
Software Complexity
and

Project Performance

Master thesis
by

Sofia Nystedt

Bachelor thesis
by

Claes Sandros

Department of Informatics
School of Economics and Commercial Law at the University of Gothenburg

Spring Semester 1999

Supervisor Birgitta Ahlbom

$EVWUDFW
Software complexity is the all-embracing notion referring to factors that decide the
level of difficulty in developing software projects. In this master thesis we have
examined the concept VRIWZDUH� FRPSOH[LW\ and its effect on software projects,
concerning productivity and quality, for our assignor, Ericsson Mobile Data
Design AB (ERV). Our literature studies have compelled to the development of
our own model of complexity, as no such comprehensive model existed. With this
model as a starting point we have examined existing methods of different software
metrics. According to our model of complexity the metrics we found focused either
on software quality or software size/effort. In our suggestion to ERV, of how they
should measure their projects, we have combined both of these attributes in a
metric called performance. Two of the functional size methods we found, Function
Point Analysis (FPA) and Full Function Points (FFP), were applied on a completed
software project to determine which method suited best for the projects at ERV.
Our hypothesis was that FFP was most suitable and our tests of FFP and FPA
proved that this hypothesis was right. Based on our theoretical studies of the
quality metrics we suggested that a structural complexity measure (or a
combination of several of them) and error density should each be combined with
FFP, at different stages of the development process, to present the measure of
performance.

Preface
It has been a privilege for both of us to be able to write our final exam at Ericsson
Mobile Data Design AB (ERV). We would like to thank the staffs at JN and JK that
have helped us whenever we have needed their knowledge. Special thanks to Anna
Börjesson and Mikael Törnqvist, who had the good sense of person knowledge to
bring the two of us together for this occasion. Thank you also Anders Klint, our
supervisor at ERV, and of course Birgitta Ahlbom, our instructor at the Department of
Informatics at the University of Gothenburg.

Sincerely

Sofia Nystedt Claes Sandros

7$%/(�2)�&217(176

� ,1752'8&7,21 �� �

1.1 BACKGROUND .. 9
1.2 RESEARCH AREA... 10
1.3 DISPOSITION OF THE REPORT .. 11

� 385326(�� ��

� 352%/(0�� ��

3.1 SCOPE AND LIMITATIONS .. 15

� 0(7+2'�� ��

4.1 THE PRELIMINARY PLAN ... 17
4.2 THE SETTLED PLAN ... 18
����� 'HILQLQJ�WKH�DWWULEXWHV�RI�VRIWZDUH�FRPSOH[LW\��� ��
����� ([DPLQLQJ�H[LVWLQJ�PHWKRGV��� ��
����� &RXQWLQJ�D�FRPSOHWHG�SURMHFW �� ��
����� 'HWHUPLQH�VXJJHVWLRQV�IRU�(ULFVVRQ��� ��

� 7+(�6,78$7,21�$7�(5,&6621�02%,/(�'7�'(6,*1��� ��

5.1 CHARACTERISTICS OF THE PRODUCTS AT ERV... 23
����� 7KH�XVHUV�RI�PRELOH�GDWD�V\VWHPV ��� ��
����� 5HDO�WLPH�V\VWHPV ��� ��

5.2 ERV PROJECT ORGANIZATION .. 26
5.3 DARWIN – ERV’S MODEL FOR SYSTEM DEVELOPMENT .. 28
5.4 SUMMARY .. 29

� 62)7:$5(�0(75,&6�� ��

6.1 DEFINITIONS OF SOFTWARE METRICS.. 31
6.2 WHY SOFTWARE METRICS?... 32
6.3 RECIPIENTS AND USE OF SOFTWARE METRICS INFORMATION.. 33
����� 0DQDJHUV�� ��
����� (QJLQHHUV�� ��
����� &XVWRPHUV��� ��

