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Abstract 

A general multi-type branching process with dependencies that are local in 
the family tree is considered. The theory is first built up for sibling depen
dencies and then extended to more general cases. The dependencies within 
a group of sib lings are described by a joint probability measure, determined 
by the structure of that particular group. The process is analyzed by means 
of the embedded macro process, consisting of sibling groups. It is shown that 
the asymptotics of t he sibling dependent process can be obtained by instead 
studying the independent process that has the same individual marginals. 
Convergence results for the expected population size as well as the actual 
population size are given, and the stable population is described. 

Key words: Branching process, multi-type, sibling dependencies, local de
pendencies, macro process, stable population. 
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Abstract 

A general multi-type branching process with dependencies that are local 
in the family tree is considered. The theory is first built up for sibling 
dependencies and then extended to more general cases. The dependencies 
within a group of siblings are described by a joint probability measure, de
termined by the structure of that particular group. The process is analyzed 
by means of t he embedded macro process, consisting of sibling groups. It 
is shown that the asymptotics of the sibling dependent process can be 
obtained by instead studying the independent process that has the same 
individual marginals. Convergence results for the expected population size 
as well as the actual population size a re given, and the stable population 
is d escribed. 

Key words: Branching process, multi-type, sibling dependencies, local 
dependencies, macro process, stable population. 
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1. Introduction 

The theory of b ranching processes is, generally speaking, the study of id ealized 
population dynamics. The concept "population" does not only refer to biological 
populations; it is used in a general sense to describe any set that may change 
as its members generate new set members. The origin of t he theory is however 
the study of human populations, something mirrored in its language; we t alk of 
individuals, mothers, daughters and so on. Apart from applications to human 
or biological populations, as in demography or cell kinetics, branching processes 
have been used for instance in the analysis of ra ndom trees (Aldous (1991)) and 
in the study of ra ndom Cantor sets (Larsson (1990)). 

Branching process theory has provided answers to a multitude of questions 
about freely growing populations, where it is assumed that each individual re
produces independently of all other individuals. The three main issues have been 
extinction, growth and composition, the first of which can be treated quite ex
haustively already in the simple Galton- Watson process counting only generation 
sizes. It does not last long before any student of p robability theory learns how 
to compute the extinction probability in a Galton-Watson process and, further, 
that extinction is inevitable if and only if t he average number of children of a 
mother is less than or equal to one. 

If a population does not die out it grows exponentially, whether the population 
size is measured in discrete time as in the Galton-Watson process, or in continuous 
time as in the general branching process where individuals reproduce according to 
some point process on R+, or, in the multi-type case, on S x R+: S being the type 
space. The well kn own explosion-extinction dichotomy, that any independently 
reproducing population either eventually becomes extinct or grows to infinity, 
holds quite generally if certain degenerate cases, such as all individuals always 
begetting exactly one child, are excluded. 

The asymptotic composition of a n exponentially growing population is best 
studied within the frame of general branching processes. It can be shown that, 
whereas population size is unstable, the composition stabilizes in the sense that 
proportions of individuals with various properties tend to constants as time tends 
to infinity. This consideration leads to the study of the so called stable population, 
a population centered round a typical individual, Ego. Her (this author sticks 
to the tradition to consider all individuals female) individual properties as well 
as her progeny and ancestry are described by the stable population measure, for 
single-type populations described in Nerman and Jägers (1984) and in the multi-
type case in Jägers (1992) and Jägers and Nerman (1992). 

It would be tempting to investigate how these results are affected if dependen-
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cies between siblings are allowed. Of course for theoretical reasons, as a first step 
away from independence, but also from a point of view of a pplications. Clearly 
some sort of dependencies could be expected between siblings in biological popu
lations; they may compete or collaborate, thus giving rise to negative or positive 
correlations respectively. 

One early treatment of sibling dependencies was performed in a paper by 
Crump and Mode (1969). In that reference a Bellman-Harris process, i.e. a 
process with splitting reproduction and random life-lenghts, allowing sibling de
pendencies is explored. Population-size-dependent Galton-Watson processes with 
dependent offspring were treated in Cohn and Klebaner (1986). 

The effect of sibling dependencies on the extinction probability was investi
gated in the first of three papers in Broberg (1987). The third of these treats 
critical processes with sibling dependencies, whereas the second deals with gen
eral single-type branching processes with sibling dependencies. In that paper it 
is a ssumed that the population is homogeneous in the sense that all individuals 
have the same marginal reproduction, but that the dependence structure might 
vary from one group of sib lings to another. 

It turns out that leaving the homogeneity assumption actually leads to the 
study of general multi-type branching processes with sibling dependencies and 
hence the main objective of this thesis is to investigate such processes with re
spect to growth and stable population composition. Non-homogeneous single-
type processes will b e viewed as special cases. 

The next chapter gives a short description of some general problems of branch
ing processes, starting from Galton-Watson processes and aiming at the general 
multi-type branching process which is described in Section 2.2. In the following 
chapter it is argued why sibling dependencies should be studied and how this 
is done by embedding an independent process, the macro process, consisting of 
sibling groups, into the sibling dependent process. A se ries of simple examples 
are given to illustrate principal problems and general observations. The macro 
process is constructed in detail in Section 3.2. The multi-type structure calls for 
the use of Markov renewal theory, the definitions and results of w hich are given 
in Chapter 4, where it is also shown how Markov renewal theory and general 
multi-type processes relate to each other. 

In Chapter 5 it is explored how the macro process and the individual pro
cess are connected. It is shown that they are actually equivalent with respect 
to Markov renewal properties and the fundamental convergence result for the 
expected population size is given. Chapter 6 deals with /^-convergence of the 
actual population size and for that purpose it is also proved that the so called 
2 log a; co ndition is equivalent for the macro and the individual process. 

Chapter 7 treats the stable population mentioned above. An explicit form of 
the stable population measure in a sibling dependent process is given, similarities 
to and differences from independent processes are pointed out. Non-homogeneous 
single-type processes are discussed in Chapter 8, where they are introduced as 
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special cases of th e multi-type process. The emphasis is on the special form their 
stable population measure takes. Some examples are also given. Section 8.3 deals 
with the stable population in another special case, Broberg's homogeneity. 

In Chapter 9, L2-convergence is proved under finite variance assumptions, and 
in Chapter 10 some concluding remarks are given to convince the reader that the 
theory actually covers more than it seems by a first glance. The theory is also 

extended to dependencies that go further than siblings, i.e. cousin dependencies, 
second cousin dependencies and so on. 

Concepts such as "branching processes with sibling dependencies" will be 
used although the term "branching" strictly speaking means that individuals 
reproduce independently. However, as will soon be shown, in a sibling dependent 

population there is embedded branching also in the strict sense of the word. 
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2. Preliminaries 

2.1. The Extinction and Growth of Populations 

This section contains a short survey of the major problems of branching processes 
and how they are treated. The results are fundamental and may be found in 
any book on branching processes (and some of them indeed in most elementary 
probability books). We mention only two books which together cover the classical 
theory, Athreya and Ney (1972) and Jägers (1975). 

The simplest type of a branching process is the Galton-Watson process (some
times also called the Bienaymé-Galton-Watson process). In such a process an in
dividual begets a random number, X say, of children, and individuals are assumed 
to reproduce independently. The number of in dividuals in the nth generation is 
then obtained by adding the number of children of all individuals in the (n — l)th 
generation. With zn =the number of individuals in generation n and Xn-i,k =the 
number of children of individual k in generation n — 1, 

zn—1 

Zn ~ ^ \ Xn— 
k= 1 

The question of eventual extinction of such a process is answered with the aid of 
generating functions and therefore let 

pk = P(X = k),k = 0,1,... 

OO 

f ( s )  =  ZXP*  
k=0 

and 
q = P(3n : zn = 0), 

the extinction probability. Then q is the smallest non-negative solution to the 
equation 5 = f(s). Further, with m = E[X] and from now on disregarding the 
degenerate case p\ — 1, 

q < 1 m > 1. 

Hence extinction is (almost) certain if and only if the expected number of children 
of an individual is less than or equal to one. The cases m < 1, m = 1 and m > 1 
are called the subcritical, the critical and the supercritical case respectively. The 
reason for distinguishing between subcriticality and criticality is that, although 
they both lead to almost sure eventual extinction, they give rise to qualitatively 
different asymptotics for example when conditioning on non-extinction. 

The next famous result concerns population growth and states that if a 
Galton-Watson population does not die out, its size will tend to infinity, i.e. 
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P(zn —> oo) = 1 — q. Hence, no independently reproducing population ever sta
bilises in size; it either dies out or grows beyond all bounds. Th e x log x condition 
is a crucial concept in the Galton-Watson theory, and indeed in branching process 
theory generally. In the Galton-Watson case it has the form £[Xlog+ X] < oo 
and it can be shown that there exists a non-degenarate random variable w, such 
that 

E [ X l o g + X ] < o o ^ - ^ ^ w ,  (2.1) 

as n  — >  oo, this convergence holding almost surely and in L1, whereas w  = 0 if 
E[X log+ X] = oo. 

One extension is to allow individuals to be of dif ferent types, an individual's 
type affecting her reproduction. Thus, if t he possible types are {1,2, ...,r}, an 
individual of t ype k splits into ki children of t ype 1, k2 of t ype 2,...,kr of t ype r 
with probability pk{ k\,..., kr). 

Let z n ( k )  be the number of in dividuals of type k  in the nth generation. The 
asymptotic behaviour of z n(k) depends on the expected reproduction matrix, M, 
with entries M,-j= the expected number of type j children of an individual of type 
i. If M is positive, i.e. if for some integer n > 0 all the entries of M n are positive, 
the growth rate is given by Af's spectral radius, p, i.e. its largest eigenvalue. It 
is p t hat now plays the role m did previously. Without going into details, the 
fundamental convergence result is that there exist random variables w(k) such 
that zn(k)/pn —» w(k), k = 1,2, ...,r, this again being equivalent to an a; log a; 
condition which will not be spelled out here. 

A G alton-Watson process thus reveals some fundamental properties of po pu
lations of independently reproducing individuals, such as the extinction-explosion 
dichotomy and the exponential growth. However, it is clearly limited by its gener
ation structure; it is not a model for real time evolution of po pulations. One way 
to obtain such a model is to assume that an individual lives for a random amount 
of tim e, L, with distribution function G, then dies and at the time of death gives 
birth to (or splits into) a random number of children, X , with expectation m. 
Individuals still reproduce independently and the Galton-Watson process can be 
viewed as the special case L = 1. Rather than zn, the number of individuals 
in the nth generation, the number of individuals alive at time zt. is studied. 
If L a nd X are assumed independent, such a process is called a Bellman-Harris 
process, whereas we talk of a Sevastyanov process if dependencies between L and 
X are allowed. 

In the latter process the growth is described by a real number a, called the 
Malthusian parameter and defined through 

E [ X e ~ a L ]  =  1 ,  

which for the Bellman-Harris process reduces to 

mG(a) = 1, 
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where hat denotes Laplace transform i.e. 

A r oo 
G(a) = / e~atG(dt). 

Jo 

The fundamental convergence result is 

e~a tz t  —> to, 

as t —> oo. 
These processes are special cases of the general or Crump-Mode-Jägers process. 

In the latter the pair (X, L) is replaced by a point process, £, the reproduction 
process, describing at which time-points an individual begets her children. All 
individuals are assumed to reproduce independently, an assumption referred to 
as the branching property. The Malthusian parameter is now defined through the 
relation 

E[i(a)\ = E[Jo  e-a t t(dt)} = 1, 

and the xlogx condition is J5[£(a) log+ £(a)] < oo. 
The process can be made even more general by also allowing individuals to 

be of different types, in analogy with the multi-type Galton-Watson processes 
described above. Such multi-type general processes are the main objectives of 
this thesis and they will be described in the next section. 

2.2. General Multi-type Branching Processes 

The theory of general branching processes will be described without going too 
much into details. Some definitions are postponed to coming chapters where they 
will be stated as they appear in the construction of the macro process mentioned 
in the introduction. For a thorough description the reader is referred to Jägers 
(1989). 

In a general branching process individuals are elements of the Ulam-Harris 
space 

OO 
/= {0} U (J N k ,  

k—1 

where 0 denotes the ancestor and N = {1,2,...}. An individual is thus of the 
form (xi,..., x„) with the interpretation that she is the xnth child of t he xn_ith 
child of ... of t he Xith child of t he ancestor. 

If x , y  €  I  then x y  denotes the individual having first x's and then y : s co
ordinates. In particular xO = Ox = x. Hence xl,x2,... are x's children and 
if x = (xi,...,xn) then x's mother, (xi,..., x„_j), is denoted by mx, with the 
convention that m0 = 0. 

I f  x  =  ( x j , x „ )  a n d ,  f o r  s o m e  k < n, y = (xi,...,xfc) we say that x stems 
from y and write x >- y. If M is a subset of I such that there is a y € M with 
x  y  y  w e  w r i t e  x  > -  M .  T h e  s e t  { x y  :  y  €  M }  i s  d e n o t e d  x M .  
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The set of po ssible life careers is called the life sp ace and denoted by (fi, .4). 
Any property of an individual such as its life length or number of children is 
viewed as a random element on fi. A few such variables of c entral interest will 
be given. 

An individual's reproduction is described by the consecutive ages at childbear-
ing, 0 < r(l) < T(2) < ... < oo, where T(Ï)(W) is the age of a n individual with 
life car eer u> when she begets her ith child, r(z) being infinity if the individual 
begets less than i children. 

At birth each individual gets a type in the type spac e S which can be quite 
general; i t is only required to have a countably generated cr-algebra S. The ith 
child of an individual with life career w get s type The birth times and 
types together form the reproduction proc ess 

t { u , A  x B )  = #{z : cr(z)(w) G A , t ( i ) ( u )  G B } ,  

where A G S and B G #, the Borel algebra on R+. The notations £(o>) and 
£(A x B) will also be used depending on the context, and we will sometimes 
write £(i) for £(5 x [0, i]). 

From the life and type spaces the population space S x ft1 is constructed. An 
outcome of this consists of the ancestor's type and a life career for each individual 
in /. The projections Ux : S x Ç11 —> fl single ou t the life career of the individual 
x, and enable us to lift entities defined on the life space into the population space. 
For instance, the reproduction process of an individual x is defined through 

£ O Uxi 

other random elements defined similarily. An element of the population space is 
denoted (s,w/), and generally the notation % is used for the set of lives of the 
i n d i v i d u a l s  i n  M  C  I .  I n  p a r t i c u l a r  U > X  =  U x ( s , u j j ) ,  t h e  l i f e  o f  t h e  i n d i v i d u a l  x .  

To count or measure the population random characteristics are introduced. 
These are random processes 

X : S  x Q 1  x R —* R+, 

where x(s,u>/,i) gives the contribution at age t of a n s-type individual with life 
and progeny's lives described by loj. We assume that x vanishes for negative 
times t. The simplest example of such a characteristic is = Iß+W) 
which is 1 if t > 0, i.e. if you are born, and 0 otherwise. Note that \ may depend 
on an individual's whole progeny, something which makes it possible to count 
individuals with a certain number of grandchildren or with children who are alive 
at certain timepoints etc. If we only allow x to depend on an individual's own 
life and type, i.e. if 

X(s,ui,t) = f(s,u)0,t), 

for some function / : S x fi x R —> R+, it is called an individual characteristic . 
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Using the shift operator Sx : S x O7 —> S x Ç11 defined through 

Sx ( ̂  5 ) — ( &X ? ^xl ) 1 

i.e. the operator that makes the individual x an ancestor, we write Xx = X 0 SV 
for the x-value pertaining to x. The process starting from x is called the daughter 
process of x . The individual xi is born at time rxi, recursively defined through 

To = 0 

and 
rxx = Tx + T(I) O UX 

and the x-cowniec? population is defined to be 

Z T  =  I ^ X X O F  -  T X ) .  
x£l 

adding the contributions of all individuals born up to time t at their proper ages 
( T X  i s  t h e  b i r t h  t i m e  o f  t h e  i n d i v i d u a l  x  an d  h e n c e  t  —  T X  i s  h e r  a g e  a t  t i m e  t ) .  
Sometimes zf will simply be called the population size. With the characteristic 
lfl+ mentioned above zf will be the total number of indi viduals born up to time 
t, usually denoted by y t. 

Assume that a set of probability kernels { P ( r ,  •) : r G S }  on the life space 
is given. Choose an enumeration z(0), z(l),... of t he set of in dividuals which is 
such that a mother always precede her daughters. Define transition probabilities 
from S x 0n+1 to 0 through 

•••* ̂ ^(n)) P^x{n+\)i 

so that an individual chooses life according to a probability measure that only 
depends on her type. This is the Markov property for a multi-type process. It 
can be shown that this property implies the branching property, that daughter 
processes started from individual's who do not stem from each other are condi
tionally independent, see Jägers (1989) for a strict treatment of th is. Note that 
the type crx(n+1) is a function of x(n + l)'s mother's life which is one of t he ele
ments ur(o), The branching property for a single-type process is that all 
individuals choose lives independently and the multi-type analogue is thus that 
all individuals choose life independently conditioned on th eir types. 

Under these assumptions the kernels {P(r,-),r G S} define a unique proba
bil i ty measure P s  on (S x f t1  ,S x A1) .  

With Es denoting expectation with respect to Ps, both the asymptotics of 
Es[zf ], the expected size of the x-counted population when the ancestor's type 
is 5, and of z f itself are investigated. 

The crucial part in this investigation is played by the reproduction kernel fi 
defined through 

n ( s , A  x [0,t)) = E.[£(A x [0,*])], 
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the expected number of children with types in A an s-type individual begets 
before age t. (Observe that the notation Es is used also for expectation with 
respect to the measure P(s, •).) Under quite general conditions fi de termines 
a real number a, called the Malthusian parameter, which is such that, roughly 
speaking, the population size grows as ea t .  

Further, f j ,  determines a function h on the type space, h(s) being the reproduc
tive value of the type s, and a measure IT, also on the type space, which describes 
the distribution of th e types in a large population. 

For the time being nothing more is said about these entities. They will be 
properly defined and described in Chapter 4, where also the conditions required 
on fi are given. 

The two fundamental convergence results are 

E s[e-a tz?} - E A l^ ) ]KS), 

and 

as t  —> oc. Here 

0—at„X EAxja)} 

aß 

roo 
X(a) = / ae~aix(t)dt, 

Jo 

En = f s  EsTr(ds),  i.e. expectation when the ancestor's type is not fixed, but 
distributed according to 7t|  and ß is  a  real  number called the stable a ge a t  ch ild-
bearing, a definition of which will be given in Section 4.1. The second convergence 
holds in i1(/3

s) for 7r-almost all s Ç. S. The random variable required to have a 
finite x log x moment is now 

i  = /  e~a th(r)£(dr x dt),  
JSxR+ '  SxR+ 

and hence the a: log a; c ondition takes the form J5x[^log+^] < oo. The entity £ 
is interpreted as the relative contribution by the reproduction process £ to the 
population. With this interpretation the equality 

Esii] = h(s) 

is obvious, h(s) being the reproductive value of t he type 3. 
Note that in a single-type Galton-Watson process £ reduces to e~aX, where X 

is the number of child ren, all born at time t = 1. Although the general definition 
of a has not yet been given, it is quite clear that a single-type Galton-Watson 
process should have a = log m where m = E[X\, and hence the x logo; condition 
is 

„ r X  ,  X .  
E[— log+ — < 00, 

m m 

obviously equivalent to the previous formulation, E[X\og+  X] < 00. 
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3. Why Sibling Dependencies and How to Deal with Them? 

3.1. Effects of Sibling Dependencies 

As mentioned in the introduction, population models allowing sibling dependen
cies are of great interest for two reasons. First, they provide a natural extension 
of the theory of general branching processes, this theory being well suited to 
model dependencies that are local in the family tree. Secondly, it can of c ourse 
be argued that such dependencies are most plausible in models for biological pop
ulations. Surely what first comes to mind is competition among siblings, thus 
giving rise to negative correlations. 

In this section it will be argued why processes with sibling dependencies should 
be studied, how this was done in Broberg (1987) and how it can be extended 
and further generalised. This will be done by giving several examples of simple 
Galton-Watson processes. Hopefully they will exhibit the principal problems of 
sibling dependencies, and make it easier to understand the general theory of 
coming sections. Let us start with a very simple example, where the impact of 
sibling dependencies is substantial. 

Example 3.1. Consider a critical binary splitting population, i.e. a Galton-
Watson process where each individual can have either zero or two children with 
equal probability. The expected number of children is then one, and by classical 
results ultimate extinction has probability one. 

Now c onsider a population where each individual can beget zero or two chil
dren such that, in a group of two siblings, one will a lways split and the other 
will not. The two are equally likely to be the splitting one. Clearly there are 
sibling dependencies; given that an individual begets two children her sister will 
not reproduce at all. 

This second process is governed by a joint probability measure P(2 ,  •) (the 
"2" is there to indicate that there are two individuals in the sibling group) on 
{0,2}2 such that 

P(2,(0,2)) = P(2,(2,0)) = l/2. 

This joint probability measure has marginals 

Pk = ^(individual begets k  children) = 1/2, 

for k  =  0 ,2 .  The second process thus has the same individual marginal reproduc
tion as the first, but the sibling dependencies give it a totally different behaviour; 
if i t starts from a group of two siblings it never dies out (and will forever have 
generation size two), whereas the first process always dies out. • 
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So obviously sibling dependencies can have a crucial influence, at least as far 
as extinction is considered. Less drastic examples may be found in Broberg 
(1987) where it is also generally shown that negative correlations between sibling's 
reproductions decrease the extinction probability, whereas positive correlations 
increase it. 

The basic idea for a theory that allows sibling dependencies is to embed 
another process, the macro process, into the sibling dependent process. This 
macro process, introduced in Broberg (1987), consists of sibling groups, to be 
called macro individuals. The point is of course that whilst individuals do not 
reproduce independently, macro individuals do, since the only dependencies are 
within the sibling groups. Of course the macro process corresponding to the 
sibling dependent process in Example 3.1 is d egenerate, in the sense that each 
macro individual with probability one begets exactly one child. This case is 
excluded in classical Galton-Watson theory; it is the only situation that violates 
the extinction-explosion dichotomy. 

Generally, if it is assumed that the reproduction and dependence structure 
o f  a  s i b l i n g  g r o u p  o f  s i z e  k  i s  d e s c r i b e d  b y  a  jo i n t  p r o b a b i l i t y  m e a s u r e  P ( k , • )  
on Nk, the macro process may be considered as multi-type, the type of a macro 
individual being the number of siblings in that group. 

Hence classical theory for multi-type Galton-Watson processes applies to the 
macro process. Since what is interesting is still the individual process, this whole 
setting would be useless if it is not possible to count individuals by instead count
ing macro individuals. But indeed, with £n=the number of individuals in the nth 

Figure 3.1: A Galton-Watson process with encircled sibling 
groups and the corresponding macro process with 
its types. 
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generation and Z n { k )  =the number of macro individuals of type k  of the nth 

generation, it holds that 
OO 

C n  =  k Z n { k ) -
k= 1 

As mentioned, it is the individual process that is in focus; the macro process 
is merely a tool making the analysis simpler. Therefore it would be desirable 
to make all the assumptions on the individual level and a drawback if we had 
to invoke some extra conditions on the macro level. Indeed, the ideal situation 
would be if the only conditions needed were those from the ordinary theory of 
independent processes, now assumed for the individual's marginal reproduction, 
i . e .  t h e  m a r g i n a l s  o f  P ( k ,  • ) .  

