still expected to be valid. However, in these cases it is harder 
to check the correspondence. The simplest examples with less supersymmetry are given 
by superconformai field theories which are AdS/CFT dual to type IIB supergravity on 
AdS$ x M5. Here M5 is a compact Einstein manifold, i.e., RßV = agßV, where a is a positive 
constant. The number of Killing spinors on M5 determines the number of supersymmetries 
in the dual SCFT. One type of M5 space is M5 = S5/T, where F is a discrete subgroup 
of SO (6). Depending on T one obtains supergravity duals of Af = 2,1,0 SCFT. From a 
brane point of view AdS$ x (55/r) is the near horizon region of N D3-branes placed at an 
orbifold singularity of R6/F. This implies that the full D3-brane solution with an orbifold 
s i n g u l a r i t y  a t  r  =  0,  i n t e r p o l a t e s  b e t w e e n  A d S s  x  ( S 5 / T )  ( r  — >  0 )  a n d  M i n k o w s k y  x  ( R 6 / T )  
(r —> oo). We note that in this case M5 is locally equivalent to S 5. 

It is also possible to choose an M5 which is not locally equivalent to S5. In this case 
the D3-branes are placed at a conifold singularity. As far as we know the only M5 space 
of th is type which preserves any supersymmetry is th e compact Einstein s pace T1'1 = 
(SU(2) x SU(2))/f/(l). This is the supergravity dual of a Af = 1 SCFT [66]. In this case 
the D3-brane solution interpolates between AdS5 x T1 '1 (r —> 0) and Minkowski4 x con6 

(r —> 0 0), where the six-dimensional conifold metric can be written as 

dsg = dr2 + r2ds\ . (2.124) 

Here ds\ is the metric on T1'1. This six-dimensional space is called a cone and T1,1 is i ts 
five-dimensional base. Note that the six-dimensional conifold is Ricci flat although T1,1 is 
not. 

Also for M-theory it is possible to obtain a correspondence in the case of less supersym
metry, by replacing S' (or S4) with a compact manifold with a smaller number of Killing 
spinors. For AdS4 x M7 there exists AdS/CFT correspondences for Af = 8,4,3,2,1,0, 
while AdS-j x M4 corresponds to SCFT's with Af = 2,1, Ö. 

Another interesting class of solutions with less supersymmetry are warped compactifi-
cations. This means that there is a warp factor in front of t he AdS metric, i.e., a function 
depending on the M5 coordinates. In Paper II both 'commutative' and noncommutative 
versions of a warped solution called the Pilch-Warner solution [68] are discussed. The 
Pilch-Warner solution is dual to a four-dimensional SCFT with M = 1 supersymmetry. 
This superconformai fix point is 'connected' with the Af = 4 fix point, which means that 
there exists a renormalization group flow between the two conformai fix points, see [69], 
For an introduction to renormalization group (RG) flows, using supergravity duals and the 
AdS/CFT correspondence, see, e.g., [70, 57, 59] and Paper I. 
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Supergravity, duality and bound states 
of branes 

In this chapter we will show how supergravity solutions corresponding to bound s tates of 
different branes can be obtained from a single brane solution (or a solution corresponding 
to a stack of N identical branes on top of each ot her). A bound state is a collection of 
strings, branes etc., which are bound together in the sense t hat they in general have a 
total energy that is lowe r than the total energy of t he individual strings, branes etc. A 
bound state that has the same energy as the total individual energy of the p arts, is called 
a threshold bound state. An example of a non-threshold bound state is a state containing 
m fundamental strings (Fl-strings) and n Dl-strings. The tension (energy) is given by [71] 

where T = Ina! is the tension for one Fl-string and gs is the closed string coupling constant. 
The tension for m Fl-strings and n Dl-strings is given by 

respectively. From (3.1) and (3.2) we see that the tension (energy) for a bound state 
containing m Fl-strings and n Dl-strings is smaller than the total tension for m free Fl-
strings and n free Dl-strings, since Tm^n < (TFm + TDn). Note that for Tmt„ to be strictly 
s m a l l e r  b o t h  m  a n d  n  h a s  t o  b e  n o n - z e r o .  H e n c e ,  a  b o u n d  s t a t e  w h e r e  e . g . ,  m  =  0  b u t  n / 0  
(i.e., a bound state consisting of n Dl-strings) is a threshold bound state. Also a bound 
state containing N Dp-branes, for arbitrary p, is a threshold bound state. This means that 
two Dp-branes can be separated from each other without any change of energ y. As was 
mentioned in chapter 2, the low energy world volume theory for a stack of N D3-branes on 
top of each other is U(N) SYM in four dimensions. If one of these D3-branes is separated 

(3.1) 

77 TFm = Tm , TDn = T- (3.2) 
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from the stack by a distance a ,  the U( N )  gauge symmetry is broken to U(iV — l)xU(l). 
This is a Higgs effect which gives ri se to a mass for W bosons. The mass is m ~ Ta, where 
T is the tension for an open string which is stretched between the stack and the separated 
D3-brane. Naturally, if a —> 0 the W bosons become massless and the gauge symmetry is 
restored to U(Ar). 

To be able to obtain supergravity solutions corresponding to bound states of different 
types of branes is very important in, e.g., investigations of non-gravitational theories which 
have noncommutative coordinates. For example, similar to how the D3-brane solution was 
used to get the supergravity dual of four-dimensional SYM in section 2.3, the bound 
state solution D3-D1 can be used to obtain the supergravity dual of four-dimensional 
noncommutative SYM (NCYM), see section 4.2. It is therefore important to know, as will 
be explained below, how this bound state solution can be found. There are two ways to 
derive supergravity solutions which correspond to bound states: (1) solve the supergravity 
equations of motion for the appropriate non-zero fluxes, or (2) start with a known brane 
solution and use some solution generating technique to obtain the bound state solution. Of 
these two, the second one is usually the most practical approach. To obtain a bound state 
solution with many different branes by solving the supergravity equations of m otion can 
be very difficult, see [72], Note that below when we use the name bound state, we mean 
bound states which contain several different types of branes, e.g., Dp-branes, D(p — 2)-
branes, F-strings etc. 

In the next section we show how the bound state D3-D1 (i.e., it contains both D3-
branes and Dl-branes) can be obtained from a D3-brane solution. This is done by using 
two different methods, which we also show give equivalent results. For examples on how 
bound states can be obtained by solving the supergravity equations of motion we refer to 
[72]. In section 3.2 and 3.3 we generalize some of the results to M-theory and in particular 
discuss the generalization of string theory T-duality to M-theory 'T-duality1 and D-brane 
'T-duality'. 

3.1 T-duality as a solution generating technique 

3.1.1 Different solution generating techniques 

In this subsection we are going to discuss two different solution generating techniques, 
which are used to obtain supergravity solutions corresponding to bound states. The first 
o n e  w e  c a l l  t h e  r o t a t i o n / b o o s t  m e t h o d ,  w h i l e  t h e  s e c o n d  o n e  i s  r e f e r r e d  t o  a s  t h e  O ( p  +  
1 ,p + 1) method. The latter method is further discussed in the subsection 3.1.2, see also 
Paper II-IV,VI-VII and [73]. We n ote that for b oth these solution generating techniques 
we have to start with a Dp-brane. To include NS5-branes in the bound state, we can 
use the 0(p + l,p + 1) method together with S-duality (and possibly T-duality), or a 
more direct method, which is discussed in section 3.3, see also Paper VII section 5-6. An 
important feature of the various solution generating techniques is that none of t hem break 
s u p e r s y m m e t r y .  T h i s  i m p l i e s  t h a t  i f  w e  s t a r t  w i t h  a  D p - b r a n e  s o l u t i o n  w h i c h  p r e s e r v e s  n  
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supersymmetries, then the generated bound state also preserves n supersymmetries. 
To obtain a bound state solution using the rotation/boost method, we s tart with a 

solution that only contains one type of branes. These branes are going to become the 
branes in the bound state with highest dimensionality. This means that if we, e.g., want 
to obtain a Dp-D(p — 2) bound state, we have to start with a Dp-brane solution. The next 
step is to T-dualize the solution in a direction xp (parallel to the brane). This implies 
that if we ha ve started with a Dp-brane solution, after the T-duality we have obtained a 
D(p — l)-brane solution smeared (see below) in the xp direction. The reason for this is that 
T-duality in a direction xp interchanges the Neumann and Dirichlet boundary conditions 
in this direction. Next, we rotate the D(p — l)-brane solution in the xp and xv~l directions. 
This implies that the Neumann and Dirichlet boundary conditions get mixed in the new 
xp and xp~1 directions. Finally, we T-dualize back in the new x p direction. From the open 
string boundary conditions we see that this has introduced a non-zero NS-NS 1)P field 
in the solution. As we will see below t his implies that there is also a RR Coi...(p_2) field 
in the solution. This RR field implies that the new solution gives a non-zero D(p — 2)-
brane charge. The conclusion is th erefore that we have obtained a supergravity solution 
corresponding to a Dp-D(p — 2) bound state. We also note that if we had performed a 
boost instead of a rotation above, we would have obtained a Dp-Fl bound state instead, 
since there is now a non-zero B0p field in the solution, as well as a non-zero Ci2„.(P-i)-

We continue by d eriving the D3-D1 solution, using the rotation/boost method. This 
bound state solution was first derived in [74]. We start with the following type IIB D3-brane 
solution 

ds2  = (~(dx0)2  H -f (dx 3)2) + (dr2  + r2dtiQ , 
1 4P 4 

e2à = g2 , c4 = —dx° A • • • A dx 3  + e4 , (3.3) 
gH g 

H =  1  +  5 '  

where H is a harmonic function on the transverse six-dimensional space, g is the closed 
string coupling constant and de4 is the volume form of t he five-sphere. We start by T-
dualizing in the x3 direction. This gives a type IIA D2-brane solution, which is smeared in 
the x3 direction (i.e., the harmonic function is the same as above). For T-duality between 
type IIA and type IIB solutions we use the Buscher rules [75, 76] (in the string frame) 

1 g ay g L'y ^uy^uy 
9yy = — > = 9̂  L--- -

gyy 

r> _ 9ßy d _ o Bßy9vy ~ guyByy /Q 
y i &ILV -, W* v 

9yy 9yy 

9[iy 
B ~ P2 <P Dny 2$ _ _ f  
9yy gyy 

where y denotes the Killing coordinate with respect to which the T-dualization is applied, 
while fi,v denote any coordinate direction other then y. The RR p-form fields transforms 
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as [77]: 

fi  s ,  / - , \C{p-i)\ti-v\y\9p\y 
(^(p)ß---upy ^(p— l)li—vp \P l) 5 

9yy 

C(p)ß—L>pa — ^(p+l)p,--upcry P^{p—l)[ß---wp-^cr}y (3.5) 

+p(j) — 1)  ̂ p \ y \ 9 a ] y  
9yy 

Using the above T-duality rules we get 

ds2  = H~^(-(dx0)2  + (dx1)2  + (dx2)2) + H^(dx3)2  + H*(dr2  + r2d£l\) ,  

e24> _ g2H^ , Cz — —~r:dx0  A dx1  A dx 2  .  C5  = e ^ A d x 3 .  (3.6) 
gH g 

This is a D2-brane solution smeared in the x3  direction, since the function H is harmonic 
on a six-dimensional space (a;4 — x9) and not on a seven-dimensional space (a;3 — a;9), as 
it is fo r an 'ordina ry' D2 -brane solution. Next, w e rotate the solution i n the x 2  and x 3  

directions, i.e., let 

x2  — cos @x2  + sin (fix3  ,  

x3  = — sin (fix2  + cos <fix3  .  (3.7) 

Inserting this coordinate transformation into (3.6) gives 

ds2  = (dx0)2  \  (fix')2  • ;(cosor' !• (sin of'II}{d:r)~ \  

+ 2 c o s <psin<fi[l — H]dx2dx3  + iJ"~2[(sin0)2 + (coscfi)2H](dx3)2  

+H^(dr2 + r2dül) , e2^ = g2Hs , (3.8) 
4J£4 

C5 = —-€4 A (— sin cfidx2  -I- cos (fidx3) ,  
g 

__ cos (fi  ̂  0 A  A  ̂ 2 _|_ ^ fd xo A  ̂ xi  A  ̂ 3 
gH gH 

This is followed by a T-dualization in the new x3  direction, which, using (3.4) and (3.5), 
gives the following D3-D1 bound state solution, where we have removed the hat symbol: 

ds2  = H~ï(—(dx0)2  + (dx1  )2  + ll(dx2)2  

e2 * g2 tan cfi 

-  h> '  Hh' 
A dx 3  ,  

c4 
COS d) , 0 j Q 

— ——dx A • • • A dx 
gHh' 

4 i?4 

H COS (pÉ4 
g 

c2 
sin d) T  n 7  1 

= —77-dx A dx ,  Ce 
gH 

4 i?4 
= COS c 

g 
where /i'= (cos</>)2 + (sin</> )2H~ l  .  

(3.9) 
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After the T-duality we have also performed a gauge transformation SB = tan édx2  A dx3 ,  
for the B-field. We do this to give the S-field a non-zero value when r —* oo. We see 
from the above bound state solution that the metric, RR four form and dilaton have been 
affected by the transformations. There are also non-zero components of the NS-NS two 
form and the RR two and six forms. The non-zero values for the electric RR four and two 
forms imply that the supergravity solution corresponds to a D3-D1 bound state. 

Next we continue by deriving the D3-D1 bound state with a different method. This 
solution generating technique is called the 0(p+l,p + l) method [73], since we only use 
elements in the T-duality group 0{p + l,p-|- 1). To be more specific: we use T-duality and 
gauge transformations. This approach to obtaining supergravity solution corresponding to 
bound states, was first used in [78]. 

The 0(p+l,p+l) method works as follows: To get a Dp-D(p—2) bound state solution we 
start with a Dp-brane solution. Next, we T-dualize in the xp and the xP~1 directions. More 
generally one T-dualizes in those directions where one wants to have non-zero components 
of the NS-NS B-field in the final solution. We have now obtained a D(p — 2)-brane solution 
smeared in the xp and the xp~~l directions. Now since the xp and the xv~x directions are 
transverse to the D(p —2)-brane we perform a gauge transformation for the NS-NS £>-field, 
i.e., B = 0 —> B = —kdxP~1 A dxp, where k is a dimensionless deformation parameter. 
This does not affect the solution, because a constant B-field transverse to the brane can 
be gauged away. Note however, that a non-zero B-field parallel to the brane can not be 
gauged a,way. F inally, we first T-dualize in the xp~l direction followed by the xp direction. 
Since there is a non-zero ßp_iip-field this implies that after the first T-duality we obtain 
an off-diagonal component in the metric, i.e., gp~ 1>p ^ 0, but Bp-i,p = 0. However, after 
the second T-duality we have a non-zero Bp i.p-field and a diagonal metric as well as a 
non-zero RR Coi...(p-2). The reason for this is that after we T-dualize back, the xp and 
the xp~x directions are parallel to the Dp-brane. This implies that there is also a B-field 
parallel to the Dp-brane, which can not be gauged away. 

As an example we now derive the D3-D1 bound state with this method. Below we will 
show that the obtained solution is equivalent to (3.9). Start with the D3-brane solution 
(3.3). Then T-dualize in the x3 and the x2 directions. Using (3.4) and (3.5) this gives the 
following Dl-brane solution smeared in these directions: 

i is2  = ( - ( dx°)2 + (da;1)2) + H%{{dx2)2  + {dx3)2) + H% {dr2  + r2d£l\) ,  

e
2<>> = g2H , C6 = dx2 A dx3  A e4 , C2 = —~dx° A dx 1  , (3.10) 

9 gH 
B = —kdx2  A dx3  ,  

where we after the T-dualities also have performed a gauge transformation for the B-
field. Note that A: is a dimensionless deformation parameter. Next we T-dualize in the 
x3 direction followed by the x2 direction, which gives the following D3-D1 bound state 
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solution1: 

ds2 

e 

iH(-(cfc0)2 + (.ix1)2 + ~[(dx2)2 + (dx3)2]) + H^(dr2 + r2dtt\) , 

~ , B = —777-dx2 A dx3 , 
h Hh 
3_ 
h ' 

C4 
g h a 

AR4 

Jl 
Hh g 

Cß — £4 A B , 
9 

where h — 1 + k2H'1 . 

We note that if we inste ad of perform ing T-duality and a gauge transformation in two 
spatial directions, would have done this in one spatial direction and the time direction, we 
would have obtained a D3-F1 bound state solution, because this would lead to a non-zero 
electric B-field. This solution is 'similar' to the D3-D1 solution, except that h = 1 — k2H~~ l. 
In section 4.2 we will see that this minus sign has very important consequences which differ 
from those of the plus sign. Next, we show that the two solutions (3.9) and (3.11) are 
equivalent D3-D1 solutions. It is easy to see that if we let 

in the solution (3.9), we obtain the solution in (3.11). 