6.4 THE COMPONENTS IN SOFTWARE METRICS.. 35
6.5 SUMMARY .. 36

� 62)7:$5(�&203/(;,7<��� ��

7.1 SOURCES OF SOFTWARE COMPLEXITY... 37
7.2 NATURE OF SOFTWARE COMPLEXITY.. 38
7.3 EFFECTS OF SOFTWARE COMPLEXITY.. 39
����� (UURU�SURQHQHVV ��� ��
����� 6L]H ��� ��

7.4 A MODEL OF SOFTWARE COMPLEXITY .. 42
7.5 SUMMARY .. 44

� 6758&785$/�0($685(6�2)�62)7:$5(�&203/(;,7< ��� ��

8.1 TYPES OF STRUCTURAL MEASURES... 45
8.2 CONTROL-FLOW STRUCTURE .. 46
����� 0F&DEH¶V�F\FORPDWLF�QXPEHU �� ��
����� 6WUHQJWKV�DQG�ZHDNQHVVHV�RI�0F&DEH¶V�PHDVXUH��� ��

8.3 DATA-FLOW STRUCTURE .. 48
����� +HQU\�DQG�.DIXUD¶V�LQIRUPDWLRQ�IORZ�PHDVXUH�� ��
����� 6WUHQJWKV�DQG�ZHDNQHVVHV�RI�+HQU\�DQG�.DIXUD¶V�PHDVXUH ��� ��

8.4 DATA STRUCTURE... 52
����� +DOVWHDG¶V�PHDVXUHV�RI�FRPSOH[LW\ �� ��
����� 6WUHQJWKV�DQG�ZHDNQHVVHV�RI�+DOVWHDG¶V�PHDVXUHV �� ��

8.5 CONCLUSION OF THE STRUCTURAL COMPLEXITY METRICS ... 55
8.6 SUMMARY .. 55

� $/*25,7+0,&�&203/(;,7<�$1'�6,=(�0($685(6� �� ��

9.1 SOFTWARE SIZE AND PRODUCTIVITY .. 57
9.2 ALGORITHMIC COMPLEXITY ... 58
����� $OJRULWKPV �� ��

9.3 SIZE MEASURES .. 59
����� /LQHV�RI�&RGH�� ��
�����)XQFWLRQ�3RLQWV�LQ�JHQHUDO ��� ��
����� ,)38*¶V�)XQFWLRQ�3RLQW�PHWKRG ��� ��
����� 635
V��)XQFWLRQ�3RLQW�DQG�)HDWXUH�3RLQW�PHWKRG�� ��
�����)XOO�)XQFWLRQ�3RLQWV��� ��
����� 0DUN�,,�0HWKRG �� ��
����� �'�)XQFWLRQ�3RLQWV �� ��

9.4 CONCLUSION OF THE SIZE METRICS .. 77
9.5 SUMMARY .. 78

�� 352'8&7,9,7<��48$/,7<�$1'�3(5)250$1&(��� ��

10.1 PRODUCTIVITY ... 79
������ $�GHILQLWLRQ�RI�SURGXFWLYLW\��� ��
������ 3URGXFWLYLW\�RI�ZKDW" ��� ��
������ 3URSRVHG�PHDVXUHV�RI�SURGXFWLYLW\ �� ��

10.2 QUALITY... 84
������ ,(((�6WDQGDUG�IRU�D�6RIWZDUH�4XDOLW\�0HWULFV�0HWKRGRORJ\�� ��
������ 'HIHFW�GHQVLW\�DV�D�PHDVXUH�RI�UHOLDELOLW\ �� ��

10.3 PERFORMANCE ... 88
10.4 SUMMARY .. 89

��),(/'�7(676�$7�(59��� ��

11.1 THE RESULTS .. 91
11.2 VALIDATION OF OUR RESULTS .. 92
11.3 LIMITATIONS .. 94
11.4 SUMMARY .. 94

�� &21&/86,216�$1'�5(&200(1'$7,216�� ��

12.1 CONCLUSIONS... 95
12.2 SUGGESTIONS ... 96
������ 6KRUW�WHUP�VXJJHVWLRQV ��� ��
������ /RQJ�WHUP�VXJJHVWLRQV ��� ��

12.3 FURTHER RESEARCH... 101

5()(5(1&(6��� ���

BOOKS.. 104
PERIODICALS, REPORTS & ENCYCLOPAEDIAS.. 105
ELECTRONIC DOCUMENTS .. 106
UNPUBLISHED ELECTRONIC DOCUMENTS ... 107
PERSONAL COMMUNICATION ... 107