The theory for sibling dependent Galton-Watson processes will not be devel
oped in detail, the emphasis of the thesis being general branching processes which 
clearly contain Galton-Watson processes as special cases. However, in order to 
provide the reader with a little more insight into the problems of sibling de
pendencies, a few more Galton-Watson illustrations will be given. The following 
example indicates that whereas dependencies might seriously affect the extinction 
probability, their influence in some sense disappears on the set of non-extinction. 

Example 3.2. Consider a sibling dependent Galton-Watson process where an 
individual can beget zero or three children, and where the dependencies are such 
that, in a group of three siblings, two will always reproduce whilst the third never 
will. All individuals are equally likely to be among the reproducing ones. The 
joint probability measure P(3, •) on {0,3}3 then gives equal probabilities to the 
points (0,3,3), (3,0,3) and (3,3,0) and has the marginals p0 = 1/3 and p3 = 2/3. 

The independent process with these marginals has an expected number of 
children equalling two, and there is a positive probability of non-extinction, in 
which case the generation size tends to infinity. Indeed, the extinction probability 
may be computed explicitely as the smallest non-negative solution of the equation 
5 = 1/3 + (2/3)s3, which turns out to be (\/3 — 1 )/2. 

The dependent process will have a deterministic generation size of 3 • 2" indi
viduals in the nth generation (if it starts from a full group of siblings) and hence 
it always explodes. 

The macro process is now such that each macro individual with probability 
one begets exactly two children. Of course it is a trivial and highly uninteresting 
process, but one observation can be made: its expected number of macro children 
is two, the same as the independent, individual process governed by the marginal 
reproduction. The growth rate is 2n for both processes and if t he independent 
one does not become extinct, it will tend to infinity at the same speed as the 
dependent one. From classical theory we know the asymptotics of the independent 
process: 
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almost surely as t —> oo, where if is a random variable having expectation one. 

For the macro process obviously 

Zn _ 

2" ~~ 

and, with C„=the number of individuals in the nth generation of the dependent 

process, 
Cn o 

2™ = ' 

if the process starts from a full group of siblings. In the independent process, 
assume that we wish to count the number of individuals with some certain prop
erty A which appears independently with probability p. Let z£ be the number of 
individuals in the nth generation with property A. It can be shown that, almost 

surely, 

2 ^ 1 ^ '  

so that w 

almost surely on the set of non-extinction. The latter convergence still holds if 
we start from a group of t hree siblings since these will initiate three independent 
copies of the process. 

Now do the same in the sibling dependent process. Let Cn be the number of 
A-individuals in the nth generation when starting from a group of three siblings. 
Then it is possible to define Z£ in the macro process such that Z£ = Cn > namely 
by letting 

2" 
r/A \ "" \rA 

n / -j n,i ' 
i=1 

where the are binomial(3,p), giving the numbers of /^-individuals in each 
group of s iblings. By the law of large numbers 

and hence also 

3 p, 
2n 

CA 

TT 3P> 
2n 

so that 
/•A /*A on 

C ~~ 2 n ' C S n A S n 

The asymptotic composition of A-individuals is thus the same in the indepen
dent process as in the sibling dependent one with the same marginals, of course 

under the condition that the independent process does not die out. • 

13 



We have seen an example where sibling dependencies affect the extinction 
probability, as compared with an independent process, but the growth rate and 
asymptotic composition are the same as in an independent non-extinct process. 
This is actually no coincidence; this thesis is devoted to the task of showing 
that quite generally, the growth rate or asymptotic composition of a branching 
process can never be affected by sibling dependencies. Hence, these two aspects 
are completely determined by the individual marginals of the joint probability 
measure describing reproduction and dependence structure. 

Yet another example is given, now with the macro process being multi-type. 

Example 3.3. Consider a sibling dependent process where an individual can 
beget zero, one or two children. In a group of two, one always splits into two, the 
other one either begets zero or one child with equal probabilities. The two siblings 
are equally likely to be the splitting one. A singleton, i.e. an individual with no 
sibling, begets two children with probability 1/2, one child with probability 1/4 
and none with probability 1/4. The marginals pk = the probability that an 
individual begets k children are 

Po = 1/4, pi = 1/4, p2 = 1/2. 

The mean number of children in an independent process with this reproduction is 
thus 5/4 and the probability of eventual extinction turns out to be 1/2, whereas 
the dependent process never becomes extinct if it starts from a two-group. If it 
starts from a singleton it might become extinct only in case it avoids two-groups. 
Summing a geometric series shows that this probability is 1/3. 

The macro process is now a multi-type Galton-Watson process with type space 
{1,2}. The matrix of expected reproduction is 

' 1/4 1/2 " 

1 / 2  1  J '  

where the entry ( i , j )  is the expected number of j-type macro children of an i-type 
macro mother. The growth rate is determined by the spectral radius of M, i.e. 
A f ' s  l a r g e s t  e i g e n v a l u e  d e n o t e d  b y  p .  S o l v i n g  t h e  c h a r a c t e r i s t i c  e q u a t i o n  f o r  M  
yields p = 5/4, i.e. p equals the expected number of children in the independent 
process with the same marginals, and the growth rates again are the same, but 
the extinction probabilities differ. • 

In the last example all individuals reproduce according to the same marginals, 
regardless of t he sizes of their sibling groups. This is what is called h omogeneity 
in Broberg (1987), a concept there also extended to general branching processes. 
Changing the probabilities for a singleton's reproduction in the example clearly 
implies that an individual's marginal reproduction might depend on the size of 
her sibling group, i.e. gives rise to a situation not covered by the homogengity 
concept. Two more examples are given, in order to argue why it is desirable to 
relax the condition that all marginals be the same. 
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Example 3.4. Consider a sibling dependent Galton-Watson process where indi
viduals can beget zero, one or two children. Assume that the dependencies are 
described by the joint probabilities P{k, •) where k can be 1 or 2. The macro 
individuals can thus be of t wo types: 1 for singletons or 2 for twins. Let Xj be 
the number of ch ildren of the individual j and let the reproductive probabilities 
be given by 

p t  = P{l,Xi = i),  po +pi +P2 = 1, 

for s ingletons, and 

Pij = P{2,A'i = i,X2 = j),  poo + poi + .. .  + P22 = 1 • 

for twins. Assume that the order between two individuals who are twins is irrel
evant so that pij = pji when i ^ j. This is essentially Example 1 in the second 
paper in Broberg (1987). The marginals for an individual in a twin group are 

2 

<?i = 5Z ^*(2' XmÊçiiXî = j)  = Poi + Pli + P2i, 
3=0 

where i  = 0,1,2. Under the assumption of identical marginals it must then hold 
that 

Pi = Ii — Poi + Pli + P2i 

for i = 0,1,2. Hence homogeneity in the sense mentioned above enforces restric
tions on the marginals that obviously limit the scope of t he theory. For instance, 
it does not cover cases where p t t  > p t  for some i .  •  

A general observation is that homogeneity in sibling dependent Galton-Watson 
processes leads to the conclusion that the expected number of ch ildren of a sib
ling group is proportional to the size of that group. But, at least in biological 
applications, there might be strong reasons to suspect that this is not true. If a 
cat gives birth to ten kittens it is unlikely that they all survive, and hence their 
expected progeny should be less than ten times that of a single cat. It seems 
that homogeneity rules out such natural cases of ne gative correlations. Of course 
one can also think of s ituations where positive, or altering, correlations contra
dicts homogeneity. There might for instance be an ideal size of the sibling group, 
so that they are many enough to protect each other, but not so many that the 
competition between them gets too hard. We give another example. 

Example 3.5. Consider a Galton-Watson process with sibling dependencies such 
that the probability of r survivors in a group of size k is pr^. Given that an indi
vidual survives she reproduces according to the probabilities q(j) = P(j children). 
With E'fcfS'] = the expected number of survivors in a group of size k, the marginals 

P k ( j ) = ^(individual in a group of size k  begets j  children), 

are 

Pfc(0) - 1 - (1 - 9(0)) £ jPr,k  4- 1 1 -  q m ^  
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and 

P k ( j )  =  q { j ) Y ,  7 Pr , k  = H Ü ) —  
r=l 

Assuming homogeneity now implies that E k [ S ] / k  (the probability of su rvival of 
an individual in a group of size k) is independent of k, which may be true in 
special cases, but certainly not generally. • 

These considerations lead to the search for a richer theory of sibling dependen
cies. Both the examples above are cases which are not covered by homogenity, i.e. 
all individuals do not have the same marginals. However the marginals are the 
same within each sibling group, so this could be a first step away from homogene
ity: to assume that the dependencies are such that individuals who are siblings 
have identical marginals. Since now an individual's reproduction depends on the 
size of her sibling group, not only the macro individuals but also the individuals 
constitute a multi-type process, the type of an individual being the number of 
siblings in her group. The type space will thus be the same for the individual 
process and the macro process. The expected reproduction matrices are then 
M = (Mij) and m = (rnt] ) for the macro and individual process respectively. 
Here MtJ~ihe expected number of macro children of type j of a macro mother 
of t ype i, which obviously equals ipi(j), where Pi(j) is the marginal probability 
that an individual of type i begets j children. For the individual process the 
corresponding numbers are m,j = jpi{j) and the relation 

A.— ~TTlij1  (3.1) 
J 

between the macro and individual process is obtained. Analysis of this shows 
that the two matrices are equivalent with respect to important properties such as 
positivity, and that in the finite case, i.e. if t he number of c hildren is bounded, 
the spectral radii coincide. These facts will l ater be proven in a more general 
context, and for now they are only illustrated by a simple special case. 

Example 3.6. Consider a sibling dependent Galton-Watson process where each 
i n d i v i d u a l  c a n  h a v e  z e r o ,  o n e  o r  t w o  c h i l d r e n .  T h e  ma r g i n a l s  a r e  P i ( j ) , i  =  

1,2, j = 0,1,2 and the type space {1,2}. The matrices for expected reproduction 
are m = (ra„) and M = (MtJ) for the individual and the macro process respec
tively; the elements of which relate according to (3.1). Recall that a matrix A is 
called positive if for some n, all the elements of An are positive. Computation of 
the powers of M and m shows that 

Mn: = -to" m t ]  j  v  

for all n, so positivity is equivalent for the two matrices. 
The characteristic equation for m is 

(TOU - A)(to22 - A) - TO12TO21,  
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and for M 

— A)(iW22 — — M12M 21 — (^11 — ^ ) { m 22  ~  — m 12 m 21 i  

since Mu = mu,M22 = ^22, -W12 = (l/2)m12 and M21 = 2m2j. Hence the spec
tral radii coincide, and the growth of the sibling dependent process is determined 

We will now take a brief look at what happens in a single-type general branch
ing process with sibling dependencies, thus slowly approaching the coming general 
theory. 

In a general single-type branching process an individual reproduces according 
to some point process, £, on R+. Assume that the reproduction and dependence 
structure of a sibling group born according to a particular realization s of £, are 
described by a joint probability measure P(s, •) on 0s'00', 0 being the life space 
and s(oo) the number of points in s. In obvious analogy with the Galton-Watson 
case, a macro individual (still a sibling group) will have type s if that sibling group 
i s  bo rn  acco rd ing  t o  the  po in t  p roces s  s .  Hence  the  type  spa ce  S  wi l l  be  Af (R+) ,  
the set of point processes on R+, or some appropriate subset thereof. Since there 
is no point in dealing with empty sibling groups, it is assumed that s(oo) > 0. 
The possibility of infinitely many children is also ruled out by assuming that 
s (oo)  <  0 0  fo r  a l l  s  €  S .  

Assume that the marginals of P(s ,  •) may depend on s ,  but not on the rank 
of an individual. Call these marginals Q(s, •) and for sake of convenience view 
them as measures on 5, so that Q(s, A) is the probability that an individual born 
in a sibling group with type s, reproduces according to a point process in the set 
ACS. If w e define the birth time of a macro individual to be the moment the 
individual mother of that particular group of siblings is born, the macro process 
has reproduction measure 

M(s ,dr  x d t )  =  s (d t )Q( s ,dr ) ,  

since its macro children are born at the points in s ,  each one having probability 
Q(s ,dr )  t o  g ive  r i s e  t o  a  macro  ind iv idu a l  w i t h  t ype  in  dr .  

The individual process also becomes multi-type with the type space S ,  and 
its reproduction measure is 

x d t )  =  r (d t )Q(s ,dr ) .  

It is possible to show that M and /z define the same Malthusian parameter a  and 

through the marginals alone. • 

with 

the Laplace transform of s ,  we will have 
roc  

M(s ,dr )=  /  e~ a i M(s ,dr  x  d t )  =  s (a )Q(s ,dr )  
0 
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and 
ß ( s ,  dr)  =  r  (a)  Q (s ,  dr)  

so that 

M(s,  dr)  =  ^ \ß(s ,dr) ,  
r (a)  

a relation reminding of (3.1) thus suggesting that properties of importance should 
be equivalent for M and ß, although we have not yet defined these properties. 
Again it seems that crucial properties of the sibling dependent process are deter
mined through the marginals alone, or, if y ou wish, that we m ight just as well 
study an ordinary independent multi-type process with the same marginals as 
the sibling dependent one. At least this holds as long as growth and composi
tion are regarded; it has from the beginning of th is section been made clear that 
extinction is a phenomenon highly sensitive to dependencies. 

If th e marginals are also allowed to depend on an individual's rank they will 
be Q,-(s,dr)=the probability that individual i in a sibling group s will reproduce 
according to a point process in dr. The macro reproduction measure is then 

OO 

M(s,  dr  x dt)  =  Yl 6 Ti(s )(d t )Qi(s ,dr ) ,  
i=1 

where Tt-(s) is the time point for the ith point in s .  Its Laplace transform is 

oo 
M(s,dr)  =  Y,e~ a M s ) Qi(s ,dr) .  

i=1 

The type space for the macro process is obviously still S as above, but for the 
individual process the situation changes slightly. The type of an individual is now 
the pair (s,i), telling not only what point process she comes from, but also her 
rank. The type space is thus S x Z+ and the individual reproduction measure is 

{J  }  X d t )  — 6 T j ( r ) (d t )Qi(s ,  dr ) ,  

with Laplace transform 

ß((s , i ) ,dr  x { j} )  =  e- a r > { r ) Qi(s ,dr) .  

The relation between M and ß is not so obvious this time, but a general ob
servation to be made for both the cases above is that the individual process is 
multi-type. Of course the sibling dependencies are still there, but given an in
dividual's type her marginal r eproduction does not depend on the rest of her 
sibling group. Hence both these cases would be solved by investigating the gen
eral problem of multi-type sibl ing dependent general branching processes, such 
that an individual's marginal reproduction follows a law determined by her type 
only, and not dependent of t he rest of h er siblings. We thus start with a multi-
type process from the beginning and since it has sibling dependencies this can 
be viewed as the multi-type analogue of B roberg's homogeneity. Applied to the 
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different situations above it will obviously solve quite general situations of sibling 
dependecies in single-type processes. 

In fact it will also cover the situation where an individual's marginal in a 
multi-type process is allowed to depend on the rest of the sibling group, but 
before showing tha, a lot of work has to be done building up the theory. 

3.2. The Macro Process 

Recall the life s pace (fî,^4), the set of all possible individual life careers, fi, 
equipped with a cr-algebra A . To describe the sibling dependencies assume that 
the individuals born in a particular realization, 7, of a point process choose 
their lives according to a joint probability kernel P{7, •) on (07'5xR+),«47(Sxfi+)), 
independently of all oth er individuals. For the sa ke of con venience view P( 7, •) 
as a measure on (fi°°, A°°), simply by choosing th e u>k in some ar bitrary way for 
k > 7(S1 x R+). This can be done since the lives of never born individuals of 
course will not m atter to the evolution of the population. The process of interest 
will be that of individuals st arting from one group of siblings, with dependencies 
described by the P(7, •). This process will be analyzed through the corresponding 
macro process where a macro individual as mentioned is a group of siblings. Since 
there are no dependencies between individuals that are not siblings, we can view 
the macro process as an ordinary multi-type process according to the following 
construction. 

Let the life of a macro individual simply be the vector of t he individual lives 
of th at particular group of siblings. A macro individual's life is thus an element 
in fi = fi°° and of the form ü = (oJk)kLi- In analogy with the discussion of 
single-type processes at the end of Section 3.1 the type of a macro individual is 
the point process that describes that group of siblings. Hence take t he type space 
F to be 

{7 6 Af(S xR+): 0 < 7( S  x R+) < 00}, 

the set of point processes on S x R+ with a positive and finite number of points, 
or , since not all possible point processes necessarily appear (consider for example 
splitting populations) some appropriate subset thereof. This means that we rule 
out the possibility of infinitely m any children which is a natural restriction, see 
for instance Theorem 7.2 in Jägers (1989). Of course the condition 7(5 x R+) > 0 
just means that we disregard empty groups of siblings. An el ement 7 € T consists 
of the sequence ((7,(7), r,(7)) where i = 1, ...,7(S x R+), the types and time points 
where 7 puts its masses. As a cr-algebra on T we take 

Q = <t{{7 : <7,(7) € Ai,Ti(7) € Bi,i = 1 , ...,n},A; € S,Bi £ß,n= 1,2,...}, 

the cylinder-generated cr-algebra of sets in G, B denoting the Borel cr-algebra. 
Now define the types cr'(i) : Ù —> T of macro individuals such that the i:th macro 
child of a macro mother with life Co — (u)k)^=i will have th e type 

cr'(i)(ü) = £(u>,). 
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The macro populat ion space is (T x Ù',Q x Ä 1 ) ,  an outcome of which is 
denoted (7, a>j) an d consists of the type of t he macro ancestor and the lives of 
all conceivable macro individuals. The set {P(7,-)>7 € T} defines a unique 
p r o b a b i l i t y  m e a s u r e  1 | ( - )  o n  ( r  x  x  Ä 1 )  f o r  e a c h  s t a r t i n g  t y p e  7  er .  I n  
order to view the types as functions on Ù 1  rather than on Ö, we use the coordinate 
projections Ux : T x Ù1 —> Ù defined th rough 

U x( l tüi)  = ü x ,  

the life of the macro individual x.  The type of macro individual xi  is then defined 
as 

Kii lSl)  =  ̂ ' (O 0  UxihÛ!)  = cr\ i ) (ü x )  = £(ü, ' x t ) .  

Henceforth we will write £x rather than cr'x for t he macro individual z's type. 
Returning to the individuals, starting from a group of siblings means that 

we consider the individual space /j = I \ {0}, where the ancestor has been 
removed. The population space will then be ft1. To relate this space to the 
macro population space we add to it the point process describing the initial 
group of siblings a nd introduce the mapping if> : T x 07' -+rxÖf such that 

<^(7,(w*)*€/I) = (7^X)X€/-

Hence <p groups lives of individuals that are siblings together to a macro life. Since 
it consists of concatenations and coordinate projections only, it is measurable. We 
will also be interested in the individual process starting from the individual x and 
thus introduce the projections qx : T x fV1 —» S x ft1 such that 

Qx(l i  (wî/)y€/i ) = Wxi { u ,xy)yel) -

In a more compact notation we can write these as 

V>{l,Uh) = (7 ,wj) 

and 
9*(7>$li§ = {°x,u x i ) .  

Composing q x  and i f  enables u s to pick individuals from the macro space and we 
define the projections px : T x Ù1 —» S x Cl1 through 

Px{l ,üi )  = 

Hence p x  selects the type, life and progeny of t he individual x from the macro 
space. The three spaces and their connections are illustrated in Figure 3.2. 

The lives of the individuals in Ii will then follow the law P~t(duJi1 ) = P^<p(du>i1 ). 
Individuals thus choose lives according to the marginals of Generally the ith 
individual in a group of sibl ings with type 7 chooses her life ac cording to the 
marginal 

Qi(l ,A)= f lA{ui)Ph,dü))  
Ja 
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- 1  

r x ù1 T x fi7' 

S x fl1 

Figure 3.2: The three population spaces. 

for A € A. We will assume that an individual's marginal reproduction only 
depends on her type, so if t he ith individual in a sibling group with type 7 has 
type <7,(7) we will have 

QiM = •), 

where Q(s, •) for each s € S is a probability measure on the life space. This means 
that given an individual's type, her marginal reproduction does not depend on 
anything that has to do with her siblings. There are still dependencies between 
the actual reproductions though, so that given some information about your 
siblings' number of c hildren for instance, your marginals will change. 

As will be seen later, it is convenient to transform Q into a measure on T so 
we define 

Q(s!%) = Q(si {£ € a}), Aeç. 

The population of individuals started from a single individual ancestor of type 
s has marginal defined through 

Qs{dui) = P i (uio)(duh)Q{s,du 0). (3.2) 

To define birth tim es for the individuals in I\ we assume that the process 
starts from a particular group of siblings, 7. As for the macro process we need 
coordinate projections ux : F x fl11 —» Cl su ch that ux(7,w/,) = tox- With ^(7) 
as above we define 

Tih^h) = ?i{ 7) 

Txi(7,^/i) = + r{i) o îxx(7,o;/1) 

A m acro individual is considered born when the individual mother of that group 
of siblings is born, if she begets any children. This means that a macro individual 
of ty pe 7 begets her i:th macro child at age r,-(7). Then we can define birth times 
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for the macro individuals recursively: 

{ 0 if 7(S x R+)  > 0 
To(7 ,ui) oo otherwise 

T XI(H"L)  =  
+ ~;(s*b-<r)) if ̂ •(5' X #+) > 0 

oo otherwise. 

Note that by this we do not allow empty groups of siblings to be born in finite 
t ime.  We also  see  tha t  i f  the  individual  x begets  any chi ldren then T' X  = T X  O  (p.  
The macro reproduction process becomes 

?/((-• MèiM x EM) = #{*' : € A.Ti{- ,)  < t} .  

where A € S and t  > 0.  
The macro reproduction kernel, i.e. the expectation of RJ with respect to the 

measure P(7, •) is then 

M{n, A x [0,*]) = £y[v{A x [0, t})}  

OO 

1=1 

the number of macro individuals with types in A born before t .  Hence, with 6X  

denoting the unit point mass in x, 

OO 
M(i,  d'y '  x dt)  = J2Q(^i( l) , d l ' )^r i(-y){dt) .  

i=1 

The dependence structure could be made more general by letting the P depend 
on the mother's whole life, u, rather than just the reproduction process 7 = 

£(w). However, most of the results to come would then be modified basically by 
replacing 7 by £(w). The macro reproduction measure would for instance be 

OO 
M(u),  du>' x dt)  = du')f>nU(*))(di) .  

t=i 

so nothing substantial is lost by our special construction. 
Let us rest here for a moment and sum up what has been done so far. We wish 

to study a branching process where there are dependencies between siblings. To 
get rid of these dependencies a new branching process consisting of sibling groups, 
called macro individuals, is constructed. This new process, the macro process, is 
an ordinary multi-type branching process with conditional independencies given 
types. It is natural to start from a full group of siblings and our primary objective 
is to study the sibling dependent process starting in that way. This process is 
related to the macro process through the mapping (p. Some coordinate projections 
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are introduced to enable us to select individual lives and daughter processes. T he 
type of a macro individual is the reproduction process that describes that group 
of siblings, and the birth time is the time when the individual mother of t hat 
sibling group is born. Empty sibling groups are simply disregarded. 

So now a macro process has been constructed; it is a n ordinary multi-type 
branching process but would not be of much use unless it could measure the same 
aspects of the population as the individual, sibling dependent, process does. The 
next objective is to show t hat the macro process is indeed useful in this way. 

Recall t he random characteristics x '• S x fi7 x R R+ introduced in Sec
tion 2.2, where x (s,coj,t) gives the contribution at time t of an s-ty pe individual 
with life and progeny's lives described by LOJ. Also recall the ^-counted population 

z t  =  -  T x ) ,  

X&1 

measured by adding the contributions of all individuals born up to time t, at 
their proper ages. 

