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Abstract

Since the 70’s both the volatility and level of interest rates have risen. This

has lead to an increase in companies’ interest rate risks. A stable income

source is no longer a guarantee for financial success. To cope with this

problem a more active portfolio management has to be employed.

Many tools used in liability management, like interest rate models, use his-

torical data in order to describe the behavior of the market. This implies

that a massive amount of financial data needs to be processed to enable

sound decision making. Without the help of computers, this problem is dif-

ficult for humans to handle. Using optimization algorithms, many different

parameters can be analyzed at the same time.

This thesis uses an optimization approach to solve the liability management

problem. A method including liquidity risk and interest rate risk is developed

based on the concept of linear programming. The usefulness of the method

is investigated, using an implementation incorporating the expectations hy-

pothesis for interest rate forecasting and a GARCH model for volatility fore-

casting.

The method developed in this thesis appears to be efficient in handling the

large amount of data. The output from the method can be used as a sound

recommendation if satisfactory interest rate forecasts are available. The ex-

pectations hypothesis though fails to meet this demand and should be re-

placed with other, more developed methods.
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Sammanfattning

Sedan 70-talet har b̊ade räntornas volatilitet och niv̊a stigit. Detta har lett

till en ökning av många företags ränterisker. En stabil inkomstkälla är inte

längre en garanti för finansiell framg̊ang. För att bemöta detta problem måste

en mer aktiv portföljhantering användas.

Många av de verktyg som används för skuldhantering, som till exempel

räntemodeller, använder historisk data för att förutsäga marknadens be-

teende. Detta antyder att en stor mängd finansiell data behöver behandlas

för att möjliggöra rationellt beslutsfattande. Utan hjälp av datorer är detta

problem sv̊art för människor att hantera. Med hjälp av optimeringsalgorit-

mer, kan många olika parametrar analyseras samtidigt.

Denna uppsats använder en optimeringsansats för att lösa skuldhanterings-

problemet. En metod som inkluderar likviditets- och ränterisk utvecklas,

baserad p̊a konceptet linjärprogrammering. Metodens användbarhet under-

söks med hjälp av en implementation som innefattar Expectations hypothesis

för att förutsäga räntor och en GARCH-modell för volatilitets-förutsägelser.

Metoden som presenteras i denna uppsats verkar vara effektiv i hanteringen

av stora datamängder. Utdatan fr̊an metoden kan användas som en god rek-

ommendation förutsatt att tillförlitliga ränteförutsägelser finns tillgängliga.

Expectations hypothesis visar sig dock inte uppfylla detta krav och borde

ersättas med andra, mer välutvecklade metoder.
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Chapter 1

Introduction

1.1 Background

Since the 70’s both the volatility and level of interest rates have risen. This

has lead to an increase in companies’ interest rate risks [Bicksler and Chen,

1986]. A stable income source is no longer a guarantee for financial success.

To cope with this problem a more active portfolio management has to be

employed. This enables companies to change their strategy in a continuous

manner and thereby adjust to changes in the market.

In liability management a number of factors can be considered. The most

obvious factor is the current interest rates, which directly determine the cost

of loans. However, to make better decisions, future interest rates should also

be regarded in order to consider the reinvestment risk of debt. This is the

risk that arises from the opportunity cost of issuing debt at lower interest

rates in the future. Another factor is the degree of risk aversion for a specific

company. This can be used for deciding the risk exposure, affordable to a

company.

Many of the developed models for forecasting future interest rates and risk use

historical data in order to describe the behavior of the market. To generate

sufficiently good estimates, large amounts of data are often needed. This

has lead to an increase in the use of computers for financial modeling. The

rapid evolution of computational power has lead to that resource demanding
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1.2 Problem discussion

optimization methods adopted from mathematical science can be used for

financial applications. This enables methods to consider the large number of

problems that occur in liability management.

1.2 Problem discussion

The problems involved in liability management require the CFO to make de-

cisions based on many channels of information. To quantify this information

is not easy and therefore requires some sort of model to interpret it. One

of the most commonly used indicators of the market’s expectations is the

interest rates. These also affect the cost of debt directly and hence have the

largest impact on the liability management strategy. Having this impact,

the interest rates give rise to a number of problems in managing the liability

portfolio.

The interest rates on different instruments depend on a number of factors.

Apart from the current market climate, which affects the market as a whole,

different derivatives differ in for example, time to maturity, liquidity and

yield. The long-term interest rates are generally higher than the short-term

ones. This is often explained by the liquidity premium theory, which states

that investors demand an extra premium for binding their assets in long-term

investments [Fabozzi, 2002].

When the interest rates are expected to rise, a company wants to have a

liability portfolio consisting of instruments with a long time to maturity.

The reason for this is that when the interest rate rises, a fixed interest for

a long time will keep the interest costs down. On the other hand, if the

interest rates are expected to fall, a fixed interest rate for a short period is

preferred, since that will give an opportunity to restructure the portfolio at

a lower interest rate.

Another perspective on the choice of time to maturity concerns the reinvest-

ment risk of a derivative or a loan. On a loan with a long time to maturity at

a fixed interest rate, there is a risk that the interest rates fall. Then the loan

will be unnecessarily expensive, since a loan at a lower interest rate could be

2



1.2 Problem discussion

taken at this time. These relations are displayed in Figure 1.1. This position

will also suffer from the risk that a high inflation rate decreases remarkably.

In that scenario, the loan will also be expensive, since a large part of the loan

was, at the issuing date, expected to have a low real value due to the high

inflation rate.

Long duration

Short duration
Debt issued at high
interest rate −> high
interest costs

Low interest rate
retained −> low
interest costs

interest rate −> low
interest costs

High interest rate
retainted −> high
interest costs

Debt issued at low

Interest rates rise Interest rates fall

Figure 1.1: Illustration of the reinvestment risk of debt

A loan with a short time to maturity can also be interpreted as a reinvestment

risk. As apposed to a loan with a long time to maturity, one with a short

time to maturity will only have its fixed rate for a short time. After that,

a new loan will be needed, which will be taken at the future interest rate,

which may be higher than the current.

The risk in a forecasted interest rate is often measured using the volatility.

Mathematical models like the GARCH model [Fabozzi, 2002] can be used

to forecast and analyze volatility. These models require massive amounts

of data and calculations to generate reliable forecasts, which makes them

infeasible for hand calculations.

The choice of time to maturity does not only depend on the cost of interest.

Analogously to the common praxis that projects should be discounted at

their opportunity cost of capital [Grinblatt and Titman, 2002], researchers

argue that the time to maturity of the loans used for financing a project,

often coincides with the expected lifetime of the project according to the

preferred habitat theory [Ho and Lee, 2004].