3.1.2 The O( p  +  l , p  4- 1) method 

In this subsection we will further discuss the O (p+ 1 ,p+ 1) solution generating technique. 
For bound states like the D3-D1 one in the last subsection, it is easy to explicitly per
form the T-duality transformations. However, to obtain bound states with many different 
branes, e.g., a D6-D4-D4-D4-D2-D2-D2-D0 bound state (see Paper IV for the supergravity 
solution corresponding to this case), it would be convenient to be able to simplify the com
putations. Especially when considering the many components of the different RR fields. 
In [73] (see also Paper II), one therefore derived formulas which facilitate the computation 
of su pergravity solutions corresponding to bound states. To use these formulas one has 
to first specify the undeformed brane solution (a Djj-brane solution with maximum or less 
than maximum supersymmetry), and then choose which components of the NS-NS B-field 
that should be non-zero in the desired bound state. In general, a non-zero electric B01 im
plies that there are Fl-strings in the bound state, while magnetic components of B (B12, 
B34, B56 etc.) imply that it contains D(p —2)-branes, D(p —4)-branes, D(p —6)-branes etc. 
If we mix one electric and one magnetic component with equal strength (i.e. ,  B01 = ±i ? 2 i ) ,  

then one finds also a gravitational wave in the bound state. 

tan (j> = — k , x1 x' cos <f> , i = 2,3 , g —> g cos 6 , (3.12) 

1In Paper II and III the constant k = 6/a', while in Paper IV-VI it is k = 9. 
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Let us start with the following generic Dp-brane solution2 

ds2 = gßudxßdx1' + gijdy ldy: i , e2^ = g2F , 
gC = u)dx° A • • • A dxv + 77 , (3.13) 

where g is the closed string coupling constant, F is some function of the coordinates, 
xß, fi = 0,. . .  , p ,  are coordinates in the brane directions while x l, i p+ 1, 9, are 
coordinates in the transverse directions. Here 77_ p is a transverse form, i.e., i^-p = 0, 
where iß denotes the inner product with the vector field a ssociated with xß. This is a 
rather general Dp-brane solution since we have not completely specified the metric, dilaton 
and (p + l)-form RR field. 

Next, we would like to obtain a supergravity solution which corresponds to a general 
bound state, by deforming (3.13) with a B-field of a rbitrary rank. We start by obtaining 
the deformed metric g and t.wo-form B . To obtain these we use that a deformation with 
constant parameter (and arbitrary rank) 9is generated by the following 0(p + l,p + 1) 
T-duality group element,3 

where 9ßu is dimensionless and carries indices upstairs since it starts life on the T-dual 
world volume [73]. In (3.14) above, A; (i = 0,... ,p) corresponds to a T-duality transfor
mation in the i:th direction, while A _<? corresponds to a constant shift in B (i.e., a gauge 
transformation). 

For the metric gßl/ and two-form Bßl/, the transformations in (3.14) imply that the 
tensor Eßl, = g^v + B^ transforms by the following projective transformation [73] (Note 
that in (3.13) BßI/ = 0) 

To obtain this result we have used that under T-duality the tensor Emn (M, N = 0,1,..., 9) 
transforms as follows (see, e.g., [16]): 

where we have T-dualized in all the xß directions. Note that in our case = 0. From 
(3.15) and (3.17) we obtain the following deformed m etric and NS-NS two form 

(3.14) 

(3.15) 

= ( E - ' r ,  

E'xj = - E it l{E-yEjv , 

(3.16) 

(3.17) 

= -gßpe»°gcX[(l-{d)2)- l]\, (3.18) 

2We are using multi-form notation such that C is a sum of forms while B (sec below) has fixed rank 2. 
3See [73] and Paper II for conventions and definitions of the various elements of 0 (p+ l ,p+ l )  appearing 

in the following discussion. 
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where 
{e2yv = e»v'gi/pe»°gav. (3.19) 

To obtain the deformed dilaton we use that under T-duality the dilaton transforms as 
follows [16]: 

= ei<t>det(E-lyv ) (3.20) 

which implies that the dilaton, after performing the transformation (3.14), is given by 

3* _ „2*/det _ ^2^/det (ff + ë)^ _ é2* (% ^ 
UetEj V detff^ ) ^det(l-02) ' 1 ' j 

To obtain the transformation of the RR-fields it was used in [73] and Paper II that the 
RR-fields transform in a chiral Spin(p + l,p + 1) representation, under a general T-duality 
transformation. Using this fact gives, after a short calculation, the following transformation 
rule for the RR-fields4: 

c = e-iS^dx«Adx" ; (3.22) 

where C is given in (3.13). 
Finally, combining the results in (3.18), (3.21) and (3.22), we find that the most general 

deformation of th e Dp-brane (3.13) is given by 

9ß v 

Bß„ 

iß") ) j V ; 9ij 9ij ! 

<bP0pa9.x[{l -(Pf) > ] \ ,  ( 3 . 23 )  

e2* = = e _ c2^detffy 
i/det(l - { 9 ) 2 )  Vdetff / 

gC = c hB^dx^Adx" A • • • A dxp + 77-p) . 

Note that the deformed solution (i.e., the bound state) is completely specified by the 
constant deformation tensor 9^. Prom the formula for Bßl/, we see that non-zero values 
of 9ßu gives non-zero values for Bßv. When the components of t he constant deformation 
tensor 9ß" have been specified one first computes the new metric gß„, ß-field jBßV and 
dilaton, followed by the various RR forms. For several examples where these formulas have 
been used, see Paper II-VI. 

Recalling the discussion above and using (3.23) we see that two types of defo rmations 
are possible: 9°l and 6>y, where i,j = 1,2, The first one is called electric since 
we mix the time direction with a spatial direction, while the second is called magnetic 
since the time direction is not included. Since an electric deformation implies a non-zero 
electric component of t he B-field, electric deformations are used to include Fl-strings in 
the bound state. Similarly, magnetic deformations are used to include Dç-branes, where 
q = p — 2,p — 4,... ,p — 2n, and n is the number of inde pendent magnetic deformations. 

4We skip the details here, see [73] for the complete derivation. 
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Finally, to include waves, one has to mix an electric and a magnetic deformation with 
equal 'strength', i.e., turn on e.g. 6>01 a nd 912 where 6>01 = ±6n. For examples on this last 
(light-like) case see Paper IV and VI. 

If the Dp-brane solution we s tart with obeys the no force condition, it is important 
that the deformed solution also obeys this condition. Here we will show that this is always 
the case. We check th is in the special case of a rank 2 deformation. For the general case, 
see Paper II. Note, however, that if it is shown for the rank 2 case, the arbitrary rank 
case follows if 9is restricted to be block diagonal. Furthermore, since an arbitrary rank 
deformation always can be made block d iagonal, using Lorentz transformations, to show 
the rank 2 case therefore implies that the general case also obeys the no force condition. 

Next, we use the action for a Dp-brane to show that (3.23) obeys the no force condition, 
under the assumption that the undeformed solution (3.13) obeys the no force condition. 
The action for a Dp-brane is given by two terms, the Dirac-Born-Infeld (DBI) term and 
the Wess-Zumino term (WZ), Svp = 5DBi + Ses- From subsection 2.2.1 we recall that the 
expl ic i t  form is  g iven by (where  we have wri t t en  the  ac t ion using the  di la ton ins tead of  g )  

S D p  = —[ - J (F^xe^^Z-det ig  + I )  - J e T  A cj , (3.24) 

where T = F + B and C = Cp+1 4- i + ... . Here B and C are the pullback of t he 
background NS-NS two form and RR forms. From the DBI action we obtain the following 
effective static potential [79] (we only consider rank 2 B-field): 

V = -e °V/—det(g f B) 1)!ew-^+1Ô,1„.Mp+f 

— 1 ,"102 ö j; ai-üj-iri rtort 
2e 1Ö2(p_l)! Wi...aj,_i J 

where e012" = —1, e12- = 1, a = 0,1 or p -  l ,p ,  and a = 2,3 or 0,1,... ,p  -  2, 
for electric and magnetic deformations, respectively. Note that in (3.25) g and B are the 
deformed background fields (and not the pullback of the background fields). Next, inserting 
the supergravity solution (3.23) in (3.25), for rank 2 ß-field, we get t hat 

V — V = -e~^^/ -detg ß l /  + , (3.26) 

where V is potential that we obtained for the undeformed solution (3.13). Hence, if 
V = 0, then V = 0. Note also that demanding that V = 0 for (3.13) implies that 
lo = ge^^^—detg^, in (3.13). For a light-like d eformation (3.25) is trivially zero if th e 
undeformed solution has V = 0. Here a comment is in order: we note that it is enough if 
the undeformed potential is equal to an arbitrary constant, in order to obey the no force 
condition [79]. For simplicity we choose to set this constant to zero. 

3.2 M-theory 'T-duality' and bound states 

In this section we are going to discuss generalization of s tring theory T-duality to M-
theory. We will fu rther use the M-theory 'T-duality' rules in order to derive the solution 
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generating technique first discussed in Paper VII. As we will se e below, this M-theory 
solution generating technique is a generalization of th e 0(p + l,p + 1) solution generating 
technique to M-theory. 

3.2.1 M-theory 'T-duality' 

We know that type IIA string theory compactified on a two torus is invariant under string 
theory T-duality. This suggests that M-theory on a three torus should be invariant under 
some transformation, which is the generalization of str ing theory T-duality to some kind 
of M-th eory 'T-duality'. 

In this subsection we will derive (tensor) transformation rules for the 11-dimensional 
supergravity background fields (i.e., the metric and the three form A), under an M-theory 
'T-duality' transformation. The notion of M-t heory 'T-duality' was first discussed by Sen 
[80] (see also [81] and Paper VII). It was assumed that M-theory on a three torus is invariant 
under exchange of the Kaluza-Klein modes and the wrapping modes for the M2-brane. 

Here we do not intend to try to derive the transformation rules for the supergravity fields 
from a duality on the M2-brane world volume (compactified on a three torus down to eight 
dimensions), since this is most likely very difficult. Instead we will deriv e transformation 
rules for the supergravity fields, which are consistent with the 11-dimensional supergravity 
equations of motion and U-duality. Moreover, we c onjecture that these are the correct 
M-theory 'T-duality' transformation rules. It would be very interesting and important to 
verify th is from a duality transformation on the M2-brane world volume, similar to how 
string T-duality is derived, see also the end of thi s subsection for some further comments. 

Under M-theory 'T-duality' it is conjectured [80] that the complex Kahler parameter 
of th e three torus 

where we have 'T-dualized' in the x1, x2 and xs  directions and ga\, is assumed to be diagonal. 
The above transformation is in the SL(2) part of t he U-duality group SL(3)xSL(2) for M-
t.heory c ompactified on a three torus. To be more s pecific, in (3.28) we h ave us ed an S 
transformation, whereas a general SL(2) transformation would transform E as follows: 

E = A123 +iy/detgab ,  a ,  6 =  1 , 2 , 3 ,  (3.27) 

transforms as 

(3.28) 

__ aE + b 

cE + d ' 
(3.29) 

with ad — be = 1. The S transformation corresponds to a = d = 0 and b = —c = 1. 

Under 'T-duality', we obtain from (3.28) together with the knowledge that g'ab = gab if 
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A = 0, the following transformation rules for gab and A\2s, setting A123 = A: 

nab 

9ab 
9 

(1 + A2detgab
1)2/3 

A1 — ^ — Adet9ab C3 30) ^  -  M 2 -  l + A 2 d e t g - l >  

u'ij = Mm9ij , 

where det,g~£ = (det^)"1. We have also given the transformation rule for the 8-dimensional 
transverse metric. The transformation of t he transverse metric can be obtained by first 
reducing 11 dimensional supergravity on a three torus (see [82, 83]), followed by using t hat 
the SL(2)xSL(3) invariant 8-dimensional metric gf• and the 8-dimensional transverse part 
of the 11 dimensional supergravity metric are related as g{j = eJ^3g^. Here e-7 = 1/detgab 

transforms to e'~7 = e~7/jr|2 under an S transformation, which is easily seen from (3.28). 
Since the metric gab was assumed to be diagonal we o nly had to use the fact that 

g'ab = gab if A — 0 under M-theory 'T-duality', in order to completely determine the first 
expression in (3.30). Note that the last condition implies that in order to obtain (3.30) we 
have to perform a certain SL(3) transformation together with the above SL(2) transfor
mation5. Hence, an M-theory 'T-duality' transformation must include both an SL(2) and 
an SL(3) transformation. However, we see from the example with diagonal metric above, 
that it is the SL(2) transformation which gives the 'important' information. Moreover, 
this suggests that the M-theory 'T-duality' group (for M- theory compactified on a three 
torus) is SL(2)xSL(3), which is equivalent with the U-duality group. To conclude: The 
transformation rules in (3.30) are correct since we have used the SL(2)xSL(3) invariance of 
the eight-dimensional action, which is obtained from 11-dimensional supergravity dimen-
sionally reduced on a three torus [82, 83]. Note, however, that this means that no fields 
can have any dependence on the coordinates in the three 'T-dualized' directions. 

The above 'T-duality' can be generalized to 'T-duality' with the time direction included. 
However, in this case it is important to note that 'T-duality' with a time-like component 
is not a symmetry of M-the ory, but transforms M-theory to M*-theory [85] with signature 
(2,9). In this case E is real and is given by [86] 

E — A)i2 + Vdet~gäb , a, & — 0,1,2 . (3.31) 

A ' T-duality' transformation now gives (set A0u = A) that E —+ — 1 /E, which gives the 
same transformation rules as in (3.30). 

Our next objective is to obtain the transformation rules given in (3.30), in a tensor 
form. We conjecture that the tensor form of (3.30) is given by (under the condition that 

•'Tliis is analogous to type II string theory compactified on a two torus where a T-duality transformation 
is equivalent to S transformations in both of the SL(2)'s. Note that in this case the T-duality group is 
essentially SL(2)xSL(2) (see, e.g., [84]). Here the first SL(2) has to do with transformations of the 
Kahler parameter E = B12 + iVdetffa(, and the second with transformations of the complex structure 
T = 512/322 + iVdetgab/g22-
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9ai Aabi Aaij 0). 

g'ab = (detGa
by/\G- l)ah , 

9ij = (detGab)1/9 {detgab)1/3g,j , 

A'abc = -Adefgdageb{G-y\ 

(3.32) 

where 

Gab = gab + 2 A2
ab 1 A-ab ~ 9°° 9^ AacdAbc'd' • (3.33) 

In (3.32) Ga
b = gacGcb and (G~ l)ab is the inverse of Gab• Note how similar (3.32) is 

compared to the string case (3.16) (i.e., if we extra ct g' an d B' from (3.16)), except for the 
conformai factor in the metric. 

Next, if we in sert that AQU = A or A123 = A into (3.32) and assume that the metric 
is diagonal, we easily obtain (3.30) in both cases. Another check of the metric in (3.32) 
is to relate it, by d imensional reduction, to T-duality rules for t ype IIA string theory on 
a two torus. By using how the dilaton transform under T-duality (3.20) we find that 
the transverse metric g[j reduces to g^s) = gf-, which is the correct transformation if 
g{°l = Bai — 0, i.e., Eai = 0, see (3.17). To check that g'ab is correct we use that in 10 
dimensions T-duality demands that (see, e.g., [87])7 

where t?(s) is the determinant of the string metric before T-duality and g'{s)  af ter T-duality. 
Lifting this relation to M-theory gives the following condition 

where g is the determinant of the metric before 'T-duality' and g' after 'T-duality'. Next, 
if we calculate y/—g' using (3.32), we obtain that (3.35) is satisfied. This implies that g'ab, 
given in (3.32) is correct. 

We end this subsection with some additional comments on M-theory 'T-duality'. Above 
we have derived t ransformation rules for the background supergravity fields, under an M-
theory 'T-duality' transformation. Although we have not proved them from duality on the 
M2-brane world volume, we still expect them to hold, since they respect U-duality and the 
11-dimensional supergravity equations of motio n. Hence, the 11-dimensional supergravity 
Lagrangian is invariant under an M-theory 'T-duality' transformation. However, it does 
not mean that a generic solution to the supergravity equations of m otion is invariant. For 
example, start with an M2-brane solution, which is smeared in the xa, a = 3,4,5 direc
tions. Applying a 'T-duality' transformation, using (3.30), we obtain an M5-brane solution. 

6Note that if t he 'T-duality' involves the time direction, one should take the absolute value of det< ?a(, 
in line two in (3.32). 

7Using the path integral approach, (3.34) originates from using a different measure in the dual sigma 
model. The change of the measure introduces a Jacobian which leads to the condition (3.34), see, e.g., 

(3.34) 

a/^57 = y/=g(detGa
b)1/9{detgab)1/s , (3.35) 

[87]. 
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Similarly, starting with an M5-brane solution, gives, af ter a 'T-duality' transformation in 
the xa, a = 3,4,5 directions, an M2-brane solution smeared in these directions. This is 
very different from T-duality in string theory, where a supergravity solution corresponding 
to a string transforms into itself under T-duality. This seems to imply that there is a 
fundamental difference between string theory T-duality and M-theory 'T-duality', which 
perhaps is not very surprising. 