In the sibling dependent case the process s tarts from a group of siblings and 
the population space is then T x flJl so we define 

z t  = YL - r*)' ( 3- 3) 

x6/i 

the x-counted population with the ancestor removed. Here Xx should be inter-
pretated as x 0 9x since the population space under consideration is F x Q1*. Note 
that it is s till the individual process th at is of interest but it is s tarted from a 
group of siblings with the intention to link it to the macro process in some fash
ion. We are interested in the asymptotics of E^[Z?], the expected population 
size starting from a sibling group born according to the point process 7 € T, as 
well as of Z?{ itself. To re late this individual X"c°unted population with sibling 
dependencies to the macro process, which is an ordinary multi-type branching 
process where (much of) the known t heory applies, a macro characteristic, x\ 
that measures exactly the same thing as the individual characteristic, x5 needs 
to be found. And indeed, such a macro characteristic exists, namely 

OO 
Oi'it) = Y2xi(t - Ti), (3.4) 

1=1 

where 

Xi( t  -  T i ) ( l ^ i )  = Ti(7))  =  xM7),UiI , t -  Ti{7)) .  

Lemma 3.1. Let  x '  be  de f ined through (3.4) and 

Zt  =]£x'(*-0-
x£l  
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Then 
Z? = Z?' o <p 

Proof. 

Z f '  o x p { =  Z * ' ( j , u > i j  

x£l 

= 5 Z x ' H ® ( 7 ~ T ® ( 7 ' £ l > / Ô  
x£l 

oo 
= EE X(P;(6:(7,W/),WZ/M - rx(7,W/) - n(^r(7,^/))) 

x£l i = l  

oo 
= EE x(<Tri(7, W/J.a-Vi/, * - rx,(7,u;/, )) 

cr€/ «=1 

= E X ( < r y ( l , u h ) , u y i , t  -  T y ( f , u h ) )  =  Zt
x(7,u?7l), 

yeh 

since 
f * ( 7 , ^ / )  +  n ( 6 ( 7 , W / ) )  =  T x i  O  i p( l , L O h ) .  

In words, the macro characteristic of course does nothing more complicated than 
summing the contributions of all individuals contained in each sibling group. 
This means that does not maintain all the properties x might have; if x is an 
indicator x! will not necessarily be an indicator, if x is bounded then x' is n°t 
necessarily bounded etc. 

If t he process starts from a single individual rather than a full sibling group, 
we can of course just add the contribution of the individual ancestor and start 
counting by x' from the first generation. Thus 

z?(s,ui) = xo{s,^>i,t) + zf O 

In order not to bother too much about the mapping </? the notation E7 will be 
used for expectation both with resepct to P7 and P^. Hence when we for instance 
write 

E,{Zf') = £7[Z*], 

the expectations actually refer to different measures, but what matters is that 
the subscript denotes the initial group of sib lings. No ambiguities will arise from 
this. 
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4. Markov Renewal Theory and Its Connection to Branch
ing Processes 

4.1. Markov Renewal Theory... 

The asymptotics of the expected population size are analyzed by means of Markov 
renewal theory, and we will give the definitions and results needed for this pur
pose, following Shurenkov (1992) which is an english version of Shurenkov (1989). 
Let (E,£) be a measurable space and K(x,dy x dt) a non-negative kernel, i.e. 
K(x,A x [0,<]) defines a measure on (E x R+,£ x B) for each x E E and an 
^ - m e a s u r a b l e  f u n c t i o n  f o r  e a c h  A  G  £  a n d  t  >  0  ( B  t h e  B o r e l  a l g e b r a  o n  R + ) .  
The kernel U is defined as 

U ( x ,  d y  x d t )  =  K n ( x ,  d y  x d t )  
n> o 

where 
K n ( x , d y  x d t )  =  /  K n ~ l ( x , d z  x d u ) K ( z , d y  x d t  —  u )  

JExR+ 

and 
K ° ( x , d y  x d t )  =  S ( 0 t X ) { d y  x d t ) ,  

placing a unit point mass in (0, x). Further, convolution between the kernel U  
and a non-negative function g is defined as 

U * g ( x , t ) =  g ( y , t - u ) U ( x , d y  x d u ) .  
JExR+ 

The main objective of Markov renewal theory is the asymptotics of U  *  g ( x , t )  as 
t tends to infinity. A crucial entity in this analysis is the kernel 

r°o 
K ( x , d y ) —  /  K ( x , d y x d t )  

J o  

on ( E ,  £ ) ,  called the b a s i s  of K. 

Definition 4.1. K is called cr-finite if there exists a strictly positive, £ x £-
measurable function f such that 

/  f { x , m K { x , d y )  <  o o  
JE 

for each x € E. 

Now let 
K  n { x , d y ) =  f K n  1 ( x , d z ) K ( z , d y )  

JE 
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and 
K°(x,dy) = Sx(dy), 

the unit point mass in x. 

Definition 4.2. The Perron root of K, denoted by p(K), is defined through 

—5^— — sup{A > 0 : ^2 XnKnis cr-finite} 
P(K ) 7!>0 

The Perron root might well be zero or infinity. From now on it is assumed that 
K has Perron root one. 

Definition 4.3. K is called (m-)positive if there exists a non-trivial a-finite mea
sure, m, on (E,£) such that 

m(A) > 0 =$• K(x,A) > 0 

for all x G E. 

One more definition remains before we can give the first result. 

Definition 4.4. K is called conserva tive if the kernel ^n>0 Kn is positive and 

^2 f g(y)Kn(x,dy)m(dx) = oo. 
n>0 JE x E  

for all strictly positive £-measurable functions g and all non-zero measures m G 
M, where M = {m : £n>0 Kn is m-positive). 

In the case where £ is countably generated there is an equivalent definition of 
conservativity. 

Lemma 4.5. If £ is countably generat ed th en K is conservative if and only if 
there exists a a-fini te non-zero measure m on (E, £) such that 

m(A) > 0 =r- ^2 Kn(x,A) = oo, A G £, 
n> 0 

for all x G E. 

Theorem 4.6. If K is conservative, then there exists a measure I a nd an l-almost 
everywhere finite, strictly positive function h , such that 

[ K(x, A)l(dx) = 1{A), Ae£, 
JE 

and 
I  h ( y ) K ( x , d y )  =  h ( x )  

JE 
for l-almost every x G E. Both I and h are unique up to multiplicative constants. 
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We are approaching the main result, the Key Markov Renewal Theorem. However 
a few more concepts will be needed. First the definition of lat ticeness. 

Definition 4.7. K ( x ,  d y  x d t )  i s  c a l l e d  l a t t i c e  i f  t h e r e  e x i s t s  a  n u m b e r  d  >  0 and 
a function c : E —» [0, c?] such that K(x1dy x dt) is concentrated on the lattice 

{ ( t ,  y )  6  R +  x E  :  t  =  c ( y )  —  c ( x )  +  n d ,  f o r  s o m e  n  =  0, 1 , . . . }  

f o r  l - a l m o s t  a l l  x  G  E .  

We also denote 
0  = f t h ( y ) K ( x , d y  x d t ) l ( d x )  (4-1) 

J E x E x R +  

and finally give the following definition. 

Definition 4.8. A function g : E x R+ —» R+ is called directly Riemann inte
grate (I) if 

T ,  / sup g ( x , t ) l ( d x )  < oo 
n>0 JE "<«<"+1 

and 
M sup g ( x , t ) -  inf g { x M ) ) l { d x ) - 4 ) 0 ,  

n> 0 n5<^<(n4-l)i5 n5<t<(n+l)^ 

as 6 —> 0 + . 

Theorem 4.9. (Key Markov Renewal Theorem) Assume that K(x,dyxdt) 
is non-lattice and that K(x,dy) is conservative. Also assume that 0 < ß < oo, 
the function g > 0 is directly Riemann integrable and that the set 

{ x  E  E  :  sup U  *  g ( x ,  t ) < CXD} 
<>o 

has positive l-measure. Then, for l-almost all x € E, 

U  *  g ( x ,  t )  —» f g ( x , u ) l ( d x ) d u  
ß  J E x R +  

as t —i oo. 

There is also a lattice analogue of Theorem 4.9. It states that, if the kernel K is 
lattice with step d a nd shift c, 

U * g ( x ,  n d  +  c(x)) ->• ^ h ( x )  f y g ( y ,  k d  +  c ( y ) ) l ( d y ) ,  
p Je £?O 

for /-almost all x € E. Since the lattice case is not treated in this thesis we 
do not give the conditions under which it holds; it is mentioned for the sake of 
completeness. 
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4.2. ...and Its Connection to Branching Processes 

We will now see why Markov renewal theory is applicable to multi-type branching 
processes. For this purpose we follow Jägers (1989) and (1992). Forget about 
sibling dependencies for a while and look quite generally at a multi-type process 
with type space S and reproduction measure fi(s,dr x dt). For any real A define 

fx\(s ,dr x dt)  = e~X t f i (s ,dr x dt)  

aIld roo 
dr) = / f i \ (s ,drxdt) .  

Jo 

The Malthusian parameter,  a ,  is now defined so that the kernel ß a(s ,dr)  has 

Perron root one. With 

ya(s ,  dr x Ä) = E ^r x (4-2) 
n>0 

called the total population measure, we have 

E s[e~a tzf]  = [ ET[e~ a { t~u )x(t  - u)]va(s ,dr x du).  (4.3) 
J SxR+ 

Hence, with the notation from the previous section, we have 

E s[e~a tzf]  = U * g(s, t) ,  

where U = va  and g(s, t)  = E s[e~a tx(t) \ .  It is thus the kernel f ia  that plays the 
role of K and fia will correspond to K. Once a has been fixed the subscript 
will be dropped, and for instance we write fi rather than (ia. If the kernel fi is 
conservative there exists a function h and a measure 7r suc h that 

h{s )  =  Js  h (r ) f i ( s ,  dr )  

and 
7t(c?s)  = J j i(r ,ds)ir(dr) .  

These entities now have interpretations. Thus h(s)  is the reproductive value of 
an individual of type s, in the sense that the larger the h-value, the greater the 
average contribution to the population in the long run. Assume that h G i 1 H, 
so that we can, and will, norm to Js h(s)iv(ds) — 1. If further inf h > 0, 7r 
can be normed to a probability measure. We will make this assumption and 
norming throughout this paper. Then ir will be referred to as the stable type 
distribution, loosely meaning that a newborn individual picked at random from 
an old population will have its type distributed according to 7r, r egardless of the 

initial conditions. We make the follwing definition: 

Definition 4.10. A branching process is  called s tr ict ly  Malthusian i f  a  > 0, 
0 < ß < oo,  f i (s ,dr)  is  conservative and there exis ts  an a > 0 such that  

sup f i (s ,  S  x [0, a]) < 1. 
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Note. If a > 0, the process is called supercritical (whereas it is called critical or 
subcritical if a = 0 or a < 0 respectively). The number ß is now 

ß = / te~ath(r)n(s, dr x dt)ir(ds), 
J Sx Sx R.). 

to be called the stable age at childbearing] a precise interpretation of thi s is given 
in Jägers and Nernian (1992) and wifl also ap pear in Chapter 7. • 

The condition supsfi(s,S x [0. a]) < 1 is a natural regularity assumption 
which together with some condition on \ guarantees that the set {s G S : 

supt>0 Es[e~atz?} < oo} has positive 7r-measure (actually even that this supre-
mum is finite for any s G S). 

Under the appropriate conditions the Key Markov Renewal Theorem thus 
yields the convergence of Es[e~atzf] to some limit. Using the notation Ev for 
expectation when the ancestor's type is not fixed but distributed according to 7r, 

i.e. Eir[X] = Js iJs[Jf]7r(<is), we have 

/ g(s,t)'jr(ds)dt 

JSxR+ 

= [ Es[e~atx(t)\dt7r(ds) = [ Es[x(a)]7r(ds) = Ev[x(a)\ 

JSxR+ JS 

and hence the convergence is 

Es[e~atzf] -, E*[x(a)]h(s) (4.4) 
aß 

as t —»• oo, for 7r-almost all starting types s G S. 
Now, what happens in a sibling dependent process? Well, the equation (4.3) 

is derived by considering expectations of sums and the following property: Let Cn 
be the u-algebra generated by the ancestor's type and the lives of al l individuals 
up to the nth generation and let x G Nn+1, the (n + l)th generation. Then 

Q(s,A\Cn) = Q(ax,A), 

for A G A. Since this holds also in the sibling dependent case, (4.3) is still valid. 
Also note that the concept of s trict Malthusianness is defined only through the 
marginal reproduction measures n{s,dr x dt) (recall that it has been assumed 
that marginals only depend on the individual's type so that fx m akes sense). 
Therefore the convergence (4.4) holds also in the sibling dependent case. When 
we later turn our interest to convergence of the process e~atZ* it will however be 
necessary to start from a full group of siblings so we must examine the convergence 
of E -y[e~atZ(

x], the normed expected ^-counted population starting from a group 
of siblings born according to the point process 7. The special form of x' given in 
(3.4) yields 

OO 

E^ef 'Zf] = E,[e-atZ?'} = £ 

1=1 
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= Y,z~a T , h ) E^- a ( t - r Å" ) ) zUMV 
i=i 

Note that this sum is actually finite, with 7(S X R+) terms. Since all the 
e~Q(~r*-(X_t.(->)] converge according to (4.4), the convergence 

E,[e~ a tZf]  - E A x { a ) ]  £ e-^h(a z (7)) (4.5) 
aP i=1 

is established, at least for all ^(7) outside some set S0 & S with 7r-measure 
zero. The question arises if the re exists some measure on the macro type space 
F, telling for which starting types 7 <E T the macro process converges. If so, will 
this measure give mass zero to all point processes tha t contains the types in So? 

Another question of im portance arises from the fact that the macro process 
converges without any Markov renewal conditions; it is enough to assume these 
conditions at the individual level. This is of course in harmony with the intentions 
not to add any extra conditions on the macro level but the question poses itself: 
could the macro process possibly b e conservative etc (and hence converge) even 
if th e individual process is not? 

These questions call for a more thorough examination of the relation between 
the individual and the macro process. How do t he reproduction measures /z and 
M relate to each other? Do they determine the same Malthusian parameter? If 
/i is conservative, is M and vice versa? If invariant functions and measures exist, 
how are they connected? 

Don't miss the next section, you will get the answers there! 
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5. Properties of the Macro Process 

5.1. A Preparatory Lemma 

In t he proofs to come it will be convenient t o add to the macro type space some 
specific types, i.e. reproduction processes, that might not appear naturally in the 
population. The reason for this will be obvious, but the question is if i t causes 
any trouble to manipulate the population like thi s. In the following lemmas it 
is shown that, in a certain sense, the answer is no. They are formulated in the 
general language of Section 4.1. Recall t he concept of u-finiteness a nd use t he 
notation AB for convolution of two kernels on the same space E, i.e. 

A B ( x , d y ) =  /  A ( x , d z ) B ( z , d y ) .  
J E  

Lemma 5.1. Let A and B be two non-negative kernels on some space (E,£). If 
A and B are a -finite th en the two kernels AB and A-\- B are bot h a-finite. 

Proof. By assumption there exist measurable, positive functions / and g on 
E x E such that 

/  f ( x , y ) A ( x , d y )  <  o c  
J E  

and 
/  g ( x , y ) B { x , d y )  < oo, 

J E  

for all x  €  E .  Call these integrals < p ( x )  and i p ( x )  respectively. Define 

A 0 ( x , d y )  =  ̂ X , y J  A{ x , d y )  
< p ( x )  

and 

B 0 ( x , d y )  =  9^,y^ B { x , d y ) .  
V ( x )  

Clearly A  C A 0  and B  <C B 0  for all x  €  E  and by the Radon-Nikodym theorem 
there exist functions a and b such that 

A ( x ,  d y )  -  a ( x ,  y ) A 0 { x ,  d y )  

and 
B ( x , d y )  =  b ( x , y ) B 0 ( x , d y ) .  

(Since also A 0  <  A ,  actually a ( x , y )  =  p ( x ) / f ( x , y )  and similarily for 6.) Now 
define C = AB and C0 = A0B0. Clearly C <C Co and the Radon-Nikodym 
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derivative c exists, satisfying C ( x , d y )  —  c ( x , y ) C o { x , d y ) .  Hence there exists a 

function h, namely h(x,y) = l/c(x,y), such that 

f  h ( x , y ) C ( x , d y )  =  [  C 0 ( x ,  d y )  =  C 0 ( x ,  E )  =  1 ,  
J E  J E  

and C  is cr-finite. 
That A  +  B  is cr-finite follows more or less trivially by choosing instead the 

f u n c t i o n  h ( x , y )  =  m m ( f { x , y ) , g ( x , y ) ) .  •  

Lemma 5.2. L e t  ( E , £ )  a n d  ( E ' , £ ' )  be  m e a s u r a b l e  s p a c e s  s u c h  t h a t  E  C  E ' ,  t h e  
a-algebras £ and £' are countably generated a nd the restriction of £' to E is £. Let 
K be a non-negative, finite kernel on (E,£) and K' a non-negative finite kernel 

o n  ( E ' , £ ' )  s u c h  t h a t  t h e  r e s t r i c t i o n  o f  K '  t o  ( E , £ )  i s  K  a n d  K ' ( x , E '  \  E )  =  0  

for all x € E'. Then 
p ( K ' )  =  p ( K ) .  

Further K' is conservative if and only if K is conservative. 

Proof. Let 
U x ( x , d y )  =  ' £\ n K n ( x , d y )  

n> 0 

and U'x defined for K'. Then, since K' puts all its mass on E, obviously 

U ' x  =  I  +  X K ' U x ,  

where I ( x , d y )  =  é x ( d y )  .  Assume that U ' x  i s cr-finite. Then there exists a 

measurable, positive function / on E' x E' such that 

/  f ( x , y ) U ' x ( x , d y )  <  oo 
Je' 

for all x € E'. But clearly g, the restriction of / to E x E, satisfies 

/  9 { x , y ) U \ ( x , d y )  <  oo, 
JE  

for all a: £ E. Hence Ux is cr-finite and by the definition of P erron root it is thus 

c l e a r  t h a t  p ( K )  <  p ( K ' ) .  
Now assume that U\ is cr-finite. Clearly I is cr-finite and if K' is finite (i.e. 

K(x, E') < oo for all x € E') it is also cr-finite (the function / = 1 will do). Thus 

a l s o  U ' x  i s  c r - f i n i t e  a n d  h e n c e  p ( K ' )  <  p ( K ) .  
Next assume that K '  is conservative. By Lemma 4.5 there exists a measure 

m! on (E',£') such that 

m ' ( A )  >  0 = >  U ' x ( x ,  A )  = oo 

for all x € E'. Again since K' puts all its mass on E this implies the existence of 

a measure m on (E,£) such that 

r n ( A )  >  0  =r- U \ ( x , A )  =  oo, 
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namely the restriction of m', and K is conservative. Finally, if K is conservative 
for some measure m then the measure m'(dx) = m(dx fl E) will do for K', since 
K and K' coincide on E. •  

5.2. The Malthusian Parameter 

Recall that the macro process follows t he law P-y(-) on (T x Ù1  ,G x  A1) ,  7  €  T 
and that the ith individual of sibling group 7er thus chooses life according 
to the marginal only depending on her type 0^(7). As mentioned 
in Section 3.2, it is convenient to work with the induced measures Q ( s , d f ' )  =  
Q(si £-1(^7')) where s € S. Recall also the reproduction measure 

OO 
M(i,df'  x dt) =J2Q(c rih)idf')STt {-1)(dt), 

t=i 

the expected number of macro children with types in dj' born in the time interval 
dt, by a 7-type macro mother. Its Laplace transform is 

f OO 00 

Ma(7,d7') = / e~a tM(7,#y' x dt) = ]>>-aT'WÇ(4(7), <V)-
Jo i=1 

We wish to explore the connection between fin and Mn .  First note that 

poo 00 r 

ßa(s,dr) = Jo  e~a tE s\^(dr x dt)] = J^J re-a T '^> iry l ){dr)Q(S^'). (5.1) 

For n = 2 we obtain 

Mail, d*/') = ̂ f0(7,||")Ma(7",d7') 

» OO O O 
=  £  E  E  e - ^ Q W7), d7")e-aT'(y,)QK-(7"M7l 

JF t=1 i=l 
»  O O O O  

= L Xte-a T 'h )QM 
JTXSi=1j=l 
00 -

=  E  e-a T^ßa(a,(1),ds)Q(s,d1 ')  
1=1 JS 

by (5.1). By induction 

OO -
A C( 7 -^ ' )  =  E  /  i r f 1 M / i r 1 ( ^ ( 7 ) , ^ ) Q ( , , d 7 ' )  ( 5 - 2 )  

i=1 •ys  

for n > 1 (/<°(r, <is) = 6 r(ds) and M°(7> ^7') = ^-t(^7'))- At this point a is any 
real number. However, it is possible to prove that /x an d M define the same 
Malthusian parameter. Recall that this parameter is defined so that the Perron 
root of ßa, p(fia), equals one (and for the macro process so that p(Ma) = 1). 

Lemma 5.3. fia  has Perron r oot one if and only if Am has Perron root one. 
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Proof. Assume that p(ß a ) = 1 (and from now on drop the subscript). Let first 
A < 1. Then there exists a function / > 0 such that 

£ A" //(s,r)/in(s,<fr) < oo, (5.3) 
~ J  S  n>0 

for all s € S where, by (5.1), 

aTj(V)/(s,°"j(l ' ) )ß n  \ s ,dr )Q(r ,dy) ,  (5.4) 

for n > 1 and 

J s f { s , r )ß°(s ,dr)  =  f{s , s ) .  

The question is i f  there exists a function F > 0 such that 

£ A n /  F ( 7 , 7 ' ) M n ( 7 ^ 7 ' )  
n>0 Jr  

< oo, 

for all 7 6 T. Therefore take a 7 € T, fix an i < 7(S  x R+) and note that by 
(5.3) and (5.4) 

OO -

A" £ I e-^ (7 , )/(o-i(7), aj( 7 '))/in(^(7), dr)Q{r ,  d- f ' )  < 00 
rri r-; Jsx r n>0 j=l 

and hence also 
OO OO -

I ]  /  e " a T i ( ' r ) e" Q T J ( ' y ' ) / ( (T i (7) ,  c r i (7 ' ) ) / ' n ( c r »(7)»  dr )Q{r ,  d*/ ' )  <  00. 

n>0 1=1 j=l ̂ 5xr  

Now def ine 
OO 

F,(7,7') = £ e-^(V)/(^( 7), (̂7')), (5-5) 
j=1 

so that 00 . 
Y,xnlL I z~aTi(^Fi{i,i')iin{<Ji(j),dr)Q{r,d>-i') < 00. 