As the previous discussion shows, the choice of instruments in the liability

portfolio is non-trivial. The debt can be structured in an almost infinite

number of ways. All of these have different costs and react differently to

3
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changes in market interest rates, when the debt is renewed. Hence, the

structure of the portfolio may have a significant impact on the cost of debt

and on the risk of debt. If long debts are issued at a particular time, when

interest rates are expected to rise, the option to issue short debt if the interest

rates really fall, will be limited. The infinite number of debt structures,

together with the limitations just explained and the uncertainty in interest

rate forecasts makes it difficult for a human to make appropriate decisions.

Using computers, optimization algorithms can be used to help in the analysis

of many different parameters at the same time. Advanced models may though

require time consuming computations.

1.3 Purpose

The problem formulation points out a number of difficulties in predicting the

effects, of different portfolios, on the cost of liabilities. The infinite number of

structures for the debt portfolio over time, together with the massive amount

of data needed to predict future interest rates and volatility, justify the use

of optimization based models.

The decisions on the instruments issued today, will affect the decisions of

instruments issued at a later date. Therefore, a continuous management

of the liability portfolio that considers future effects of today’s decisions is

needed to minimize interest costs. A good method for liability management

should thus be able to continuously manage and update the portfolio from

historical data. To help the CFO1 in the decision making, it is also essential

that the output can serve as an easily interpretable basis for decisions. This

also requires that the output can be found in feasible time.

The purpose of this thesis can be stated as:

• To develop an optimization based method for construction and contin-

uous management of liability portfolios using historical data.

1Chief Financial Officer

4



Chapter 2

Method

For research to be useful it must fulfill certain criteria. If these base criteria

are not met, the research will be useless to the community, since it will not

add any valid knowledge. Arbnor and Bjerke [Arbnor and Bjerke, 1994] lists

seven criteria for scientifically valid research.

• The purpose of the research and the problem should be clearly stated,

defined and limited.

• The research procedure used, should be described as thoroughly as

possible to enable other researchers to repeat and validate the research.

• The organization of the research should be planned in detail, so that

as objective results as possible can be achieved.

• The researcher should report perceived flaws in his procedures and

estimate consequences as sincere as possible.

• The analysis made should be adequate enough to evaluate significances

and the appropriate techniques should be used.

• Drawn conclusions should be limited to the data used in the analysis

and should also be validated by the same data.

• The results will be perceived as more valid if they originate from a re-

searcher with a good scientific reputation, experience and who is known

for his integrity.

5



2.1 Research procedure

These criteria were used as a basis for the research conducted and described

in this thesis. The problem and purpose of the research are stated in Sections

1.2 and 1.3. The research procedure is further described in Section 2.1 and the

simulation procedure is described in Appendix A, to enable other researchers

to repeat and validate the research.

2.1 Research procedure

Research can be divided into different phases. By following these different

phases, the process will be structured and planned in detail, which will facili-

tate scientific research. A simple and structured methodology can be divided

into the following steps [Ackoff, 1962].

1. Formulation of research area, problem formulation and method

2. Initial information gathering

3. Development of models

4. Information gathering

5. Choice of method

6. Test and verification of results from models

7. Implementation of results

A problem formulation must be exciting and productive [Holme and Solvang,

1997]. Most exciting problems can be found in practical applications. A

study concerning a practical topic will often lead to results that can be ap-

plied and used in practice. The purpose of this thesis was formulated after

an extensive search for interesting practical problems at different companies.

The research area was finally chosen in cooperation with the CFO1 of Bostads

AB Poseidon.

During the initial information gathering recent research articles were gath-

ered from databases like JSTOR and S-WOPEC. A number of books and

1Cecilia Bergendahl
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2.2 Tools

research articles from libraries were also used as a basis for the problem for-

mulation and purpose. To gain knowledge of practical liability management,

qualitative information from companies and their operations is important.

In order to get that kind of insight, the contact with Bostads AB Poseidon

served as a source of information. This company has a large debt portfolio

and is highly devoted to liability management2 and could therefore provide

important views on portfolio management in practice. Information was gath-

ered primarily by interviews with Cecilia Bergendahl, Chief Financial Officer

at Bostads AB Poseidon.

Using gathered information, a model was developed with an object-oriented

approach. This enabled continuous testing of verification of subfunctions.

The tools used in the development process are described in Section 2.2. The

model is described in Chapter 3.

Additional data was gathered from the same sources as in the initial in-

formation gathering as well as from Reuters and the Federal Reserve. The

quantitative financial data used is described in Section 2.3.

The testing of a developed method is crucial for the validation. Chapter

4 describes and discusses chosen methods for validation and performance

measures. Appendix A includes the simulation procedures used and the

results are stated in Chapter 5.

2.2 Tools

For the implementation of the method presented in Section 3.2, different

mathematical software were examined. MATLAB from Mathworks was cho-

sen for its superior functionality. Its handling of matrices and simple syntax

enables high speed development. MATLAB includes highly developed func-

tions for analysis of financial time series in the Financial toolbox. It also

comprises a GARCH toolbox, which can be used for parameter calibration of

GARCH models as well as forecasting of volatility. The Optimization tool-

box includes powerful functions for both linear and non-linear optimization.

2Bostads AB Poseidon has received Standard & Poor:s AAA-rating in 2002
[Bergendahl, 2004a]
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2.3 Data

Since all these functions are included in a single program, the import and

export procedures for data are significantly simplified in comparison to using

different programs.

2.3 Data

The data used in the simulations are yields of US Treasury securities col-

lected from Federal Reserve [U.S. treasury securities]. The reason for using

that data is the availability of long and continuous time series for different

instruments. Treasury securities are often used as a reference for market

interest rates and the term “interest rates” will be used in this meaning

throughout the thesis. The rates used are daily yields from the the time

period from January 1, 1982 to November 30, 2004. A problem encountered

when using those time series was that Federal Reserve did not issue 20-year

bonds between January 1, 1987 and September 30, 1993. Still, it would be

favorable to be able to test the model over long time periods and it was

decided that the missing values should be extracted from the yield curve in

those points by interpolation. That approximation should be good enough

for the purpose of this thesis.

8



Chapter 3

Method for modeling liability
management

This chapter covers the information gathered from interviews and the devel-

opment of a method for modeling liability management. Section 3.1 describes

a practical approach to liability management, which is later used as a basis

for the development of the method in Sections 3.2-3.4.