$33(1',;��� ���

A. WORDLIST... 108
B. FUNCTION POINTS – DEFINITIONS.. 109
C. FULL FUNCTION POINTS COUNTING PROCEDURE AND RULES .. 110
D. SAMPLE FROM A LANGUAGE LEVEL TABLE .. 116
E. SUGGESTIONS TO ERICSSON MOBILE DATA DESIGN.. 118

),*85(6�	�7$%/(6

)LJXUHV
Figure 4:1 Simplified model of software complexity... 19
Figure 5:1 Use cases for mobile data systems.. 24
Figure 5:2 Project organization at ERV ... 27
Figure 5:3 Darwin .. 28
Figure 7:1 A model of software complexity... 43
Figure 8:1 Example for McCabe’s cyclomatic number.. 47
Figure 8:2 Flowgraph of example in figure 8:1.. 47
Figure 8:3 Graph of module interaction; design charts. ...49
Figure 8:4 Direct, indirect and global information flow... 50
Figure 8:5 Example of Henry and Kafura’s information flow complexity measure. 51
Figure 9:1 Function Point Counting Components..65
Figure 9:2 Diagram of FFP Function Types... 76
Figure 9:3 FFP Counting Procedure Diagram.. 77
Figure 10:1 Graphical presentation of the performance measure... 89
Figure 11:1 Module complexity according to the system developers .. 93

7DEOHV
Table 4:1 Methods discussed in this report .. 19
Table 8:1 Example of counting operators and operands .. 53
Table 8:2 The measures of Halstead .. 54
Table 9:1 Common Industry Software Measure...62
Table 9:2 Complexity Matrix for Internal Logical or External Interface files 66
Table 9:3 IFPUG Unadjusted Function Points... 66
Table 9:3 The SPR Complexity Adjustment Factors ... 69
Table 9:4 The 1985 SPR Function Point Method .. 70
Table 9:5 Adjustment Factors for Source Code Size Prediction .. 71
Table 9:6 Ratios of Feature Points to Function Points for Selected Application Types......................... 72
Table 9:7 Full Function Point Functional Types.. 74
Table 10:1 Productivity of resources.. 82
Table 11:1 Results of counting FPA and FFP.. 92

Software Complexity and Project Performance Chapter 1
Department of Informatics Introduction

9

1� Introduction

1.1� Background
This report is of special interest for those who are involved in software management,
but also for others who are interested in how to measure the software development
process. Good management of software projects demands good methods for
measuring the process. Measures are needed for two main reasons - to know about the
actual outcomes of the project and for making better estimations of new projects.

At ERV there has been an ever-increasing need to measure and compare the
productivity in different projects. To accomplish this they have noticed that the
complexity of the project task is an important factor to take into account. Up until
now there has not existed any method in operation that measures the software
complexity at ERV. However, if ERV knows the level of complexity of their work
they have good chances of combining this factor with other attributes of the software
product and process to create an overall measure of project performance.

Common metrics for software projects are for example man-hours spent on the
project, produced number of lines of code, total development time for the project, and
total development costs. These metrics are relative easy to measure since they are
concrete. Of course the results of the measures can be influenced by external factors
but there are no uncertainty in what is measured. Other metrics, also of interest for the
management of software projects, are quality and productivity. But how do you
measure quality and productivity in a software project? In contradiction to the other
metrics mentioned, quality and productivity are very subjective metrics. What is good
quality and what exactly do we mean by productivity? Is good quality when there are
absolutely no bugs in the program, or if the customer is satisfied even though there are
some bugs? Is good quality when the code structure is compressed and effective or if
the program is easy to read and maintain? Has the project been productive if many
lines of code have been produced in a short time, or if the project took longer time but
produced advanced functionality? These questions are reminding of the importance to
define why to measure a project and what the expected achievements of the
measurements are.