Furthermore, this has the following in terpretation for M2-branes and M5-branes: If 
we take a membrane and compactify on a three torus, an M-theory 'T-duality' trans
formation implies that we are dualizing three of the scalars8 to three vectors, since the 
membrane world sheet is three-dimensional. However, this can not be entirely true, since 
de-compactification (i.e., lift to 11 dimensions) can not give a membrane in 11 dimen
sions with three vectors and five scalars, since a membrane of this kind does not exist. 
Instead what must happen is the following9: Under an M-theory 'T-duality' the (electric) 
membrane in eight dimensions is transformed to a magnetic membrane. With magnetic 
membrane we mean that it couples magnetically to the background three form which the 
membrane before 'T-duality' coupled electrically to. This is similar to the fact that in 
11 dimensions the M2-brane couples electrically to the three form, while the M5-brane 
couples magnetically to it. Thus, we have a membrane that couples magnetically to the 
background three form, which means that if we now de-compactify, then this magnetic 
membrane becomes an M5-brane in 11 dimensions, i.e., M-theory 'T-duality' changes an 
M2-brane into an M5-brane. Conversely, starting with an M5-brane compactified on a 
three torus gives a membrane, which couples magnetically to the background three form 
(which is obtained from the 11-dimensional three form). From the M5-brane the five 
transverse scalars stay as five scalars, while the world volume two form with self-dual three 
form field strength gives three scalars and three vectors, which obey a duality relation. 
Hence, the three scalars and three vectors together only give three d.o.f. Next, under 
an M-theory 'T-duality' transformation we get an electric membrane, since from an eight 
dimensional perspective we have performed an electro-magnetic transformation (i.e., mag
netic membrane—»electric membrane). Note that the vectors are now completely dualized 
to scalars. Finally, de-compactifying gives an 11-dimensional M2-brane. 

We have seen above that an M-theory 'T-duality' transformation changes an M2-brane 
to an M5-brane, and vice versa. This is very different compared to string theory T-duality. 
Moreover, in string theory we only have to deal with fundamental strings, when discussing 
string theory T-duality. However, in M-theory it does not seem to be sufficient to only 

8In string theory a T-duality transformation is obtained by dualizing a scalar, which gives a new scalar, 
since the string world sheet is two-dimensional. 

"Some of th e motivation to the following discussion can be found in [81, S3]. In particular, it is shown 
in [83] that, for a membrane in eight dimensions, it is not possible to dualize three world volume scalars to 
three vectors, because of the non-trivial Bianchi identity for the vectors. It is, however possible to have a 
description using both three scalars and three vectors, where the vectors and scalars are dual to each other. 
This is similar to how, in 11-dimensional supergravity, it is possible to use a description with only a three 
form or a description using a three form together with the dual six form potential, but not a description 
with only a six form. 
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include M2-branes, when discussing M-theory 'T-duality'. Instead we also have to include 
M5-branes. This further suggest that when dealing with M-theory 'T-duality', the M2-
brane and M5-brane are on equal footing. Hence, perhaps it is not correct to view the 
M2-brane as any more fundamental than the M5-brane. This something that must be 
investigated further. 

3.2.2 An M-theory solution generating method 

In this subsection we a re going to use the results about M-theory 'T-duality', obtained 
in the last subsection, to derive the solution generating method which was first discussed 
in Paper VII. The purpose of t his solution generating technique is to be able to deform 
M5-branes by turning on a three form A3, in the M5-brane directions. This will generate 
supergravity solutions corresponding to M5-M2 or M5-M2-M2-MW bound states with var
ious amounts of supersymmetry depending on the M5-brane solution which we start from. 
Note that, similar to the string case (see section 3.1.2), also in 11 dimensions the deformed 
and undeformed solutions will have the same amount of supersymmetry. We will see below 
that, using M-theory 'T-duality', this solution generating technique can be constructed in 
a similar way to how the string case was constructed. 

Consider the following general M5-brane solution 

ds2 = g^dx^dx" + gmndxmdxn , /it, v = 0,1,..., 5 , m,n = 6,..., 10 , 

AQ = Ljdx0 A • • • A dx5 , A3 = 73 , (3.36) 

where 73 is a transverse three form dual to the six form (i.e., *d"/s = dAg), while the 
function tv = ^/—detgßV (up to an arbitrary constant), due to the no force condition. 

Next, we are going to deform this M5-brane by turning on a three form A3 in some of 
the M5-brane directions. By comparing to the string case in section 3.1.2, we claim that 
this is done by first performing an M-theory 'T-duality' transformation in three directions 
parallel to the M5-brane, e.g., in the xa, a = 3,4,5, directions, which gives a smeared 
M2-brane. Next, we perform a gauge transformation in the smeared directions, followed 
by a new M-theory 'T-duality' transformation in the same directions as before. Performing 
these three steps should give us the desired deformed solution (bound state). 

Following the above three steps using the M-theory 'T-duality' rules (3.32), we obtain 
the following complete metric and three form (in the deformed directions): 

gab = [det(l + ̂ (é1)2)] ' gac[{l + \(ßf) ] b, gaß = [det(l + ^(<?)2)] ' 9»ß , 

r / 1 r»\ 1 1/9 
9mn = j^det^1 + — (0) )j gmn , (3-37) 

^3a = l-ÄHcdxa ^dxb f\dxC 
:  iäc=-p«dpe6Ö<fe/5/ f l[(1 + i(0)2)~1]Bc. 

Here 9ahc is a constant dimensionless anti-symmetric deformation tensor, and (62)ab is 
defined as follows: 

{e2)\ = 9acdgcegJfe^ggb . (3.38) 
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There are three possible deformations: (1) 6>012 = 9, (2) 6>345 = 9, (3 ) 9~12 = 0, (where 
x4 = -^{x5 ± x0)). Similar to the string case the first one is called an electric, the second 
a magnetic and the third a light-like deformation. Note also that the part of A3 which is 
transverse to the M5-brane is unchanged (i .e., it is still equal to 73) .  

Next, we no te an important difference compared to the string case. On the M5-brane 
the gauge invariant three form field strength H = dB + A3 (where A'3 is the pullback 
of t he background three form to the M5-brane world volume) satisfies a non-linear self-
duality (NLSD) condition. This implies that also the background three form Ä3, in the 
M5-brane directions, must satisfy the same NLSD condition, using the background metric. 
Hence, e.g., if we turn on an electric component of A3 we aut omatically get a magnetic 
component of A (i.e., turning on A0u implies that also Ä345 is non zero). This means that 
A3a obtained in (3.37), must be supplemented by a new component, in order for the three 
form A3 to satisfy the NLSD condition in the M5-brane directions. Therefore, using the 
NLSD condition (see equation (3.19) in Paper VII) we obtain that the new component is 
given by 

Ash = ^Äf0ydxa A dxß A dx y  , A^ßl  = (—l)k0iveaß7 , (3.39) 

where e0i2 = £345 = 1 and k = 0 for 9012 = 9, while k = 1 for 0345 = 9 and 9~12 = 9. Hence, 
including (3.39) to (3.37), implies that the NLSD condition is s atisfied. Moreover, the 
NLSD condition implies that an electric and a magnetic deformation must be equivalent. 
Below th is is explicitly shown for a deformation of the maximally supersymmetric M5-
brane. 

So far, we have obtained the deformed metric GMN and three form Ä3. However, 
sometimes it can be convenient to also have the dual six form. Using that *f/"4 = H7 (with 
e°i -9,io = _1)) where 

-Ö4 = dÄ3 , H-j = dÄ6 — 7^3 A dÄ3 , (3.40) 

we obtain the following deformed six form: 

1 - - 1 _ 
Ag = Ag + ~A3a A A 3\, + ^(^-sa + ̂ 3b) A 73 . (3-41) 

Combining the results in (3.37), (3.39), (3.41), and simplifying the notation, we get the 
following deformed M5 -brane supergravity solution: 

9^ #*&»/>.[( 1+2^)2) ]V' 9mn = Kig„ 

A3 — Ä3a + Â3\, + 73 , 

Âq = Aß +-Ä3a/\ Ä3b +-(Ä3a + Ä3b) f\ , (3-42) 

where 

isa = \^llpdx^ A dx" A dxp , - [(l + ̂ )2) Jp, 

Ä3h = -^u9 til,pißivipdx° A • • • A dx5 , K = [det(l + ^(#)2)] , 
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where ißdxv = 5", is a constant dimensionless anti-symmetric deformation tensor, and 
is defined as follows: 

(02yv = e^'Og„,agpa,d™'xgx,y . (3.43) 

Here 9ßvp has only 'one' non-zero component, e.g., 0alSl = 9eal)l (e012 = 1), where a = 
0,1,2, while 9abc = 0, a = 3,4,5. Note this is not a restriction on the possible bound states 
that we can obtain, because it has been shown in [72, 101] that one parameter is enough 
to parameterize all deformations of an M5-brane with a non-linearly self-dual three form 
A3 (in the M5-brane directions), up to Lorentz transformations. An important difference 
between the ,\ 15-brane and D4-brane is that from an M5-brane point of view the difference 
between rank 2 and rank 4 B-field on the D4-brane is a Lorentz transformation (see, e.g., 
[110]). 

The solution generating technique (3.42) must be correct, because we have used the 
M-theory 'T-duality' rules, which have been rigorously proven10. To be more specific: We 
have proven that (3.42) is correct if a ll functions are independent of the three directions 
in which we deformed. It would be very interesting to investigate if it is possible to relax 
this constraint, and see if (3.42), or some generalization of it, is valid for more general 
deformations. One reason to believe that this might be possible is that it has been con
jectured that 11-dimensional supergravity has an En symmetry [88], Moreover, since En 
has SL(2)xSL(3) as a subgroup, it should be possible to use SL(2)xSL(3) transformations 
like the ones we use in (3.42), directly in 11 dimensions without compactifying on a three 
torus. At this stage we unfortunately have no solid evidence that (3.42) is correct for more 
general deformations. We plan to investigate this further, since it is an important question 
to answer. 

Next, we show how to use the method above to obtain an M5-M2 bound state. We will 
obtain the maximally supersymmetric M5-M2 bound state in two ways and show that the 
two solutions are equivalent11 

We begin by giving the half-supersymmetric M5-brane solution [36]: 

ds2 = H~*r)lil/dx ,ldxv + H^6mndxmdxn , /z, v — 0,1,..., 5 , m, n = 6, , 10 , 

Aq = H-ldx° A • • • A d x5 , A3 = "i3, (3.44) 

where H is a harmonic function on the transverse space and 73 is the three form dual to 
the six form, i.e., 73 = 3Rs€j,, where de3 is the volume form of t he four-sphere. 

10More specifically, this means that magnetic deformations must be correct. However, since the NLSD 
condition implies that electric and magnetic deformations are equivalent, it also proves that electric defor
mations are correct. 

11 We have chosen to show this equivalence here, since this is not shown explicitly in Paper VII. 
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Deforming this M5-brane solution with 90 1 2  = 9, using (3.42), gives 

ds2  = (Hh~ l)~% ((dx0)2 + (dx1)2 + (dx2)2^ + (dx3)2 + (da;4)2 + (dx5)2J 

+h^H%öm ndxmdxn  ,  
Q Q 

Ä3  = —-dx0 A dx1 A dx2 + —da;3 A dx4 A dx5 + 73 , (3.45) 
H h H 

\  -1 f h + 1 s  

Ae  = (Hh) ^———^jdx° A • • • A dx5   

1 
2 

+ -0ÜT :(/i 1  dx° A dx1  A dx2  + dx3  A dx4  A dx5) A ,  

Ft3  

h = I- d2H~1  ,  H = a + 
r 3 

while a deformation with 0345 = —0', gives 

ds2  = (H'h'-1)-1* [(dx0)2 + (dx1)2 + (dx2)2 + i ((da-3)2 + (dx4)2 + (dx5)' 

+h'^H'iôm ndx r ndxn  ,  

A3  = — dx° A da-1 A dx 2  + JjTpdx3  A dx4 A dx 5  + 73 , (3.46) 

i6 = (H'h'y1  (~y~) cfo;0 A • • • A dx5 

+ -(?'//' ^dx0 A dx1 A dx2 + h! 1dx3  A dx4 A dx 5) A 73 , 

d3 
ti  = 1 + e'2^'-1, = b + — , 

where a and 6 are constants. It is not obvious that these two solutions are equivalent. 
However, if we use the following identification 

b = a — 9'2  ,  0' = 9 , (3.47) 

which implies that 

h '  =  T,  H '  =  Hh .  (3.48) 

It is fairly straight forward to show that they indeed are equivalent. 

3.3 D-brane 'T-duality' and bound states 

In this short section we will generalize the results in section 3.1 and 3.2 to Dp-brane 
'T-duality' (we r estrict ourselves to p = 1,2,3), which can be used to derive a solution 
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generating technique, which in turn can be used to deforms NS5-branes and D(p + 2)-
branes by turning on a non zero RR (p + l)-form12. 

For type II string theory compactified on a (p + l)-torus, 'T-duality' for Dp-branes 
implies (s imilar to the membrane case in last section) that the complex Kahler parameter 
of th e (p + l)-torus 

E = C\-2. .(p+i) + i\J det g åb ; a>b = 1,2,... ,(p + 1) , (3.49) 

transform as [80] 

E' = -i , (3.50) 

where g®b is the closed Dp-brane metric and assumed to be diagonal, and we have 'T-
dualized' in the xa, a = 1,..., (p + 1), directions. For simplicity we have set the closed 
string coupling constant g = 1. Equation (3.50) leads to the following transformation rules 
for the Dp-brane metric and RR (p + l)-form (let us set Ci2...(p+i) = C), under Dp-brane 
'T-duality': 

/Dp _ g? 
j ab 

(1  +  C 2 detgJ) *+ i  

~Cdet9äb 
'12~(P+1) 1 I rVAc+n-ï 

C -  (r ,  c i  \  °i2...(p+i) — ! , ^-,9, , -i i 1,0.01; 

where det^1 = (det5°p) 
Similar to subsection 3.2.1 there are also 'T-duality' rules when the time coordinate is 

included. These give transformation rules similar to (3.51). 
Next, the generalization to tensor expressions for the 'T-duality' rules is straight

forward and given by (we also give the transformation rules for the transverse metric 
gff with the condition that g% = Cab...ci = ... = Cai...j = 0): 

g'DJ = (detGa
b)^(G~1rb , 

)f+r 

c' i = ~cbl...bp+xibl • • • git 

y = (detGa
6)(^(detffoi,)^5°p , (3.52) 

where 

Gab = 9% + -,Clb , C2
ab = ga^ • • • ga^Caai...apCbbl...bp . (3.53) 

_1_ 
pi 

Looking at. a specific electric or magnetic case, we find that the first and third expressions 
in (3.52) reduce to (3.51). For p = 1 (3.52) follow from S-duality of the fundamental string 

12The reason we will use this Dp-brane 'T-dualit.y' to deform NS5-branes and D(p+2)-branes, by turning 
on a non zero RR (p + l)-form, is because open Dp-branes can end on NS5-branes or D(p + 2)-branes [89]. 
This is similar to how open strings can end on Dp-branes but not on NS5-branes, which implies that 
ordinary T-duality can be used to deform Dp-branes with non zero .B-field but not NS5-branes. To deform 
NS5-branes we instead have to turn on a non zero RR (p+ l)-form, see below. 
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case, see Paper VII, while for p  —  2 (3.52) can be obtained from (3.32) using dimensional 
reduction. Furthermore, for p = 3 the exponent in (detga;,)1/2 is fixed by demanding that 
a magnetic D3-brane 'T-duality' of a 1/2-SUSY D5-brane gives a 1/2-SUSY Dl-brane. 

Continuing in a similar way to section 3.2, we find that it is fairly simple to use the tensor 
'T-duality' rules in (3.52), in order to derive deformations of NS5-branes and D(p + 2)-
branes by turning on a non-zero RR (j>+ l)-form, which would lead to bound states of the 
form NS5-Dp and D(p + 2)-Dp, respectively. In the two cases p = 1,2, we obtain the same 
result as in Paper VII. For p = 3 we have checked that one also obtain correct results, e.g., 
the maximally supersymmetric NS5-D3 bound state can be derived. 