In the rest of this thesis, the different terms method and model will be used

frequently. It is important to distinguish between these two terms. Method

will be used to refere to the method used for liability management. This

incorporates all parts of Figure 3.1, which shows a block scheme of the devel-

oped method. Model referes to the core part of the method, which includes

the optimization block in Figure 3.1.

3.1 Practical liability management

To get an insight into how practical liability management can be imple-

mented in practice, Bostads AB Poseidon was studied. They have a well

developed liability management and have received Standard & Poor:s AAA-

rating [Bergendahl, 2004a], which makes them a suitable company for study-

ing.

Poseidon’s finances are continuously supervised by looking at current interest

9



3.2 Method for liability management

rate exposure and hedging against unexpected changes in the term structure

[Bergendahl, 2004b]. The most common financial derivatives used for hedging

are interest rate swaps, CAPs and forward rate agreements. Forecasts of

the future are made by looking at yield curves and macroeconomic trends.

In order to prevent sudden liquidity problems, a maximum of 35% of the

liabilities are allowed to expire during a year. Risk is mainly measured by

looking at the duration of the portfolio. To avoid high risk taking, there is a

company policy stating that the duration should be at least 2 years.

Despite that the length of the company’s investments often reach above 50

years, their average duration is slightly above 2 years. This is an indication

on their belief that there is money to be saved by using an active portfolio

management strategy, instead of matching investment cash flows according

to the market segmentation theory.

3.2 Method for liability management

As stated in the problem formulation, large amounts of data need to be

processed to make good decisions in liability management. Modeling the

system in a computer can help in generating data with reduced complexity

as a decision basis. In a good method, the system model should imitate the

system as closely as possible without being too complex to implement. The

method should also be able to continuously update the output to incorporate

both daily and historical data. This enables the model to make decisions

based on all available data as well as on previous decisions. The rest of this

chapter describes the developed method and specifically the optimization

model.

A block scheme of the method is shown in Figure 3.1. The input to the

method is an existing portfolio, which may be empty if the method should

create an initial portfolio. This enables the optimization model to make deci-

sions on the basis of previous decisions and update the portfolio continuously.

The time that constitutes one period can be chosen freely in correspondence

with how often a company reviews its portfolio.

10



3.2 Method for liability management

Interest rate forecasting

Optimization

Existing portfolio

Portfolio

Analysis

Yield curves

Problem generation

Figure 3.1: Block scheme of the method

The current and historic yield curves are used as input to the forecasting

block, which forecasts interest rates from historical data. Using the fore-

casted interest rates and the initial portfolio, an optimization problem is

generated. The details on this are described in the following sections. From

the optimization model, a new portfolio is generated, which is used both for

analysis and also as input to the method when new data arrives. Before an

example of the usage of the method is given, an example of a portfolio over

time is shown.

Instrument maturity Weight
[periods] Period 1 Period 2 Period 3 Period 4 Period 5

1 0.4 0 0.6 0 0
2 0.6 .2 0 0 0.1
3 0 0.1 0 0 0
4 0 0.1 0 0.8 0

Table 3.1: Portfolio over time for three periods and four instruments. The
weights constitute the weight of issued value per instrument in that period.

In Table 3.1, a portfolio over time is shown. Assume that one period con-

stitutes one month. The first month, 0.4 is issued in instrument 1 and 0.6

in instrument 2. In the second period, instrument 1 from the first period

matures and this weight is distributed over instruments 2, 3 and 4. Since

11



3.2 Method for liability management

the maturity of instrument 2 is 2, it matures in period three and the same

weight is issued in instrument 1. In period four, 0.6 matures from instrument

1 and 0.2 from instrument 2. The whole weight is issued in instrument 4. In

period five, 0.1 matures of instrument 3 from period two, which is issued in

instrument 2.

Example 3.1 shows a typical usage of the method in continuous liability

management.

Example 3.1 Example on the usage of the method on a monthly basis

Jan 1. Historical yield curves, yield curves for January and the current

portfolio are used as input to the method.

2. The optimization model outputs a portfolio over time that consists

of a portfolio for each future time within a specified interval. An

example of a portfolio over time is shown in Table 3.1.

3. The portfolio over time is used as a basis for decisions on which

instruments to issue in January. That is, the decision is based

on the post, in the portfolio over time, that refers to the current

period.

Feb 1. Historical yield curves, yield curves for February and the portfolio

from January are used as input to the model.

2. The optimization model outputs a portfolio over time that consists

of a portfolio for each future time within a specified interval.

3. The portfolio over time is used as a basis for decisions on which

instruments to issue in February.

Mar Continue in the same pattern as in the previous month.

Using a non-empty initial portfolio, the model can be used for a company

with an existing liability portfolio. The choice of initial portfolio, or in this

case the existing portfolio, has a huge impact on the performance of the

method. In the extreme case, if an initial portfolio is chosen which contains

100 percent liabilities with a long time to maturity, for example 20 years,

12



3.3 Assumptions and limitations

the method may seem useless. In this case, no changes in the portfolio are

allowed in the first 20 years. The problem with long time to maturity on the

initial portfolio could be solved using derivatives. This is though outside the

scope of this thesis. In a scenario which is not this extreme, the method will

be limited to restructuring only a part of the portfolio. The ultimate starting

point for the method is when it can freely choose the initial portfolio.

3.3 Assumptions and limitations

The method presented in this chapter is for simplicity restricted to a world

of a limited number of financial instruments and no arbitrage, which implies

that the problem of finding under- or overvalued instruments is not covered.

Since there are an almost infinite number of instruments on the market,

modeling all of these would be infeasible. The method is though general in

the sense that it easily can be extended to include virtually any instrument

or derivative. The instruments used in the implementation were chosen to

serve as a reference to the market rates. The size of the debt is assumed to

be constant. To reduce the complexity of the model, it is assumed that no

repurchases of bonds are possible and that there are no transaction costs.

Transaction costs could though be included in the cost function.

According to the Expectations Hypothesis, the interest rates on the market

represent the market’s expectations on the future interest rates [Ho and Lee,

2004]. Later research by for example [Cox et al., 1981] has though criticized

this hypothesis, arguing that other factors1 are not incorporated in the hy-

pothesis. The basis of the hypothesis, which implies that future interest

rates can be (approximately) forecasted from historical data, is still valid

[Campbell, 1986]

1These could for example include the liquidity preference

13



3.4 A linear programming model

3.4 A linear programming model

The optimization problem of the portfolio decision, is modeled as a linear pro-

gram. The reason for this is simply that a portfolio is a linear combination

of all available instruments and that no parameters with other characteris-

tics are introduced. In other words, the function to be minimized and the

constraints are all linear equation systems.