If all metrics were as concrete as total cost etc, it would not be that difficult to
measure a software project. The range of factors that influences software projects are
however very wide, and it is perhaps impossible to develop software metrics that can
comprise them all into one measure. Developing software is in many ways a very
creative process and therefore it is not very easy neither to measure quality nor
productivity. As a simile - How do you measure if a poet is productive and creates
poems of good quality? However, as the demand of improved management increases,
as well as the demand of more accurate reports of productivity, organizations have to
develop and refine their management techniques. This can be achieved by using more
accurate methods to measure project performance.

Software Complexity and Project Performance Chapter 1
Department of Informatics Introduction

10

1.2� Research area
Measuring software attributes with the purpose of improving software product quality
and project team productivity has become a primary priority for almost every
organization that relies on computers. As computers grow more powerful, the users
demand more sophisticated and powerful software. The process of developing new
software and maintaining old systems has in many cases been poorly implemented,
resulting in large cost overruns and squandered business opportunities. The software
problem is huge, influencing many companies and government organizations. One of
the most frustrating aspects of today’s software development problem for business
executives is the large number of projects, which are delivered to customers behind
schedule.

The application of software metrics has proven to be an effective technique for
improving software quality and productivity. The groundwork research for the origins
of the application of quantitative methods to software development was established in
the 1970s (Coté, Bourque, Oligny, & Rivard, 1988). There were four primary research
trends that occurred at that time, which have evolved into the metrics practices used
today:

• &RGH�&RPSOH[LW\�0HDVXUHV. In the mid-1970s, there was significant research
activity for developing measures of code complexity. These code metrics was easy
to obtain since they could be calculated by automated means from the product
code itself. Early examples include McCabe’s cyclomatic number (McCabe,
1976) and Halstead’s measure of complexity (Halstead, 1979).

• 6RIWZDUH�SURMHFW�&RVW�(VWLPDWLRQ. These techniques were developed in the mid-
1970s for estimating the effort and schedule that would be required to develop a
software product, based upon an estimate of the number of lines of code necessary
for implementation and other factors. Early examples include Larry Putnam’s
SLIM Model (Putnam, 1980) and Barry Boehm’s COCOMO Model (Boehm,
1981).

• 6RIWZDUH�4XDOLW\�$VVXUDQFH. The techniques of Software Quality Assurance were
significantly improved during the late 1970s and early 1980s. Of particular
interest to quantitative methods is the emphasis that was placed on the collection
of fault data during the various phases of the software life cycle (Möller, 1988).

• 6RIWZDUH�'HYHORSPHQW�3URFHVV. As software projects became larger and more
complex, the needs for a controlled software development process emerged. This
process included defining the development life cycle by finite sequential phases,
and placing more emphasis on software project management with better control of
resources (Basili, 1980). The measurement of resources and resulting
development costs were collected using corporate cost accounting systems.

In the 1980s, these four software engineering technology trends provided the
foundation and impetus for the improved management of software projects by
quantitative methods. Leading-edge practitioners and researchers began applying
metrics for the purpose of improving the software development process. One may
compare this approach with the analogous situation of a factory production process in
which statistical quality control measurements are used to manage and improve the
production process.

Software Complexity and Project Performance Chapter 1
Department of Informatics Introduction

11

Today’s practices of software metrics utilize global indicators, which provide insights
into improving the software development and maintenance process. The improved
process helps to achieve organizational goals established for improving software
quality and project team productivity. Thus, even though the foundation for the
methods used today were established more than twenty years ago, there has been a
continuous development of these methods, and impulses have been drawn from
disciplines such as statistics, mathematics and business economics, in order to create
software metrics that are useful and applicable.