Since there for each 7 € T are a finite number of Fi (i = 1,2,..., 7(5 x i?+) < 00) 

we can define 
^(7,7) = . miP^R ^ Fi{lil') (5-6) 

T=LT2,. ..,7(SXB+) 

and, by (5.2), obtain that 

/ F(7,7')^n(7,<*7') 
n>0 • / r  

OO -
= F{7,7) + £ An £ I  e-aT'('y)F(7,7')An_1 (*i(7)> dr)Q(r, <*/) 

££ i=i -k*r  

OO . 
< F(7,7) + £ A™ £ J  e-aTi(7)Fi(7,7')An"1(^(7),^)Q(r

>
c?7')> 

n>l i=l , /S><r  
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where the second term is finite by the above. For the first term we note that, for 
each  i ,  

C O  

F i { l i l )  =  ̂ 2  e ~ a T Å ' l )  f  
j = 1  

since if there exists an / satisfying (5.3) then there also exists an everywhere f i n i t e  

function satisfying (5.3) (for instance g = min(/, C) for any positive constant C). 
Hence £n>0 AnMn is c-finite if A < 1 and therefore p(M) < 1. Next let A > 1. 
For all / > 0 there exists an s G S such that 

E A™ / f{s>r)ßn(s'dr) = °°> 
^ 0  Js 

by the definition of a. The question is now if, given an F  > 0, there exists a 

7 € T such that 

E W  =  0 0  

n>0 Jr 

i.e if 
00 

^(7,7) + E E / ^(7,7')e-aTlWAn(^(7),^)Q(r,d7') = 00. 

n>0 i = l J S x F  

For an arbitrary F  >  0 let 

g (  7,0 = J r F ( - r , l ' ) Q { r , d f ' ) ,  

which is strictly positive if we assume that all the Q ( r , T) > 0. This assumption 
means that every type has a positive probability to reproduce or, if you wish, 
that there are no sterile types. This assumption can be made since it will follow 
from the requirement inf h > 0 mentioned in Section 4.2. Now let 

r, = {7 G A f ( S  x R+) : 7( S  x R+) = l,r1(7) = 1}. (5.7) 

Then every s  €  S  corresponds to a unique 7 = 7(5) in Ej. This is where 
Lemma 5.2 is needed; the types in Ti are added to the population in such a way 
that the conditions of that lemma are satisfied. Clearly M is finite since 

OO 

M(7,r) |Ec"f wQfo(7),r) < 7( s  x R+) < 00. 
t =1 

Hence, as far as Perron roots and conservativity conditions are concerned, the 
process does not change. Define 

/(a,r) =g ( j { s ) , r ) .  (5.8) 

Then there exists an so G 5 such that 

E A "  /  f ( s 0 , r ) ß n { s 0 : d r )  =  o o .  

n>0 J S  
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Choose 7o = 7(^0) to obtain 

£ A "  [  F ( - r o , l ' ) M n ( 7 0 , ^ 7 )  
n>0 JV 

OO 

= ^(70,70) + 

t'=l n>0 

= F(7o,7o) + e-aTl(7o) H An I  f(so,r) f in(so,dr ) = 00. 

n>0 

The question arises if / really is measurable with respect to the product cr-algebra 
5 x (S. To show that it is, first a ssume that F is an indicator, i.e. 

^(7,7') = 1AXB(7,7')> 

where A and B belong to Q . Then 

f (s, r)  = J r  
d l ' )  = U(7(s))<2(r,  B),  

where Q(r,B) is measurable by definition (it is a kernel). That also 1,4(7(3)) is 
measurable follows since 

{5 G S : 7(3) G A) = {5 :  7(s) G A fl Ti} = {s : 7(5) G Ai},  

where A\ is a set of th e form 

Al = {7 € r : 7(5 x R+)  = 1,tx(7) = 1,^(7) G cM € S}, 

so that 
{5 € S : 7(a) G A} = C € S. 

By Dynkin's i r  — A Theorem it follows that / is measurable if F is the indicator 
of any set in G x Q. Applying the standard procedure of approximating by simple 
functions then yields the measurability of / for a general positive F. 

It has been shown that £n>o AnMn  is not cr-finite if A > 1. Therefore p(M) > 
1 and hence equals one. 

For the converse assume that M has Perron root one and let A < 1. Then 
there exists an F > 0 such that 

£ A " /  F ( 7 , 7 ' ) M n ( 7 ^ 7 ' ) < ° ° ,  
n>0 JT 

for all 7 G T. Define / through (5.8) and note that, for any s G 5, 

A" /  f (s,r)ßn(s,dr) 
n>0 JS 

-  e^ ' W r A "  /  e~a T l^F(^(s),^ ' )ßn(a1(^(s)),dr)Q(r,d'y ' )  
n>0 ^TxS 

/ e a T '^g(^o,r) f i ,n(ai(^o),  dr) 
J s 
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= e«n(7) £ A» / f(7(s)i7')M»(7(s))d7') < oo 
n >  1  ^  

(of course <r1(7(s)) = s). Hence p(ß)  < 1. 
Finally let A > 1. Then for all F > 0 there exists a 7 G F such that 

£ A "  /  F( 1 , y )M n ( 7 ,d 1 ' )  =  <x > .  
n>0 JT 

Fix an arbitrary / > 0. Then, as before, 

Y,  A" / f ( s i r ) ï n ( s ' d r )  
n>0  7 5  

OO . 

= f( s , s )+ ^~ a T j h ' ] f ( s , c r j { l / ' ) )ß n { s ^ d r )Q{ r , d , y ' ) -

With Fi  and F defined as in (5.5) and (5.6) we then obtain, for any 7 € T, 

OO OO » 

E A " E E  /  e — M e - f  M / ( * . - ( 7 ) , T , ( 7 ' ) ) p n ( T , ( 7 ) . d r ) Q ( r , r f V )  
n>0 t=l j=l 5̂ xr  

00 . 

= /c e—(->'F,(7.V)/in(«7,-(7)^r)Q(r.(/7') 
n >0 i=l 

n>l • /r  

Hence there exists a 7 € T such that 
OO 

£ A" E e_aT'(7)/ft-(7), r)/in (<Ti(7>, dr) = 00 
n>0 i=l 

and since there are only a finite number of terms in the inner sum (7(5 x R + )  < 
00) there exists a k such that 

.  IZ x n  !  1Ml) ,r ) f i n {<?k{l) ,dr)  = 00, 
n>0 JS 

so that />(/}) > 1 and hence equals one. • 

5.3. The Invariant Functions and Measures 

First we treat the question of cons ervativity. 

Lemma 5.4. jx  i s  conservat ive  i f  and on ly  i f  M is  conservat ive .  

Proof. Since Q is countably generated we can use the second definition of con
servativity, the one given in Lemma 4.5. 
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Assume first that f i  is conservative. Then there exists a measure m on { S ,S )  
such that 

m(A)  >  0  => ^2  ß n ( s ,  A)  =  oo ,  
Tl>0 

for each s  € S .  We wish to find a measure I  on (I\ G) such that 

£ j f r " ( 7 , B )  =  oo,  
n> 0 

for all 7 € T whenever 1(B )  > 0. Such a measure is 

l  (d ' y )  =  /  Q(s ,d^ / )m(ds ) .  
J s  

To see this, consider an A £  Q with 1(A)  >  0. Then there exists a set B € S  and 
a number c > 0 such that m(B) > 0 and Q(s, A) > c when s € B. Therefore, for 
any 7 € I\ 

00 r 
]TAfn(7,A) > c£) / e- aTi[' y) J2  
n>\ i '=l 5  n>0 

since m(B)  > 0. 
Now assume t hat M is conservative. Then there exists a measure I on 

such that 
£M"(7,£) = °o, 

n>0 

for all 7 € T whenever 1(B)  > 0. A mea sure exhibiting j l  as conservative is 
OO -

m(ds)  =  £  /  t - ^S^dsW7) .  
i~ 1 JT 

Indeed, if m (B)  >  0 then there exists an A G Ç and a number c > 0 such that 
1(A) > 0 and ££1 e_aTi(7)lß(cr,(7)) > c when 7 € A. Hence, by (5.1), 

n> 1 

= I  e  
a T i ^ ' l ) l B (a i (^ ) )  f i n  ( s ,  dr  )Q(r, df )  

n>0i=l SxF 

> c Ys  [  ß n ( s , d r )Q( r ' A ) -
n>0 

But, by (5.2), 

X)  M(7 ,  A)  =  Ŷ j t  I  e - a T ' ^ ] i i n (a i ( - f ) ) ,  dr )Q(r , A) = 00, 

n>l n>0 »=1 - / ,S  

for every 7 G F since 1(A)  > 0. In particular it holds for all 7 in the set Ti defined 
in (5.7). Therefore fix an s € 5, let 7(3) be the corresponding element of I \ so 
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that 7(5 x R+)  = L, ^(7(5)) = 1 and <71(7(5)) = s. By the above, 

J2 /  ßn{s,dr)Q(r,A) = 00, 
n>0  J S  

and hence 
Y^ßn(s,B) = 00, 
n>0 

for a ll 5 € S and /*/ is conservative. • 

This result is essential and fortunate. For instance it is clear that the macro 
individuals are always fewer than the individuals (because of the convention that 
empty sibling groups are disregarded), but could they be so few that their growth 
is slower, thus defining a smaller Malthusian parameter? Maybe the individual 
process could grow by some dependence structure that only allows a small number 
of t he individuals in each sibling group to reproduce (in the extreme case only 
one) but that the size of their offspring would tend to increase as time went by. 
Of co urse this would be surprising and the lemma also excludes such obscurities. 

From the reasoning at the end of the previous chapter it follows that the 
expectation of th e normed macro process, E^[e~atZf ], converges (possibly with 
some care exercised about "almost all"-statements) without any other conditions 
than the usual ones for the individual process. This is good in the sense that 
we do not want to assume anything further; as mentioned the macro process is 
basically a tool for making statements about the individual process and should 
not be restricted by any extra conditions if possible. However we do not know 
what would happen if th e individual process did not satisfy the Markov renewal 
conditions. Could the macro process perhaps, due to some intricate dependence 
structure, satisfy the conditions of the general theory and converge anyhow? The 
lemma gives the answer no; conditions on the individual level are equivalent to 
the corresponding conditions on the macro level. 

We are now going to explore the connection between the two processes further. 
As before, the assumption that [1 is conservative yields the existence of H and IT 

such that 
h(s) = / h(r) / l (s :dr) 

Js 

and 
- i r (ds) =  / ß(r ,  ds)Tr(dr) .  

Js 

Now it has been shown that this assumption implies that also M is 
and there thus exists a function H and and a measure ij> such that 

H(f)  =  ̂ t f (7 ' )M(7,<*7')  

and 

h) = Jr M(7') dj) ip(dY).  

conservative 

(5.9) 

(5.10) 
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One might ask if mo re can be done than just giving an existence statement; is it 
possible to make use of the relation between the individual and the macro process 
and give H and tp explicitely in terms of h and 7r? T he affirmative answer is given 
in the next lemma. First recall the notation 

r 00  

7 = / e-atÄ(s)7(d5 xdt) = J2 e-^hicr^)).  
J S xR+ 

Lemma 5.5. If  fi  has invariant measu re n and invaria nt function h, then M 
has invariant mea sure tp a nd inv ariant function H given by 

H( 7) = 7 (5-11) 

v(d1)= / Q(s,di)7r{ds).  (5.12) 
Js 

Proof. Just insert the candidates for H and ip in the defining relations (5.9) and 
(5.10) and make use of the invariance properties of h and 7r. F irst part: 

/

°° r 

7'M(7, d*y') = W / Y Q (*+*/),  dj ')  
i=1 Jr  

OO _ 00 

= J] e-W£„w[ê] - Y, e'aTi(7)ÄM7)) = 7, 
i=l i=l 

since E s[£] = h(s).  Second part: 

f  M(7',d7)Q(s,^7')7r(ds) 
Jrxs 

OO « 

OO -

= Y, I e_aT,(y)^j(y)(dr)Q(r,d7)Q(5,d7X(is) 
jr{jrxsxs 

= I (i(s,dr)Q(r,di)Tt(ds) = / Q(r, d^)rr(dr),  
J S x S  J s  

where the last equality but one follows from (5.1). • 

The careful reader will object that although t t  can be normed to a probability 
measure on S, this norming will in general not render V> a probability measure 

on F: 
V>(r) = J sQ(s,T)n(ds) < 1, 

since <5(s,r) = Q(s, {£(5 x R+) > 0}) < 1 and the inequality is of course strict 
on a set of positive 7r-measure if there is a possibility of ex tinction at all. Hence 

40 



the normed measure, call it ?/>', would be 

where 
Q ( i r , 0  =  [  Q ( s , T ) n ( d s )  

J  s  

Henceforth we will use the notation ip bo th for the normed and the unnormed 
measure; it will be clear from the context which one that is considered. Also 
note that the norming of IT to a probability measure was guaranteed by the 
request that infs h(s) > 0. The corresponding condition on the macro level, that 
inf-y H(7) > 0 does not necessarily hold. With K = infs h(s) the best that can be 
done in general is 

but this does not have to be bounded away from zero. However we have seen 
that if) can be normed anyhow, and this agrees with our intentions not to invoke 
any extra conditions on the macro process. 

Are there intuitive interpretations of t hese relations? Recall that /i(s) is the 
reproductive value of the type s in some sense measuring the average contribution 
to the population by an s-type individual. Hence 7/(7), the reproductive value 
of the sibling group 7, weighs together the reproductive values of th e individuals 
in that group. The weights are exponentially decreasing functions of the birth 
times, taking into account that early born individuals on the average contribute 
more to the population the do later born ones (and that the population size grows 
exponentially). Also tp is in tuitively reasonable if we think of it as the distribu
tion of m acro types in a stable population (although it is not really a probability 
measure in its unnormed form). The stable population will be properly defined 
in Chapter 7.1; until then just think of it as a very old and large population. 
An individual of t ype s reproduces, and hence gives rise to a macro individual, 
according to the probability measure Q(s,df). In a stable population this indi
vidual's type is chosen according to the stable distribution 7r and the expression 
in Lemma 5.5 follows. 

It is also possible to give h and ir in terms of H and ip: 

Lemma 5.6. If M has invariant measure and invariant function H, then ft 
has invariant measure it and i nvariant function h given by 

OO OO 

ff(7) = £e-aT,WM^(7)) > «Ee_ar,(7) = «7(a), 
t = l 

h ( s )  =  H  ( f ) Q ( s ,  d ' y )  (5.13) 

and 

i=1 
(5.14) 
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Proof. Again insert in the defining relations and use the invariance properties. 

By (5.1), 

/  H { l ) Q ( r , d i ) ß ( s , d r )  
J S x T  

oo . 
= E / tf(7)Q(^7)e~aT,(V)<^t(y)(<ir)Q(.s,<V) 

-/SxTxT Î=1 

oo » 

=  /  d f ) Q ( s ,  d ^ ' )  
J r x T  

= J^ H (-f ' ) Q(s, d~i'). 

Further 
oo » 

/  { i { r , d s ) e ~ a T i { r t ) 8 a i ^ ) { d r ) i l ) ( d ' y )  

1=1 

OO -

i=i 7r 

OO OO -

= EE / 
«'=i i=i •,'rxr 

00 /* 
= £ / e-aT>(f^(y)(^)M(7,d7')i(# 

i=i •'rxr 

OO -

7 = 1 ̂  

The interpretation of (5.13) is as follows: to obtain the reproductive value of 
an .s-type individual, you average over the reproductive values of all possible 
macro individuals that this individual may give rise to, these macro individuals 
occurring according to the probability measure Q(s,d*f). In fact this is generally 
the interpretation of the fact that Es[£] = h(s) regardless of dependencies and 
macro individuals. And indeed, since H(7) = 7 this is exactly what (5.13) says. 
The intuition behind the relation (5.14) is slightly more complicated. If a macro 
individual is of type 7, then an individual in this sibling group will have type in 
the set A € S if a ny of the <7,(7) are in A. The e~aT,(7) again puts more weight 
on early born individuals and tj) averages over all possible macro individuals in a 

stable population. 
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5.4. The Mean Convergence Theorem 

At the end of the previous section the convergence 

OO 

E.le-^Zf] = Y,z-aT'b)E^[e-a(t-T')ztr, (01 
i = 1  

a ß  a ß  

was established, where 

E,[e-^zf_ rM -  h{a%{  

for 7T-almost  al l  <7, (7 )  G 5. The question arises what the connection is between 
7r-almost a ll s G S and ^-almost all 7 er. Could it possibly be so that removing 
all point processes containing some individual type for which the convergence 
fails, leaves us with a set whose complement is not a z/>-null se t? The answer is, 
fortunately, no for the following reason. Let S0 be any set with 7r-measure zero 

and define 
r 0  = {7  €  r  :  <7, (7 )  G So for some i } .  

Then F0 has «/'-measure zero since, by (5.14), 

OO -

*(So) = £^e~aT,wl So(<7t(7))V>(d7) = 0, 

so that 

IsoMl)) = 0, 

for all i  and «/'-almost, all 7 G T. Hence «//-almost all 7 € F have none of their 
types in So and therefore V^o) = 0. That the converse cannot be established is 

expected. If r0 is a «//-null set in T then, by (5.12), 

V>(r 0 )  =  [  Q(s , r 0)7r(ds)  = o ,  
Js 

from which it can be concluded that Q(.s,ro) = 0 for 7r-almost all s G S. Hence 
the macro types, i.e. the reproduction processes in To, will never occur except 
possibly from individuals with types in a 7r-null set. Of course we can say nothing 
about the individual types that appear in the processes in To, other than that 

they will not appear in these specific combinations. 
Thus it makes no substantial difference if the process is started from a full 

sibling group rather than from a single individual at least as far as convergence 

of means are considered. 
Therefore the convergence of E1 \e~a tZf) can be established already at this 

stage. This can be done because of the special form of x ' given in (3.4). Since we 
will later work with macro characteristics not necessarily of this form, we will go 
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on and investigate to what extent individual properties carry over t o the macro 

process. 
That the stable ages of chi ldbearing, B and ß ,  coincide is clear since 

B =  f  t e  a t H ( f ' ) M ( ^ ,  d * i '  x d t ) i p ( d ^ )  
J r x r x R +  

. CO 

J r x T x R +  i = 1  

i 
L 

] T  t e  a t h (cTi( i ) ) 8 n h ) ( d t )Q ( s ,  d ^ ) T r ( d s )  
rxH+xS 

t e  a t h(r )è a i ^ ) (dr )S T t ^ ) (d t )Q(s ,  d -y )n(ds )  
r x R + x S x S  

=  f  t e  a t h(r )^ (ds  x dt )Q (s ,d - f ) - r r (ds )  
J r x R + x S x S  

= [  te~ a t h(r ) f i ( s ,  dr  x dt ) - i r (d s )  =  ß .  
J  S x S x R +  '  S x S x R +  

Some care should be taken here when referring to B  as the stable age of childbear
ing since 0 is not a probability measure. For the convergence results however, 
the only important thing is that they are positive and finite, and indeed the 
real stable age of c hildbearing for the macro process differs only by the postive 
multiplicative constant Q(7r,r). Another aspect to be treated is the question of 
latticeness. The individual process is assumed to be non-lattice, the question is 
if this implies non-latticeness of the macro process. The affirmative answer can 
be motivated shortly by the fact that individuals and macro individuals are born 
at the same timepoints, and by assumption these do not constitute a lattice. 
However there are also some almost everywhere qualifications that have to be 
considered and thus a little more care is needed. 

Recall that M is lattice if there exists a number D > 0 and a function C : 
T —¥ [0, D) such that M(7, d'y' x dt) is concentrated on the lattice 

{(<,7') € R+ x T : t  -  C{7') -  C(7) + nD,  for some n  =  0,1,. . . } ,  

for ^--almost all 7 er. Clearly however, M(7, d'{ x dt )  is concentrated on the 
se t {r,-(7) , i =1,2,...} so latticeness would imply that there is a subset r0 Ç T of 
^/»-measure zero such that, for any 7 ^ T0, the T,-(7) are concentrated on a lattice 
with step D. 

But since ^ ( s ,dr  x dt )  is assumed non-lattice there is a set A Ç S  such 
that 7T(A) > 0 and //(.s, dr x dt) is not concentrated on any lattice of the form 
{(r, t) £ S x R+ : t = c(r) — c(s) + nd, n = 0,1,...} when s £ A. Since 

n(s ,dr  X dt )  =  /  7(dr  x dt )Q(s ,d i ) ,  
•^r 
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non-latticeness means that there is a set B Ç To such th at Q(s ,  B)  > 0 for s € A. 
But then 

= / Q{s ,B)w(ds)> /  Q(s ,B)v(ds )  >  0, 
J S J A 

contradicting the latticeness of M. Hence, if th e individual process is non-lattice 
then so is the macro process. 

Therefore M inherits the properties of fx  and so far the theory may be applied 
directly to the macro process by only assuming individual conditions. The next 
condition to examine is the boundedness of E-y[e~atZf ] in the sense that the set 

{7 € T : sup E^[e~a t Zf  } < 00} 
<>0 

should be of p ositive «/»-measure. Under the usual assumptions of str ict Malthu-
sianness we know that the set 

{s € S : supE s [e~ a t z f ]  < 00} 
<>0 

is of positive 7r-measure; in fact it holds uni formly  in s  that supt>0 E s [e~ a t z f ]  <  
00, see the proof of T heorem 3 in Jägers (1992). Since 

OO 

Ei[e~ a t  Z* ']  = Ee~aT,(7)^.(7)[e"a('"T,)^-rJ, 
t=i 

it also holds that 
sup E^e-^Zf  ] < 00, (5.15) 
t> 0 

for all 7 € T. On the individual level this condition is guaranteed by assuming 
X bou nded (see Jägers (1992)). Clearly, boundedness of x does not imply that 

a x' of the form (3.4) is bounded, but since the boundedness of E^[e~atZf] is 
guaranteed anyway this is no limitation. What will be of future importance 
though, is that the direct Riemann integrability carries over from the individual 
to the macro process. 

Lemma 5.7. I f  e~ a t E s [x{ t )}  i s  d i rec t ly  R iemann in tegrable  (7r) then  e~ a t E^[x ' ( t ) ]  
is  directly  Riemann integrable (V>)-

Proof. This is a consequence of Lemma 2 in Shurenkov (1992). With a slight 
modification it states the following. Assume that the function g : E x R+ —>• R+ 

is directly Riemann integrable (I) and that there exists a space E' and a kernel 
K(x,dy X dt) with basis K(x,dy), now with the meaning that K(x,dy) is a 
measure on £ for each x € E' and that K(x,A) is an £'•-measurable function for 
all A € £• If th ere exists a measure m on (E', £') such that 

[  K(x ,  A)m(dx)  =  1(A) ,  A  £  £,  
Je '  
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then the function 

K  *  g { x , t )  —  [  (  g ( y , t  —  u ) K ( x ,  d y  x d u )  
Je JO 

directly Riemann integrable (m). Since 

O O  

E^[e-atx'(t)] =J2e-^E,[e-^xÅt ~ t , - ) ]  

IS 

1=1 

oo 

and 

= E c " ° f ' " 7 , ( ' V ) ) ^ , h ) [ e - i , ( ' ~ 7 ' ) A I ( <  -  t v ) ]  

i=1 

=  J  J  ET[c~a^~u)x{t - x d a )  

J  J  e~auf( d r  x d u ) i ^ ( d f )  

OO . 

=  Ü  I  ( ~ a T i h ) s ° i ( i ) ( d r ) v i d l )  =  n ( d r ) ,  
1=1 •/r 

e~auf(dr x du) plays the role of X above and hence E^[e~atx'(t)} is directly 
Riemann integrable • 

It has now been shown that all the conditions needed for convergence of 
expectations on the individual level carry over nicely to the macro process and 
we state the first convergence theorem. 

Theorem 5.8. Consider a non-lattice, strictly Malthusian branching process with 
sibling depende ncies. Let x be bounded and the function fe -0 , t.Es[x(f)] directly Rie

mann integrable. Then 

Es[e-atzf] EA^ß
a)]h(s), (5.16) 

as t —> oo for tt-almost all s G S and 

' l  — 4  —  

aB 
E ^ Z f ]  -> ^7, 

as t —» oo for ij)-almost all 7 € T. 

Proof. As for Theorem 3 in Jägers (1991). 