There are two operation modes for the programming model. One is to create

an optimal portfolio and the other mode is to iteratively maintain a given

portfolio over time, by using all available knowledge of interest rates. At

each iteration of the method, the optimization model chooses the portfolio

over time which minimizes the cost of the portfolio subject to equality2 and

inequality3 constraints.

3.4.1 Linear programming

Many real life problems can be modeled as linear functions and optimized

using linear programming methods. Linear models are used in many dif-

ferent branches of science. A non-linear problem can often be linearized to

yield a linear problem, which approximates the non-linear problem. By such

methods, complicated problems can be approximately solved in feasible time.

This section describes the mathematical background needed for the following

model development.

A linear optimization problem has the following standard form [Nash and Sofer,

1996].

minimize z = cT x (3.1)

subject to Ax = b (3.2)

x ≥ 0 (3.3)

where z is called the objective function, A is an m×n constraint matrix, x is

a state vector of length n, c is a vector of length n and b is a non-negative

2See Section 3.4.5
3See Section 3.4.6
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3.4 A linear programming model

vector of length m. All linear programs can be converted to this standard

form. Methods for these conversions can be found in [Nash and Sofer, 1996]

and will not be further described here. In some implementations of software

for solving a linear program, inequalities can also be used in addition to

equalities.

The linear program

minimize z = 5x1 − 5x2 + 3x3 (3.4)

subject to 3x1 − 2x2 + 7x3 = 7 (3.5)

8x1 + 6x2 + 6x3 = 5 (3.6)

x1, x2, x3 ≥ 0 (3.7)

will in standard form have the following matrices and vectors.

x =









x1

x2

x3









c =









5

−5

3









A =

(

3 −2 7

8 6 6

)

b =

(

7

5

)

(3.8)

In Figure 3.2, the bounds of a linear program can be seen. The borders of

the figure define the constraints and all points inside this figure are feasible

points. The corners of the figure are called extreme points. A basic solution

Figure 3.2: Bounds and extreme points of a linear program

is defined algebraically using the standard form of the constraints according

to the following definition [Nash and Sofer, 1996].

15



3.4 A linear programming model

Definition 1 A point x is a basic solution if

1. x satisfies the equality constraints of the linear program

2. the columns of the constraint matrix corresponding to the non-zero com-
ponents are linearly independent 4

Definition 2 A point x is an optimal basic feasible solution if

1. x is a basic solution

2. x ≥ 0

3. x is optimal for the linear program

For convex5 functions, Theorem 1 holds [Nash and Sofer, 1996].

Theorem 1 If a convex function has a local minmum x∗, this is also a global

minimum for the function

3.4.1.1 Simplex algorithm

The simplex algorithm was developed in the 1940’s. It is a method, com-

monly used to solve linear programs in many different areas. The method

was early applied to economic problems which explains the use of terms like

shadow price and cost function. The simplex algorithm in an iterative algo-

rithm, which jumps between the extreme points along the constraints until

an optimal basic feasible solution is found. Details of the simplex algorithm

can be found in [Nash and Sofer, 1996] and will not be further described

here. The complexity of the simplex algorithm is high (possibly as high as

O

(

n

m

)

)6, which decreases its usability for large-scale problems.

4See a book in linear algebra for a definition of linearly independent
5See [Nash and Sofer, 1996] for a definition of convex functions
6O denotes big ordo, which is a measure of complexity of an algorithm. In an algorithm

of O(n2), the number of operations required to solve a problem increases by the square of
an increase in the number of inputs.
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3.4 A linear programming model

3.4.1.2 Interior point algorithms

Interior point methods are a class of algorithms which generate points in the

interior of the feasible region, hence the name. These methods emerge from

the barrier methods, which use a barrier to stay inside the feasible region.

The idea is that a penalty term is added to the objective function, which

increases dramatically when close to a constraint. Current algorithms have

complexity of O(
√

nL) (where n is the number of variables and L is the length

of the input - the number of bits used to represent the problem data), which

makes them much more suitable for large-scale problems than the simplex

algorithm. The downside of the interior point methods is that they do not

find basic feasible solutions. The solutions are though, with well conditioned

problems, close to the basic feasible solutions.

3.4.2 State variables

A linear program is formulated by specifying the structure and contents of

the matrices and vectors described in Section 3.4.1. The rest of this chapter

is dedicated to the formulation of the optimization model.

The first step in building the linear program is specifying the state vector x.

It contains the weights of all instruments at all times t in the time period

specified and is structured as in Equation 3.9.

x = ( x1,1 x2,1 . . . xM,1 x1,2 x2,2 . . . xM,2 . . . xM,N )T (3.9)

where M is the number of instruments and N is the length of the time period.

In the case where there are existing liabilities, new instruments are defined

with the corresponding time to maturity to match those liabilities. These are

placed at the beginning of the vector and are handled separately. The reason

for this is that if new instruments would be added to extend the original

problem, this would lead to an unnecessary increase in complexity. The

size of the matrices in the optimization problem would increase by roughly

(NK)2, where K equals the number of added instruments.
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3.4 A linear programming model

3.4.3 Cost function

The cost function is a linear function of the weights in the portfolio. These

are specified using the state vector x as formulated in Section 3.4.2. This

section describes the cost function, that is minimized in the optimization.

Definition 3 Let P, I and w(i,p) be defined as

P = {all periods}

I = {all instruments}

w(i,p) = {weight of instrument i ∈ I in period p ∈ P}

Assume that a one year zero coupon bond with a face value of f = $110 is

sold in year 0 for p = $100. The yield y of the bond can be calculated from

Equation 3.11.

p =
f

1 + y
(3.10)

100 =
110

1 + y
(3.11)

The cost can then be calculated as

c =
f − p

1 + r
=

p(1 + y) − p

1 + d
=

py

1 + d
=

100y

1 + d
(3.12)

where d is the appropriate discount rate. Since the company is assumed to

keep a constant debt, the appropriate discount rate is not dependent on the

company’s activities. Instead the risk free rate is used. If the bond is a

treasury bond, the yield of this bond could be used as an approximation the

risk free rate. Hence, d = y and substituting this into Equation 3.12, the

cost is

c =
p((1 + y) − 1)

1 + y
(3.13)

A similar discussion for a two year bond issued year 0, gives a cost of

c =
p((1 + y)2 − 1)

(1 + y)2
(3.14)
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Figure 3.3: One year bonds issued at time zero and one

Definition 4 Let yx,t denote the yield of an x year bond issued at time t

Using the notation from Definition 4, the cost of issuing two consecutive one

year bonds as in Figure 3.3 can be calculated as in Equation 3.15

c =
p((1 + y1,0) − 1)

(1 + y1,0)
+

p((1 + y1,1) − 1)

(1 + y1,1)(1 + y1,0)
(3.15)

Generalizing this, the total cost of a portfolio over time can be calculated as

c =
∑

i∈I,p∈P

w(i, p)((1 + y(tm−ti),ti)
tm−ti − 1)

(1 + y(tm−ti),ti)
tm−ti(1 + yti,1)

ti
(3.16)

where tm is the maturity year and ti is the issuing year. To enable decision

making every month instead of every year, the issuing year and maturity

year can be expressed in months instead.