Although we have here restricted ourselves to the cases with p  =  1,2,3, we will comment 
on the generalization of (3.49) and (3.52) for p = — 1. In this case (3.49) and (3.52) 
generalize to (note that we use r instead of E) 

r = C(o) + ie~* , (3.54) 

where a D(—l)-brane 'T-duality' implies that r —> — 1 /r. Hence, 

/ 1 —C«» ^ ^ 
T = = -7^ 5^ • (3.55) 

r Cfc + e-** 

As a conclusion we see from (3.54) and (3.55), that D(-l)-brane 'T-duality' seems to be 
equivalent to ordinary type IIB S-duality (see also [80]). This interesting result might 
imply that all U-duality transformations can be viewed as various (generalized) T-duality 
transformations. 
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4 
Noncommutative theories, supergravity 

duals and open brane data 

In this chapter we will discuss various maximally supersymmetric non-gravitational theories 
(see, e.g., [10]-[12], [73, 78], [90]-[122] and Papers II-VI), which live in flat space-time with 
noncommutative coordinates (or some kind of 'generalized' noncommutativity structure, 
see section 4.3). In section 4.1 and 4.3 we follow the more common 'flat-space scaling' 
approach, while in section 4.2 we will give a short introduction to the 'supergravity dual' 
approach (see Paper II-VI). We show that these two approaches give equivalent results. 
However, in many cases the latter is more convenient to use. Moreover, in subsection 4.2.2 
we discuss the concept of d eformation independence, while in 4.3.1 we give an alternative 
derivation of t he open membrane metric and generalized noncommutativity parameter. 

4.1 Dp-branes with background ß-field 

Here we give an introduction to maximally supersymmetric noncommutative super-Yang-
Mills (NCYM) [10]-[12], with space-space or light-like noncommutativity, and noncommu
tative open string theory (NCOS) [93]-[98]. In particular we explain why these theories 
have noncommutative coordinates and why the former is a field theory and the latter an 
open string theory. We will obtain these theories by taking various decoupling limits (low 
energy limits) of Dp-branes with a background anti-symmetric NS-NS Bßv-field turned on 
in flat space (gM„ = rj^, /x, v = 0,1,... ,p). Note that these theories are (p+ l)-dimensional 
since they are world volume theories of a Dp-brane with a ß-field turned on. The back
ground B-field is equivalent to a constant magnetic or electric field on the brane. In this 
section it will be implicit that we only deal with noncommutative U(l) theories. 

67 
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4.1.1 The open string metric, noncommutativity parameter and cou

pling constant 

We start in this subsection by obtaining the two-point function for an open string ending 
on a Dp-brane with a constant NS-NS B-field turned on in flat space-time. The B-field 
has arbitrary even rank r < p + 1. We will only include the p+ 1 directions parallel to the 
brane in the discussion, since a constant B-field transverse to the Dp-brane can be gauged 
away. T he two-point function is important since it gives information about the open string 
metric Gßl/ and noncommutativity parameter 0'"'. Here is called the open string 
metric, since it governs the mass-shell condition for open string states propagating on the 
Dp-brane, while is the parameter of noncommutativity between Dp-brane coordinates, 
as will be explained below. 

First, the two-point function for a closed string is given by (written with complex 
coordinates z = T + ia and z = r — icr) [16]: 

< X ß (z ,z)X u (z ' ,  z ' )  >= og (z  -  z')  + log (z  -  z'))  . (4.1) 

To obtain the two-point function for an open string ending on a Dp-brane, with a 
constant NS-NS .B-field turned on in flat space-time, we start with the following (bosonic) 
action [12] 

^7 j^daX"daX" - Bß„e a bdax»dbx») , (4.2) 

where X 1 1  = X ß (z ,z)  and E is the two-dimensional open string world sheet (upper half 
of the complex plane, with boundary given by z = z = r). Note that the closed string 
metric and NS-NS field Bm are defined to be dimensionless. For the NS-NS field this is 
different compared to [12], where Bhas dimension (length)^2. The relation between the 
two conventions is: BßU = 2ira.'B^y\ where B^ is the B-field in [12]. Note also that the 
second term in (4.2) is a boundary term, i.e., it can be written as a total derivative term. 
This implies that a nonzero B-field does not effect the closed string two-point function, 
but, as we will see below, modifies the open string two-point function. The open string 
boundary conditions, which are obtained from (4.2), are given by 

g [ L l >d nX v  + B ß vd tX» = 0 .  ( 4 . 3 )  
z=z 

Here dn  = d — 8 is the normal derivative and d t  = d + § the tangential derivative with 
respect to the open string world sheet, where d = d/dz and 3 = d/dz. For B — 0, the 
boundary conditions (4.3) are Neumann boundary conditions, while for B —> oo, with 
rank r = p + 1 and fixed metric gßI/, the boundary conditions become Dirichlet. This 
means that the boundary condition interpolates between Neumann (B = 0) and Dirichlet 
(B —> oo). Below we will se e that when we take a NCYM decoupling limit we obtain 
Dirichlet boundary conditions, while if we take a NCOS decoupling limit we obtain a 
mixture of Neumann and Dirichlet boundary conditions. This indicates that there is a 
distinct difference between these two decoupling limits. 

47ra' 
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To obtain the two-point function we use the "image" method (familiar from electrody
namics). This means that we make the following Ansatz:1 

< X%z, z)X v(z ' ,  z ')  > = log (z -  z')  + \ f v  log (z - z')  

+ cT log (z -  z')  + log (z -  z') . (4.4) 

This Ansatz is motivated by the form of th e closed st ring two-point function (4.1). The 
two extra terms (the last two in (4.4)) have to be included due to the boundary conditions 
(4.3). Close to the 'source' (z ~ z'), the first two terms dominate the two-point function 
and the last two terms can be ignored. This implies that for z ~ z' the open string two-
point function should be similar to the closed string two-point function (4.1), because the 
effect o f the con stant ß-field and the boun dary conditions are i rrelevant when z ~ z' .  
Using this argument we obtain that the tensors aM" and 6^" are given by 

a"" = . (4.5) 

The other two unknown tensors can now be determined by using the boundary conditions 
(4.3). Using (4.3) in the Ansatz (4.4) for the coordinate z, at the boundary z = z, gives 

gpja""—- - ir-L- + 
\  z — z'  z  — z '  z  — z '  z  — z '  /  

Bp»{a^~T7i + \z=z = 0 • (4-6) z — z'  z  — z '  z  — z '  

Equating the terms with 1 /(z — z ')  and 1 /{z — z1),  respectively gives th e following two 
equations: 

gP ß(a^ -  dT) + Bp f l{aß V  + cT) = 0 , (4.7) 

gpnicT - V") + + &"") = 0 • (4.8) 

From these two equations we can now obtain the two unknown tensors cß u  and d/u > .  How
ever, we start by defining a new tensor 

C" = - <r , (4.9) 

since it simplifies the derivation of bßu and <fv. Continuing by inserting (4.5) and (4.9) in 
(4.8), gives after some calculations 

°"=al(lhY- <4-10)  

After a similar calculation we also obtain 

= (4.11) 

1The following derivation is based on [99]. 
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Finally, inserting (4.9)-(4.11) in the Ansatz (4.4), gives the following open string two-point 
function 

< XM(z, z)X"(z\ z') > = — «y (log I z — z' I — log I z — € I) 

-  c r i o g | z - ^ 2 - C f l o g J ^ J ,  ( 4 . 1 2 )  

where the index S and A denotes the symmetric and anti-symmetric part of the tensor 
CßI/, respectively. In this thesis we a re interested in world volume theories of deformed 
Dp-branes. It is therefore useful to evaluate the two-point function at the boundary points 
z — z = T, z' = z! = T'. This gives [99] 

< X , :{r)Xvi7') >- -a'G^ log (r - r')2 + - r') . (4.13) 

Here E ( T  —  R ' )  = 1 if r > r' and —1 if r ' > r, while 

G"U = — Cg" = = ( —~E>9—- (4-14) 
a' \g + BJs \g + B g — BJ 

and2 

©'"!' = 2nC^ = 2~a'= -27ra'(-^— ß—^V" . (4.15) 
A y g + B J  A \ g  +  B  g ~ B J  v  '  

Here GW is the inverse open string metric (Gßl/ is called the open string metric) and 
is the noncornrmif ativity parameter. Gßl/ is called the open string metric since it is the 
effective metric seen by open strings. This can be understood from the following argument: 
In the closed string mass shell condition the relevant metric is gßL/ (called the closed string 
metric), while in the open string mass shell condition the relevant me tric is GßI /. 

It is sometimes convenient to write Gßv and QßI /  in the following form: 

Gfj.u = gßv + BmgpaBav = g^ + B2
ßu , 

0^ = -2-Ka'g l">Bp<yGau . (4.16) 

Note that 0'1" = 0 and = gif Bßv = 0. From the two-point function we also obtain 
that the commutator between Xß(R) and X"(T) is nonzero as long as B^ is nonzero, since 
[12] 

[X"(T),X"(T)] = »©"" . (4.17) 

This implies that the endpoints of the open string do not commute, i.e., the endpoints live 
in a noncommutative space. Also, as we will see below, this implies that if we take the 
appropriate low ene rgy limit (in order to decouple gravity) of a Dp-brane with a nonzero 
jB-field turne d on, we obtain a theory with noncommutative coordinates. 

We end this subsection by deriving an expression for the open string coupling constant 
G2

0. For B = 0 the open string coupling constant is G\ = gs, where gs is the closed string 
coupling constant. Below we will see tha t this expression is modified by a nonzero B-field. 

2Note that our conventions for Qßl/ differ with 2w from the conventions used in Paper II-VI. 
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To obtain the open string coupling constant, we first no te that for slowly varying fields 
the effective Dp-brane Lagrangian is given by the Dirac-Born-Infeld Lagrangian [12] 

-CDBI — 
1 

-^rV-àstig + B + 2-rra'F) ,  
gs(2Tr)p(a') 2 

(4.18) 

where F = dA is the world volume field strength. Here the combination B + 2na'F is 
invariant under the gauge transformation: A —> A + A and B —• B — 2ira'dA. Note that 
this Lagrangian was derived using Pauli-Villars regularization [12]. Instead of writing the 
Lagrangian in this form it is possible to write it in terms of the open string variables Gpp, 
G2

0 and [12], where the 0 dependence is entirely in the * product (see below). In this 
new form the Lagrangian is given by (using point-splitting regularization) [12] 

L NCDBI ( F )  =  —det(G + 2-Tra'F) 
G2(27r)p(a')^ V 

where 

F S ^ Å j y  d l / Å n  î À n  *  Å u  - f -  i Å j y  *  Å n  ,  

(4.19) 

(4.20) 

is the noncommutative field strength. The * product between two functions / and g is 
defined as 

f ( x ) * g ( x )  =  e 2  4 -  £ ) g ( x  +  r j )  = fg + d̂ , fdvg + ö(02) . (4.21) 
î=j)=0 A 

The two Lagrangians (4.18) and (4.19) describe the same physics, and can therefore be 
related by a field redefinition [12] (the Seiberg-Witten map), which gives a relation between 
F and F. This follows from the fact that the difference betw een the two Lagrangians is 
due to using different regularizations. Thus we have tw o different de scriptions of the same 
physics: (1) we use the Lagrangian (4.18) on a commutative space-time or (2) we use 
the 'noncommutative' Lagrangian (4.19) and [Xß[r), Xv{T)\* = i&but instead of th e 
'ordinary' product we use t he * product (4.21) between functions. 

Now, to obtain the open string coupling constant we simply compare the constant parts 
(i.e., set F = F = 0) of the two Lagrangians (4.19) and (4.19), which must be equal. This 
gives the following expression for the open string coupling constant: 

/ detG 
^sldet (g + B)) ^ sldetgi 

/detG\ 3 
(4.22) 

where (4.16) was used to obtain the second expression. 
In the next three subsections we will investigate what happens if we turn on a magnetic, 

a light-like or an electric B-field on a Dp-brane and take various decoupling limits. To 
obtain the appropriate decoupling limits we will use some of the results in this subsection. 
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4.1.2 Decoupling limits 

The open string metric and noncommutativity parameter are useful for obtaining so called 
decoupling limits of string theory. With decoupling limit we mean a limit of str ing theory 
which leads to a theory without closed strings (i.e., without gravity). Sometimes, the 
limit is also taken in order to decouple massive open strings which means that only the 
massless open string modes are kept in the spectrum, i.e., the massive open string modes 
are infinitely massive. These massless open string modes can be described by a super-
Yang-Mills theory, with or without noncommutativity, depending on the type of limit. In 
section 4.1.4 we give a n example where the closed str ings decouple but both the massless 
and massive open strings are kept, which leads to an open string theory with space-time 
noncommutativity (NCOS). As we will see below, to obtain these non-gravitational theories 
involves taking a' 0, while at the same time keeping the energy scale fixed. Effectively 
this means that the a' —» 0 limit is equivalent to a low energy limit. To be more precise: 
consider low energy, i.e., we introduce a cutoff at energy E << l/(a')1//2, which implies 
that the massive open and closed string modes are irrelevant for the low en ergy theory, 
since there is not enough energy for them to be excited. Instead of restricting the energy to 
E « l/^')1/2, we can let a —> 0 and at the same time keep the energy scale fixed, which 
implies that the massive open and closed s tring modes become irrelevant (i.e., infinitely 
massive). 

As a simple example we consider first the decoupling limit which leads to super-Yang-
Mills in p + 1 dimensions. Start with a Dp-brane aligned in the x', i = 1,... ,p, directions, 
i n  f l a t  1 0 - d i m e n s i o n a l  s p a c e - t im e ,  w i t h  f l a t  c l o s e d  s t r i n g  m e t r i c  § m n  ( M ,  N  =  0 ,1 . . . ,  9 )  
and an open string metric GMN = 9MN- We have no £>-field tu rned on which implies that 
the open and closed string metrics are the same. 

First, to decouple massive open and closed strings we take a! —» 0 and keep the closed 
string metric fixed in the brane directions, i.e., gßl/ = r(p, v = 0,1,... ,p). The closed 
string metric in the transverse direction scales as gmn ~ (a')2, which effectively makes 
the metric (p + l)-dimensional. One also have to keep the Yang-Mills coupling constant 
<7YM = (27r)P"2

5s(a')£^ fixed in the a' —• 0 limit. This naturally implies that massive 
(N > 1) open and closed strings decouple, which is seen from the mass-shell condition 
G'^PuPv = N/a'. It also means that only the massless (N = 0) open string modes are left 
in the spectrum. The massless closed strings decouple in this limit. In the generic case 
this is non-trivial to show, since N = 0 for the massless closed s trings. However, it has 
been shown by calculating graviton absorption cross-sections that also the massless closed 
strings decouple in the decoupling limit, as long as p < 5, see, e.g., [116]3. We h ave now 
obtained a super-Yang-Mills theory in p + 1 dimensions with fixed Yang-Mills coupling 
constant <?YM-

In the next subsection we show how to obtain a limit of st ring theory which leads to 
super-Yang-Mills theory with fixed noncommutativity parameter 0. This case is a bit 
trickier, since the open and closed s tring metrics are not the same anymore and we also 

3Note also that decupling is also suggested by the fact that the 10-dimensional Newton's constant is 
K ~ g,a'2. which approaches zero in the decoupling limit, for p < 6. 
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have to consider the noncommutativity parameter © which should be held fixed in the 
decoupling limit. 

4.1.3 Noncommutative super-Yang-Mills theory 

Here we will show how maximally supersymmetric noncommutative super-Yang-Mills the
ory (NCYM) can be obtained as a limit of string theory. We start by considering a Dp-brane 
(aligned in the x\ i = 1,... ,p, directions with 2 < p < 5) with a rank 2 magnetic (or light
like. se e below) ß-field turned on4. To obtain the correct decoupling limit, i.e., NCYM 
decoupled from gravity, we have to satisfy the following conditions: 

1. We have to take a' —*• 0, while keeping the energy scale fixed, in order to decouple 
gravity. 

2. We have to keep Gßv fixed and flat (GßV = rjßl /) in order to decouple massive open 
string modes. We choose a flat metric since this is the simplest case. For cases with 
curved open string metric, see, e.g., [114]. 

3. We also have to keep the Yang-Mills coupling constant gYU fixed, see (4.23) below. 

4. Finally, we have to keep fixed in order to have fixed noncommutativity. 

The Yang-Mills coupling is defined as [12] 

1 (oQV / detg \ i 
g2

YM (2n)^Gl (2n)^gs\detGJ ' ^ 

This expression is obtained from the F2 term by expanding (4.19). Note that for 'ordinary' 
super-Yang-Mills (0 = 0) conditions 1-3 have to be satisfied, as we have seen above, while 
condition 4 is of course irrelevant. 

As the first case we consider turning on a rank 2 magnetic ß-field. To satisfy the above 
four conditions we propose the following decoupling limit [12] 

e —» 0 , o! = 9e1/2 , = —e1/2 , 

9aß Vctß i ß Ii • • • •> P 2 , 

gab = tôab , a,b = p-l,p , (4.24) 

9mn = eSmn , 171,71= p+ 1 , . . . , 9 ,  

5s = ~g^ = (2n)2-'>g2
YMe^e t? , 

where #ym = (27r)p_2ffs^E^, 5s and 0 are kept fixed. Note that gYM has dimension Lp~3 

(L=length), gs is dimensionless and 6 has dimension L2. To derive this decoupling limit, 

4We choose the rank 2 case for simplicity. The generalization to arbitrary even, magnetic, rank r is 
straight-forward. 