1.3� Disposition of the report
In Chapter 2, 3XUSRVH, we establish the purpose with this report and in Chapter 3,
3UREOHP, we state the set of questions that are answered in our report together with
the limitations for our study. Moreover, Chapter 4, 0HWKRG, spells out the method we
have used to carry out our master thesis. In Chapter 5, 7KH�6LWXDWLRQ�DW�(ULFVVRQ
0RELOH�'DWD�'HVLJQ, we are presenting the organization that is the object of our study.
We will try to focus at the prerequisites that are important for our further discussion.
Chapter 6, 6RIWZDUH�0HWULFV, is dealing with the software metrics’ field of study. We
are placing software complexity measures in a context, and are stating the reasons for
using software metrics’ at all. It serves as a frame of reference for our master thesis.

However, the main theoretical foundation for our discussion is established in Chapter
7, 6RIWZDUH�&RPSOH[LW\, where we investigate the concept of software complexity, its
sources, nature and effects. This study leads to a more profound survey of different
software complexity measures and methods in Chapter 8, 6WUXFWXUDO�0HDVXUHV�RI
6RIWZDUH�&RPSOH[LW\, and Chapter 9, $OJRULWKPLF�&RPSOH[LW\�DQG�6L]H�0HDVXUHV. In
Chapter 10, 3URGXFWLYLW\��4XDOLW\�DQG�3HUIRUPDQFH, we will try to explain how
software complexity measures can be combined with other factors to find an overall
measure of software productivity and quality. The field tests at Ericsson Mobile Data
Design AB (ERV) of two measurement methods are outlined in Chapter 11,)LHOG
7HVWV�DW�(59. Finally, in Chapter 12, &RQFOXVLRQV�DQG�5HFRPPHQGDWLRQV, the work as
a whole is discussed and recommendations for ERV are left together with our
conclusions and suggestions for future studies.

In the end of Chapter 5-11 there is a short summary of the most important findings
and contents of that chapter. It is supposed to serve as a reminder for the reader as
well as a guide of how the chapter is related to the rest of the master thesis. Moreover,
at the end of the report we have added appendixes for specific issues that we are
approaching in this master thesis. We have also added a wordlist of the abbreviations
used in the report.

12

Software Complexity and Project Performance Chapter 2
Department of Informatics Purpose

13

2� Purpose
This master thesis was initiated from Ericsson Mobile Data Design AB (ERV). The
purpose of our assignment at ERV was to investigate methods for measuring the
complexity and productivity of software development projects. However, in our pre-
studies we found that the quality of software projects also was an important aspect to
consider. Therefore, our focus came to surround that field too.

Software projects are influenced by several external and internal factors generally
gathered in the term sRIWZDUH�FRPSOH[LW\. Part of our mission was to define the
different parts of software complexity and their effects on software productivity and
quality. Next part of our mission was to choose some of the complexity attributes we
found most essential for software measures. Since ERV develop real-time software
systems, which have special characteristics, this had to be considered during the
whole work. With our chosen complexity attributes as a starting point, we would
examine existing software tools or methods that could measure these attributes. This
would in the end lead to suggestions of how to measure productivity and quality of
software projects at ERV.

This thesis leads to the final exam at the Department of Informatics for both of us.
Due to different education programs, though, the graduate degree will be a Master
Degree for Sofia Nystedt, and a Bachelor Degree for Claes Sandros. Since this
assignment is a 20 week full time study project we will simply refer to it as a master
thesis.

14

Software Complexity and Project Performance Chapter 3
Department of Informatics Problem

15

3� Problem
The problem of this master thesis consists of three logically related parts. By
answering the questions of these three problem areas, the purpose of this master thesis
can be reached. The scope of the problem narrows as we move from a general view of
software complexity to a more ERV-specific one. Firstly, since ERV is interested in
measuring software complexity, it is necessary to define this concept, with regard to
its sources, nature and consequences. Specifically, we are interested in its relationship
with other attributes of the software product and process, mainly productivity and
quality. This leads us to the formulation of our first problem:

• How can software complexity be defined? Where does software complexity come
from and what does it lead to? How is software complexity related to software
productivity and quality?