Note. The discussion at the end of the previous chapter suggests that 2^[x'(a)] 
E^[x(a)\ (Formula (4.5)). That can also be shown directly: 

E1 

r°o 
[X '(a)] = £> / e-atx\t)dt] 

Jo 
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°° roo 

= g  e~a T '^E^a / -  r$At] 

i=i J o  

0 0  ,  > r°° 

= J2c~ a T 'h )E,[<x / e-^X!(/)^] 
,=1 Jo 

. OO 

J S  i=1 

and from (5.14) we can conclude 

EAx'{oi)\  = E v[x{ot) \ .  

Strictly speaking this equality is valid with denoting the unnormed measure, 
but then tp is not a probability measure and the notation might not be ap
propriate. What actually should be stated is that 

EAx'(<x)] _  EAx{a)\  

aB aß '  

which always holds since any norming constant then appears multiplicatively 
both in the numerator and the denominator. • 

Theorem 5.8 gives the answer to a fundamental question: under the conditions 
of Theorem 3 in Jägers (1991) (i.e. the same conditions as in Theorem 5.8 
but without the sibling dependencies), is i t possible to destroy, or substantially 
change, the asymptotics by inferring some dependence structure among siblings? 
The answer is no, the asymptotic behaviour of the population is determined 
through the behaviour of the marginals only, irrespectively of whether siblings 
are dependent or not. Always keep in mind that we talk about what happens 
on the set of non-extinction; the extinction probability might, as the examples of 
section 3.1 show, depend heavily on the dependence structure. 

This also indicates, quite generally, that the Malthusianness is the crucial 
criterion for a growing population to behave regularily, and that the branching 
property on the individual level is of less importance. Of course there must be 
some branching structure; in the sibling dependent case it appears on the macro 
level. 

Since the expectations dealt with in the theorem are expectations of su ms, it 
might not be surprising that the dependencies do not influence the results. The 
next objective is to investigate how the actual population behaves asymptotically, 
and for that purpose the next chapter is devoted to L1-convergence. 
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6. Convergence in L1 

6.1. The xlogx Condition 

The L1  -convergence of the macro process is explored by means of a certain mar
tingale, introduced in Nerman (1984). Let mx denote z's mother and define 

l t  = {x e I : r 'm x  < t < <}, 

i.e. the set of m acro individuals whose macro mothers are born before t  but who 
themselves are born after t. The intrinsic martingale is 

Wt = £ 
x€l t  

From Theorem 6.1 in Jägers (1989) we know that this martingale is uniformly 
integrable and hence Z^-convergent if it satisfies the x log x condition. Recall 

fj  = [ e~a tH(i)'q(d'y x dt) 
JrxR+ 

and write E^ for f r  E^tp(dj),  expectation with the macro ancestor's type £0 ~ -if) .  

The x log x condition is 

E^,[fj  log+ Tj] < OC. 

Recall the special birth time and type structure of the macro process: The re
production process of a macro individual with life (7,ü>) places its point masses 
at (r,-(7),|iw)), i = 1,2,... and hence 

OO 

rç = £e-*M<0)£. 
i=i 

The following lemma states that the x log x condition will be guaranteed by the 
corresponding condition for the individual process; in fact there is an equivalence 
between individual x log x and macro a; log a;. 

Lemma 6.1. [£log+£] < 00 E^[fj\og+  fj \  < 00. 

Proof. The proof relies on the convexity of the function x log+ x. First assume 
that E„[ilog+ <f] < 00, denote 

OO 

7 W € e - W  

t ' = l  
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and note that 

E^[  7?log+ r j \  =  £7  f j  log+(£e—^)  

00 p-anh)  _ 
=  E^[ f j\og+(î{a)J2 ft)] 

7(a) 

< ^[77%+7(a)] + 7(a)£"7 

00 -aT,(-y) _ 00 -a!T,(7) 

E ~x7ir& los+(E .i=i 7(a) ^ 7(a) 

= /i(7) + Hi), 

since log+ ab < log+ a + log+ b.  Further 

h{ j )  =  E^[ f j ]  log+ 7 (a) =  7  log+ 7 (a)-

Since, k = inf h >  0,  

7 = £e-aT'WMat(7))>,cXV •»^(7) _ «7(a), 
Î = 1 1 = 1 

we obtain 

and hence 

r f  
7 l°g+ 7(a) < 7log+ -, 

[  h{ l ) tp(d i )  <  (  (7log+ - )Q(s ,d~ f )Tr (ds)  
J r Jsxr k 

/ £s[£log+ -]7r(c/.s) = £^log+ i], 
J S K K 

which is finite by assumption. 
The function x log4" x is convex and therefore 

n n n 

A,je,- log+(]T A,x,) < "52 *«: X i  l°g+ x i ,  
t=l i=l î=l 

e-«T.( 7) 
if E "=i A; = 1,A, > 0 .  For a fixed 7  we take A,- = t j~\ (and have n =  

7(S x R+))  to obtain 
7(a) 

00 p-ar i ( -y )  

I2{l) < 7(a) ^(a) loS+ & 

OO 
= Ee"aT,(7)£;7[6'log+6]. 

t=l 

Hence 

[  h{ l )v {d l )  <  Y,  [  e  a T , ( ' y )^7[6 1 og +6#(^7)  
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oo „ 

=  Y. / e _ a h 'E- ,(-•) los+ tw ((h ) 
i=l J r  

o° r 

= W e-a T>*h„,h )(ds)E s[Oog+ t i}i>(dl) 
i=i J r* s  

= Es[£ \og+ £}TT(ds) = £T[£log+£] < oo, 

and it is proved that E^[f] \og+ fj] < oo. Now assume that E^rj \og+fj] < oo. 
Because of t he convexity we can apply Jensen's inequality which yields 

E-, \v l°g+ v] > ^[fi}log+ È^[fj] = H (7) log+ H (7). 

Hence 

00 > E^[t) log+ v ] >  J r  H ( 7)l°g+ H(i)^(d-r) 

= J 7log+ lQ^,d-f)ir(ds) 
Jrxr 

= J^Es[£log+£}ir(ds) = £x[£log+£], 

and the proof is complete. 

6.2. The La-convergence Theorem 

By the x log x result there exists a random variable W > 0 on the macro space 
T X Ù1, such that Wt —• W in LX(P.!,) as t —> 00, for ^-almost all 7 € T. The 
process will now be analyzed through the normed population size 

^ H(to) " 
With 2 t  as above we get, for any t0 < t, 

(• = inn S *>(' - <) + E . <«-i) 
MI,. 

where C , t -T 'x{x) = 0 and x < Ito means that a; s trictly preceeds I to, i.e. 
has descendants in Jto but does not itself belong to it. With Ux(j,ui) = üx, the 
projection on the macro individual x's life, we define the cr-algebras 

T t  = Q x a(Ux : x < J t), 
i.e. the cr-algebras generated by the types and lives of the macro individuals 
strictly preceeding It. 

—at 
•M&) 
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The individual branching process is called uniformly integrable if yt=the total 
number of individuals born up to time t, is uniformly integrable over its starting 
type, i.e. if 

sup Es [ y t ;  yt  >  c] - 4  0, 
s £ S  

as c —> oc, for any fixed t . 
We are ready for the main convergence result. 

Theorem 6.2. Consider a uniformly integrable strictly Malthusian branching 
process with sibling dependencies, such that log+£] < oo. Let \ be bou nded 
and the function e~atEs[x(t)\ directly Riemann integrable. Then there exists a 
random variable w on T x fl^ 1 such that 

e-z? 
aß 

in 1}{P.y), for V'-almost all 7  €  T .  

Note. We can not apply Theorem 7.2 in Jägers (1989) directly to the macro 
process since it does not satisfy all the conditions of that theorem. Thus it has 
already been shown the requirement inf h > 0 does not necessarily yield inf H > 
0. Neither is Yt, the total number of macro individuals at time t, uniformly 
integrable over the starting type. To see this, observe that 

E -y[Y t\ > #{i : i < 7(5 x [0,i]),fc(S x R+) > 0}, 

the number of individuals in the initial sibling group that ever beget children. 
Since this number might well be unbounded, E-y[Yt] cannot be uniformly bounded 
in 7 and hence not uniformly integrable. However, it will be possible to prove 
the theorem without imposing these extra conditions on the macro process. • 

Proof. We will work with the macro process and show that e~atZ* converges 
to (E^xfa)]/aß)W. Then we can define w = W o <p-1 to complete the proof. 

Let x ' ( t )  =  X«'(^ —  T i )  and assume that x is bounded by n. Define 
Xn(t) = x'(^)l[o,n)(0 so that vanishes for t > n. It is x" that will be the 
characteristic under consideration. With to  = t  — n  in (6.1) we then have 

,6.2) 

since if x  < T t~n then t  — T'x> n .  
We will show that the are uniformly integrable. From (5.15) we know that 

the E~y[(i] are uniformly bounded and it remains to be shown that sup( A] —> 
0 as P-y(A) —* 0. With 
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the total number of individuals at time t  stemming from the individual x,  we first 
note that 

< zf  

£o(<) £o(<) 
= E ^ n  E yt-Mto)(0, 

i—\ i=1 

and hence 

Ct-ri(x) < J^z~a ( t~~T ' x )  E Vt-Ti-Tilk)(xi)-

By (6.2) and the fact that 

OO 
ff(0=£e-^(0*Mfl) >*(«)> 

i=l 

it now holds that 

^ -  E i / N I E yt-r ' x-r ,( ix){xi)  I e 
Kxei t_„ 6(a) V .=1 )  

n  e
_ a ( t - T * )  / \  

< —-— y ^ y !/»(**) e-aT-//(6), (6.3) 
- ^(6)xJr_„ 6(a) v s v 

since if x G J(_n then t  — T'x < n and hence y t-T^-T , (( x)(x) < yn{x).  
Now let e > 0 be given. There exists a 6 > 0 such that 

P{A\Tt-n) < à % sup E[yn(xi)-  Al^t-n] < e, 
xeit-n 

since 

E[yn(xi) ' ,  A\Ft-n] 

< E[yn(xi);  yn(xi)  > a|.F t_ n] + aP{A\J r
t-n)  

-  Ea x t[yn;yn  > a] + aP(A\T t-n) ,  

which can be made small because of t he uniform integrability of the yn .  The last 
equality follows from the fact that if a; € It-n then the axi are measurable with 
respect to Tt-n (the individual types axl are determined by the type of the 
macro individual x, and this type is determined by the life of x's macro mother 
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which belongs to Tt-n)- From this we see that 

E 
g — a(t—tx) ix(t — Tx) 

Ï , , E :'/«(••'•' ): A 1 Ft-
Çx(«j i=l 

-a(t-T'x) tx(t-T'x) a(t-r'x)c U _ r'\ 

= 7 S £?[y„(®t);^l^i-n] < 77— l«<£, 
U(tt) i=l Çx(«) 

if P{A\J - t - n )  <  6,  since, for any 7 € T and t  >  0, 

6 = -rr— f e~a{t-u)e-auf(du) < 1. 
7(a) 7(a) Jo 

Now fix a S0 and consider an A E S x A1 with P-i{A) < 80. With 

B = {P(A\ft§) < £}, 

we then get 

6P7(£c) < P7(A n £c) < P7(A) < S( 0, 

and 

KH( 7) 
n 

&r[C«;4 

< E-y E 

„—a(t—Tx) Cx{t—rx) 

xelt-n 1=1 

+-E-V £ 
-a(t—Tx) (x(t—Tx) 

xelt-n SXV®/ •=! 
< —n 

< -E-y E e~aT*H(tx)E 
xelt-n 

g—a(t—Tx) Zx(t—T'x) 

i , 7 Vn(xi)i A I Ft—n 

ix(ot) i=1 

\B 

-\-E-y E eaT*n(i*)E 
xelt-n 

-a(t-Tx) îi(<_Tx) 

£»(") 
E Un(xi) I 
i=l 

/?C 

< tE^[Wt-n] + sup-Es[j/n]£7[W,_„; B% 
ses 

where the first term can be made small since E^[Wt-n] = E^\W\ = H(7) (Wt 
is a martingale), and by choosing 60 small enough also P~t(Bc) will be small and 
by the uniform integrability of Wt (this is where the x log x condition appears) 
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E^[W t - n ]  Bc ]  will be uniformly small in t .  Hence the Q and thereby also the 

e~atZf are uniformly integrable. 
It can be proved that 

Ct - E[Ct  \ f t -n]  - 0, 

in P7-probability for V'-almost all 7 G F. This relies on the uniform integrability 
of the yn and is done exactly as in Jägers (1989) why it is omitted here. With 

_ £V[xn(oQ] 
P n  -  aB '  

the next step is to show that 

PnW 
E-y \EiCt \ f t  t—n\  0, 

HitoYl  

as t  —* 00, for p-almost all 7 € T and thereby conclude that 

PnW 
Ci 

mo)  

in P^-probability for ^»-almost all 7 € F. With 

W t (A xß)=^ Î-axb(£X,  T ' x ) e ~ a T *H(£x) ,  
x€ l t  

we have that 

H {Ço)  

< 7777T /  \EACt-u]  -  Pn\W t _ n (dy  x du)  + -£- \Wi_B - W\.  
H (ç 0 )  JrxR+ H{Ço)  

We already know that Wt —» W in L l {P^)  for ^-almost all 7 € T, which takes care 
of the second term. To deal with the first term introduce the special characteristic 

X'( i )  =  e" SS x du) ,  

for which it can be shown that 

W t (A xB)  = e~ a t Zf ,  

see Nerman (1984). To show that this converges, the conditions of the Key 
Markov Renewal Theorem will be investigated. The direct Riemann integrability 
relies on the general observation that, with notation from Section 4.1, if the 
funct ion g(x , t )  i s  mon otone in  t  and J E  g(x , t)n(dx)  i s  bounded,  then g(x , t )  

is directly Riemann integrable (7r). This observation relies on the connection 
between direct Riemann integrability in the sense of Definition (4.8) and one-
dimensional direct Riemann integrability. The latter is defined for functions 

/ : R+ —> R+ as 

Yi sup /(f) < 00 
n> 0n<(<n+l  
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and 
6 ÜC( SUP /(*) - gJjp.uJW *°' 
n>0 nS<t<(n+l)6 n5<t<(n+\)8 

as S  —> 0+. It is known that any bounded, monotone, integrable function is 
direc t ly  Riemann  in t egrab le  in  th i s  sense .  N ow we  see  tha t  i f  g  i s  monotone  in  t  
then 

/  g (x , t )Tr (dx)  =  / sup g(x , t ) i r (dx ) ,  
)JE JE a'Ct.'Cb 

sup 
a<t<b JE JE a<t<b 

with the obvious analogue for infimum. Hence direct Riemann integrability is 
equvalent to one-dimensional direct Riemann integrability of the function /(f) = 
JEg(x, t)ir(dx). But if g is monotone in f then also / is monotone and since / 
is assumed bounded it is also directly Riemann integrable. Since e~atE^[x*(t)\ is 
decreasing in f a nd 

J r e- a t E,[x*( tmd f )  <  j r H( 7)0(d7)  -  1, 

e~at_E7[x*(f)] is directly Riemann integrable. The inequality is true since 

Ax ' ( t ) ]  <  /  e~ a u H{r)M{^ ,  dr  x du)  $  H{7), 
JrxRj .  

e~ a t l  

and 

H{*i ) i j ) (d~ i )  =  J s  7Q(s ,  d -y )n(ds )  =  £ s [£M<|s )  =  ^  h(s ) rr (ds )  =  1 .  

Clearly x* is not necessarily bounded so (5.16) is not directly applicable. However 
the boundedness was used only to guarantee that 

sup E *y[e~a t Z* ) < 00, 
t>o 

and with our special x* this can be shown directly: 

E^[e~ a t Zf]  <  E y [W t ]  =  (7) < 00. 

Hence all the conditions in the Key Markov Renewal Theorem are satisfied and 
it follows that 

E,[W t (A  x B)}  -> E^[W(A x B)}  =  E ^ a ) ]
H (7 ) ,  

where 
r 00 f r 00 

E Ax*( a ) ]  =  a  J o  J r  Jt  ^Axb( i \  u )e~ a u H(~f ' )M(- - f ,d~ f '  x du) iß (d j )d t  

— a  [  [  \axb{ i ' i  u )ue~ a u H(- f ' )M( 'y ,  d^ '  x du) ip (d f )d t .  
Jo  J r  

By this expression for E^[W(A x B)]  and the invariance property of ip .  it is clear 
tha t  E^[W(-  x  B) \  is  abso lu te ly  con t inuous  wi th  respec t  to  ip ( - )  fo r  an y  B £  B  
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and ^-almost all 76 F. Therefore the convergence 

I-Ey [(<-«] - Pn\ ->• 0 

holds for E-y\W{- x -)]-almost all (u, 7') € R+ x T. 
From the proof of Theorem 3 in Jägers (1992) we know that there exists a 

constant C < 00 such that 
E,\c~atz}} < c  

h{s) 

and hence 

E.le-^Z? 
H( 7) 

H { i )  ̂  1  H < T i ( 7)) 

-J 00 

< ^777-T £ CW/l(^(7)) = C- (6-4) 
^(7) ^ 

Hence |.Ey[((_u] — /9n| is bounded and we have, for any G Ç. G x B, 

[ \Ey[Ct-u\ - pn\E-y[Wt-n(d-f'x du)\ 
JrxR+ 

< sup \Ey\Ct-u] - p„|£MWi_„(G)] + CEy[W t.n(Gc)\, 
(t ',u)€G 

where W t(G) and W(G) are defined in the obvious way. By EgorofF's t heorem, 
G can be chosen such that |i2y [«(-«] — Pn\ tends to zero uniformly on G and 
E^[W{GC)\ is arbitrarily small, see for instance Folland (1984). Therefore, since 
E,[W t-n(G)\ -» £j[W(G)] < H(7) and E,[W( G<)} -» E,[W(G% 

[ IEy[Ct-u] - /9„|ßy[W|-n(#' X du)} 
JTxR+ 

tends to zero as t tends to infinity and thus 

W 
Ct * pn 

m 0) 

in /^-probability for ^-almost all 7 € T. Hence we have that 

e-atZt
x" -*/9nVF 

in P7-probability, and by the uniform integrability also in Ll(P^) for the char
acteristic xn under consideration (see for instance p.297 in Ash (1972)). Finally 
consider x'(0 = ESi X«(* _ r«')- With 

fe[x(«)] _ EV[X ' (*)]  p = 
aß aB 
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we have that 

E1  [|e~a tZf' -  pW|] < Ey  [|e~a tZf' -  e~a tZf 

+ E, [Ie-a tZf -  P nW\] + E7 !PnW - pW\] , 

where the first and third terms can be made small by choice of n large and 
monotone convergence, and the second term is the case just treated. • 

It has thus been shown that the process converges when it starts from a 
full group of sibl ings. One might ask what happens if it starts from one single 
individual. We would suspect the contribution of this individual to vanish as 
t —* oo so that the process might just as well start from her children. We already 
know from Theorem 5.8 that the expectations converge when starting from a 
single individual and would be surprised if th e same was not true for the process 
itself. Indeed it holds that 

e~atzf = e~at
X o  (t) + e~a tZ t

x ,  

where Zt
x starts from the children of t he ancestor. Since x is bounded the first 

term tends to 0, and the second converges by the last theorem. However, writing 
down the above equality more carefully reveals where the problem could be. 
Hence 

e~°%X(-s,wj) = e~a tx{s,u1 , t) + e"** Z?(£{u0),uh), (6.5) 

where the first term tends to 0 and the second does so in i1(.P7) for xj>-almost all 
7 € T. The question is if th ere is a set of full 7r-measure such that picking the 
ancestor's starting type from this set will guarantee that 7 = £(w0) belongs to the 
set for which convergence holds. The answer is yes, and we state the following 
corollary. Recall the marginals Qs defined in (3.2). 

Corollary 6.3. Under the conditions o/Theorem 6.2 there exists a random vari
able w on S x such that 

-at y E*[xH] 
w. t o ap 

as t  —> 00 in Ll{Q s) for w-almost a ll s G S. 

Proof. Recall the limit variable wonTx Cl ! l  and define w on S x fl1  t hrough 

w(s,ui) = wo £0 (s,u>/) = tu^wo),^). (6.6) 

Let Zt
x(£(w0), •) be denoted by Zf o £0, let p = Ev[x(a)\/aß and note that, by 

(6.5), 

E s  [Ie-a tzf -  tf|] 

< Es[e~a txo(t)\ + E s  [|e~a tZf 0 £0  - pw o ^0|] ,  
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where the first term tends to zero since x is bounded and the second term is 

E s  [ |e" a t Z t  o £0 - pw o £0 |] =  J r
E i  [ \ e ~ a t Z ? -  P w l ]  Q{ s i d l ) ,  

since an s-type ancestor chooses reproduction process £0 according to the measure 
Q(s ,  •)•  % Theorem 6.2 ,  E-y [ |e~ a t Z t  -  pw | ]  ->  0  as  t  —> oo  for  V' -a lmost  a l l  7 G T.  

Since 
ip(A)= [  Q{s ,A)-rr(ds) ,  

Js  

it is clear that Q(s,d-y) ,  and hence also H^Qis .d^) ,  is absolutely continuous 
with respect to for 7r-almost all s G S. With C as in the previous proof, 

E 7  [ |e~ a t Z? -  pw\]  < (C + p)H(7) and 

/r [|e-atZt
x - H] QM7) ̂  0, 

for 7r-almost all s  G S by dominated convergence. • 

Note. Of course the random variable w has expectation h(s ) under Q s .  This is 
a direct consequence of the corollary together with Theorem 5.8 but can also be 

computed explicitly: 

E.[w] = J r E,[W]Q(s ,d 1 )  = j r H( 1 )Q(s ,d 1 )  = E s [(]  =  h(s) .  

• 
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7. The Stable Population 

7.1. The Stable Population Measure 

We now turn to the problem of stable population composition. The objective here 
is to study the properties of a typical individual, loosely thought of as sampled 
from all those born in an old exponentially growing population. This individual, 
Ego, has siblings and progeny in the same manner as earlier, but she also has 
a mother, aunts, a grandmother and so on. Therefore the new individual space 
J = Z_ x I is introduced, where = {0, —1, —2,...}. An element (—n, x) of J is 
thus the individual x in the population stemming from Ego's nth grandmother. 
Here we n ote that since the individual — n always has the child — (n — 1), —nl 
is interpreted as the renumbered population that stems from —n wh en —(n — 1) 
has been removed. Ego herself is of course (0,0) or, for short, just 0. 

To relate Ego to this nth grandmother we need information about the birth 
ranks. Hence we associate with Ego the vector (in,...,i0) telling that she is the 
i0th child of the iith child of...of the in-ith child of the individual — n who herself 
has rank i„. We also want to know Ego's age at sampling and we define the 
doubly i nfinite population space to be 

ft = R+ x iV°° x 

an element of which gives information about Ego's age, ancestry and the lives 
of all conceivable individuals in J. This space is endowed with the product cr-
algebra denoted by C. The objective is now to give a description of the stable 
population measure on (fi,C). First the ordinary independent multi-type case is 
described, following Jägers and Nerman (1992). In order to do this some random 
elements on (0,C) are introduced. 

Hence let T0 denote Ego's age , So her type, £/0 her life and Rq her rank. Ti 
is Ego's mothers age when she gave birth to Ego, Si her type, b\ her life, Ri 
her rank and so on backwards. The life and progeny of Ego is denoted by z0, 
Zi denotes the life and progeny of Ego's mother except the life and progeny of 
Ego, z2 the life and progeny of Ego 's grandmother except Ego's mother's life and 
progeny and so on. Thus, after renumbering the population to tell which one of 
— fc's children that has been removed in order to play the role of —(k — 1), Zk is 
the coordinate projection ft —> fl~kl (see Jägers and Nerman (1992) for details). 