74 Chapter 4 Noncommutative theories, supergravity duals and open brane data 

we first used condition 1 to define a' = 0e1/2, e —> 0, then condition 2 and 4 to obtain the 
correct expressions for gßl/ and Bp_IjP. Finally, we use d condition 3 and (4.23) to obtain 
the expression for g s. 

As a check that we have found the correct decoupling limit, we calculate the open string 
metric and noncommutativity parameter, as well a s the open string coupling constant. 
Inserting (4.24) into (4.16) and (4.22), gives 

G>„ = , Qv-1* = 2nd , G2
0 = gse^ = g\u6^, (4.25) 

which satisfy the four conditions above. Next, if we inser t the above decoupling limit into 
the open string mass shell condition we get 

rTVvVv = J = j e~1/2 , (4.26) 

which implies that in the decoupling limit the massive open strings (TV > 0) becomes 
infinitely heavy and decouple. Hence, only the massless open string modes are kept in the 
spectrum and we can therefore use N CYM theory to describe the physics of the Dp-brane 
in this limit. The Lagrangian for this theory is given by [12]5 

£NCYM = A- ̂ ditGG""1 G""1 Fßu * FmVl , (4.27) 
45YM 

where Ffn, is the noncommutative field-strength (4.20), the * product is given by (4.21) and 
5YM is the Yang-Mills coupling constant (4.23). Note that for energies E << 9_1/2, the 
noncommutativity becomes unimportant and the physics can be described by 'ordinary' 
super-Yang-Mills. 

For p — 3 we see that the coupling constant is dimensionless (g\u = gs). This implies 
that NCYM in four dimensions might be renormalizable, i.e., ultraviolet complete (finite). 
In [109] it has been shown that maximally supersymmetric NCYM in four dimensions is 
indeed renormalizable to all orders. For p > 3 one on the other hand have a coupling 
constant that has dimension length to a positive power. This implies that in dimensions 
larger than four, NCYM is non-renormalizable, i.e., the theory breaks down for energies 
E > I/C'/ym)^5- This can be shown in the following way: For U(l) NCYM in p + 1 
dimensions the dimensionless effective coupling is given by 

3eff = 9ymEp 3 , (4.28) 

where E is the energy scale. To have a perturbatively well defined NCYM theory this 
effective coupling constant has to be g\s << 1, i.e., E « 1 /(gyM)^. For energies 

E ~ 1/(5ym)?=3 {p > 3) and above NCYM becomes strongly coupled and perturbation 
theory is useless. For large energies these theories therefore have to be completed by 
relating them to some other theory. By completed we mean that in the energy region 

5For a U(N) theory there is a Tr=trace in front of F^v * FßjV1, since Fßv is a N x N matrix. 



4.1 Dp-branes with background B-field 75 

where perturbation theory is useless for the NCYM theory, one has to switch to a different 
description (new theory) of the world volume physics. This usually means that new degrees 
of freedom have to be introduced. A simple example is t he 'ordinary' five-dimensional 
super-Yang-Mills theory which a t high energies can be completed by the M5-brane (2,0) 
tensor theory compactified on a circle of ra dius R = 1/<7yM> see> e-S-> Paper II, III and 
V-VI for a furt her discussions on th is topic. For p = 2 instead, the coupling constant has 
dimension length to a negative power, which means that, in three dimensions NCYM is UV 
complete but breaks down in the infrared for energies E < 5ym- In the IR this theory is 
completed by a theory containing light D0-branes (ODO), see Paper III. 

Before we consider turn ing on an electric 5-fi eld, we tur n to the case with a rank 2 
light-like B-field tur ned on. Again we must obey the four conditions above. We propose 
the following decoupling limit6 

£ —* 0 , a' = 6e1//2 , B+i = —e"1^2 , 

9++ = > 9-+ = 9+- = 1 , 

9ab 3ab 5 CL-,b 1,3,4,. . . ,  p  , (4.29) 

9inn t^mn 5 Tl = p 1, . . . , 9 , 
5s = 5s^ = (27r)2-p^M0V;

eV , 

where x ± = ~^(x'2 ± x°), and gyM = (2n)p~2gsd 2 , gs and 9 are kept fixed. Calculating 
the open string metric, coupling constant and noncommutativity parameter, gives 

Gß„ = v . i Gl = gse= (2tt)2~pg$M0^, (4.30) 

which is same as in (4.25) except that we in this case have light-like noncommutativity. 
A relevant question is if this NCYM theory, with light-like noncommutativity, is a 

unitary theory. This question is relevant because t urning on a light-like ß-field means 
that part of the i?-field is electric (Boi ^ 0). And as we will see in th e next subsection, a 
purely electric B-field can not lead to a consistent (unitary) NCYM theory with space-time 
noncommutativity. To check unitarity for t he light-like case, we have t o check t hat the 
inner product po p (p external momentum) is never negative, where [120] 

pop = -pße^Gpae^p,. (4.31) 

In [120] this restriction is shown to be necessary in order for the one-loop Feynman integrals 
to be convergent. For p o p < 0 there are branch cuts. For example, in a field theory with 
space-time noncommutativity (i.e., pop <0) these branch cuts lead to problems with the 
so called cuttin g rules, which causes the theory to be non-unitarv, see [120] for details. In 
the light-like case, inserting (4.30) into (4.31), gives 

pop= {2ire)2p2_ = i(27r6>)2(p2 - Po)2 > 0 , (4.32) 

6This limit is slightly different from the limit taken in [119]. However, this has no consequence for the 
physics. We have chosen a different limit, since 'our' limit is easier to compare to the 'supergravity dual' 
a p p r o a c h .  I t  a l s o  g i v e s  G =  r j ß l / .  



76 Chapter 4 Noncommutative theories, supergravity duals and open brane data 

which implies that the theory is unitary. Similar to the space-space noncommutativity 
case the light-like case is also not UV complete for dimensions d > 4, while it is a complete 
theory in four dimensions. It is interesting to note that in four dimensions, the S-dual of 
the above light-like NCYM is also a light-like NCYM theory [119, 121] but with (see Paper 
VI) 

0(s) = 27T9 w  = -e-1^ = -27T6GI ,  Gl ( s )  = i , (4.33) 

where GQ(S) the S-dual open string coupling constant. Note also that these theories are 
not conformai, due to the length scale 0. 

4.1.4 Noncommutative open string theory 

In this subsection we will sho w that it is not possible to obtain a unitary NCYM theory 
with space-time noncommutativity, as a limit (similar to (4.24)) of string theory. However, 
by changing the decoupling limit, we s how that it is possible to obtain an open string 
theory with space-time noncommutativity without gravity (i.e., without closed strings). 

Consider a Dp-brane (1 < p < 6) with a Boi-field turned on. If we try to take a NCYM 
limit (4.24) (switching place between gaß and g ab, a,ß = 0,1), then we get into trouble, 
since this gives a flat open string metric but with the wrong sign (Gaß = —r)aß), which is 
clearly unphysical. We can also insert this limit into (4.31), which gives 

p o p  = (2tt6i)2(p? - p i )  < 0 , (4.34) 

implying, according to [120], that the above limit gives a theory which is not  unitary. 
The conclusion is that it is not possible to take a large jB-field limit (B/y/—googu —> oo) 
with an electric 5-field and obtain an unitary field theory. Now t he natural question is, 
is i t possible to take some other decoupling limit, which would give a well defined theory 
without gravity? If t he answer to this question is yes, we expect it to be an open string 
theory with space-time noncommutativity, since it cannot be a field t heory7. This open 
string theory has to satisfy the following four c onditions: 

1. We have to take a' —* 0, while keeping the energy scale fixed, in order to decouple 
gravity. 

2. We have to keep a 'G ß V  fixed and flat, in order to keep  massive open string modes in 
the spectrum. 

3. We also have to keep the open string coupling constant G2
0 fixed. 

4. As in the previous cases we keep 0MI/ fixed in order to have fixed noncommutativity. 

'It is obviously possibly to take a decoupling limit which gives an 'ordinary' super Yang-Mills theory, 
without noncommutativity. However, here we are only interested in noncommutative theories. 
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5. The dimension one (i.e., (length) 1) 'transverse' scalar fields <j> should be fixed (see 
below) and given by 0 ~ ^Ç-, where a'eS is the effective length scale in the decoupled 

theory (NCOS). 

6. The tension of open strings aligned in the x1 direction must be fixed and finite. 

To satisfy these conditions we propose the following decoupling limit [93, 94, 100]: 

e 0 , a' = a'eSe , B01 = 1 - | , 

9 aß Vaß 5 ß =  O5 ;  
9ab =  eöab ,  o ,  6  =  2 , . .. ,  p , (4.35) 

9mn — P ~t~ 1, - • . , 9 , 
9s = , 

where we keep a'eS and gs fixed. Note that [93] i = V~9oo9n = 1 is the critical value 
of th e electric field. If we take j30i to be larger than this critical value we obtain a non-
unitary theory, since the electric field would then exceed the open string tension and tear 
the open string apart. This corresponds to open string modes becoming tachyonic. Next, 
calculating the open string co-metric, coupling constant, noncommutativity parameter and 
open string tension for an open string aligned in the a;1 direction, gives 

T = x OS 

a'e«7f" , Gl = 9* , O01 = 27rc4f , 
1 ^ 

2 -ira1 <4-36 '  

which satisfy condition 2-4 and 6. That condition 1 is satisfied, i.e., that gravity decouples, 
have been shown in [93] by analyzing one loop and higher loop diagrams. 

We see from (4.36) that we have obtained a finite effective open string tension. This 
is an effect of that we t urned on a near critical electric field. This electric field tries to 
pull apart the two open string endpoints, which compensates the tension which tries to 
pull the endpoints together, leaving a finite effective tens ion Tos. To see that condition 5 
is satisfied, we note that the part of the string sigma model, which involves the transverse 
coordinates Xm, is given by [100] 

S = —'—- / gmndXmdXn = /decoupling limit / = 1 / ô m n dX m dX n  .  (4.37) 
47ra' J / / 4-iraeff J 

This implies that the dimension one scalar fields < j> ~ ^r~, and also that correlation func

tions of th e A"m-fields are finite in the decoupling limit [100]. 
Moreover, inserting the obtained open string metric into the open string mass shell 

condition, gives 
N 

Vß"PßPv = — • (4.38) 
aeff 
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The implications of (4.36) and (4.38) is that in the above decoupling limit (4.35), we have 
obtained a noncommutative open string theory (NCOS), where all open string oscillator 
modes are part of the decoupled theory on the brane and their mass scale is set by a'eiï. 
As we have seen above, in order to decouple gravity and also keep massive open string 
modes we have to turn on a near critical electric field, which also leads to space-time 
noncommutativity, [X0,^1] = i2na'eS. This implies that space-time noncommutativity 
and obtaining a decoupled open string theory are connected in the sense that it is not 
consistent to have one without the other. We also see from (4.36) that the open string 
coupling constant is fixed and dimensionless, which leads us to expect that NCOS theories 
are complete (renormalizable) in dimensions 2 < d < 6 [122], For p > 6 it does not seem 
to be possible to obtain a decoupled NCOS theory, see, e.g., [122]. 

For low energy, i.e., E « (a^)"1/2, NCOS theory reduces to 'ordinary' super-Yang-
Mills with Lagrangian and Yang-Mills coupling constant given by [100] 

£YM = . SYM = C2irY~2G2
0(a'eS)*? , (4.39) 

45YM 

where FßI/ is the Yang-Mills field strength. Note that this low energy limit theory has no 
noncommutativity, since the noncommutativity scale and the massive open string scale are 
the same for NCOS. 

Finally, for a discussion about the strong coupling limit of NCOS (NCYM) theories, 
see section 4.2 and, e.g., [93, 100] and Papers II,III,V,VI. 

4.2 Supergravity duals and deformation independence 

In this section we are going to discuss supergravity duals of NCYM and NCOS in four 
dimensions, and show that these theories are S-dual to each other. We are also going to 
give a complete description of the concept of deformation independence, which is discussed 
and used in many of t he Papers. 

4.2.1 NCYM, NCOS and supergravity duals 

As been explained in earlier sections, it is possible to use supergravity duals to obtain 
information about field theories, e.g., SYM in four dimensions. For theories with non
commutativity it is also possible to obtain supergravity duals, by taking the appropriate 
near horizon limit of a supergravity solution corresponding to a bound state, containing 
different types of branes. For example, the supergravity dual of four-dimensional NCYM is 
obtained by taking a 'magnetic' (see below) near horizon limit of the D3-D1 solution (this 
solution is given in (3.11), in section 3.1). This is the appropriate bound state because it 
contains a non-zero magnetic B-field. In Papers II-VI we have used the supergravity duals 
as follows: The supergravity dual gives the geometry of the background. This background 
is then probed by a probe brane. It is important that the background solution is obtained 
from a bound state with a large number of branes, since we do not want the probe brane to 
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deform the background solution in any significant way. Next, by taking this probe brane 
infinitely far away from the stack (i.e., let the transverse radius f/R —• oo, while keeping 
all other parameters fixed), the U(l) degrees of freedom on the probe brane will decouple 
from gravity, and the physics of t he probe brane can be described by a non-gravitational 
theory with noncommutativity, see Paper II,V-VI for further clarifications. As we will see 
below, if, e .g., the probe brane is a D3-brane probing a supergravity dual obtained from 
a D3-D1 bound state, then open strings can end on i t. Therefore, the open string metric, 
coupling constant and noncommutativity parameter (since B23 i =- 0) give important infor
mation about the physics on this probe brane. In this case the decoupled world volume 
theory is U(l) NCYM with non-zero 023. 

Below we will compare this approach with the method used in section 4.1.3 where 
NCYM was obtained as a limit of string theory. We show that with the appropriate 
identifications the two methods give equivalent results. However, using supergravity du
als have o ther advantages over taking scaling limits in flat space. For example, scaling 
limits can easily be obtained from supergravity duals, but not the reverse, deformation 
independence (see below for the definition of th is concept) is much more transparent and 
information regarding open brane metrics and generalized noncommutativity parameters 
can be obtained, see below and Paper II-VI. Moreover, thermodynamic quantities can also 
be obtained using supergravity duals, see, e.g., [96, 103]. 

Next, we take a closer look at the supergravity dual of NC YM with space-space non
commutativity in four dimensions. The supergravity dual is obtained from the D3-D1 
bound state (3.11) by taking a 'magnetic' near horizon limit. This limit is called magnetic 
because the bound state has been obtained by turning on a non-zero magnetic ß-field. 
Below we will see tha t an 'electric' limit is different. 

To obtain the correct near horizon limit we demand that 

dl 2* B, 
a1 ' * a' ' (a')P/2 ' 1 j 

are held fixed in the a! —» 0 limit, because this implies that the supergravity Lagrangian 
is finite, see section 2.3 and Paper II. Since we wa nt to obtain the supergravity dual of 
NCYM in four dimensions we expect that the near horizon limit should be of 'field-theory 
type' [9], i.e., r/a' and the Yang-Mills coupling constant <?YM should be kept fixed when 
taking the near horizon limit. This means that in order to obtain the correct supergravity 
dual we should take the same limit as is taken to obtain the supergravity dual of four-
dimensional SYM. Note, however, that there must be an extra condition which gives how 
the deformation parameter 0 scales in the limit. From (4.40) we obtain that a!Q should be 
kept fixed when taking the near horizon limit. This leads to the following 'magnetic' near 
horizon limit, where 

r • - —,r , SYM = 27R9 >e = a'd > (4-41) 

are kept fixed in the a' —* 0 limit. Note that £ has dimension length. Inserting this limit 
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in the D3-D1 bound state solution, gives 

d s 2  _  I f f  {dx°)2 + {dxlf + \{{dx2)2 + {dX")2)) 

+ ^(f)V2 + f2d°5) -
r, 2 

e' 2^ = r ^ = (4.42) 
h ' {a')2  gi4h\R/ '  

Cm LflV ^23 = L (LY 
a' g£2  \R/ ' a' Z2h\RJ 

where h  1 +  ( X ) 4  ,  Ä4 =  5£4iV .  

This is the supergravity dual of four-dimensional NCYM. 
Next, if we take the separation between the probe brane and the stack towards infinity 

(i.e., f/R —> oo), in order to decouple gravity on the probe brane, then (4.42) reduces to 

,1/2 ,1/2 
v.0\2 , , fc 2\2 , I f /J,=2 , ds2  e"1/2 

a' I2  

e2<t> = <?2e . 

where - (  

(-(<£r0)2 + (cfo1)2) + ((dx2) + (dx3) ) + — (c/r + f dft5) ,  

f = -i, £-0, (4.43) 

(I)'' 
Note that we have only included the 'relevant' parts of the solution. Now let a' = £2e l / 2  —» 
0, and compare (4.43) with the decoupling limit for NCYM given in (4.24), p = 3. This 
gives that (4.24) and (4.43) correspond to the same decoupling limit if we identify 9 = 
i2 and gs = g. Note also that the dilaton in (4.43) is identified with the closed string 
coupling constant gs in (4.24). These results imply that the appropriate decoupling limit 
for NCYM c an be obtained in two completely different ways: (1) As in section 4.1.3, where 
the decoupling limit was obtained using open string data and scaling, and (2) by first 
constructing the D3-D1 bound state, followed by taking a 'magnetic' near horizon limit 
and finally, separating the probe brane from the stack by an infinite distance (i.e., let 
f/R —> oo). 