Secondly, our interest is directed to available measures of software complexity. This
means that ERV needs a comprehensive survey of which methods that are possible to
apply to the projects at ERV. Therefore, our second problem is:

• How can software complexity be measured? Which methods and measurements
are available for capturing different aspects of software complexity?

Thirdly, ERV has requested an analysis of which method or measurement that is best
suited for ERV’s purpose. The last part of our mission is therefore to create the basis
for a choice of a software complexity measure that can be used for productivity and
quality comparisons between projects. The third problem analyzed in this report is
formulated as follows:

• Which method or measurement of software complexity should be chosen with
regard to ERV’s need of a comparative measure of project productivity and
quality? How is this method or measure going to be implemented in ERV’s
system development process?

Our expectations of this field were that we would find a rather intricate picture of
software complexity, with many different views of how it is influencing project
productivity and product quality. We also suspected that there would be a wide range
of methods available for measuring software complexity, but that each of them
measured only some aspect of software complexity. Thus, the prospect of finding one
method or measure that encompasses all parts of this concept was not so bright. The
choice of one method would therefore be a question of priorities, and these priorities
had to be based on the prerequisites at ERV.

3.1� Scope and limitations
It is obvious that it is not possible to cover the whole area of software metrics’
methods. The time and the scope of this report do not grant us the privilege to make a
fully comprehensive study of this subject. As the problem indicates, we concentrated
on the parts of software metrics that were of immediate interest to ERV. This means
that WKH�IRFXV�RI�WKLV�PDVWHU�WKHVLV�LV�RQ�WKH�FRQFHSW�RI�VRIWZDUH�FRPSOH[LW\�DQG
LWV�UHODWLRQVKLS�ZLWK�VRIWZDUH�GHYHORSPHQW�SURGXFWLYLW\�DQG�TXDOLW\. For reasons

Software Complexity and Project Performance Chapter 3
Department of Informatics Problem

16

spelled out in the following chapters we also touched upon other aspects of software
metrics, but these parts were subordinated.

The time and resources at our disposal has also limited the depth of our analysis. It is
difficult to describe software measurement methods without going into details. The
reader may find some parts of this report harder to understand, since we have tried to
limit the number of details in order not to digress too much from the subject. The time
limit, 20 weeks of full study, has also meant that we have not been able to make all
the detailed studies we needed to achieve an exhaustive analysis of the area of
interest.

Moreover, in a small country like Sweden, the literature on software metrics in
general, and especially software complexity, is not easy to find. However, we have
had access to the literature available at the Scandinavian research libraries, and we
have received the impression that this literature is representative of different views of
the software metrics research area. Finally, at Ericsson Mobile Data Design (ERV) we
have met interested and committed people, but sometimes our contact persons have
had to give priority to other things. This meant that when we performed field tests at
ERV we sometimes wished that we could engage more people for experiments and
reference than were possible.

Software Complexity and Project Performance Chapter 4
Department of Informatics Method

17

4� Method
The initial ambitions of our supervisors at ERV was that we would define the
attributes of complexity, then to chose the attributes most essential for ERV’s projects,
and then calculate a complexity factor of software projects, to be able to compare
complexity differences between projects. This numerical value, that would be
generated automatically, in addition with the given values of Lines of Code (LOC),
man-hours and error density would then be put together in a formula created by us for
calculating software productivity.

As our knowledge of the field increased we arrived to the conclusion that we had to
change the approach to the problem. First of all, our supervisors wanted us to find and
use existing tools on the market for our measures. They had hoped for tools that could
auto-generate complexity values from code. Those that exist are not really suitable for
productivity measures but more for predicting error proneness. Then we also found
out that there were alternative code size metrics to LOC which also included some
complexity attributes. These functional size metrics were rather different methods,
and therefore very well suited for productivity measures. Even though we found that
these methods had to be counted manually we felt that they had to be included in our
method of measuring project productivity. Due to these facts we changed our disposal
of the work.

However, to describe how our work with this assignment evolved through time we
would like to start from the beginning with our method description.