Definition 7.1. In an independent multi-type bran ching pro cess, the sta ble pop
ulation measure is determined by 

P(^-fc £ ^ki € dtfc. Sk G ds k, Rk ~ ~ iki k — 0,..., n) 

= E~[e~nT'n: (7in 6 dsn\Ean[e~atn; An D {a^ € d$M-1,G dtn}] 
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...ESl[e a(l;Ai n {a io € ds0,r to € dt l}]PSo(A0)ae at°dt0, (7.1) 

where Ak € -41. This definition has a number of c onsequences described in the 
mentioned reference. For instance the stable population measure gives Ego an 
age which is exponentially distributed (a) and independent of everything else 
and a type distributed according to ir, thus explaining its name. These and 
other interesting consequences will be more thoroughly described in the sequel 
when the independent case is c ompared with various forms of sibling dependent 
populations. 

The main difference in a multi-type sibling dependent population is that even 
if an individual's marginal reproduction only depends on her type, there are 
still dependencies between siblings; the conditional independence structure in 
independent multi-type populations now only exists on the macro level. We want 
to study the individual stable population but for this it is necessary to invoke the 
macro process. Therefore any defining relation of th e stable population measure 
should take into account the following two considerations: the whole reproduction 
processes should be used as information carriers between generations and lives and 
progenies of whole sibling groups should be considered rather than individuals. 
Hence let Sk, Tk and Rk be as above and define F0 as the reproduction process 
according to which Ego was born, the process according to which Ego's mother 
was born and so on. Furter let Z0 be the lives and progeny of Ego and her siblings, 
Z\ the lives and progeny of Ego's mother and her siblings except the lives and 
progeny of Ego and her siblings and so on. In terms of c oordinate projections, 
Zk pr ojects on 

Definition 7.2. In a multi-type branching process with sibling depende cies, the 
stable population measur e is determined by 

P(Zk £ Bk,Tk € dtk,Tk € d-ik,Rk = ik,k = 0, ...,n) 

= e-aT^ip{d ln)E ln{e-at»-, Bn n {£„ € d7»-i, ̂  (fc») € dtn}] 

...Eyi[e-ah;B1 n € d7o,Tio(th) € dt^P^Bo^e-^dto, (7.2) 

where Bk € -A'1. Indeed this has basically the same form as in the independent 
case. The difference is, as mentioned above, that information between generation 
is passed over by the whole reproduction processes rather than just the individual 
types. With this in mind, also note that 

J e-orr'"''y'lc(7)V,(^7) 

= / e-^hcWQfad-r) = [ e~aT '^hc(t("))Q{*,du) 
Jr J(i 

= I e-aT{in)Mlctt{u)Q(*,duj) 
J Q 

= £,rW;(eC], 
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so that 
E r[t-a T ( i n )-,i  e d-y] = e-a T 'n^U{dl).  (7.3) 

7.2. Convergence towards the Stable Population Measure 

In this section we will prove that the stable population measure indeed appears as 
a limit of averages in a growing population. We thus want to consider the process 
at time t, count the number of individuals that possess some certain property, 
E say, depending on age and ancestry and divide this by the total number of 
individuals born up to t. As we then let t tend to infinity this ratio will hopefully 
converge to the stable population pro bability of E . 

To formulate this more accurately, let 

J n =  L H " . ? }  X  A  
J=0 

the set of ind ividuals stemming from — n. By considering — n as ancestor we can 
identify the spaces Jn and I and hence also and (fi7,.47). Now fix 
n € N, (io, —,in-1) € Nn ,  B € A1  and a G R+  and consider the set 

E = [0, a] x (i0, in-i) x N°° x B x iïJ\Jn. 

Sets of this form generate a cr-algebra of sets in C which are such that they 
only depend n steps backwards, for fixed but arbitrary n. An individual is then 
counted if she has the property E at time t in the sense that her age is less than 
a, she is the i0th child of t he iith child of...of the in_ith child of some individual 
and that this individual has life and progeny in the set B. Since characteristics 
may depend on progeny bu t not on ancestry, the individu als with property E 
cannot be counted directly. However, if an individual x has property E, then she 
also has an ancestor, y say, n + 1 generations back, whose life and progeny is in 
the set B and such th at the individual yin-i . . . i0  a t t ime t  has age les s than a. 
Hence y might be counted just as well as x, a common trick in general branching 
processes. For that purpose put t = (in_j,...,i0) and define 

X E ( t )  =  l ß l [ o , a ] ( i  -  n ) ,  

Then z f E  is the number of i ndividuals with property E  born up to time t .  Re
calling yt =the total number of individuals born up to t we first look at the 
composition in expectation 

Es[zr\ 
E s[yt} '  

where z f E  is the process counted by xe when starting from a single individual. 
Under the assumptions of T heorem 5.8 the convergence 

E s[e~a tzfE] -> h(s)E*^a^ 
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follows and since yt is the process counted by x(t) — 1 ä+(0> which has ^[^(a)] = 
1, 

E s[Zt X E l  

E^{xe{OI)}. 
Es [yt] 

And, indeed, this limit is P(E): 

Lemma 7.3. For sets E as above 

P(E) = /;-K/.:(o)]. 

Proof. It suffices to consider sets E where B has the special form 

B =; {iOl '• Wh ^ ^ ßn-2i € B0], 

where Bk for k > 1 is such that it gives no restrictions on the lives of the 
individuals in the set ikh (because of the renumbering mentioned in the previous 
section). 

Ev[xe{(X)\ = [ ae~a<l[o,a](i - ||wj))lB(wj)$tQir(du;j) 
•/q7x.R+ 

= fa ae~atdt f e-^hB^Q^diOj), Jo JQ1 

where Qv(-) = fsQa(-)ir(ds). 
Now, because of t he special form of B and the fact that 

= T"(^n—l)(tt,o) "I" (£in-i )) '«o (£«1 (^«n-l—«2^1 ))> 

where of course £,,n_1 (w/j ) = and so on, 

/ e~aT^'h JQ1 

— [ e-aT'n-l Me-or in_2(«iÄ_,(U./J)) __ e-OT,0(it l (w<n_j...ijh )) 
JQI 

î-Bn-Auh)^Bn-2 (Uin_ij1)...lB0(^in-i-..iiIi)Qir{dui) 

= [ e~ar^~^PtM{Bn^ fl € d7n-2})e-aT,"-=(7"-2) 

J QxT"-1 

P ln_2{Bn-i n {fc„_2 G d ln-3})...e-aTnMPii(Bl n {£, € d7o}) 

e-ari0(T0 )p7o(ß0)<5(^,^0). 

For any Ae5 and A: = 1,..., n. 

e A}] 

= / e-^-^^P^Bk n {fcfc G A} n du> h )  
J Q71 
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= [ j/4n(L7, ) 
hr^A) 

= t e-aT"-^P,k(Bk n {& e d lk.i}), 
./.A 

so that 

n {& € }] 1 e-aT>*-^*-^Plk(Bk n {£§ € d7*-i})-

Since Q{IR, •) — Q (TT, {£ G •}) we obtain 

[ e-aT«§^Pi{uo)(-)Q(TT,du>0)= / r-»-.,i-,K-.)/Vi(.)(?(7r.rflii_]K 
J Ç1 «/T 

and hence 

= fa ae~atdt [ fl G J 7n_2}] 

...£71[e—o^);^ n {6, G < /7o}]/\O(W(^7„) 

= P(Zfe € B k, To < a,Rk = ik, k = 0,..., n - 1) = P(£). 

• 

By Corollary 6.3, 

e-'zî _ MMsäa, 
' a/3 

in L^Çs) under the z log x-condition. Since 

-a t  1  -
e Vt-* ~sw 

ap 

is a special case of th is, we should expect the actual composition 

_x 
_L 
yt 

to converge to Ev[XE(CH)] = P( E )  in Qs-probability. To establish this we need 
some condition to guarantee that w > 0 yt —» oo: 

Lemma 7.4. For a strictly Malthusian process with sibling dependencies, assume 
that inf s Qs(w > 0) > 0. Then 

w > 0 «=> yt —*• oo, 

as t —» oo, almost surely Q s, s £ S. 

Proof. From Theorem 6.2 it is clear that w > 0 => y t  —» oo. For the converse 
enumerate  macro individuals  as  they are  born  in to  the  popu la t ion:  XQ ,  X I ,  . . .  
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and denote by A n  the <r-algebra ge nerated by the ancestor's type and the lives 
of Xo,Xn. Then > 0} U {y t -f* oo }|.4n) is a martingale and by Levy's 
well kn own theorem, see for instance Ash (1972) p.300, it holds that 

^ 0} U {2/t Oo}|,/4n) ~ > l{{w>0}u{yt-/+oo}} i 

as n —> oo. Also it is easy to see that 

Q5({û; > 0} U {yt t4 oo}|Ai) > inf Qr(w > 0) > 0 
r £ S  

by assumption. Hence /{{,i>o}u{yt:A°°}} = 1 and the proof is complete. Not all 
the details are spelled out, they may be found in Jägers and Nerman (1992). 

• 

Corollary 7.5. Assume the conditions of Theorem 6.2 and add to these that 
infs Qs(w > 0) > 0. Then, for sets E as above 

_X£ 
• P (£) 

yt 

in Qs-probability on {yt —» oo} for ir-almost all s £ S as t —> oo. 

7.3. Properties of the Stable Population Measure 

In this section the stable population measure is described through some of its 
consequences. The measure is compared with its independent analogue, that is 
the stable population measure stemming from an ordinary independent multi-
type branching process with the same reproduction kernel /i(s, dr x dt). For a 
description of the stable population in such a process, the reader is referred to 
Jägers and Nerman (1992). First look at Ego's individual properties. 

Proposition 7.6. For Ego's marginals it holds that To is exponentially distributed 
(a) and indepen dent of everything else and further 

P(So € B) =  tr(£), 

P(Ro =  k)  =  EAe~aT{% 

P{U 0  G A)  =  Q(v ,A) ,  A  G A.  

Proof. The statement about T0 follows immediately from the definition of P. 
The other statements are also easily proved: 

OO 
P ( S o  € 5 ) = E  

«0=1 

by Lemma 5.14, 

P(Ro =  k)  =  J  t - a T "^p(d l 0 )  =  E^e-^% 
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and, letting A0 = {loi1 G ft'1 : u>i0 G A}, 

P(U0  G A) = P(Z0 € A0) 

!0 = 1 

00 r 

§ä E f e_aT"°('yo)V'(^7o)Q(5, A)£ffi  (70)O) 
; _ i ^rxs 0 

= / Q(5, A)7r(ds) = <5(7r, A). 
Js 

Hence the sibling dependencies do not change the fact that Ego's age is exponen
tial and independent of ev erything else. Neither do they affect the distributions 
of Ego 's rank or life when looked upon separately. It is also interesting to investi
gate more general properties of P such as joint distributions and possible Markov 
structures in the family line backwards from Ego. It has just been shown that 
Ego's type, So, h as distribution 7r bu t what happens if t he sequence So, Si,... is 
considered? The answer is the same as in the independent case: 

Proposition 7.7. The sequence So,,Sj,... of types backwards from Ego is a 
Markov chain with transition probabilities 

The marginal distributions are 

P(S0 G d s )  =  TT ( d s )  

and 
P ( S n 6 d s )  =  ï n { s , S ) n ( d s ) .  

Proof. 

P(S0 € dso,..., S„ € dsn) 

*0 

E P(TQ G d^j0, Rq — zqî ••• j Tn G d~jn, Rn — in) 

à".0 (70 ) (d-Sl0 ) • • ' i„ {-y„) (dsn ), 
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where 

P(r0 G R o  ~  ̂ O i  •  • • ?  G d ~ f n ^  Rn  —  zn) 

=  /  r ~ a r " ' h " ) v { ( h u ) E - , n G  < f t n ]  

J R 1  

- E i i[e~ail;6, e rf7o,Tio(6|| e <ftx] 

= e >.-i3 

...^[e-^otei);^ ed7o]. 

Now, for any fc, 

e <%_x] 

= € d7fc-i) = e-^-1^|)QK(7i),^-1)| 

and hence 

P ( T o  G ^"To • >  R o  ~  ̂ 0î • • • ? G d ^ n  î -^n — ) 

= e~"T,"('ynV(^7n)e_aT'n-l('y"_l)(9(crin(7n),J7„_i) 

...e—o(-»)QK(7x),d7o). 

Further, for any k  and 7, 

Q { v k { l ) , d i ) à o k ( i ) { d s )  =  Q ( s , d i ) 8 a k { r i ) { d s ) ,  

so that 

Since 

and 

P(50 € d s 0 , . . . ,  S „  €  d s n )  

= Y ,  /„+1 
e~aT,n(7n)V'(rf7n)^r,n('Kn)id5n) 

»Ovi'n 

e-aT'n-l(T"-l)Q(5nîC?7n_1)^n_i(-y„_l)(d5„|l) 

•••e_aTi
0

(7o)Ç(51,d7o)^,0(7o)(^0)-

OO -
g / e-"r,('y)^iW(ds)T/'(d7) = TT(ds) 
1 = 1 

OO . 
5 Z  I  z ~ a T ' ( l ) à o > ( i ) ( d r ) Q ( s , d i )  = f i { s , d r ) ,  

i =  i  - / r  
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summation and integration leads to 

P(5o € dso, •••, Sn € dsn) 

— 7T [dsnJfi(sn, dsn„ j 1 d so ). 

Hence the types backwards from Ego constitute a Markov chain and together 
with the interbirth times they should form a Markov renewal process. The next 
proposition states that also this Markovian structure remains the same as in the 
independent case. 

Proposition 7.8. The sequence of types and interbirth times backwards from 
Ego, (Sn, Tn)%L0, is a Markov renew al pro cess with tran sition kernel 

P(5n+1 G ds,Tn+1 e dt\Sn = r) = 7T(ds)e  a_!ÉîlÈ_^l 
7r[ar )  

Proof. 

•P(*5n+i ^ ds^ Tfi-j_i £ dty Su dsji^ '•••, So £ ds0) 

= E /r„tl mW 
*0» — »*n+l 

"^7n+l Ie ? £«r»+1 ^ Ttn (£*n+l ) ^ 

e_aT'n-l(^)g(Sn>(fyn_1)^J (7n_i)(C?5n_1) 

...e-fo MQ(s1,d§6<rioM(ds0) 

*n»în+l 

^7n+l [e ! ̂ l'n+1 € d"fn, Tin(£in+1) <E 

fi(sn , dsn—i , dsQ^. 

Since 
oo 

i=l 
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and 

ß-u1 «,€*»'}] = Q(*A 7 MV), 

it holds for any j  that 

00 . 

Y, / E^[e at-^: G d^,Ti{ij) € cft]<^,(y)|fs) 
i=i Jr 

J^\ds x dt)Q{crj{i) ,d*i')  = e~a tn{aj(f) ,ds x ttt). = e_a< 

Therefore 

P(5„+i € ds,Tn + i  € cit, Sn € dsn , . . . ,So G c?s0) 

= E I e_aT,"+l(7"+1V(^7n+i)^>n+1(7n+1)(^)e aV(^„+i(7n+l),^n X < ft) 
in+1 Jrxr 

ß(sn ,dsn^i). . .ß(s1 ,ds0)  

= Z) /,xr t-aT-+>(7n+l)^{<i0n+i)<5a,n+ 1 K+ 1 ) (^)e- a ' / i (5 ,<is n  x dt) 
*n+l 

fx (5n ,  dsn—\ ). .  ,  dsQ^ 

= Tr(ds)e~a tn(s,dsn  x dt)ß(sn ,  dsn-i) . . . f l(si ,  ds0) .  

m 

As in Jägers and Nerman (1992) it can be shown that one consequence of this 
proposition is that £[Tn] —> ß as i —> 00, i.e. the asymptotic expected age at 
childbearing backwards from Ego is ß, thereby explaining its name, the stable 
age at childbearing. 

The final proposition states that the Markov property also holds for the se
quence of ranks, types and lives backwards from Ego. The transition probabilities 
are the same as in the independent case: 

Proposition 7.9. 

P(i?n-i-i = j, Sn .1-1 € ds,  î/n+i G A\Rn  = i. ,  Sn  = r,  Un ,  Rn-ij Sn_i, •••)  

-  E  l e - « - €  r f 3 l E- | e"°"" : A nIfWjM. - i»|e ,cr(J)£«s| a(i) e dr] 

Proof. Let B k = 6 Ak},  B = Bn +1. Then 

P-yk(Bk)fi ik{~tk)(dSk) — Q{sk,  Ak)t>ik(-yk){dsk) 
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and hence 

•P(^n+l — J; 5*n+1 G ^ ^n-t-1 € A, -ßn — 'n* *^n G ^ ?; G An  

,..., .Ro = *So € c?so, £/o G -Ao) 

= c-^^)V(d7n+i)^K+1)(^)e-aT i"h" )A„+1  ({6 € d l n} n 5) 

...e~aT'o(7o)P7l({6-1 G cfyo} n J5i)^,o(7o)(c?so)P70(jBo) 

^^1)^(rf7n+|^J(7„+1)(^)e-aT-^)Q(S, {£ G d7»} n y4) 

...e—o^°)Q(5o,Ao)^o{70)(^o). 

But 

and since also 

f  e G d7fc_i}n Afc)^ ( 
«/ r 

= ESk[e~aT^;Ak n {cr(zA:_1) € ds^)], 

J re-^Mdl)S* j h )(ds) 

= f e~aT ' { r i )Q(r,d^)'K(dr)8a j^ )(ds) 
JVxS 

= Ev [e-aT^-a(j)eds\, 

we arrive at 

P(-^n+l — Ji *̂ n4*l G ds , f/n_(_i G A, Rn — Zn, »S'y! G <£s„, £/n G An  

,..., fio = ioi So G «i ^o, i/o G Ao) 

= å[e-aT«; a(jj G ds}Es [e~aT^-, {a(in) G <fen} n A] 

.. .Esi [e a r( l°)• {cr(io) € c?sq} fl Ai]Q(so, Ao). 

69 



8. Applications to Single-type Processes 

8.1. Single-type Processes with Siblings' Marginals the Same 

In this section single-type processes with sibling dependencies will be investigated. 
Recall that our discussion on how to treat the problem with dependencies started 
with such processes, briefly described in Section 3.1. There it was also argued 
that the key to the problem is to investigate multi-type processes with sibling 
dependencies such that marginals depend on types only. 

Now consider a single-type branching process with sibling dependencies de
s c ribed by the joint measure P(s, •) on 0°°, where s is a point process on R+ with 
a positive and finite number of p oints. Assume that all individuals in a sibling 
group born according to s have the same marginals 

Q ( s ,  A )  =  i l A(uji) P { s , d û ) ,  
J Q 

where A  €  A .  As mentioned, this is the natural first step away from Broberg's 
homogeneous case, but it is also complicated enough to illustrate basically all 
the problems that may arise from the dependencies. Since an individual's repro
duction depends on the point process she is born in, and siblings have identical 
marginals the type space, S, is 

{s €  A f ( R + )  :  0 < s(oo) < oo}, 

the set of p oint processes with a positive and finite number of p oints, or some 
appropriate subset thereof. The individual types are defined th rough 

= £M, 

for i  = 1,2,... The construction from Section 3.2 then gives the macro type space 
T = Af(S x R+), the set of po int processes on S x R+. There is obviously a lot 
of re dundance here; since all the individual types within a group of siblings are 
the same and these types actually equal the process of birth times, each 7 G T 
corresponds uniquely to an 5 € S. Hence S can be viewed also as macro type 
space. By this very special structure the reproduction measures of in terest are 

f i ( s , d r  x d t )  =  r ( d t ) Q ( s , d r )  

and 
M ( s : d r  X d t )  =  s ( d t ) Q ( s , d r ) ,  

for the individual and the macro process respectively. Their Laplace transforms 
are 

f i ( s , d r )  =  r ( a ) Q ( s , d r )  
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and 
M (s, dr) = s(a)Q(s,dr). 

From the general theory developed in the previous sections we know that fj, 
and M are equivalent in the sense that they determine the same a and that ft and 
M are both conservative at the same time. It can also easily be shown directly 
by making use of the relation 

Mn(s,dr) =  ̂ \ßn(s,dr). r{a) 
The relations between invariant measures and functions are 

H(s) = s(a)h(s) 
and 

if>(ds) = J Q(r,ds)ir(dr). 
The interpretation of H is quite obvious: all individuals in a sibling group born 
according to s have the same reproductive value h(s). The factor .s(a) takes into 
account the size and structure of s (s(a) increases with the number of siblings but 
also if in dividuals are born early since they then obviously will h ave more time 
to contribute to the population). Also the relation 7r(ds) = s(a)tp(ds) holds, and 
from this it is obvious that V -C ft and 7r <C ip. Therefore 7r-almost everywhere 
and V'-almost everywhere statements are equivalent, a situation somewhat simpler 
than in the general case. The convergence results are 

-at VI . L,SEAx(a)} E s[e~a tzf] -> h(s)- a ß   

and 
e-„, « _ 

ap 
in L1(Qs) under appropriate conditions. 

Example 8.1. Consider a Bellman-Harris process, i.e. a process where each 
individual has a random lifelength L with distribution function G. By the time 
of death the individual begets a random number of children, this number assumed 
independent of the lifelength. We assume that the number of children is bounded 
by m and that the sibling dependencies arise only through the number of siblings 
so that we can take the type space S = {1,2, ...,m} and consider the kernels 
Q(i,j)- The reproduction measure is then 

x dt) = jQ(i,j)G(dt) 
and hence 

Khj) = jQ{^j)G{ot) = fi(i,j)G{a). 
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If there exists an n  such that all the Q n ( i , j )  are positive and p  denote s the 
spectral radius (i.e. the largest eigenvalue) of the matrix with entries then 
the Malthusian parameter, a, is defined through the relation 

G ( a )  =  -, 
P 

and fi is conservative. The proof relies on the Perron-Frobenius theorem which 
tells us that there exist numbers k(i,j) such that 

» oo. 
P  

Now consider 
m  m  n i ;  j  \  

Y  A "  Y  =  H X V ? ( < * ) ) n  Y  f ( i , j )  '  •  
n>0 j=l n>0 j = 1 "  

Since ~ p n k ( i , j )  as n grows large, the second sum will tend to a constant. 
Thus if A > 1 we must have p G ( a )  > 1 to ensure that for all / there is an i  such 
that the sum over n is infinite. Conversely, if A < 1 we must have pG(a) < 1 to 
ensure finiteness for some / and all i, and so pG(a) = 1. 

The conservativity follows since 

=  Y ,  = 0 0 »  

n>0 i , j  n > 0 i , j  ^  

if on ly p  > 1 which is the supercritical case. 
A trivial special case is the Galton-Watson process which has G ( a ) = e ~ a  and 

hence a = log p. To analyze this further in the general framework the results for 
lattice kernels must be invoked. 

• 

Of course splitting populations of t his kind are the most natural examples when 
siblings' marginals are the same. Another example which could be of s ome rele
vance is given. 

Example 8.2. Suppose the kernel Q ( s , d r ) can be decomposed as 

Q ( s , d r )  =  q ( s ) Q ( d r ) ,  

for some function q  >  0 and some probability measure Q  on S .  Then obviously 

g(*) = Q(*,S) = QM£(oo)>0}), 

the probability that an s-type individual begets any children. Since S  = {s G 
N ( R + )  :  s { o o )  >  0 } ,  

Q ( M )  =  ,̂ K e A } )  

=  Q ( s , { U A m e S } ) Q ( s , { t e S } )  

=  Q { s ,  {£ G ,4}|{£ (oo) > 0 } ) q { s ) ,  
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A  €  S ,  we see that Q ( A )  =  Q ( s ,  {£ G A}|{£(oo) > 0}) and hence the conditional 
probability measure Q(s,- |{£(oo) > 0}) does not depend on s. One possible 
interpretation of this is that the structure of your sibling group only matters to 
your survival probability, and that if you survive you are certain to beget children, 
all surviving individuals reproducing according to the same probability measure 

Q. 
The Malthusian parameter, a, is defined through the relation 

J ^ r ( a ) q ( r ) Q ( d r )  =  1, (8.1) 

and the kernel (ia is conservative. To see this, let 

1 = //(«)<? WW, 

and note that 
f i a ( s , d r )  =  r ( a ) Q ( s , d r )  =  q ( s ) r ( a ) Q ( d r ) .  