Next, we ca lculate the open string metric, coupling constant and noncommutativity 
parameter for a probe brane probing the background given in (4.42), at a distance f from 
the stack. This gives (using (4.16) and (4.22)) 

G2 = 5, 023 = 2irt2 . (4.44) 

The dimensionless NCYM coupling constant is given by (?ym = 2ttG2. The divergence of 
the open string metric, in units of a' in the f/R —» oo l imit, implies that massive open 
string modes decouple. 
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Next, we show that NCYM with space-space noncommutativity is S-dual to NCOS in 
four dimensions. Under S-duality the supergravity fields (in the string frame and in the 
case of zer o axion) transforms as follows: 

M = P~<i>^L 
a' a' 

Ël = 9l = 
a's a' ' a's a' 

Cj _ _C±_ B C2 

(«s)2 (a')2  ̂a! a' 

Using (4.45) on (4.42), gives 

ds* 1 TTk ( T \ ^ , n\9 . / T i \9\ 1 

(4.45) 

(~{dx0)'2  + (cte1)2) + —H ï({dx2)2  + (cte3)2) 
-R 

+ y2HHdr2  + r2(ml) 

e2^ 

^23 _ 1 T T - 1 -Spi  
a's g't'2 Og ia \R )  

where H = 1 + j ,  R} = g't^N t"2  = g i2  ,  a' s  = ga' .  

This is the supergravity dual of NCOS in four dimensions. This can easily be seen by 
comparing (4.46) with the NCOS supergravity dual given in, e.g., Paper II. In Paper II the 
supergravity dual of four-dimensional NCOS was obtained by first deforming the D3-brane 
with a non-zero electric component of the NS-NS 5-field, which gives a D3-F1 bound state, 
followed b y taking an 'electric' near horizon limit (see (4.57) below). 

To really show that (4.46) is the NCOS supergravity dual, we calculate the open string 
metric, coupling constant, noncommutativity parameter as well as the tension for an open 
string aligned in the x1 direction. This gives (using (4.16) and (4.22)) 

= Go = 5', O01 = -2tt£'2 , Tos = ̂ , (4.47) 

which is exactly the open string data we expect for NCOS in four dimensions. From 
(4.42), (4.46) and (4.47), we obtain the following relations between the parameters of t he 
two S-dual theories: 

Glcos =  ~ ,  0O1 = _|Me23, (44g) 

9ym Z7r  

Note that G2
cos  = G2 = g'. These relations imply that NCOS is weakly coupled when 

NCYM is strongly coupled and vice versa. 
For a further discussion on NCOS and NCYM in four dimensions and possible dual 

descriptions using open Dl-strings, see Paper III and V. 
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4.2.2 Deformation independence 

A key concept in several of the included Papers, is deformation independence. Deformation 
independence of open string data has the following meaning: We start with a Dp-brane 
and deform it using the O(p+ l,p+1) method. Next, if we calculate the open string metric 
and coupling constant, both before and after the deformation, we obtain the same result, 
i.e., the open string metric and coupling constant are independent of the dimensionless 
deformation parameter 9. It also implies that the noncommutativity parameter 0 is pro
portional to the deformation parameter 9, after the deformation (see below). We note that 
only the 0(p+ l,p + l) method gives manifestly deformation independent open string data. 
To obtain deformation independent result for solutions obtained with the rotation/boost 
method, one has to perform the coordinate transformation given in (3.12). The reason for 
this is that the rotation/boost method uses a coordinate transformation (i.e., a rotation 
or a boost). 

We continue by showing explicitly that the 0(p+l,p+l) method always gives manifestly 
deformation independent open string data. Begin with the observation from section 3.1.2 
that the tensor E^ transform as follows, when using the 0(p + l,p+l) method (note that 
we deform in all p \ 1 directions and do not explicitly write out indices): 

É = (5_1T5)E , (4.49) 

where S1"1 = S ,  S  is a T-duality transformation and T  is a gauge transformation (i.e., a 
shift in B ~ 9). Introducing 

0M f 
= G"" + , (4.50) 

2na 

it is easy to see from the results obtained in section 4.1 that 

Tw = (£-iy* . (4.51) 

Or written with a slightly different notation (and not explicitly writing out indices)8 

r = ( S ) E  . (4.52) 

Now using (4.49) and (4.52) we obtain that, using the O( p  •  1. p + 1) method, r  changes 
to 

f  =  (S ) Ë  = (T)r . (4.53) 

Hence, the new inverse open string metric and noncommutativity parameter are given by 

QßV = QflV ^ = QßV + QßV _ (454) 

Note that in the examples in this thesis we have always set = 0, i.e., we have always 
started with an undeformed solution. However, from (4.54) we see that this is not necessary 

8Note that in the relation T = (S ) E ,  S  of course does not mean T-duality but simply means that the 
tensor Eßl/ is inverted. However , as we have seen earlier, this is just what T -duality does to E 
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in order to obtain deformation independence. The derivation of (4.53) implies that we have 
proved that the 0(p+l,p+l) method always gives manifest deformation independent open 
string metric and noncommutativity parameter. 

Moreover, that the open string coupling constant is manifestly deformation independent 
is easily obtained if one in serts the deformed dilation (3.23) and uses (4.54), in 

which gives that G\ = G\ = . 

Before we continue discussing deformation independence for a special case, the deformed 
D3-brane, we would like to make the following reflection: Above we saw tha t if the inverse 
open string metric and noncommutativity parameter is combined into the tensor TßU, then 
rexpressed in terms of the closed st ring metric and NS-NS two form, is given by the 
simple expression in (4.51) (or (4.52)). That is given by this expression is interesting, 
since, as we have seen in subsection 3.1.2, under T-duality the new tensor E' = g' + B'v 

(in the T-dualized directions) is given by exactly the same expression (see (3.16)). This 
is perhaps a bit strange considering that (3.16) and (4.51) are obtained in two completely 
different ways; (3.16) is derived from a duality between two dual sigma models, while (4.51) 
is derived by computing the open string two-point function on the boundary (for an open 
string ending on a Dp-brane). Also, (3.16) is a duality relation between two T-dual closed 
string theories, while (4.51) is just an expression of how the open string data (for o pen 
strings ending on a Dp-brane) depend on the closed string data in the same closed string 
theory. Furthermore, it should be obvious that deformation independence is related to this 
similarity. It would be interesting to further study this relation. 

For the D3-brane the above proof has the consequence that if the D3-brane is deformed 
with a magnetic B-field (i.e., D3 —> D3-D1) or an electric B-field (i.e., D3 —> D3-F1)9, 
then calculating the open string metric and coupling constant yields the same results before 
taking any near horizon limits. In both cases we obtain 

Note, however, that © has different non-zero components (i.e., O23 ^ 0 or ©01 ^ 0) in the 
two cases. Next, if we tak e a magnetic near horizon limit (4.41), as we did for the D3-D1 
bound state, we obtain the open string data given in (4.44). For the D3-F1 bound state 
we can not take a magnetic near horizon limit (field theory limit), because this would lead 
to an electric B-field which becomes larger than the critical value when the separation 
between the probe brane and the stack approach an infinite distance. This would give 
a non-unitary field theory with space-time noncommutativity as we have seen in section 
4.1.4. Instead we have to take a different limit in order to obtain non-trivial results. This 
limit should imply that the electric field becomes near critical when the separation between 

9Note that also a light-like deformation of course yields deformation independent open string data, see 
Paper VI. 

(4.55) 

G ^  =  H - ^ V ,  G \  g  .  (4.56) 
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the probe brane and the stack becomes large. We therefore consider the following 'electric' 
near horizon limit, where 

are kept fixed in the a! —> 0 limit. Inserting this limit into a D3-F1 bound state solution 
gives the NCOS supergravity dual (4.46). Note also that inserting it into (4.56) gives (4.47). 
The main result here is that although the open string data are deformation independent for 
any deformation, we are forced to take different limits in different cases, which naturally 
leads to different results. 

For four-dimensional NCYM we draw the following conclusions: We know that NCYM 
and ordinary SYM (i.e., ©Ml/ = 0) have different supergravity duals. But both of these 
supergravity duals have been obtained by taking a magnetic near horizon limit (field theory 
limit). Deformation independence therefore implies that for both these field t heories we 
have the same open string metric and coupling constant (both open string and Yang-
Mills coupling constant). The only difference is that there is a constant shift in Qßu  

between them. This implies that if a SYM theory is deformed with a noncommutative 
deformation, i.e., we impose that, e.g., x2 and x3 no longer commute, then this deformation 
does not effect t he Yang-Mills coupling constant and open string metric. It only induces 
a shift in the noncommutativity parameter. We t herefore conclude, as a consequence of 
deformation independence, that both NCYM and 'ordinary' SYM are part of a continuous 
one parameter (assuming same value of t he Yang-Mills coupling constant, otherwise two 
parameter) family of maximally supersymmetric field theories in four dimensions. The only 
difference between the different theories is that they have different values of the continuous 
noncommutativity parameter 0. For the special value 0 = 0, the theory is conformai (i.e., 
'ordinary' SYM). 

In Paper V deformation independence is conjectured to also be valid for M-theory open 
membrane data, as well as for open Dp-brane data. This means that open brane data 
is invariant (deformation independent) under the (U-duality) transformations which gives 
the solution generating techniques in Paper VII, see section 4.3.1, 4.3.3 and Paper VII for 
more details. 

4.3 Open brane theories and open brane data 

In this section we will obtain non-gravitational theories which contain light open branes in a 
geometry which have some kind of generalized noncommutativity structure. These theories 
are presently not as well understood as the NCYM and NCOS theories. In particular, there 
is no explicitly known microscopic formulation of th em. Still it is possible to obtain some 
important information about these theories. We begin with the perhaps most interesting of 
these theories in subsection 4.3.2. This is the so called OM (open membrane) theory [100], 
which is the world volume theory of a deformed M5-brane in a certain limit. However, 
before we discuss OM-theory we will, in subsection 4.3.1, show how the open membrane 

xv _ = r  ,  g ' , 0  =  1 ,  (4.57) 
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metric and generalized noncommutativity parameter can be derived, using a new method 
which is very different from the methods used in Paper V and [108, 110]. In subsection 

4.3.4 we discuss the ODp and ODg theories (see [100, 103, 105, 106] and Paper III), 
which are world volume theories o f NS5 and D(q + 2)-branes that contain light open Dq-
branes, after we in subsection 4.3.3 have derived the open D-brane metric and generalized 
noncommutativity parameter, using the same method as in 4.3.1. 

4.3.1 A derivation of open membrane data 

Here we derive the open membrane metric and generalized noncommutativity parameter 
(theta parameter). These objects are conjectured to be the open membrane generalization 
of the open string metric and noncommutativity parameter (see below and next subsection 
for a further description of these objects). The main difference between the method used 
here and the one used in Paper V, is that here deformation independence is not assumed 
as a starting point, but easily seen to follow as a consequence of t he method used. 

We first generalize the string theory relation (4.51) to the M-theory membrane, i.e., we 
will a ssum.e that similar to how the open string metric and noncommutativity parameter 
can be 'obtained' from the string theory T-duality rules (by comparing (4.51) and (3.16)), 
the open membrane metric and theta parameter should be possible to obtain by using the 
M-theory 'T-duality' rules (3.32) in a clever way. The main difference com pared to the 
string case is that the three form A3 obeys a non-linear self-duality (NLSD) condition on 
the M5-brane. At first we will ignore this condition. However, as we will see below, in 
order to obtain the correct open membrane data we naturally have to include the NLSD 
condition into our calculations, which will lead to a modification of the first obtained 
results. Moreover, the se new r esults fit perfectly with the open membrane data obtained 
earlier in Paper V and [108, 110]. 

We start by generalizing the string case. This, however, is not straightforward, since we 
have to generalize (4.51) for the open metric and noncommutativity parameter separately, 
because it does not seem to be possible to generalize the tensor rßu. Instead we must first 
look a t the generalization of t he open string metric to an open membrane metric, using 
M-theory 'T-duality' rules for the metric. Then we generalize the open string noncommu
tativity parameter to a three form open membrane noncommutativity parameter, using 
M-theory 'T-duality' rules for the three form A3. 

Generalizing the results for the open string metric lead to that the open membrane 
(inverse) metric (in three directions) should be given by the right hand side of t he first 
expression in (3.32), i.e., 

Gt = (detGV/9^-1)06 , Gab = gab + ~A2
ab , (4.58) 

which implies that the open membrane metric is given by (so far only in three directions) 

Gr = (detGa
6)-1/9(&6+^26) (4.59) 
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Here a, b = 0,1,2, or a, b = 3,4,5. Note that Gab = gacGcb and (G 1)°6 is the inverse of 
Gab-

Next, if we ignore the NLSD condition for the three form on the M5-brane world 
volume, the result in (4.59) indicates that the complete open membrane metric (in all six 
directions) is given by 

<V •  (de t ; i4  .  ß ,u  =  0 ,1 , . ..  , 5  .  (4 .60)  

However, th is can not be corect, since we have ignored th e NLSD condition. This means 
that we have to modify (4.60). We note that even the tensor structure of (4.60) has to be 
modified. T his is clear, since t he NLSD condition implies th at (det[l + |^42]#1

J/) = 1. 
Let us assume tha t (4.59) is still valid (in the three directions given by the indices a, b), 

adopt the following ansatz for the complete open membrane metric: 

G™ = R{K){gß v  + \aI„) ,  fi,  w = 0 ,1 , . . . ,  5  ,  (4 .61)  

where R{K) is the yet to be determined conformai factor and 

K = (det[l + = y/l + ~A2  . (4.62) 

The tensor structure in the ansatz (4.61) is motivated from results obtained in [101], and it 
is also this tensor structure which is found in the NLSD condition, the M5-brane equations 
of motion and the energy moment um tensor on the M5-brane [123, 108 ]. One could also 
motivate the form of (4.61) from the fact that K should be given by a unique expression (as 
it also is in (4.62)). With this we mean that if we assume a more general ansatz of the tensor 
structure, e.g., = R(K)(gßl/ + a\A2„), where a is an unknown constant, then K must 
be possible to express in the following two equivalent ways: (1) K\ = (det[l + aj^42]M

i/)1//6, 

(2) Ki = J1 + ß-^A2, where ß is a constant. Next, demanding that K = A'i = /\'2 and 
that there should be a unique solution, gives that a = ß = 1 (where we have used the 3+3 
split below an d the NLSD condition to obtain this result). Hence, we get the ansatz in 
(4.61). 

The next step is to try to determine the conformai factor R{K). To do this we demand 
that (4.61), under a 3+3 split of the coordinates, reduces to (4.59) (see below for furth er 
explanation). To simplify the calculations we use that if one goes to a frame (uv£), where 
a — 0,1,2 and a — 3,4,5, parameterize the coset SO (l,5)/SO(l,2)xSO(3) as defined in 
[101] and Paper V, then (4.59) can be written as: 

/ 1 \  2/3 
G° M  =  ( l  + 6̂ ) 9rs, A2  = g rs(Af) rs  ,  

(A?) rs  = g r^g r^A r r i r ,A s s lS2  ,  (4.63) 

where r, s, is eith er a,ß, or a, b, depending on which case we have, while i  = 1 or 2, 
respectively. We note that the NLSD condition implies that 

1 + ̂4|= (l + ̂ )_1 * (464) 
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Next, using the above parameterization we find that the ansatz (4.61) reduces to 

G^ = R{K)(l + ̂ Al)gTS. (4.65) 

Below, the following relations will be useful 

r 2 = ( i i v i y  -  i = i ' 2 >  ( 4 6 6 )  

and 

K(1 ± VI -  K~ 2 )  = (l + 1,1*)1/2 , (4.67) 

where the minus sign corresponds to i  = 1 and the plus sign to i  = 2 and we have used 
that A2 < 0 and > 0. 