Definition 5 Let T denote the end of the simulated period

The coefficients in the cost function have to constitute the total cost of an

instrument as opposed to the yearly cost. This generates problems close to

the end of the period. If an instrument’s maturity date exceeds T, it is not

fair to directly compare its cost with another instrument, with a shorter time

to maturity, issued at the same time. The long instrument will carry a higher

total cost, without the inherit gain from the long time to maturity. This issue

is solved as follows.
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3.4 A linear programming model

If the expiration time exceeds T for a single element in the sum in

Equation 3.16:

1. Use the yield of a T −ti month bond at time ti instead of y(tm−ti),ti

in Equation 3.16.

2. Use T − ti instead of tm − ti in Equation 3.16.

Note that all times are given in months, and the monthly yields are inter-

polated. The method used for interpolation, which is specific for the imple-

mentation, is specified in Section 4.3.1.1. The discounting was done using

the discrete time method. Continuous discounting could also be used with

negligible differences in the result.

The discounting of cash flows to net present value, introduces the effect

that distant cash flows have less significance in the optimization. This is an

important effect, which will make the model favor a decrease in near future

costs over a decrease in distant costs. This effect is favorable, since distant,

future interest rates are harder to predict accurately.

3.4.4 Cost of volatility

To this point, no consideration of the risk involved when managing a debt

portfolio has been included in the model. Therefore, a parameter correspond-

ing to the cost of the uncertainty in interest rate forecasting is incorporated.

Just adding the risk parameter to the cost function is not correct, because

companies have different risk policies. To be used properly, a degree of risk

aversion of a company, must be considered. This can be achieved by mul-

tiplying the risk with a constant stating this risk aversion (or risk taking).

The cost function including risk, can then be expressed as

ct,total = γtσ
2
t + ct (3.17)

where γt is the constant defining the degree of risk aversion, σ2
t is the esti-

mated risk and ct is the cost described in Section 3.4.3. This will render a

first order approximation to the level of impact that risk has on the cost for

a certain amount of risk taking.
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3.4 A linear programming model

3.4.5 Equality Constraints

The sum of the weights of the individual instruments issued in one period

can obviously at no time exceed the total portfolio weight, 1. Hence, the

sum of the weights in one period is less than or equal to one. Since the size

of debt is assumed to be constant, new debt has to be immediately issued

to cover maturing debt. Therefore the sum of issued debt and old debt in a

period has to be larger than or equal to one. These two inequalities can be

written using the following equality

∑

i∈I

w(i, p) = 1, ∀p ∈ P (3.18)

which is the the first equality constraint.

In accordance with the previous discussion, new debt has to be issued to

cover maturing debt. Therefore, the sum of maturing debt, which can be

seen as a negative issuing, and issued debt in a period have to equal zero.

Definition 6 Let m(i,p) and n(i,p) be defined as

m(i,p) = {weights of instrument i ∈ I that mature in period p ∈ P}

n(i,p) = {weights issued (new) debt of instrument i ∈ I in period p ∈ P}

The second equality constraint can be written as:

∑

i∈P

m(i, p) + n(i, p) = 0, ∀p ∈ P (3.19)

The initial portfolio, from the input, is also defined using equality constraints.

3.4.6 Inequality Constraint

To bring more reality into the model, a constraint ξ, defining the maximum

percentage of the portfolio, allowed to expire during the nearest year, as

described in Section 3.1, is introduced.
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3.4 A linear programming model

Definition 7 Let P(t,y) be defined as

P(t,y) = {the y nearest following periods p ∈ P starting at time t}

Including the constraint in the model the inequality can be written as

∑

p∈P (t,y)

m(i, p) ≤ ξ, ∀P (t, y) ∈ P (3.20)

This inequality will have significant impact on the outcome of the model.

Over some time periods where it may be optimal to roll over the shortest

possible instrument, the solution of the optimization problem will suggest

that longer instruments should be used. Hence, the model considers the

risk involved when ”putting all eggs in the same basket” and avoids it by

spreading the portfolio over more bonds and of different maturities.
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Chapter 4

Method validation and implementation

4.1 Method validation

It is important to keep in mind that the validity of the model does not

incorporate the performance of implementation-specific details, like the risk

measure and interest forecasting method. These are just choices of methods

for preprocessing historical data, before it is sent to the optimization model.

Instead, it is the method incorporating all parts, not necessarily choosing

these specific details that is the main focus of this thesis. The central part

of the method, which is not replaceable, is the optimization model which is

thus most important in the validation.

The first part of the model to validate is the single optimization step. Since

the stated optimization model is linear, it is also convex [Nash and Sofer,

1996]. A local minimum for a convex problem is also a global minimum

according to Theorem 1. Hence, it can be assumed that the found solution

minimizes the cost in each optimization.

However, because each optimization step only considers a limited portion of

the future, the total cost over a longer period will not necessarily be minimal.

When a second optimization is performed it will consider new data at the

end and lose data in the beginning since time has moved forward. Hence,

the data is not exactly the same and the optimization can find a way of

restructuring the portfolio just a time period later. Then it may not be

23



4.2 Performance measures

possible to do so because no bonds are expiring. Because of the difficulties

involved in predicting interest rates in the distant future, it is unrealistic

to consider long time horizons in each optimization step. A time horizon

much longer than the length of the instruments is also questionable, since

all instruments will have matured during that time. Hence, if it is assumed

that the model minimizes the cost in each optimization step, then it can be

argued that the total cost over time is minimized in a reasonable sense.

4.2 Performance measures

When analyzing the results from simulations, the comparison criteria are of

high importance for drawing accurate conclusions. Badly suited criteria can

lead to inaccurate or even completely wrong conclusions. The single most

important measure is the cost of the portfolio, since this is what the method

is minimizing. All costs are measured at their net present value, but as

we will see in Section 4.2.2.1, even this standardized measure can be a bit

ambiguous.