Hence we have 
f â ( s , d r )  =  q ( s ) r ( a ) Q ( d r ) I n ~ \  

Now, for A > 0 we have 

J 2 X n  I  / ( s > r ) A « ( s A )  =  / '  f ( s , r ) q ( s ) r ( a ) Q ( d r ) ,  
n > 0  J S  n >  1  J S  

and we see that this will be infinite for all À > 1 if and only if I  > 1. Similarity, 
i t  wi l l  b e  f i n i t e  f o r  a l l  A  <  1  i f  a n d  o n l y  i f  I  <  1 .  T h u s  w e  m u s t  ha v e  1  =  1 .  

To check positivity we note that 

ß n { s , A )  =  q ( s )  /  r ( a ) Q ( d r ) ,  
J A  

which is positive if 

m ( A )  =  I  r ( a ) Q ( d r )  >  0. 
J A  

Also note that 

J 2  f  g ( r ) ß n ( s , d r ) m ( d s )  =  [  g ( r ) q ( s ) r { a ) Q { d r ) m ( d s  
n > 0  S * S  n > 0 ' ' S x S  

oo, 

and (l  is conservative. To obtain expressions for h  and n ,  note that j i ( s .  d r )  =  
q(s)r(a)Q(dr) and use (8.1) to see that 

/ q ( r ) K s i d r )  = l ( s )  
J s  

and 
J  s ( a ) Q ( d s ) f j , ( s , d r )  =  r ( a ) Q ( d r ) ,  

a n d  h en c e  h ( s )  =  q ( s )  a n d  7r ( d s )  =  s ( a ) Q ( d s ) .  
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In the interpretation above, the form of h is clearly reasonable. Since the 
reproduction of a surviving individual does not depend on the type, the type 
reproductive value should equal the survival probability for that type. In the 
expression for 7 r, the factor s(a) mirrors the fact that a randomly sampled indi
vidual in some sense will be more likely to belong to a large sibling group (this 
will be further discussed after Proposition 8.1). 

A spec ial case is Broberg's homogeneity which corresponds to q = 1.  •  

It has already been shown that the sequence So,  S  i,... is a Markov chain. The 
special type structure that is now dealt with gives a special form of the transition 
probabilities. 

Proposition 8.1. The sequence o f  ty pes  backwards  f ro m Ego is  a  M arkov chain  
wi th  transi t ion  p robabi l i t ies  

P(Sn+i € ds|S„ = r)  = 7r(ds)^ S l d r \ .  
Q\J ,dr)  

Proof. From Proposition 7.7 we know that 

P(5„+i € ds\S n  = r) = Tr(ds)^ S , d r \  
7T[ar)  

Clearly the Radon-Nikodym derivatives 

Q(s,dr)  

Q(n,dr)  

exist since 
Q(ir ,B)= I Q (s ,B)n(ds) ,  

J s  

so that Q(s ,  •) is absolutely continuous with respect to Q(ir ,  •) •  But 

ß{s ,A)  = I r (a)Q(s ,dr)  
JA 

r \  Q{s ,dr)  f Q(s ,  dr)  
= / r(a)7v—T^Q\ n i d r )= / 7v— 

J A  Q(ir ,dr)  J A Q {n ,dr)  

where the second equality follows from a well known identity for Radon-Nikodym 
derivatives, see for instance p.68 in Folland (1984). Hence 

f i ( s ,dr)  _  Q(s ,dr)  

7T (dr)  Q(TC,dr)  

The last proposition thus tells us that a typical individual has probability - i r(ds )  
of belon ging to a sibling group born according to the point process s € S. It does 
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not, however, say that the typical s i b l ing  group  is distributed according to 7r. TO 

clarify the difference, consider the following simple example. Suppose that only 
the number of indi viduals in each sibling group matters to the reproduction and 
that this number is either one or two so that we have the type space S = {1,2}. 
Now sa mple an individual from a population consisting of equ ally many sibling 
groups of size one and two. Then this individual has probability 2/3 of being i n a 
size two group. If we instead sample a sibling group we will pick a size two group 
with probability 1/2. Hence the typical sibling group will have an expected size 
of 3/2 individuals, whereas the typical individual's expected number of sibli ngs 
will be 2/3. 

If we want to explore what the typical sibling group looks like, we must invoke 
the macro process. Remember that this is an ordinary multi-type process without 
any dependencies and thus gives rise to stable population measure analogous to 
(7.1). The eigenmeasure in the macro process is ip(ds) = fs Q(r, ds)ir(dr) and 
after the appropriate norming to a probability measure, this will be the stable 
type distribution for the typical sibling group or macro Ego. From the example we 
realize that the frequency of an individual's type depends on both the frequency 
of th at particular sibling group and how many individuals there are in it. In the 
general case this is mirrored by the relation TT(ds) = s(a)y(ds) where large values 
of s(a) correspond to many or early born children. Hence, denoting macro Ego's 
type by SQ and her nth grandmother's type by S'n we have 

and 

S'n ~ Mn(s,S)x/j(ds). 

From Corollary 1 in Jägers (1992) we know that 

f i n ( s ,  S ) i r (ds )  —y h ( s )T r (ds )  

and 

M n { s ,S ) iP (ds )  -+  H(s ) ip (ds ) .  

But H(s )%/ j (ds )  =  h(s ) i r (ds )  so the limiting distribution backwards is the same 
for individuals and sibling groups. 

Example 8.3. Recall Example 8.2 where Q(s ,  dr )  =  q[s )Q{dr )  for some function 
q > 0 and some probability measure Q on S. In this case 

Q( n ,dr )=  [  Q(s ,  dr ) i r (ds )  =  [  q ( s )Q(dr ) s (a )Q(ds )  =  Q(dr ) ,  
Js  Js  

and therefore Proposition 8.1 reduces to 

P(£Wi € ds|Sn = r) = q(s ) s (a )Q(ds ) ,  

so  that the types So ,  Si, are actually independent. The explanation is that the 
types only affect the probability of hav ing or not having children and that given 
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this, the distribution of the number of children does not depend on the type. 
But in the stable population, all individuals backwards from Ego of course have 
children and hence the types become independent. • 

Since fj,(s,dr x dt) now equals r(dt)Q(s,dr) the next proposition is trivial. 

Proposition 8.2. The sequence of types and interbirth times backwards from 
Ego, (Sn,Tn)™=0, is a Markov rene wal pr ocess with tr ansition kernel 

Proof. Follows immediately from Proposition 7.8. • 

Proposition 8.3. The sequence of ranks, types and lives backwards from Ego 

has the Markov prop erty 

Proof. From (7.9) it is clear that 

P(i?n+i = j, Sn+i G ds, Un .)-i G A)IRn — i, Sn  — r, Un,  Rn—i, «S'n—i,...) 

P(Sn+i € ds, Tn+i G dt\Sn  = r) = tt(ds) 
e a tr(dt)Q(s, dr) 

7T (dr) 

P(-ßn+l — J ? Sn+1 G ds, Un+1 G ^4.) j Rn ^ i > Rn—1 7 &n—l ,  ...) 

= Ei r[e 

But 

so that 

EAe-ar( i ):.cr(i) G B] = J^far^lB{cr{i){üj)"§{ir,du) 

= I e-ar '^hB(t(u))Q(*,d") 
Jn 

= Jse-aT^lA(s)Q(n,ds), 

ET[e-aTM-,cr(i) G ds] = e"aTi<5>Ç(7r, da), 

and obviously also 

ß.jer'VnMi) € dr}] = e~aT^Q{s,A n {£ G dr}). 

The Radon-Nikodym derivatives 

Q ( s , A n  G  dr})  

Q(n,dr) 
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exist since 

Q(7T, B) = JS  Q(s, B)N(DS) = J^ Q(s, {£ € 5})7t(cLs)3 

so that Q(S, A fl {£ € •}) <C Q (tt, •). But 

[  ES [E~A R { , ) ;AR\ {A(I)  E DR}} 
JB 

- JbC-"«Q<.,,AC:1( 6 *))-/.'-""'0"'q"T|i.r})q(T-*)-

and therefore 

£s[e~aT^; A fl {<r(i) € dr}] _ Q(s, A fl {£ € dr}) 

£?T[e-Q!TW; cr(i) 6 dr] Q(W,DR) 

As the reader can see, some 7r-almost everywhere statements have been omitted 
above. • 

8.2. Single-type Processes with Siblings' Marginals Different 

The assumption made in the previous section that siblings' marginals are iden
tical could be justified in splitting populations, like those considered in the first 
example, and perhaps in some other special cases. It is however not satisfactory 
in more general situations. In order to be able to treat such situations one would 
want to examine the case when the marginals are different, i.e. when the ith 
individual in a sibling group 5 chooses life according to the marginal distribution 

<5i(s,>4)= [ l A { u >I) P (S ,dü),  
J 

now depending on both S and I .  That an individual's rank is allowed to influence 
her reproduction is of course more natural from a biological point of view; it 
might be an advantage (or maybe a disadvantage) to be born early in a group 
of si blings. It is also an interesting theoretical question; one might suspect that 
it becomes substantially more complicated than if all marginals are the same. 
Actually this is not so, and the reason is that this case can be brought back 
to the previous one by considering a population where al l  sib lings in a group S 
choose lives according to the measure 

1 OO 
Q(S, DU) = DU,),  (8.2) 

s(a) 

an exponentially weighted average of the QJ'S. Thi s process defines the same A as 
the one with different marginals and it also has the same asymptotic composition. 
We will return to this but let us first show how the general theory can be applied 
without such considerations. 

The individual type space is S X Z+, an individual's type being (5, si) if s he 
is the zth child in the sibling group S. The macro space would then be T = 
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Af  (S  x R + )  but as in the previous section it can obviously be identified with 5. 
The macro reproduction measure is 

OO 
M ( s ,  d r  x dt)  = ^ 6Tt(s)(cft)Q;(s, <ir), 

i—1 

with Laplace transform 
r oo 

M(s,dr)  = /  e~ a t M(s,dr  x dt)  
Jo 

oo yoo °° . 
= £ dr) / e~ a t 8T < ( s ) (d t )  g  £  e ~ a  Qi( s i  dr) .  

-, JO • i 1=1 Î—1 

The individual reproduction measure is 

H((s , i ) ,dr  x { j}  x dt)  = 6 r j { r ) (d t )Qi(s ,dr)  

with Laplace transform 

jx{{s , i ) ,dr  x { j})  = e-a T> { r )Qi{s ,dr) .  

It is easily checked that the invariant measures and functions satisfy 

OO 

i-1 

h(s , i )  = j H(r )Qi(s ,dr) ,  
J S 

oo -
V>(ds) = J2 / Qi{r ,ds)Tr(dr  x {i}) 

t=i1/5 

and 
7r(ds x {»}) = e- a T i { s ) x l>{ds) .  

The asymptotics and stable population properties follow from the general results 
derived previously. 

These asymptotic results also follow if instead the process mentioned above is 
used, the one where all individuals in a sibling group s choose lives according to 
the probability measure given in (8.2). These individuals can be viewed as some 
kind of av erage individuals, representative for their sibling group. Let 

1 00 

Q(s,dr)  = Q( S , r \dr) )  = — £  e^Q^C 1  (*)) ,  
s\ a)  i=1 

and define 
/z(s, dr)  = r(a)Q(s ,dr) .  

It is then clear that 

M(s,dr)  = f i (s ,dr) ,  
r(a) 
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so that fi and M relate to each other exactly as fi and M in the previous section. 
Hence fi and M define t he same a and are also conservative at the same time. 
Further fi defines an invariant function h and an invariant measure ïr satisfying 

i/>(c?s) = [ Q(r ,ds)Tr(dr) ,  
J s 

j r  ((is) = s(a) t j j (ds)  

and 
H(s)  = s (a)h ( s ) .  

The stable population measure given in Definition (7.2) (only now with S k s 
instead of it's) is the same since it depends on individual behaviour only through 
the macro process. Therefore, in the limit, all individuals in some sense behave 
like the average individuals discussed above. For instance take a look at the 
distribution of Ego's life, first for the "average" population: 

P(£70€ A) = Q(ir ,A) ,  

by P roposition 7.6. For the original population the same proposition yields 

P(U 0  e  A)  = Q{ir ,A)  

oo . oo . 
= £  / &(s ,A)n(ds  x {t}) = £ / Q t (s ,A)e- a ^U>(ds)  

t=i  J s  i=i  J s  

0 0  r  e ~ a T i { ' )  
=  £ /  Qi{s ,A)  v(ds)  = Q(ic ,A) .  

i=i J s  s { a > 

8.3. The Homogeneous Case 

We will now take a quick look at the stable population in the homogeneous case. 
Recall that, in the terminology from Broberg (1987), a branching process with 
sibling dependencies is called homogeneous if all individual lives are identically 
distributed, i.e if al l the Q{s,-) = Q(-) for some Q. Of cou rse this is a special 
case of what has been described in the previous sections, but nevertheless high
lights the effects (or rather lack of effects) of sibling dep endencies on population 
composition. 

In the homogeneous case there are no types at the individual level and it is 
thus possible to compare the sibling dependent process and the "same" process 
without dependencies, i.e. the process where all individuals choose lives according 
to the law (5(-)' independently of each other. 

In the sibling dependent homogeneous case, the stable population measure is 
determined by 

~P{Zk € Ak, Tk € dtk, Rk = iki T/t € d^kk = 0,..., n) 

= e- a T ^ ] Q{d l n )E l n [e- a t »-A n  n {6„ € d 1 € dt n }}  
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[e a t l - ,Ai  n{4 € «?7o,Tj0(4'i) € ^!}]PSo(A0)ae a*0<ft0, (8.3) 

where A* G -471. Now ?/>(•) = Q(-) ,  but apart from this it does not seem to differ 
much from (7.2). However, when we start to investigate individual properties 
in the family line backwards from Ego, things will simplify substantially when 
all marginals are the same. The stable population measure in the independent, 
single-type case is determined by 

p(o = n q(c*) n 4êê':h)iIm^+dK1  -e" •at \  

xeJ-n k=0 
x^—1n 

where C is a cylinder of th e form 

c = ( n cx x fiJV") X ({ in ,  Mo} X N°° ) x [0,*]. (8.4) 
x£jn 

From Nerman and Jägers (1984) we know, apart from Ego's exponential age and 
other properties mentioned earlier, that events referring to Ego's fcth ancestor 
alone, have probabilities which are independent of k. We also know that the 
ranks backwards from Ego are i.i.d. and that the same holds for the interbirth 
times. The marginals are given by 

P ( u k e A )  =  E[ i ( a y , A } ,  

P (R k  = j)  = E[e- a T ^}  

and 
P{T k  e  dt)  = e~atfi(d t ) ,  

where k  — 0,1,except for T0  which is exponential (a). That all this holds also 
under P we state in the following propositions. 

Proposition 8.4. The li fe  o f  Eg o's  k th  ances tor ,  U k ,  has  dis tr ibut ion given by  

P (U k eA)  = E[i( a y ,A \ ,  

for  A  £  A. 

Proof. Just replace Q(f t ,ds)  by Q(ds)  and /x(s,-) by f l ( -)  in Proposition 8.3 to 

obtain 
oo . 

P(U k  €A)  = jr  e- a ^Q{ds) f i k - 2 {S) f i A {dr)  
t=l SxS 

= f s (a)Q(ds)ßA (dr)  = E[£(a)]A) ,  
JSxS 

smce 
/  s(a)Q(ds)  = E[i(a)]  = 1 
Js  
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and 
/ifc-2(S) = £[é(a)]fc-2 = l. 

Proposition 8.5. The ranks backw ards from Ego, Ro,Ri,..., are independent 
and have the margi nal distri butions 

P (Rk  = j) = E[e-aT^}. 

Proof. Since we have no types, the Radon-Nikodym derivatives in Proposi
tion 8.3 are identically one and it follows that 

P(Rn+1 = j\Rn = i) = / e~aT^Q(ds) = E[e~aT^}. 
Js 

• 

Proposition 8.6. The interbirth times backw ards from Ego, Ti,Ï2,... are i nde
pendent and have margina l distribut ions 

P(Tk  G dt) = e-ain(dt). 

Proof. Summation in (8.3) yields 

£ Jrn+i e-aTMQ(dln)E,n[e-̂ -, {&, G d7»-i,^(&„) G d t n } )  

... £7 l[e~at l;Ti0(£ t l) G dt^ae'"*0 dt0 

= E e-at"Q({r tn-Å^ G dt n})...e-^Q({r t0(Cn) G dt^ae^ dt0 

iOvi'n 

since 
oo 

E <9(R(6:) G <M) = ^(Ai)] = Em i)] 4 n(dU), 
«0 = 1 

and so on. • 
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9. L2-convergence 

9.1. The Asymptotic Variance 

This chapter is devoted to L2-convergence under second moment conditions. Such 
convergence results for ordinary multi-type processes can be found in Nerman 
(1984). The homogeneous sibling dependent case was investigated in Broberg 
(1986). 

First the asymptotic variance of e~a tZf is explored. The method is, basically, 
that of Ne rman (1984) and the conditions assumed in that reference are adopted. 

Throughout this chapter we will t herefore allow only individual characteris
tics, i.e. characteristics that depend on your type and life only and not on your 
progeny. Of c ourse if x is individual then also x' is so- Recall 

. OO 

7? = / e~a tH(Y)r/(d'y '  x dt)  = Y e~ a T '^£ t .  
JrxR+ 

With 

X'(t)  + [ Ey[Z?lu]ri (df '  x du) 
JTX.R+ 

<7(7) t)  = Var7 

we can then write 

Var7[Z*'] = [ u)V(i ,di  x du),  
JrxR+ 

see Lemma 3.3 in Nerman (1984). Here V denotes the total population measure, 
i.e. 

V ( f ,  d i  xd t )  =  Y  d j  x dt).  
n> 0 

Hence 

Var4e~a tZ?']= [  e~2a(t-u) 9(^ ~ u)_ e-2™g(7')y(7> x du)_ (9 .1 )  

JTxRjf •"(7) 

The limiting behaviour of this is given in the following lemma. 

Lemma 9.1. Add to the condit ions o/Theorem 5.8 that  x  is  individual and that,  

for some constant  C\ .  

F f£2 l  
sup 5 = c 1  < 00. (9.2) 

s h(s)  

Then,  for xj j-almost  al l  7  €  T ,  

Var^e-a tZ?'l  -  / x f i +  e~2 a u  VarY[f j]V(7 ,  d7 '  x  du).  
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Proof. If we can show that 

e~2 a tg(l , t )  
H( 7) 

< a + by (a).  

for some constants a an d 6, and that the integrals 

[ x du) 
JrxR+ 

and 
f  e  

2 a uy(a)H(i ' )V("f ,  dy'  x du) 
JrxR+ 

(9.3) 

(9.4) 

are finite, dominated convergence can be used to replace e 2a( ' u^g(y ' , t  — u) by 
its limit in (9.1). Recalling that Var[X + Y] < 2(Var[A'] + Var[Y]) we obtain 

e 2 o"gh,t)  o-2 at 
< 2-

H{ 7) - H( 7) 
Var7[x'(0] + Var^ [  Ey[Z?_u ]T)(d~f '  x du) 

JrxR+ 

so we look at these two te rms separately. Since \ is bounded, x < 171 saY> ^ 
clear that 

e-2atVars[x(i)] < m2  < oo. 

Bearing in mind that Cov[X, Y] < Var[X] + Var[F], we first see tha t 

- 2  at 

H( 7) 
Var 7[x'(<)] 

1 / 00 

H(i) vèt 

+ £ f-0(T,(-v)+rJ„))Cov7[e-«(t-W)x<(< - r,-(7)), Xj(f - ̂(7))] 
1 

1  / 0 0  

= 777  ̂ E e-2aT'(7)Var,i(7)[e-0('f W>x(f - *(7))] 
\i=1 

+ £ e-a(T'^)+^W)(VarffiW[e-a<t-T'W)x(t - ̂(7))] 

< 

+ Varffj(-y)[e a(t T^ ] )x(t  -  ̂- ( 7 ) ) ] )  

1 

Wf) 
(m2-y(2a) + m 7(a) ) 

m m A . . 
< h—7(")) 

K K 
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since 

H(l) =I>—Wfc(a,-(7)) > «7(a), 
1 = 1 

and clearly 7(2q) < 7(a)- For the second term, 

s-2at 

1 

H(  7)  

- -f (7) 

f E^Zfi^di' x du) 
Jrxfi+ 

I 

.-a(t-u) C , '7\ 1 
^ 1 x  J u )  

<K+ H { - f )  

for some constant C2, by (6.4). Now, by (9.2) and the inequality 

E [ X Y ]  <  E [ X 2 ]  +  E [ Y 2 ]  +  E [ X ] E [ Y ] ,  

we obtain 

E - y [ v 2 }  =  E 1  
1 = 1 

< ca]Te 2aT,(7,/i(o-,(7)) 
1 = 1 

+ £ + ci^(<Ti(7)) + M^(7))A(^(7)))-
1#j 

Again by (9.2) it holds that 

, , ,  r [ »  E . \ l ?  ' > . [ ? !  i .  
M») = E.K] = < «1. 

and therefore, since 7(a) < H(7)/«, 

< I(c? + 3<fr(a)). 
tf(7) K 

Hence we have 

Éllït < -(m2 + m47(a) + c2 + 3c27(a)) = a + 67(a). 
^(7) K 

To show that the integrals (9.3) and (9.4) are finite we first show that 

[ e~2auh(r)i>(s,dr x du) < 00, 
J SxR+ 

which will hold if 

sup [ f e a 'uh(r)i'(s,dr x du) 
n  Jn J S 

< OO. 
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Here v is the individual counterpart of V , defined in (4.2). With 

x(t) = eatl[0il](i)/i(o-0), 

we have 

E . [ e ~ a t z f ]  

= [ e~a(t-u)Er[X{t - u)]e-auv{s, dr x du) 
J  S x R +  

r t  

= [ [ h(r)e auv{s,dr x du), Jt-1 Js 
and since \ fulfills the conditions of Theorem 3 in Jägers (1992) this is uniformly 
bounded so that (9.7), and thereby also (9.6) holds. 

Next we shall establish the connection between v and V. Since 
OO 

M(y,dy' x du) = d-y')6Ti(^(du) 
i = 1  

and 
oo . 

H(s,dr x du) = Es[£(dr x du)} = X / ^,(i)(dr)Sr,(i)(du)Q(s, d-y), 
t=i 

it is clear that 

M2(y,dy' x du) = f M (•y, d'y" x dv)M(y",dy' x du — v) 
J r x R ±  

oo 
11 E L ^r.(7)(^)(3(£ri(7),c?7")^(7»)(c?u-ü)Q((Ji(7")>rf7') 

i,j=i •/rxR+ 

OO . 
= YJ I êr,(-1)(dv)Q(a i(y),dy")ST]{yi)(du - v)Q{r,dy')Sa.{yi)(dr) 

ij—lJTxR+x5 

oo . 
X / dr x du- v)6TiM(dv)Q(r, dy'), 
•  i J S x R +  i — 1  

and induction yields 

00 r Mn(y,dy' k du) = / //" 1(cr i(7),dr x du - v)STi^(dv)Q(r, dy'). 
J s x R +  » = 1 

Therefore 

V(7, dy' x du) 
OO -

= M0(y, dy' x du) + Y.J2 , dr x du - v)6Tt{^(dv)Q(r, dy') 
„>i ;=i •/5x-R+ 

OO . 
= àhfl)(dy' xdu) + V / f(o"«(7)> dr x du - v)Q(r, dy')STi{^(dv). 