As mentioned above, to determine R(K ) we demand that (4.63) and (4.65) are the 
same, which implies that 

(l +|A2) 2/3 

RW = l  + ±A2  * ( 4 6 8 )  

Next, using (4.66) and (4.67) in (4.68), the conformai factor can be written as 

/1 i v/l — K~ 2 \  
R(K) = ( ^ ) . (4.69) 

We see here that we have obtained two results depending on if we have an electric (i.e., 
r,s 0,1,2, in (4.63)) or a magnetic case (i.e., r,s = 3,4,5, in (4.63)). Since there 
should only be one unique open membrane metric, this means that only one of the results 
are correct. For various reasons (e.g., inserting the OM-limit should give the appropriate 
result [108] and the open membrane metric should reduce correctly to the open string 
metric Paper V), it has to be the electric case that is correct, which means that we should 
use the minus sign in (4.69). Thus we have derived the following covariant open membrane 
metric:  

/~rOM _ -A'-2V3/ 1 \ 
( Y2 ) Vßv + 4 '"V ' ( ) 

which is the same as the one derived in [108] and Paper V, using other methods. 
It is also conveni ent to rewrite the open membrane metric as follows 

1 
G% - [Ä'*(l + VI-JM))""» (a, + j<) , (4-71) 

(472) /^OM _ 
r» -  K 

To obtain these expressions we have used th at 

K( 1 - V l  -  K~ 2 )  = [K{ 1 + Vi -  K- 2 )} ' 1  ,  

(2K 2  -  1) -  2K 2y/ l  -  K- 2  = [K( 1 - Vl - K~ 2 )] 2  .  (4.73) 
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We continue by deriving the open membrane theta parameter. Generalizing the string 
case and ignoring the NLSD condition on the M5-brane, gives the following theta parameter 
(from identifying the (dimensionless) theta parameter with the right hand side of the third 
expression in (3.32))10: 

Ç)TSt 
= -A.rigf#gr'Tgs's(G~ ï) t' t  , (4.74) 

where G rs  is given in (3.33) above. The next step is to use this result together with the 
NLSD condition in order to obtain the complete open membrane theta parameter QOM-
To obtain ©om* we de mand that it, in the above 3+3 parameterization, should give the 
same result as (4.74) in the electric and magnetic cases together. From (4.74) we get 

©OM7 = — (27r)2£p(l + l~A\)~'Aa^ , ©SM = —(27r)2£p(l + Aabc (4 75) 

Next, using (4.75) and (4.77) below, we ob tain the following tensor structure for ©S: 

©Sm' = , (4.76) 

where (C~1YV is the inverse of 

C,lv = S(K)(!h„+l-Ä1
lw) , (4.77) 

and S{K) is a conformai factor yet to be determined, and that ( is conformai to the 
open membrane metric (4.70). In principle one could make a more general ansatz of t he 
form ©om ~ 9~l • • • g~1AC~1 • • • C_1, where the number of inverse metrics plus the number 
of C _1's, is t hree. However, it is not too difficult t o see that it is only the combination 
'g~1C~1C~1' that gives a unique solution. For the other three cases no solution exists. 
This means that the tensor structure is uniquely fixed by (4.75). 

In the above parameterization (4.76) reduces to 

©2* = -(2tt)2£3
pS-2(1 + , ©^ = -(2tt)24^2(1 + ̂ A2)-2A°»C . (4.78) 

Comparing (4.78) and (4.75) using (4.64), we obtain that 

M + I A2)1'2 

S = ,  \ ' L  = K - 1 ,  i  = 1 , 2  , (4.79) 
' 12 i 

where we have used (4.66) in the last equality. Hence, the theta parameter is given by the 
covariant expression in (4.76), where11 

cv = + \Kv) > (c-'r = ̂ [{ 1 +1\A2)r - \(A2r] • (m 

10For QolC, the conventions used in this thesis differ with a factor of (2-7T)2 from the conventions used 
in Paper V. 

11Note that Cßu is exactly the so called M5-brane Boillat metric [123. 108, 110]. It is this metric that 
introduces the non-linearity in the M5-brane NLSD condition. Furthermore, the equations of motion and 
the energy momentum tensor on the M5-brane can be conveniently rewritten using [123, 108]. 
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In order to compare this result to Paper V and [110], we rewrite (4.76) in the following 
way, us ing (4.70) and (4.80): 

©OM = ~ Vrn^)p3g^AßlVlPlG2»G^ , (4.81) 

where GOM is the inverse open membrane metric. This is exactly the same result as in 
Paper V and [110]. 

Above, we have obtained the open membrane metric and generalized noncommutativ-
ity parameter, from using the M-theory 'T-duality' rules and the NLSD condition only. 
However, although this method seems to work we s till have no complete understanding 
why it works. It would be interesting to investigate this problem further. 

We end this subsection with a short comment on deformation independence of open 
membrane data. Comparing to the discussion of deformation independence of open string 
data in subsection 4.2.2, it should be obvious, considering the results obtained in this 
subsection, that the open membrane data are deformation independent if we us e deformed 
M5-brane solutions obtained using the solution generating technique derived in Paper 
VII. To be more specific: M5-branes which are deformed with an electric or light-like 
deformation are manifestly deformation independent. A magnetic deformation does not 
give manifest deformation independence since the NLSD condition implies that a magnetic 
deformation of an M5-brane is e quivalent to an electric deformation, up to a coordinate 
transformation, see Paper VII and section 3.2.2 for an example. Hence, only one of the 
deformations (i.e., electric or magnetic) can be manifestly deformation independent, and 
since we had to chose the minus sign in (4.67) it must be the electric case. 

4.3.2 Open membrane theory (OM-theory) 

We have seen in subsection 4.1.4 that by deforming a Dp-brane with an electric 5-field and 
taking the appropriate decoupling limit, we obtain a theory (NCOS) which contains light 
open strings. An interesting question is if t his can be generalized to higher-dimensional 
objects, i.e., are there non-gravitational theories which contain light higher-dimensional 
branes? Before answering this question, we note that these higher-dimensional branes are 
not expected to be fundamental objects in the same sense that a string is fundamental. At 
the present not much is known about the role of these objects in a microscopic formulation 
of open brane theories. 

The answer to the above question seems to be yes. For example, in M-theory there is 
an M5-brane, which has a superconformai (2,0) tensor theory as its world volume theory. 
Similar to how a Dp-brane can be deformed with a constant B-field this M5-brane can 
be deformed by turning on a constant background three form A3. Therefore, since an 
open membrane couples to a three form potential, we expect that it is possible to take 
a decoupling limit, which leaves us with a six-dimensional theory containing light open 
membranes. Below we will show that this is indeed true. We also expect this theory to be 
very different from the (2,0) tensor theory, because it contains fully fluctuating open mem
branes and therefore contains many more d.o.f. than the (2,0) tensor theory. Similar to the 
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(2,0) theory this new open membrane theory (OM-theory) has no dimensionless coupling 
constant. A consequence of this is that it is not possible to use perturbative expansions for 
this theory, i.e., it is a non-perturbative theory. Since we have turned on a constant three 
form we also expect that there should be some generalization of n oncommutativity, which 
is controlled by a generalized noncommutativity parameter ©OM , as seen in the previous 
subsection. 

We start by considering an M5-brane in flat 11-dimensional space-time, where the M5-
brane is aligned in the x\i = 1,..., 5, directions. Next we deform this M5-brane by turning 
on a constant 'electric' three form A)i2> which is dimensionless using our conventions. This 
three form obeys the same non-linear self-duality equation [117] as the gauge invariant M 5-
brane world volume three form H. Note that the gauge invariant three form on the M5-
brane is the combination H = H + A'3 [115] (where A's is the pull-back of t he background 
field A3 and H is the self-dual field strength of the of the world volume two form B), which 
implies that a constant three form A3 can always be transformed to a constant three form 
H (or vise versa), using a gauge transformation. Therefore, we will from here on only 
discuss a constant three form A3. 

Moreover, the NLSD condition implies that if one turns on an 'electric' three form 
A012 th en there also has to be a 'magnetic' three form ^345, which is obtained using ^012 
and the NLSD equation. An interesting effect of the above mentioned self-duality is that 
for the M5-brane we can not have an electric deformation or a magnetic deformation, as 
is possible for the Dp-branes considering B-field deformations. Instead we have one case 
which has both magnetic and electric components of the three form turned on at the same 
time. 

To obtain the correct decoupling limit in order to obtain a non-gravitational theory 
(OM-theory) which contain light open membranes, it must satisfy the following conditions 
(similar to the NCOS conditions): 

1. We have to take the Planck length £p —> 0, while keeping the energy scale fixed, in 
order to decouple gravity. 

2. We have to keep CiGou fixed and flat [101], in order to describe a genuine six-
dimensional theory which has a fixed length scale £OM. 

3. We also keep QOM fixed in order to have fixed generalized noncommutativity. 

4. The tension of open membranes aligned in the x1  and x2 directions must be fixed 
and finite, in order to have light open membranes in the theory. 

5. The dimension two (i.e., (length)-2) 'transverse' scalar fields should be fixed (see 
below) and given by ~ jpj- [100]. 

Here G°" is the open membrane metric, see (4.70) in subsection 4.3.1, and QOM is the 
generalized noncommutativity parameter (theta parameter), see (4.76). The latter object 
is a generalization of the open string noncommutativity parameter to the open membrane 
case. Moreover, a non-zero value of the theta parameter implies that the geometry is 
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deformed. At the moment it is not quite clear in what way. It has been suggested that a 
non-zero theta parameter gives rise to some kind of n oncommutative loop-space structure 
and/or non-associative geometry [101, 113, 125]. From here on we will not speculate any 
further on the meaning of this theta parameter. However, we expect it to be important in 
a microscopic formulation of the open membrane theory (OM-theory). 

Next, to satisfy conditions 1-5 we propose the following decoupling limit: 

e = içMe , A)i2 = 1 — - , ^345 = ~e , 

9aß Vcxß ' ß 0,1,2 , 

gab = eôab , a, b = 3,4,5, (4.82) 

9mn n 6, • • • ,  10 î 

where we keep £0m fixed. Note that Ac
0l2 = V"-5oo<?ii<?22 = 1 is the critical value of the 

electric field. 
This decoupling limit satisfies condition 5 [100]. To check that it satisfies condition 1-4 

above, we calculate the open membrane metric, theta parameter and the tension for an 
open membrane aligned in the x1 and x2 directions. We could calculate the former two by 
using (4.70) and (4.76), but instead we use some simpler expressions obtained in Paper V. 
In Paper V it is shown that if one goes to a frame (u^, v°), where a = 0,1,2 and a = 3,4,5, 
parameterize the coset SO(l,5)/SO(l,2)xSO(3) as defined in [101] and Paper V, then the 
open membrane metric and theta parameter can be written as: 

Gaß = (l + qAi) 9aß i A\ = 9°ß{Ai)aß , 

(A l u 3  =  g a i ß l g a 2 ß 2 A a i a 2 a A ß l ß 2 ß  ,  a , / ?  =  0 , 1, 2 ,  

G°X = (l + l4)1/3g<*, A\ = ga\Al U, (4.83) 

( A l U  =  g a i b l g a 2 b 2 A a i a 2 a A b l b 2 b  ,  0 , 6  =  3 , 4, 5 ,  

and 

œo^ = -(2nfel(l + ^Al)A^ , ©tc = -(27T)24(1 + ±Al)Aabc , (4.84) 

where we have used (4.64) and (4.67). Note that equation (4.84) implies that 0" is 
completely anti-symmetric. In Paper V it is further shown, using (4.84) and (4.83), that 

*GeOM = ©OM , (*G0cmF' = , (4.85) 

where G is the determinant of the open membrane metric and the indices on 0OM are 
lowered with G°". From this relation we see that Qom is linearly self-dual with respect 
to the open membrane metric G°" 12. That Qom is linearly self-dual might indicate that 

12To be more precise: ©£mP is l inearly self-dual with respect to any metric which is conformai to the 
open membrane metric, including the Boillat metric. 
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it would be more appropriate to define OM-theory using the open membrane metric and 
theta parameter, instead of the closed metric and the non-linearly self-dual three form. 
However, to clarify this issue requires further investigation. 

Next, inserting the decoupling limit (4.82) into (4.83) and (4.84), as well as calculating 
the tension for an open membrane aligned in the x1 and x2 directions, gives 

Gfii> _ Vßf p.012 _ c,345 pZ 
Tv/f ^ny />2 ' ^OM OM OM ' 

OM 

Tom = 
(2TT)2£3 (1 2 ) )  2(2tt)2£3om' ^ 

which clearly satisfy conditions 1-4. The fixed tension implies that OM-theory contains 
light open membranes. This is similar to how fixed open string tension implies that NCOS 
contains light open strings. 

As we m entioned before, OM-theory has no dimensionless coupling constant. It has, 
however a length scale £OM where both the noncommutative effects and the open membrane 
effects become im portant. This implies that for low energy, i.e., E « l/£OM 

we can use 

the (2,0) tensor theory as an effective description, since both the noncommutative effects 
and the open membrane effects are unimportant. At energies E ~ 1 /£ou and above we of 
course have to use the full OM-theory description. The introduction of t his length scale 
in OM-theory implies that OM-theory is not a conformai theory. We also expect that the 
introduction of a generalized noncommutativity parameter implies that OM-theory is not a 
free theory for a single M5-brane. This is different from the (2,0) tensor theory which is free 
(a single tensor multiplet) for a single M5-brane. To check this claim we will next show 
that OM-theory compactified on a circle in the x2 direction reduces to five-dimensional 
NCOS, which we know is not a trivial theory even for a single D4-brane. 

The OM-theory decoupling limit (4.82) compactified on an 'electric' circle with radius 
R in the x2 direction, gives the following type IIA solution (using the same conventions as 
in [100], except that our B-field is dimensionless): 

ß pa pZ 
n n t P P X P r 

*-p * U 5 OL — — , gaß — Vctß 1 9ab p2, °b ' 9mn ^3 mn 5 

( ^ 3 / 2  R  _ l _  £  n f  - f °ü ( A  871 
ej ' 01 2£3M ' R ' ( • } 

4 \3/2 / R \3/2 ^ 27TÄ 
./ ' 

C2 = n ( p ^ — ( \ T = — 
0 V£om; ' os 2(2tt)^3m 4™;ff 

where a, ß = 0,1 , a, b = 3,4,5 , and m, n — 6,..., 10. Next, we define 

e = iT- = ̂ -> (4-88) 
OM eff 

using (4.87). Now, com paring (4.87) and (4.88) with (4.35) in section 4.1.4 (with p = 4), 
we obtain that (4.87) is the decoupling limit for NCOS in five dimensions. We therefore 
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conclude that OM-theory compactified on an 'electric' circle with radius R gives five-
dimensional NCOS theory when the radius is small (R « £0u)- To be more precise: The 
relations between the OM-theory data and open string data are given by 

A consequence of (4.89) is that NCOS is perturbatively well defined when R «  £O M ,  since 
the open string coupling constant is G2

0 « 1 in this case. 
Next we discuss the different phases which exists for OM-theory compactified on an 

'electric '  circle with radius R. 
Case 1. R «  êO M .  At very low ene rgies E «  1 l{a' e S)1 / 2  we use five-dimensional 

SYM, since both noncommutativity and the Kaluza-Klein modes are irrelevant. At energies 
above this scale but E « l/R we use five-dimensional NCOS, since noncommutativity and 
massive open string states now a re important but Kaluza-Klein modes are still irrelevant 
(i.e., the compactified dimension is too small to be seen at these energies). Finally, at 
energies E ~ 1 /R, we have to use OM-theory compactified on an 'electric' circle, since the 
Kaluza-Klein modes are now relevant. 

Case 2. R »  iO M .  In this case we can use five-dimensional SYM as long as E «  1 /R. 
Above this but much less than l/£0u, we use the (2,0) tensor theory compactified on a circle 
with radius R. Finally, for energies E ~ 1/<?OM, we use the full OM-theory compactified 
on a circle with radius R. 

We see here that in case 2 there is no phase where NCOS is perturbativety well defined, 
since the open string coupling constant is G2

0 » 1. This means that for G2 » 1, when 
the NCOS theory is strongly coupled one can use OM-theory compactified on an 'electric' 
circle with radius R as an alternative description. 

For a discussion about OM-theory compactified on a 'magnetic' circle with radius Rm  

we refer to [100] and Paper III. In Paper V and VI there are also discussions concerning 
the relation between open membrane and open string data in five and six dimensions (see 
also [110]). 

4.3.3 A derivation of open D-brane data 

In this short subsection we are going to show how the open D-brane data (i.e., the open 
Dp-brane metric and generalized noncommutativity parameter) can be derived in the same 
way as the open membrane data were derived in subsection 4.3.1. For the D-brane case we 
do not have to care about any NLSD conditions, which simplifies the derivation13. 

Following section 4.2.2 and 4.3.1 and using the D-brane 'T-duality' results from section 
3.3, we se e that the open Dp-brane (inverse) metric and generalized noncommutativity 
parameter (made dimensionless) can be identified with the expressions given by the first 

13 This means that we have not included the case with open D2-branes ending on the type IIA NS5-brane, 
since the RR three form obeys a NLSD condition. Note, however, t hat this case is ess entially treated in 
the same way as the open membrane case in subsection 4.3.1. 