A measure often used in practice to classify a portfolio is the duration of

the portfolio. The pros of using duration for classification is that it is easy

to understand, and that it explains a lot of the behavior of a portfolio. A

long duration will for example be desired when interest rates are expected

to rise. The cons of using duration as a classification measure is that it does

not capture the behavior of a portfolio completely. For example, a portfolio

where half consists of four year bonds and half consists of two year bonds,

will have the same duration as a portfolio completely consisting of three

year bonds. These two portfolios will react differently to shifts in the yield

curve and changes in the convexity1 of the yield curve. To be consistent

with practically used methods, duration was used as the basic classification

measure. Since the interesting approach in this thesis is the change of a

portfolio over time, the duration was also measured over time.

The comparison of durations over time is non trivial. Delays in the results

cause problems in finding a fair measure which captures the connection be-

1The second derivative of the yield curve, which defines its curvature
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4.2 Performance measures

tween duration and cost. In the following sections, different performance

measures are discussed.

4.2.1 Optimal portfolio

The aim of the method described in Section 3.2 is to minimize the cost of a

portfolio over time. This implies that the optimization will be able to find

a portfolio with minimum cost over a time interval, given that all interest

rates are deterministic. This portfolio is necessary to perform comparisons of

simulation results. It can be used to measure the deviations of the simulation

results in terms of, for example, cost and duration. The definition of an

optimal portfolio is

Definition 8 Optimal portfolio

An optimal portfolio is a portfolio which minimizes the cost of debt over some

predetermined interval.

4.2.2 Portfolio comparison

The comparison of portfolios is an important topic to cover since it acts as

the foundation to build the evaluation of the model upon. In this section,

the procedures and most important parameters for comparison are discussed

in order to facilitate the performance evaluation in Chapter 5.

4.2.2.1 Comparing cost

The performances of two portfolios are compared mainly using the cost over

a specified time interval. To find a procedure to use for this action is not as

trivial as it may seem. The time value of money must be considered in some

way, but discounting all cash flows to the same date will make distant inter-

est rate expenditures insignificant. Hence, this may not be a fair measure

when a minimization of the interest costs over an interval is sought. This

leads to the conclusion that another discounting procedure could be consid-

ered as well. Instead, the cash flows can be discounted to the same date
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4.2 Performance measures

as the corresponding bond was issued and these values are then summed.

This method of comparing costs may be a more fair way of measuring the

performance of the model, since the cost function2 minimizes these values

in each optimization step. In order to consider multiple ways of comparing

costs, both of these methods were used in the analysis.

4.2.2.2 Comparing duration

Deviations between different measurements are often analyzed using the

mean square error(MSE) which is calculated using Equation 4.1

1

N

N
∑

n=1

||x(n) − x̂(n)||2 (4.1)

where x̂(n) is the measured value of x(n) and N is the number of observations.

The benefit of using this method instead of just taking the mean of the errors,

is that positive and negative errors will not cancel out. Using the MSE for

comparison between results from the model proposed in this thesis would

though generate unfair results. This is because the MSE method does not

consider delays between the data compared.

Example 4.1 Assume that two series A and B are to be compared using

MSE. The series A and B are defined as in equation 4.3.

A = (0, 0, 10, 10, 10, 0 , 0, 0) (4.2)

B = (0, 0, 0 , 10, 10, 10, 0, 0) (4.3)

Comparing the two series A and B we get an MSE of:

MSE =
1

8
(102 + 102) = 25 (4.4)

The two series are in fact the same, with the only difference that the second

series is delayed by one index. Still, the error is quite large.

2See 3.4.3
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These types of delays will occur often in the analysis of the model proposed

in this thesis. Assume that the model is used for continuous portfolio man-

agement and that this is compared to the optimal portfolio. Further assume

that an instrument is taken with a time to maturity of 1 month in continuous

case and that the optimal portfolio at the same time chooses an instrument

with a time to maturity of 2 months. A sudden expected increase in interest

rates will lead to that an instrument with a long time to maturity is pre-

ferred. Both models will choose this as soon as possible. The second model

will though not be able to change instrument until one month after the first

one, leading to the effects discussed previously.

To solve this problem, we propose a method which we choose to call the

floating mean square error (FMSE). In this method, the errors are calcu-

lated from a floating mean before they are squared which smooths abrupt

transitions in the model. This will decrease the impact of short delays on

the analysis. The floating mean square error is defined as.

Definition 9 Floating mean square error (FMSE)

FMSE =
1

N

N
∑

n=1

∣

∣

∣

∣

∣

∣

∣
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1

2M + 1

M
∑

m=−M

x(n + m) − 1

2M + 1

M
∑

m=−M

x̂(n + m)

∣
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∣

∣

∣

∣

∣

∣

∣

∣

2

(4.5)

Where M ∈ N is the smoothing windows size, and N is the number of

observations. We assume that x(n) and x̂(n) are zero for all n < 0 and

N < n.

What remains is to choose an appropriate value for M. If M is chosen too

low, the delays will not be smoothed out. If M on the other hand is chosen

too large, the resolution of the error calculations will reduce significantly,

leading to an inaccurate performance analysis. If the model is assumed to

work well, the majority of the delays will occur due to choices of instruments

where the time to maturity does not differ significantly. If M is chosen so that

adjacent instruments are smoothed, it could be expected that the majority

of the delays will be smoothed out, retaining a sufficiently high resolution.
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Changing the scenario described above, where two instruments with different

time to maturity are issued at the same time, the instruments are now issued

at different times. To give the delay effect earlier discussed, the instruments

have to overlap in time. Assume that the instruments are issued at a discrete

time ti in months. If the issuing date of instrument one is fixed and L1 > L2,

the issuing time of instrument two is uniformly distributed in the interval

0 ≤ t2 ≤ L1 − L2 where L1 and L2 are the lengths of the instruments

respectively. If M is chosen as b (L1−L2)
2

c, where b c denotes rounding down to

closest integer, the window will overlap the two transitions with a probability

of one. Using the two shortest instruments as instrument one and two should

thus give a good trade off between smoothing transitions and resolution.

4.3 Implementation

In this section, the implementation used for testing and evaluating the liabil-

ity management method is presented. The implementation was developed in

MATLAB. The choice of forecasting method and risk measure are described.

The implementation of the algorithms are however not described, since they

are dependent on the chosen software.