• 1 J5xfi+ 
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Hence, recalling that 

J T  H(l ' )Q(r ,  d 'y ' )  =  h(r ) ,  

[  e - 2 a u / / (7 ' )V(7 ,^7 '  x  du)  
JrxR+ 

OO » 

= H(l )  +  X) /  e~ 2 a u H(j ' ) i y (a i ( ' y ) ,  dr  x du -  v)Q(r ,dq/ ' )6 T i { ^(dv)  
2=1 + 

OO » 
= #( t )  + 23  /  2  e~ 2 a u Hir)u(a i ( j ) ,dr  x  d u  -  v ) ê T,( -y) (dv) ,  

• -1 J S x R̂ i î=i + 

which is finite by (9.6) and the fact that there are 7(5 x R + )  < 00 terms in the 
sum. Having shown this it is easy to see that 

f  e~ 2 a u H(j ' ) î ' {a)V( j ,  d 'y '  x du)  
JrxR± 

fZ^JrxSxR\  
<  - t f  

«fe-'1" 

_ OO f. 

<  f  
K ,  JS  SxR2

+ 

- 2 a u H{- i ' fQ[r ,d^)v{(Ti(^ ) ,dr  x du -  v)8 n ^) (dv)  

h(r ) i / ( c r i ( i ) ,  dr  x du — v)ë T t ^) (dv) ,  

which is finite by the calculations above. 
We now turn to computing the limit of e~ 2 a t g(^ , t ) .  By the definition of g we 

can write 

e  2 a t g{l , t )  = Var-, 

Since x < mi 

— Oit e X '(t ) + [ e- a ^Ey [Ztu]e-auv(d l '  x du)  
JrxR+ 

m 
Var7[e-at

X(f)] < e"2«'— - 0 

From this it follows that also Var7[e a<x'(0] * 0 since x'(<) =.ESi Xi{t ~ Ti)i 
which for each starting type 7 is a finite sum. Hence 

l i m e  2 a t g( i ,  t )  
t—> OO 

lim Var-, / e- a ^E y[Ztu}e- a u v(d l '  x du)  
JrxR+ 

2 
-MxH] 

aß 

EAx( a ) }  

aß  

j Var7 r  e~ a u H{7X^7' x du)  

Var~ 
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by dominated convergence, since 

[  e- a^Ey[Zt^e- a ur]{d4 *  du)  
JTxR+ "xR+ 

e - a { t -u) E y[Z^ u \  

JrxR+ H(y 

Replacing e~atg(f,t) by its limit in (9.1) yields 

J
r  p~a ( t— u )  F r y x  i  

£ X du)  < c2 f j .  
rx f l+ H #)  

VarJe-aiZ,x'l -• ( ß Vary {r) \e-2auV ̂, d7' x du), 

and the lemma is proved. 

aß 

9.2. The L2-convergence Theorem 

As for L1-convergence, also here the intrinsic martingale is crucial in the analysis. 
Recall 

Wt = £ e~a§H(|), 
x€Jt  

from Section 6.1. It can be shown that with the special characteristic 

X\(t) = eatJrf e"™tf(7>(d7' x du), 

we can write 
Wi = e~ a tZ*' 1 ,  

see Nerman (1984). With <7 as above we then see that 

Var.JWt] = / e-te($"W, f - u)e-2auF(7, d7' x du) 
JrxR+ 

= [ /V2auVarv[77]V(7,d7' x du). 
./r io 

Letting £ — * c» we obtain 

Var7[Wt] —» [ e_2a"Vary[^]y(7, d7' x du), (9.8) 
JrxR+ 

which is finite since by (9.5) we see that 

Vary[77] < £y[ï?2] < H(f ' )- (c l  + 3c27'(a)), 
AC 

which has already have shown to be integrable with respect to e~ 2 a uV(7, dj '  x du). 
Hence Wt converges in L2 to some random variable W such that E^\W] = H(7). 
The following theorem can now be stated. 

Theorem 9.2. Assume the condi t ions of  Lemma 9.1. Then,  wi th  w as in  (6.6), 

-ofâx _> ^[x(q)].r. 
aß 

e z? -> —w, 
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as t  —> oo in L\Qs) for ir-almost al l  s £ S. 

Proof. Let p = E^\x{a)\ laß. Then 

E,l(e~a tZ?' -  pWf ] < 2(E4(e~a tZî' -  pW t)2 ]  + E,[(pW t  - pW)2 ]), 

where the second term converges to 0 by the L2-convergence of W t .  For the first 

term note that 

where 

E^[(e-a tZ?' -  pW t )2] = Var- pW t]  + E2 [e~a tZf -  pW t} 

E7 [e a tZf — pW t} = e 
a tE^[Zx  } — pH(f) —» 0, as t  —> oo. 

With x'i as above we now see that 

Var7[e-atZ (
x ' - pW t ]  = 2Var7[e-a%x'] 

+ 2Var^[e-atZ t
pxi] - Var7[e-a%x 

It has already been shown that 

VarJe"« Zx 

7, 
-2a-u 

Vary [77] 1/(7, d7' x du) = p2 I ,  

and 

so if 

' rxR+ 

Var^[e~a tZP
t
x [ ]  = p2V^[W t ]  p2/, 

Var4e~atx'i{t)] •§ 0, 

Var7[e-<rtxi(*)] 

H(l) 
< a + 67(a) 

and 

"(7) 

Var7 / e-Q( t-"^y[Z f
xi]e-a"7?(d7' x du) 

\ J r xR+  
< c + d'y {a), 

for some constants a,b,c and d, then the methods in the proof of Lemma 9.1 

show that also Var^[e~atZx+PXl] converge. But 

Var7[e atxi(i)] = Var7 J e auH{^')r}(d'y' x du) 0, 

Var7[e a 'xi(*)] ^ EiW\ ^ 1 

f j7 , J> < ~TT < -(^i + 3c?7(a)) 
tf(7) H{ 7) k 

and 

*ev"" 

1 

/ e-a(#E7,[Z^Je-a>(d7 ' x du) 

~/rxß+ 

/  H("f ')e aur](dy x du) 

./ r x 



so it can be concluded that 

Var , [e- a t Z?'+ P x [ }->(p + p)2 I  =  4p2 I ,  

and hence 
Vary [e~ a t Z?'  -  pW t ]  -> 0. 

Finally recall (6.5) to obtain 

E s [(e~ a t z f  -  pw) 2 ]  

<  E s [(e- a t
X o ( t ) ) 2 }  + E s [{e- a t Z? o  £0  -  pw o £ 0 ) 2 ] ,  

where the first term tends to zero since x is bounded and the second term is 

J r E^(e- a t ZÏ  -  pw)2 ]Q(s ,d 7 ) .  

It can be shown that the integrand is dominated by a72 -f 67 for some constants 
a and 6, so by (9.2) and dominated convergence, the integral tends to zero as 
t  —* 0 0  for  7 T -a lmost  a l l  s  £  S.  

• 

As pointed out in Nerman (1984) it is a rather serious restriction to assume 
that the characteristic is individual. 
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10. More General Dependencies 

10.1. A More General Type Structure 

The theory built up so far relies on the assumption that an individual's marginal 
reproduction only depends on her type. Hence an individual of t ype s has the 
same marginal reproduction whatever the rest of her sibling group looks like. 
This has shown to be a rich model which, amongst other things, can be applied 
to quite general forms of sibling dependencies in single-type populations. It is 
not totally satisfactory though; for reasons similar to those that motivated us to 
leave the homogeneous case for more general dependence structures, we would 
want to treat the most general case also in the multi-type setting, i.e. when the 
marginals Qi(7, •) depend on i and 7 not only through the type <7,(7). 

This step is not by any means as big as it is for single-type populations. In 
fact, the only thing that has to be done is to redefine the type <7,(7) to consist 
of th e pair (7, i). Then everything is brought back to what has been done; given 
your type, your marginal reproduction is independent of th e rest of your sibling 
group and all the theory developed previously applies. 

It could however be of inter est to continue to keep track of the original types. 
These might still be interesting even though they no longer alone determine indi
vidual marginal reproduction. Therefore keep the notation <7,(7) for the original 
types and simply use the notation (7,i) for the entities that determine marginal 
reproduction (they might for instance be called actual types ). This leads to the 
notation 

M(7> 0) df '  x {j} x dt)  = Qi( f ,d f ' )8T j h l ) (d t )  

and 
OO 

M((7,;W x {;}) = J2e- a ^ ' ) Q i ( 1 ,d 1 ' ) .  
3=1 

Under conservativity assumptions there will exist an invariant measure 7r on T x 
Z+ such that 

OO » 

7T(d i  X { j})  = Y ,  X {j lMcfy x {*}),  

3=i*r 

this 7T also being the distribution of the (7, i )  in the stable population. The 
original types will then be distributed according to the measure 

OO . 
4>(ds)  = £ / <^lW(ck>)7r(d7 x {»}), 

«•=1 Jr 

but besides this not much of interest can be said about them. There will be 
no Markov structure backwards in the stable population tree for the original 
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types, this structure being closely related to the fact that types should determine 
marginal reproduction (a role now played by the actual types). Neither is <j> 

invariant for any reproduction kernel; in fact an expression like fi(s, dr) no longer 
makes sense since it matters also in what context 5 appears. Of course all the 
established theory holds for the actual types. 

10.2. How to Deal with Cousins 

A natural generalization is to extend the dependencies beyond sibling groups, 
a natural first step being to assume that also cousins are dependent. This can 
be subsumed in the old theory by noting that a group of (first) cousins can be 
described as a sibling group of mac ro individuals, where the macro individuals as 
before consist of s ibling groups of i ndividuals, these latter groups now possibly 
being dependent. Observe that by a group of cousins is meant a group of indi 
viduals such that any pair are either siblings or cousins. For a Galton-Watson 
population this can be neatly illustrated in a picture. Recall Figure 3.1 where 
individuals were lumped together to form sibling groups and go one step further: 

Figure 10.1: The macroprocess from Figure 3.1 with cousin 
groups in rectangles and the corresponding 
cousin macro process. 

Note that the type of a group of cousins tells how many sibling groups it 
consists of and how many individuals there are in each sibling group. 

In a general branching process, assume that a group of cousins born according 
to the point process 7' on F x R+ reproduces according to the joint probability 

measure P(7',-) on fi = Ù°°. This construction is exactly the same as in Sec
tion 3.2, only that it starts one step "higher", with sibling groups and that these 
in their turn are lumped together to form new macro individuals, cousin groups. 
The type 7' of a cousin group is thus an element of 

x R+) =  Af(AT(S  X R+) x R + ) ,  
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the set of point processes on F x R+. The ith sibling group in 7' reproduces 
according to the marginal 

f MV), å 

on Ö. Here <7,-(7') is an element of T, i.e. a point process on S x R+. The jth 
individual in this sibling group in i ts turn reproduces according to the marginal 

•), where ^(^(7')) is an individual type, an element of S. 
By this, there will b e three reproduction kernels, /j.,M an d M', to be called 

the individual, the sibling macro and the cousin macro reproduction kernel re
spectively. It is clear that M' relates to M in the same way as M relates to /i 
and hence the three kernels define the same Malthusian parameter. Further, /t, 
M and M' are either all conservative or all not. The corresponding invariant 
measures and functions are 7r, x p, iß' and h, H, H', relating to each other in the 
obvious way. 

The mean convergence follows imm ediately so the only concern is how well 
the proof of /^-convergence applies. This is not obvious since the convergence 
of the sibling macro process was e stablished through certain properties on the 
individual level (e.g. uniform integrability) which does not hold for the sibling 
macro process. Therefore the proof of The orem 6.2 can not simply be copied. It 
can however b e modified to extend also to cousin dependencies, and indeed to 
dependencies between nth cousins for each n, something that will be done in the 
next section. 

10.3. General Local Dependencies 

Let us start by introducing some terminology and convenient notation. Call 
a branching process n-dependent if individuals who are fcth cousins reproduce 
independently if k > n but possibly dependently if k < n. By convention sib
lings are considered as Oth cousins. Then 0-dependence means independence, 
1-dependence means sibling dependences, 2-dependence means that individuals 
who are either siblings or first cousins reproduce dependently and so forth. There 
are no dependencies between generations other than through the types. The term 
"local" in the title obviously means local in the family tree. 

There will be a hierarchy of ma cro individuals and we define a k-macro indi
vidual to consist of a group of individu als each two of whom are jth cousins for 
some j = 0,1,..., k where 0 < k < n. 

There is now a sequence of life spaces flo, fii, ••• where 

fik+i = ? 

ft0 being the individual life spa ce. Likewise th ere will be a sequence of type 
spaces, To, IV,-./. where 

Tfc+1 — AF(Tk x R+), 

(or again some appropriate subset) and, in the previous notation, To = S and 
IV = T. Let er; : Tk+1 —• IV, k = 1,2,..., so that a^k+i) is the type of the zth 
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fc-macro individual in a (it + l)-macro individual. The sequence of probability 
measures Po, Pi,... on fi0, ftj,... are then such that the zth fc-macro individual in 
a (k + l)-macro individual reproduces according to the marginal 

Pk(<7i(*lk+i),A) = / lA(pi(u>k+i))Pk+i{duk+i), 

the projections pi defined in the obvious way. Again it will be convenient to 
consider the measures induced by the reproduction processes. Therefore define 

Qk{"fki d^fk+1 ) = Pk{~fki 1 })7 

with the obvious notation 7 7 0 , 7 7 1 ,where r]° = £. These measures give rise to 
the sequence of reproduction kernels M 0,Mi,..., where M0 = \i and M\ = M, 
and the next lemma is obvious. 

Lemma 10.1. In an n-dependent branching process the kernels M 0, Mi,..., Mn 

all defi ne the same Malthusian parameter. Further, the kernels M 0, Mi, •••, Mn, 
are either al l conserv ative or all not. 

Now let T; : —» R+ so that r,-(7^) is the time point for the ith point in 
7k- Under conservativity assumptions, there will also be a sequence of functions 
H0, Hi,..., Hn and a sequence of m easures v)q. U'i , • ••VJn such that Hk and tpk are 
invariant for M k, 

oo . 

Mdlk) = ̂ 2 ^"^"^^(^{d-y^ipk+iid-yk), (10.1) 
i=1 *+1 

i/>k+i(d*fk+i) = / Qkilk, d-yk+i)ipk(d~/k) 
Jrk 

and 
OO 

Hk+i(lk+i) = ïk+i =Y,e-aT 'bk+l)Hk(ai( 7* 1 ) ) ,  

i=l 

where, of co urse, Ho — h, Hi = H,ißo — t and ij>j = if). T he mean convergence 
is obvious, the problems of L1 -convergence are two: only the individual process 
is assumed uniformly integrable and only the function h = H0 is assumed to be 
bounded away from zero. 

We start by proving that all the a; log a: con ditions are equivalent. For that 
purpose note that 

OO 
fjk+1 =^2e-aT-ij?. (10.2) 

i=1 

Here T]k is the point process stemming from the ith &-macro individual and fjk 

defined from rjk as was fj was fro m rj. Th e xlogx conditions are 

E4,k [fjh log+ fjk] < 00, 

for k = 0,1,2,..., n, and we state 
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Lemma 10.2. Ei ther  
E^ , k { f j k  \og+ f j k ]  <  oo,  

for  k  =  0,1 ,2 ,  or  
E^ k [r j k  \og+ f j k ]  =  00 > 

for  k  — 0,1,2,..., n. 

Proof. Let 
^ e-«fj;!_1(-y*)gWoTijk_2(<T,fc_lr(Tfj!))>iiefoT10<*r,1(...<rifc_1(-yfc))...) 

ü—1 '0 

and note that 
OO 

7*= £ e-^-1
(^^_1(att_1(7jk)) 

«k-l=l 

= £ e-aT^-'('>'!)e-OT'^(^-'(n"î))//fc_2(<7ù_2(^_1(7fc))) 
*k- l ->k-2  

_ _ e-«T,t_1(7fc)e-«T,)t_2(CT,fc_1(7)c))___e-«T,0(Cr,1(...ff,fc_1(7(:))-

*fc-l >•••»*<> 

Ä((Ti0(...O'ifc_i(7fc))...)) 

> K/(7fc)-

By (10.2), 

E l k [v h ] o & +  V k ]  =  E l k   

< E y k [ f j k log + ( f (>y k ) ) }  

+f ( lk )E.  

°o  e ~ a T i k-1^*)  
— e —fc—1 

?" i»g+  ( fl-ftj je-Tfi j-* 

^ lk  

OO —a-Ti (->fc) / oo p- a T >k- i  ( t*)  ,  ,  

= /i(7fe) + ^(7fc)-

By (10.3), 

h{ lk)  =  log + { f{ lk ) )E l k [ f j k ]  <  log+(^)i/fc(7fc) = 7fclog+ 

and hence 

[  h( lk ) i>k{d*ik)  <  I  l°g+7k—M d l k )  
Jr k  -T*  k  

= I 7fcl°g+ ~ Qk-i{" ïk - i ,d lk )^k-x{d lk- i )  
J  r k xr k ^  k  

94 



- k — 1 
/ E-yJi [v^1 l°g+ ]vk-l{<hk-i ) j r i _ 1  K 

E^Af-1 log+ ~]-
/€ 

Iterate (10.2) down to r/° = £ and use the convexity of xlog+ x to obtain 

h(lk) = f{lk)E1 
jk-

1 e~aT'k-i^ lk\ ( _£,r'o''TM (-••r r 'A—i("".))•••) 

p-aT'k-lhk) ~o,T,0(an (---<T<fc_1 (-/A:))---) 

_Ç..» 7S) 

l°g+ E L1—777"^ 
i U - i . - . ' o  

/(7*) 

e-aTik_l ('**)...|;t0,T<o(<r<l 
— y ] r, s Elk log Cik—l --to] 

Ù-1 î'o •" \ 'k' 

Ù - 1  >0 

Now note that 

^-Vl0(."(Tli._1(-vfc)...)[s l°g+1'] 

/, Jlïfc-i)...) [£l°g+ £]$?<»_, (7*) (^7fe-l ) JL k-1 

='••• = j E10 [Ç\og+£]6aikLihk)(dik-1)...6aioM(dj0), 
i t — 1  X . . . X 1  0  

and therefore, by iterating (10.1), 

/ hilkWkidfk) 
Jrk 

«/l t • 

= / ^7o[^log+^]^o(^7o) = / £s[£log+£Mds) = £x[^log+|]. 
•/r0 ./s 

Hence 
2^1og+^] < ^(l-Mog+^-^ + ̂ ^log+ë]. 

For the converse, apply Jensen's inequality to obtain 

Eih [Vk l°g+ Vk] > E lk  [fjk] log+ E lk  [fjk] = 7k log+ 7k, 

and hence 

E+k lvk l°g+ Vk] = / Elk [r)k log+ T]k}ipk(dik) 
JT h Tk 
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> / 7ilog+ lk1pk{dlk) = / Ik log+ 1kQk-l{lk-l J <^7fc)'/'fc-l(^7fc-l) 
v/r(cxrjs_i 

= [ E lk_x[Tjk~ l  log+ flfc-1]^*_i(d7t_i) = !°g+ 9fc-1]-
"'r fc_i 

Therefore, for any &, 

^*-1 [V*'1 l°g+ Vk~1} < Ei>* [Vk log+ t] 

< E^k_J log+ J-—] + £|[£log+1], 
AC 

and the proof is complete. • 

The population of individuals started from an s-type individual will follow the 
marginal law Qs{-) on S x Q1, Qs defined in obvious analogy with (3.2). The 
analogue of Theorem 6.2 and Corollary 6.3 is 

Theorem 10.3. Consider an n-dependent non-lattice, uniformly integrable and 
strictly Malthusian branching process, such that £?„•[£ log+£] < oo. Let x be 
bounded and the function e ~atEs[x(t)\ directly Riemann integrable. Then there 
exists a random variab le w such that 

-at„x 
EAx(a)\. 

aß 
e Zf —w, 

as t —> oo in LX(QS) for -K-almost all s € S. 

Proof. The proof is essentially the same as that of Theorem 6.2 and only the 
differences will be pointed out. The major novelty is of course that we now deal 
with a hierarchy of c haracteristics, macro processes, reproduction measures and 
so on. With 

Tin-r.-.M'1) = Tin-ÀVÔ'1) + ••• + T«o((T«l (•••Cr'n~l(Tfo~1 ))•••)•' 

the characteristic of interest is 

vr'«) ^(t-n^K-1)) 

X"(t) = •£ E 
i„_l=l t„ _ 2=l 

£in_l-.-»1 T»n_l---»O (^0 )) 
y ' X'n-1—«o(^ Tifi-l—'oivo ))î 

t 'o=l 

and, in analogy with the proof of Theorem 6.2, we assume that x ^ 171 an(i 
truncate x"(<) so that it vanishes for t > m. The key to the proof of Theorem 6.2 
is the inequality (6.3) and we will try to generalise it to this setting. By (10.3) 
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we have that i/n(r/n *) > k f ( r / n  *) and therefore £x(o) is replaced by /(>/" *). 

The sum 
to ( t )  

E îUO 
t=l 

is replaced by 

E E ••• E y n  (x i n ^ i .  . .£o)  ? 
!n_l=l in-2=1 «0=1 

where, as before, the y n  are uniformly integrable over their starting types. The 
next step is therefore to establish a relation analogous to the previous fact that 

e ~ a { t ~^Ut  - <)  < L 

i x {o t )  

For convenience reasons the notation T rather than rn is used for birth times 
for n-macro individuals. Hence TX is the birth time of the n-macro individual 
x, Txk the birth time of the (n — l)-macro individual xk and so forth. Thus it 
is the subscript that tells which k that is under consideration. Also note that 
Txk = Tx + TkiVx)- What we need to show is that 

— a( t  — T x )  Vx  1  ( t  — Tx)  r ^ x l n—1  ̂  T x , n—l)  

f ( r j n ~i )  ^  ^  J Vlx  )  .n_!=l «„-2 = 1 

E £«'n-l—«1 — Txin-l...«l) — !• 
«1=1 

ViÅ-Vin-Avr 1 ) - )  =  ̂„|;...«1, 

f { j j n -1) = e-aT'"-1'''"_1'e_Q!T'n-2 W"1))...e
-aT*o(<T'l(-<T'n-l(,'ï_1))-) 

By the proof of T heorem 6.2 we know that e~at^\{t) < 71 (a) and hence 

Vx~ 1 ( l -Tx)  V *>n-1  (t_T*'n-l) 
e-ctt-r.) £ £ 

t'n-l=l *»—2=1 

E — *1 — TX«n-l — «1) 
«1=1 

Since 

we have 

97 



^£tn_1 ^ 

£ • £ 
In—1 —1 >1=1 

e -a( t -T x , n _ 
_ 1  ~ T xi ,  

Vx~ 1 ( t - r x )  . t; (<_Tl'n-l -'i 

£ • £ 
l"n — 1 —1 11=1 

a(r x i n _ 1  — T X )  

< £ ... £ --)L...ilw</(ir1)1 

î„_I=i ii=i 

where the last inequality follows since 

7~xin—i ...î'I Tx + Tin-ÀVx X) + -  + T n (cT t 2 ( . . .cr i n _ 1 (TlZ  1))...). 

The rest of th e proof is carried through by c arefully copying the proofs of Th eo
rem 6.2 and Corollary 6.3. 
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