4.1� The preliminary plan
The project was originally divided into four part goals that signified a meeting with
our supervisors at ERV to report on our progresses. These part goals were the
following:

6WDJH���� 'HILQLQJ�WKH�DWWULEXWHV�RI�VRIWZDUH�FRPSOH[LW\
After research on software complexity we would report our results and
in collaboration with our superiors choose some of the factors of
complexity interesting to focus on with concern to our further research
of productivity measures.

6WDJH��� ([DPLQLQJ�DQG�FKRRVH�WRROV
In stage 2 we would give a report on existing tools available on the
market that can measure complexity and suggest two or three tools
suitable for further examination. After more thoroughly examination of
these tools we would choose the one ERV should use. The continuing
work would be to use this tool on existing code from a completed
software project at Ericsson.

6WDJH��� &RPSOH[LW\�IRUPXOD
From our tests we would have a good foundation for creating a formula
that calculated the complexity of software projects at ERV. This could
be done simply by using one an existing tool or, if proven to be more
accurate, a combination of several tools or other important attributes for
software complexity.

Software Complexity and Project Performance Chapter 4
Department of Informatics Method

18

6WDJH��� 3URGXFWLYLW\�IRUPXOD
In the final stage we were supposed to report the results of our measures
from the completed project and give suggestions of a formula on
software productivity. With the given parameters of Lines of Code, error
density and man time from ERV, and the complexity metric from our
complexity formula, we would create such a productivity formula.

This was the preliminary plan of the method for our work when we started. With
increased knowledge of the field we had to adjust our plans to fit in with existing
methods of software metrics. Our refined stages turned out to be these:

6WDJH��� 'HILQLQJ�WKH�DWWULEXWHV�RI�VRIWZDUH�FRPSOH[LW\
6WDJH��� ([DPLQLQJ�H[LVWLQJ�PHWKRGV
6WDJH��� &RXQWLQJ�D�FRPSOHWHG�SURMHFW
6WDJH��� 'HWHUPLQH�VXJJHVWLRQV�IRU�(ULFVVRQ

The following sections give a chronological and thorough description of our
continued work with these stages.

4.2� The settled plan

4.2.1� Defining the attributes of software complexity

To establish a knowledge base of the subjects of software complexity and software
productivity we started up by searching through the literature. Our keyword for the
research of literature was sRIWZDUH�PHWULFV, which proved to be the primary word for
software measurements as there were barely any hits when we searched on sRIWZDUH
FRPSOH[LW\. Several books where found that focused on the software development
process and software metrics, but not so many that primarily discussed the attributes
of software complexity. However, from our collected knowledge we learned that there
was no summed up compilation of what the term complexity contains. We therefore
developed our own model of complexity from which we initiated all further
discussions. The model is divided into two main tracks where one focus on structural
complexity and the other on algorithmic complexity. The characteristic measure of
structural complexity is error proneness and for algorithmic complexity it is size and
effort. As the simplified model of complexity shows in Figure 4:1, the track of error
proneness lead to software quality and size/effort to software productivity. The
crossing thin arrows indicate that one side also has effect on the other. The model is
fully explained in Chapter 7, 6RIWZDUH�&RPSOH[LW\.

Software Complexity and Project Performance Chapter 4
Department of Informatics Method

19

)LJXUH�����6LPSOLILHG�PRGHO�RI�VRIWZDUH�FRPSOH[LW\

4.2.2� Examining existing methods

In connection to our literature studies on software complexity we found existing
methods for measures on error proneness and size/effort. In contradiction to what we
had hoped there were no tools that automatically generated values from code. Some
tools, though, that measured error proneness could be generated automatically from
the data structure.

As our focus was on both productivity and quality, we wanted to examine the
different methods we had found for both fields. However, our main interest was to
find some tools that could be used to measure productivity, which meant that we
searched for alternative measures of code size. We found a few interesting prospects
to this kind of measure gathered under the term functional size measures. They were
rather alternative measurement methods than actual tools, but measured software size
as well as part of the algorithmic complexity. This was a very interesting progress for
us. Unfortunately we learned that these methods only could be used by counting
manually. After an extra meeting with our supervisors at ERV we determined to
proceed with these methods, as reverting to LOC again was no alternative.