4.3.1 Forecasting interest rates

The optimization model requires input of the cost of the available bonds,

over the time horizon used in the optimization. The expectations theory

can be used to approximate future interest rates by iteratively calculating

the forward rates. It states that “the movement of the yield curve should

be dependent on market expcetations, which is the relationship between the

forward rate and the spot rate” [Ho and Lee, 2004]. The most common form

of this statement is the unbiased expectations hypothesis, which states that

the expected future spot rate is equal to the forward rate. The hypothesis

can be stated as

E[R(t + nP, 1)] = F (t + kP, 1, n − k), k = 0, 1, ..., n − 1 (4.6)
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where E[.] is the expectation operator.

This prediction is quite rough but can still be used for implementation in

this thesis, because the model itself is not dependent on the specific details

of how interst rates are forecasted. Implementation of more advanced term

structure models, like the CIR-model [Mele and Fornari, 2000] is beyond the

scope of this thesis.

The expectations theory approach requires interest rates for all discrete times

to maturity, that is, one month, two months, three months rates and so forth.

Since those are unavailable, they can be interpolated from the yield curve

using splines3, to render a reasonable approximation.

4.3.1.1 Using splines for interpolation

Polynomials of different orders can be used to interpolate between discrete

values. The problem with this method is that the polynomials tend to gen-

erate large deviations from the expected interpolation. This problem can be

solved using splines.

Splines can be used as a powerful tool for interpolating between discrete

values. A spline is a linear combination of piecewise continuous polynomials.

A commonly used method which ensures that the curve passes through all

points is cubic splines [Fabozzi, 2002]. Other methods have been proposed,

for example exponential splines [Vasicek and Fong, 1981]. We choose to use

cubic splines as recommended by Fabozzi [Fabozzi, 2002]. An implementation

of cubic splines interpolation can be found in MATLAB and will not be

discussed here. Interested readers can refer to [Fabozzi, 2002], which includes

a chapter covering this method in depth.

4.3.2 Risk measurement

The optimization model requires input of the interest rate risk for the cost

function. This risk is approximated by the volatility of the interest rates and

3See section 4.3.1.1
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a GARCH model4 is used for estimating it. A GARCH(1,1) model is used,

but other risk measures could easily be incorporated instead. To get reliable

estimates of volatility from GARCH models, sample sizes of 200 or more are

generally required [Bollerslev et al., 1994]. This places a lower bound on the

required amount of historical data needed.

4.3.2.1 GARCH model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

model is extensively used for estimating volatility in financial markets [Fabozzi,

2002]. It captures the well known characteristic of fat tails in the statistical

distribution of many financial time series, better than the normal distribu-

tion and is therefore more favorable. The GARCH model is popular because

it considers random yield shocks as well as serial dependence in yield volatil-

ity. One opposition to GARCH, however, is that the level of yield is not

incorporated.

The standard GARCH(1,1) model can be written as

yt − yt−1 = εt (4.7)

E[ε2
t ] = σ2

t = a0 + a1ε
2
t−1 + a2σ

2
t−1 (4.8)

where εt is the daily yield change, E[·] is the expectation operator and a0, a1

and a2 are parameters to be estimated. Hence, volatility in this period de-

pends on both yield change and yield volatility in the last period.

4See section 4.3.2.1
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Chapter 5

Results

5.1 The optimal portfolio

The optimal portfolio was found by following the description in the simulation

procedure in Appendix A. Characteristics of the optimal portfolio over time

are depicted in Figure 5.1, where duration over time is shown. The behavior

is clearly as expected. When interest rates are falling, the portfolio is rolling

over 3-month Treasury bills and when a rise is imminent, all debt is placed in

an instrument with maturity long enough to avoid most effects of the interest

rate rise. Section 4.1 states that the portfolio is optimal for the cost function

with given constraints. This statement coincides with the results shown here.

The cost of this portfolio should obviously be the lowest, when compared to

all other simulated values, and this is confirmed by calculations. See Figures

5.2 and 5.3 for a visualization of this, where cost is calculated in the two

different ways earlier described in Section 4.2.2.1. The flat, lower surface

illustrates the cost of the optimal portfolio. Values of γ > 20 are not shown,

since the cost is just monotonically increasing for this interval.

5.2 Performance of the model

In order to evaluate the performance of the implementation, the parameters

must be chosen to represent a certain portfolio strategy. First, ξ is selected
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Figure 5.1: Yield and the optimal portfolio over time

as 0.35, to serve as an example. As is shown in Figure 5.2 and 5.3, the other

limits behave similarly. From Figure 5.2 and 5.3, a suitable value of γ can

be chosen. The objective is to select the one that has minimized the cost for

ξ = 0.35 over the data series used. It can be seen that there are valleys in

the plots for 4 ≤ γ ≤ 7 and 2 ≤ γ ≤ 4.5 respectively. Therefore, γ = 4 is a

proper value in order to capture the lowest cost in both aspects.

The impact of the limit, ξ, is illustrated in Figure 5.4a and b. It can be

seen that the peaks of the duration occur at approximately the same times,

but the values are a bit different. The large difference in the first peak may

seem quite strange, but recalling the discussion in Section 3.4.6, it is rather

obvious. Instead of issuing the whole portfolio in two year bonds, as in

the optimal portfolio (a), the portfolio is distributed over more and longer

maturities. Remember that with ξ = 0.35, the portfolio is only allowed to

consist to 35% of bonds with 0 ≤ maturity ≤ 1 years, an equal amount
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Figure 5.2: Cost of simulated portfolios discounted to
issuing date, with 0.35 ≤ ξ ≤ 1 and 0 ≤ γ ≤ 12
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Figure 5.3: Cost of simulated portfolios discounted to
time 0, with 0.35 ≤ ξ ≤ 1 and 0 ≤ γ ≤ 12

within 1 ≤ maturity ≤ 2 and the rest above 2. This implies that all debt

cannot be issued in two year bonds and that the average duration should

therefore exceed two years.
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ξ = 12 ξ = 0.35

optimal 0.6863 0.7534
forecast,γ = 4 0.8173

Table 5.1: Total cost of portfolios
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Figure 5.4: Duration of different portfolios

The overall performance of the implementation of the model can be seen in

Figure 5.4, where (c) is the duration over time for the portfolio with the

chosen parameters (ξ = 0.35 and γ = 4) and the cost is shown in Table 5.1.

Comparing this plot with the yield curve in Figure 5.1, the response in terms

of changed duration when interest rates move is seen.

Introducing forecasted interest rates into the model results in some deviations

in the portfolio behavior. In Figure 5.4(c), peaks in the duration appear at

different times compared to the optimal portfolio with ξ = 0.35 in Figure

5.4(b). These differences result in an increased cost compared to the optimal

portfolio.

