Abstract

This thesis is concerned with the resource consumption of lazy functional languages.
It touches upon two aspects: how to reason about the space-safety of program
transformations, and how to apply usage analysis for compiler optimisation. The
thesis is a collection of articles.

In the first paper we study the notion of space improvement. We say that that
a program fragment is space improved by another if and only if when we replace
the former by the latter in any whole program the space behaviour is improved.
We will refer to the induced equivalence as space equivalence.

We show that many of the extensional equivalences that lazy functional lan-
guages enjoy carry over as space equivalences, and we demonstrate that the space
improvement theory can be used to show space properties of some interesting small
programs. We also show that many extensionally equivalent program fragments
are (sometimes surprisingly) not space equivalent by giving examples of whole pro-
grams where the asymptotic space behaviour changes if one replaces a program
fragment by the another extensionally equivalent one.

An example of a transformation that is not a space equivalence in general is
the inlining of function calls, i.e., replacing a function call with a copy of the body
of the function with the arguments substituted for the formal parameters. In the
second paper of thesis we study a class of automatic methods called usage analyses
which can infer that an argument to a function is used at most once, and show that
usage analyses can be used to guarantee the work and space safety of inlining.

Another application of usage analysis is compiler optimisation. In particular
usage analysis can be used to avoid unnecessary closure updates. In the third
paper of the thesis we present a usage analysis for this purpose which also provides
additional information which can be used to optimise the bookkeeping of updates
by avoiding unnecessary update marker checks.

In the fourth paper of the thesis we present a context sensitive usage analysis
based on bounded usage polymorphic types. To implement the analysis efficiently
we introduce a new form of constraint and in the fifth paper we show how the new
form of constraints can be solved. The techniques can be applied not only to usage
analysis but also to similar analyses. As an example of such, we present a flow
analysis with flow subtyping, flow polymorphism and flow-polymorphic recursion,
and show how it can be implemented in O(n®) time where n is the size of the
explicitly typed program. '

Keywords: lazy functional languages, equational theory, improvement theory,
garbage collection, space use, space-equivalence, space-safety, work-safety, inlin-
ing, program analysis, usage analysis, sharing analysis, context sensitive, constraint
solving.