(4.89) 
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and third right hand sides in (3.52). This gives (in p • 1 directions) 

GfDp = (detG%)<5^(G-1)afc , 
/^\®1 •••Op+1 
~OD; -m = -cbl..MP+yDlbl---gZbp(G-1)ap+lbp+1 • (4.90) 

('2ir)p{a ') 2 

If we no w constrain the open Dp-brane data to be valid only for RR (p+l)-forms with one 
non-zero component (as in Paper V), then (4.90) can be generalized to (note that we give 
the metric and not the inverse metric below)14 : 

G™P = i1 + (p+ !)!
C?+i] 1 ' + ̂ (Cp+iW) . 

OoDp
ßr+1 = *-(2tt Y{aT)^Cvl.^1gj™---gig*€r»lv»1 > (4.91) 

where 

-;,(rPrtV- (4-92) 

and we now have /i, i/ = 0,1,..., 5 and ja, z-' = 0,1,..., p + 2 for open Dp-branes ending on 
NS5-branes (p ^ 2 in the NS5-brane case) and D(p +2)-branes, respectively. Furthermore, 
to obtain (4.91) we have used that 

(det[l + = 1 + j^C'- , (4.93) 

under the restriction that one only has one non-zero component of the RR (p+l)-form. 
Comparing (4.91) with Paper V we find that the results are identical, as expected. 

Similar to the discussions in subsections 4.2.2 and 4.3.1, the results in this subsection 
implies that the open Dp-brane data are manifestly deformation independent for any one 
parameter deformation, with an RR (p+l)-form, of an NS5-brane or D(p+2)-brane, using 
the methods described in Paper VII. 

4.3.4 Open D-brane theories (ODp/ODç-theory) 

In this subsection we will generalize open string and open membrane theories to theories 
containing open Dp-branes. Similar to open strings and M-theory open membranes which 
can end on Dp-branes and the M-theory M5-brane, respectively, open Dp-branes can end 
on type IIA or IIB NS5-branes as well as on D(p+ 2)-branes. This suggest the possibility 
that there exist theories containing light open Dp-branes, which are obtained by taking the 
appropriate decoupling limit. This limit should involve turning on a near critical electric 
RR (p + l)-form. In this subsection we will first consider the case where a near critical 
electric RR (p+ l)-form is turned on on an NS5-brane, which in the decoupling limit leads 

14Note that for Qobp2 the conventions used in this thesis differ with a factor of (2ir)p from the 
conventions used in Paper V. 
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to the so called O Dp-theory [100]. Next, we continue with the case of a near critical electric 

RR (q+ l)-form on a D(g+2)-brane, which in the decoupling limit leads to the ODg-theory, 

see Paper III and [106]. In particular, we will discuss the OD3 and OD3 theories and show 
that they are S-dual. 

Start by considering an NS5-brane aligned in the x\ i = 1,..., 5, directions. To obtain 
the correct decoupling limit we demand that (similar to the membrane case in 4.3.2) the 
tension of open Dp-branes (0 < p < 4) aligned in the xa, a = 1,... ,p, directions is fixed. 
Furthermore, similar to the open string and open membrane cases we also keep a'God„ 
and QODI2'"^" fixed in the decoupling limit. Here G'°°p is the open Dp-brane metric and 
©ODp2' is the open Dp-brane generalized noncommutativity parameter (theta parameter). 
For p = 1 this theta parameter implies 'ordinary' noncommutativity, while for p > 1 some 
generalization of n oncommutativity. The open Dp-brane metric and theta parameter for 

2 

a one parameter deformation, are given in (4.91) above (for p / 2), where = gs 
q+1 gßl/  

is the closed D p-brane metric. For p = 2 these expressions are not valid. The reason for 
this is that for a one parameter deformation with an electric RR Cou of a n NS-5-brane, 
there is also a magnetic component (i.e., C345) of t he RR three form C3. This is due to 
a non-linear self-duality equation for t he RR three form on the NS5-brane. The origin of 
this self-duality equation is the non-linear self-duality equation which the M-theory three 
form A3 obeys, see section 4.3.2. For p = 2 we instead have the following expressions: 

where the ODp-theory coupling constant G^Dp and i are kept fixed. Note that we have 
included the dual 'magnetic' (5 — p)-form in the decoupling limit. To see that this is the 
appropriate decoupling limit we calculate the open Dp-brane metric, theta parameter and 
the tension for an open Dp-brane aligned in the xa, a = 1 p, directions. This gives 

- VI - K^)f"sZlCemnOSXZ 

Next, we consider the following decoupling limit [100]: 

'mn (4.95) 

GODp n ßf _ 'Jjfi C)01 . . .p _ pp+l 
» /in •> ^nnn af £2 ' ODp ODp 5 (4.96) 
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which satisfy the required conditions. Again, fixed tension implies that the ODp-theory 
contains light open Dp-branes. 

As we have mentioned before these ODp-theories contain light open Dp-branes. But 
we also expect them to contain closed little strings. The reason for this is that for no 
deformation of a n NS5-brane the decoupled world volume theory is Little String Theory 
(LST) at high energy [124]. LST is a non-perturbative theory, without gravity in six 
dimensions, which contains closed s trings. In the type IIA case these closed little strings 
can be seen from an 11-dimensional point of view to come from cylindrical open membranes 
ending on M5-branes, where the ll'th (compactified) dimension is transverse to the M5-
brane. When the radius is small we have a type IIA string theory description, and the 
little strings can be viewed as the boundary of t he open membranes wrapped on a circle 
with small radius. After taking the decoupling limit (4.95) the tension of the little strings 
is given by [100] (see also Paper III) 

where R is the coordinate radius which is fixed in the decoupling limit, see below. For the 
type IIB cases the little string tension is also given by Ts = , see Paper III. 

This means that the ODp-theories contain both light closed little strings and light open 
Dp-branes. Note that, at small O Dp coupling constant (i.e., much less than one) the little 
strings are 'lighter' than the open Dp-branes15. This suggests that the little strings are 
more important than the open Dp-branes at weak ODp coupling. However, since there does 
not exists a complete microscopic description of t he ODp-theories, the exact relevance of 
the little strings and open Dp-branes is not clear. 

Next, we will look closer at the OD2 and OD3 theories. The OD2-theory is special 
since there are both a magnetic and an electric component of the three form C3. This is a 
type IIA theory and can therefore be related to M-theory. The deformed NS5-brane can be 
seen as an deformed (with a three form ^3) M5-brane with a small compactified transverse 
direction with radius RT. Furthermore, this means that the OD2-theory is related to OM-
theory. If we compare the two decoupling limits (4.82) and (4.95), the parameters of t he 
two theories are related as follows: 

Hence, OD2-theory is OM-theory with a transverse circle with coordinate radius R = 
G2

ODpi. Note also that 0Od2 = ©om an d that with our conventions the three forms are 
related as: As = <7SC3, while the closed m etrics are the same. 

Next, we i nvestigate the OD3-theory and argue (using S-duality) for the existence of 
a theory called OD3-theory, which is a theory containing light open D3-branes obtained 
from turning on a near critical electric RR four form on a D5-brane, followed by taking 
the appropriate decoupling limit. 

15They arc lighter in the sense that the little string effective length scale is larger than the open Dp-brane 
effective length scale. 

Ts (2TT)2£3m 27T£2 ' 
2ttR 1 

(4.97) 

/?3 _ p2> p2> _ 2 nS 7? — Pe^fo 
p V-rOD2't' fc ' OM OD2 ' T *J*OD2 (4.98) 
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The decoupling limit for the OD3-t,heory is given in (4.95) with p = 3. This theory 
contains light open D3-branes with tension given in (4.96) as well as closed little strings 
with tension given in (4.97). In the case with small coupling constant, i.e., G2

002 « 1 we 
have to use the full 0D3-theory at high energies (E ~ 1/(0Od3)1//4 and above), while LST 

is  adequate  for  lower  energies .  Ho wever ,  a t  even lower  energies  ( i .e . ,  E «  T^ 2  = 1/<?Y M ) I  

we can switch to 'ordinary' six-dimensional SYM theory. 
If we instead have a large OD3 coupling constant then things get trickier. Since the 

coupling constant is very large we can not have any perturbative OD3 description of the 
world volume physics. We therefore conclude that we must S-dualize to obtain a new 
(perturbatively well behaved) description. If we S-dualize the decoupling limit (4.95) for 
p = 3 we get the following decoupling limit (note that a' transform but the closed string 
metric does not) 

e —» 0 , ä' = i e ' , gs = G~ , 

C0123 = TyT-(l— o) > -®45 = —e2 , 

where 

OD3 

9 aß Vctß î  9ab ab 5 9mn ^mn 1 (4 .99)  
a ,ß  =  0,1 ,2 ,3 ,  a ,  6  =  4,5  ,  m,n  =  6 ,. . . ,  9 ,  

5s = 7, ä '  =  a 'gs ,  i 1  = fG 2
O D S  ,  G~ = —^— . (4.100) 

9s OD3 

Note that we have included the dual magnetic ß-field in the decoupling limit. We see 
here that we have obtained a decoupling limit which is very similar to the OD3 decoupling 
limit. For example, this decoupling limit implies that there are light open D3-branes whose 
tension is given by 

TnS = 2(2,)»G|Kf< " ' <4J01) 

which is the same as the tension for open D3-branes in the OD3-theory. There are also 
closed little strings in this theory with tension 

Ts = 2ttG'~3£2 = 2^ = Ts ' (4102) 

which means that also the little string tension is the same as in the OD3-theory. This leads 
us to propose that (4.99) gives the decoupling limit for a theory containing both light open 

D3-branes and closed little strings. We name this theory OD3. This theory is S-dual to the 
OD3-theory, since G~ = (see (4.100) above). Furthermore, this has the consequence 

that when the OD3-theory is strongly coupled we can instead use the OD3-theory, which 
is weakly coupled. 

Next, we note that the OD3-theory reduces to six-dimensional NCYM at low energy. 

This is clear from the fact that NCYM has the same decoupling limit as the OD3-theory, 
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as seen by comparing (4.99) and (4.24) with p = 5 and set 9 = £2 and gs  = G~. The 

difference between the two cases is due to the fact that for the 0333-theory we have the four 
form electric RR field on the world volume, while in the NCYM case we use the dual two 
form B-field. These two different cases originate from the fact that both open F-strings 
and open D3-branes can end on a D5-brane. This means that using open F-strings leads 

to NCYM while open D3-branes leads to the OD3-theory. Since we know that NCYM 

is strongly coupled at large energies this is good news because we can now use the OD3-
theory to complete NCYM at high energies, when G~ <<1. For G~ >> 1 we instead 
use the OD3-theory to complete NCYM at high energies. 

We have seen above that the OD3 and OD3 theories essentially have the same de
coupling limit, the same open D3-brane and little string tension, but that the coupling 

constants are inversely related. It has therefore been suggested that the OD3 and OD3 
theories can be viewed as one self-dual theory [106]. We will here argue that this might 
not be true. As we have mentioned above, the two theories have light open D3-branes 
and little strings with tensions given in (4.101) and (4.102). There is, however, a crucial 
difference between the two theories: For OD3 at weak coupling the little strings are the 
lightest objects, while for the OD3-theory the open D3-branes are the lightest objects at 

weak OD3 coupling. We note that self-duality implies that a theory is identical at weak 
and strong coupling. But since the 'fundamental' objects (we here assume that the light
est object is 'more' fundamental) are different in the two theories we find it unlikely that 
they are identical. To obtain a definite answer we expect that one has to know the full 
microscopic descriptions of the two theories. 

Above we have motivated the existence of a D5-brane world volume theory that contains 
light open D3-branes. Similar to how open D3-branes can end on D5-branes, we know 
that open Dç-branes can end on D(g + 2)-branes. We therefore expect that it should 
be possible to obtain decoupled (q + 3)-dimensional theories containing light o pen Dq-

branes, for 0 < q < 3. For q = 4 it is unclear if t he theory is decoupled from gravity, see 
Paper IV. Note that there are only little strings included for q = 3. Also in the general 
case these theories are related to NCYM, in the sense that NCYM is the low energy 

limit of ODg-theory. For a further introduction to the ODp and ODç-theories we refer to 
[100, 103, 105, 106] and Paper III. 



5 
Summary and discussion 

In this thesis we have discussed various aspects of st ring/M-theory. We began in chapter 
two with an introduction to perturbative string theory, dualities (T-, S- and U-duality), as 
well as a brief discussion about M-theory and its relation to type IIA and E8 x Es heterotic 
string theory. There was also an introduction to the AdS/CFT correspondence, which 
has given much new inf ormation about the relation between field theories and string/M-
theory. The main conclusion in chapter two was that at a non-perturbative level mu ch 
evidence points to the existence of one theory (M-theory), which in various limits give 
all the five consistent string theories in 10 dimensions. Note that in a low ener gy limit 
M-theory reduces to 11-dimensional supergravity. Furthermore, M-theory is not a string 
theory, but a theory containing membranes and 5-branes. A longstanding problem is to 
understand the exact role of th e membrane and 5-brane in M-theory. It is also important 
to understand the nature of the fundamental degrees of freedom. 

In chapter three we discussed bound states and how supergravity solutions correspond
ing to bound states can be derived using certain T-duality transformations. In particular, 
we derived M-theory 'T-duality' rules, which we then used in order to obtain a solu
tions generating method that can be used to deform M5-branes solutions (i.e., to obtain 
supergravity solutions corresponding to M5-M2 and M5-M2-M2-MW bound states). More
over, we found indications that M-theory 'T-duality' has aspects that are very different 
compared to string theory T-duality. What is most striking is that under string the
ory T-duality transformations the string is always transformed into a string, while u nder 
M-theory 'T-duality' transformations (for M-theory compactified on a three torus) an M2-
brane is transformed into an M5-brane and vice versa. Hopefully further study will lead to 
a microscopic derivation of the M-theory 'T-duality' rules (see chapter three) and a better 
understanding of the role of the M2-brane and M5-brane in M-theory. The results in chap
ter three and [80, 81 , 83] indicate that both the M2-brane and M5-brane are important 
when discussing M-theory 'T-duality'. 

In chapter four we showed how string theory with non zero background NS-NS two form 
turned on, in certain limits leads to non-gravitational theories with noncommutativity. In 

99 
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particular, taking the appropriate decoupling limit for a Dp-brane with non zero electric 
NS-NS two form turned on leads to noncommutative open string theory (NCOS). Here we 
found that we obtain an open string theory, because a field theory can not have space-time 
noncommutativity. Instead one has to keep all the massive open string states in order 
to have a unitary theory. Hence, a field theory can only have space-space or light-like 
noncommutativity. 

Perhaps the most interesting theory discussed in chapter four is OM-theory, a six-
dimensional theory that contains light open membranes and lives in some kind of non-
trivial geometry. Hopefulty, an improved understanding of OM-theory will lead to new 
information regarding the role of the membrane in M-theory. There is so far no satisfactory 
microscopic formulation of OM-theory. However, in Paper V (see also [108, 110]) we made 
some progress by deriving the open membrane metric and generalized noncommutativity 
parameter (theta parameter). These open membrane data are expected to be an important 
part in a microscopic formulation of OM-theory. This is motivated from the fact that these 
objects are the generalizations of the open string metric and noncommutativity parameter, 
which are derived from computing the two-point function for open strings ending on a 
Dp-brane. Furthermore, the theta parameter indicates that OM-theory lives in a geometry 
with some kind of ge neralized noncommutativity structure. It has been speculated that 
the geometry should include some kind of noncommutative loop-space structure and/or 
non-associativity, see [101, 113, 125] and Paper V. One approach to understanding this 
kind of deformed geometry could be to investigate an M5-brane with a non zero light-like 
three form turned on in the decoupling limit, since this leads to a (2,0) field theory with 
light-like generalized noncommutativity (see Paper VI). Furthermore, since this theory 
does not contain fully fluctuating membranes, as OM-theory does, it might be easier to 
investigate than OM-theory. 

In chapter four we also discussed deformation independence of open string data. In 
Paper V this was generalized to deformation independence of op en membrane data, and 
used to derive the open membrane metric and theta parameter. In Paper VII it was further 
shown that using the solution generating technique introduced in this paper, always leads to 
deformation independence of open membrane data, for electric and light-like deformations. 
Moreover, in chapter 4.3.1 an alternative derivation of the open membrane data was given. 
That this way of d eriving the open membrane data worked, indicates that there might be 
some unknown connection between M-theory 'T-duality' and open membrane data, where 
deformation independence may play a role. Further investigation is necessary to fully 
understand this problem. 

String theory and M-theory have so far led to much progress in obtaining a unified de
scription of nature. However, there is still a long way to go before string theory can give any 
verifiable predictions about nature. For example, a long-standing problem is to select the 
correct vacuum when compactifying string theory down to four dimensions. Furthermore, 
although string theory is understood in great detail, M-theory is not. A breakthrough 
in the understanding of M-theory, especially concerning the role of the membrane and 
5-brane, would be a very important next step in the search for a unified theory. 
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