A measure of the deviations between the duration curves using forecasted

interest rates and the optimal portfolio is illustrated by using the concept of
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floating mean square error (FMSE), earlier described in Section 4.2.2.2. The

resulting plot is shown in Figure 5.5. It can be seen that the lowest error

occurs for γ = 0, suggesting that volatility does not need to be considered in

the model. This is not the case since the cost, which clearly is the best per-

formance measure, is higher for that volatility constant as seen in Figures 5.2

and 5.3. Further, a valley in the interval 2 ≤ γ ≤ 4 shows that the duration

over time is relatively similar to the optimal portfolio in that region. Also,

this valley coincides with the one in Figure 5.3, indicating that discounting

to time 0 may be the best way of measuring cost.
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Figure 5.5: Floating Mean Square Error compared to the optimal portfolio
for 0.35 ≤ ξ ≤ 1 and 0 ≤ γ ≤ 12

One of the criteria for a computer based methods is that the solution should

be reached within feasible time. The specific implementation used in this

thesis found a solution in 1-2 minutes.

35



5.2 Performance of the model

36



Chapter 6

Conclusions

The massive amount of financial data available today, justify the use of com-

puter based models to support decision making in the financial area. The

decisions on the instruments issued today will affect the decisions of instru-

ments issued at a later date. Therefore, a continuous management of the

liability portfolio that considers future effects of todays decisions, is needed

to minimize interest costs.

As can be seen in Section 5.1, the method, with observed interest rates, gen-

erates a reasonable solution. The structure of the portfolio reacts well to

changes in the interest rates, using long instruments over peaks and short

instruments in slopes. The results show that the portfolio is optimal for the

cost function with given constraints. Hence, with observed future interest

rates, the method will return an optimal portfolio over time, which can be

used for portfolio management. Given satisfactory forecasts of future inter-

est rates, the method can be used as a sound recommendation on how to

construct or change the structure of the liability portfolio. The choice of in-

struments made by the method with a limit can be quite easily interpreted,

but would be impossible for any human to make. Additionally, when using

computers as an aid in decision making, personal judgment must of course

be used. The usage of numerical methods can sometimes yield inaccurate

solutions due to for example badly conditioned data.

In Section 5.2, it is noted that using forecasted interest rates results in de-
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viations in portfolio structure. The reason for these deviations is the poor

performance of the expectations theory’s ability to predict future interest

rates. This is because, as shown in the results, the model minimizes the

cost when given a series of interest rates. Hence, the expectations theory is

inadequate for practical use with this method.

As shown in the result, the volatility constant γ affects the output from the

model. The simulations do however not show if the cost of risk introduced

in the model really reduces the risk in liability management. It could be the

case that the volatility just adjusts the bad forecasts from the expectations

hypothesis, without really reducing the risk. To validate this assumption,

studies of the method using other forecasting methods and other data would

be required. The method in itself is though solid against this kind of flaws,

since a proper calibration of the model would reduce these effects using a low

γ. An alternative way for the risk introduction into the model, could also be

considered in order to change the impact of the volatility constant.

To be usable in practice, the method must find a solution within feasible

time. None of the simulation times exceeded two minutes, which clearly is a

reasonable time consumption.

The specific implementation described in this thesis, where a GARCH model

and the expectations theory has been used for measuring volatility and fore-

casting interest rates respectively, can be further improved by using a more

advanced forecasting method. The method of measuring volatility may also

be questioned, even though it is very commonly used today. Further, a more

thorough validation of the model presented in this thesis, by testing on more

financial time series is necessary. Comparisons against other models would

result in a measure of the performance of the model compared to these. It

should also be mentioned that the basis for the model, a cost function, two

equalities and one inequality, could possibly be extended to a more advanced

model, though more resource demanding.
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Appendix A

Simulation procedure

Simulations are needed in order to test and validate the implementation of

the model. The linear optimization problem formulated in Section 3.4 was

implemented using MATLAB 6.5.1 and the large scale algorithm in matlab’s

linprog was used. The resulting program was then tested and its output

verified. The testing procedure is summarized in Figure A.1.

Since at least 200 observations are needed for the GARCH model [Bollerslev et al.,

1994], the historical data for the GARCH model was limited to 200 observa-

tions. Since the longest instrument used in the simulations is 10 years, this

horizon was also used for each optimization. The time interval for simula-

tions was limited by the available data on different instruments. The results

of the simulations cover the time period between October 1982 and Novem-

ber 1994. The reason for this is that the optimal portfolio needs 10 years

of future data in each optimization step. Hence, in the last optimization it

uses the data from November 1994 to November 2004 and that is the end

of the available time series. Step 1 is used for simulating a portfolio that

is iteratively updated each month and uses known data. The time horizon

used for optimizing each month is 10 years. In this step, multiple optimal

portfolios are generated, first by varying the limit 0.35 ≤ ξ ≤ 1, and then

setting it to ξ = 12. The reason for simulating with ξ = 12 is that it implies

that it is possible to let the whole portfolio expire during the same month.

In reality, this means that the liquidity problem is set aside, but this will

provide the structure of the optimal portfolio over time.
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1. Find optimal portfolio iteratively, optimizing over a time t each itera-
tion, known data used

2. Simulate different portfolios iteratively, optimizing over a time t each
iteration and include volatility in the cost, forecasted data used

3. Compare the results from step 2 and 1

Figure A.1: Simulation Procedure

The reason for varying the limit 0.35 ≤ ξ ≤ 1 is that Poseidon uses 0.35 as

their annual limitation and, hence, reflects a situation in real life. However, it

should be noted that Bostads AB Poseidon is a municipality owned company

and their degree of risk aversion may therefore not be representative for the

whole market. It should also be noted that no limits below 0.35 is used.

This is because the number of financial instruments considered in this thesis

is very limited, which will result in difficulties finding a feasible solution for

low expiration limits. With more instruments, the limit could be lowered.

The procedure for constructing a portfolio using forecasted data in step 2

is made by same principles as the portfolio above, except for the difference

in data and adding volatility to the cost. The data used was forecasted

from the yield curve using the expectations theory in each point in time.

The volatility is added as described in Section 3.4.4 and the coefficient, γ,

was varied between 0 and 100. The reason for varying both the limit and

the volatility coefficient is to see where the cost is lowest and to be able to

calibrate the model.

Simulations of 67 values of γ and 7 values of ξ over 146 periods each were

conducted, which sums up to 68474 simulations. With a simulation time of 1-

2 minutes for each combination of variables, this would take about 1711 hours

on a single desktop computer. Therefore, the simulations were distributed

over about 80 computers.
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