The methods picked out for further examination are shown in the Table 4:1. Each
choice of method was based on their market use and acceptance in the software
community according to literature (Fenton & Pfleeger, 1996; Jones, 1996).

7DEOH�����0HWKRGV�GLVFXVVHG�LQ�WKLV�UHSRUW

6WUXFWXUDO�FRPSOH[LW\�PHDVXUHV $OJRULWKPLF�FRPSOH[LW\�PHDVXUHV
McCabe’s cyclomatic number Lines of Code
Henry and Kafura’s information flow measure IFPUG’s Function Points
Halstead’s measure of complexity SPR’s Feature Points

Full Function Points

Some of these methods were found in our literature and some were found on the
Internet, especially information about Full Function Points, which is a quite new
method under development.

6WUXFWXUDO�FRPSOH[LW\ $OJRULWKPLF�FRPSOH[LW\

Error proneness Size / Effort

Quality Productivity

&KDUDFWHULVWLF
PHDVXUH

6RIWZDUH�0HWULF

Software Complexity and Project Performance Chapter 4
Department of Informatics Method

20

4.2.2.1 Development of the performance concept

Our final goal with this assignment was to improve measurement methods of project
productivity in some way. Traditional formulas of productivity only include software
size and man-hours but not issues about algorithmic complexity or quality. In Garmus
and Herron (1996) and Goodman (1993) we found that by comparing a productivity
measure with a quality measure we could get a performance measure instead. This
way we would take both aspects of complexity into consideration in our metric.

We chose one or two quality metrics and one productivity metric (functional size
metric) to use in our performance measure. To decide which one of the functional size
metrics to use we were supposed to test the functional size methods we had found on
existing code from a completed software project at ERV. The choice of quality
metrics was based on theoretical studies and considerations.

4.2.3� Counting a completed project

Our initial ambition was to measure the code with the three functional size measures,
Function Point Analysis (FPA), Feature Points and Full Function Points (FFP). To be
able to count the project we had to learn what the system did. To our help we had all
the documentation of the system. It proved to take longer than we had expected to
learn about the system, so we decided to not use the Feature Point Method as we
began to run out of time.

4.2.3.1 Why choose FPA and FFP, but not Feature Points?

IFPUG’s (International Function Point User Group) Function Point Analysis (FPA) is
the most accepted and used method on the market. It is also continuously developing
under the supervision of the IFPUG, which handles standardization of the method.
Full Function Point (FFP) is an extension of the FPA, but more adjusted to scientific
software. We believed that these methods were the most interesting methods to
continue with. After continuously presenting to our supervisors the several methods
we found during our work, they agreed that we should continue with FPA and FFP.

4.2.3.2 Counting procedure

The actual counting signified that we divided the project in accordance to the modules
(or sub-systems) and counted each module as an application. This way we would be
able to compare the results from each module and determine, in collaboration with the
system developers, if the counting results were reasonable. If one system was twice as
difficult to develop as another was, the results of the counts should show this by
giving twice as many points.

Our counting of the modules were made according to an established pattern. First, the
FPA and FFP methods were applied to a general type of documentation called
Interwork Description (IWD). Included in this document were only the external parts
of the modules, i.e. the communication and relationships with other modules. To get a
more comprehensive picture of the modules we had to turn to individual documents
for each module, called Implementation Specification (IS). These usually described
the external inputs and outputs (I/O) to the module, and the internal parts, such as
updating and erasing of local module data. The counting procedure was then made all
over again based on the IS for each module. When applying the methods on this
documentation we also used the actual source code as a support when the IS’s passed
over some important details.

Software Complexity and Project Performance Chapter 4
Department of Informatics Method

21

The reason for choosing this approach with two separate counts was based on a
request from people at ERV. They expressed their wish that we should investigate the
possibilities of applying the methods on the more general documentation (IWD’s) or if
it was necessary to make a more detailed survey of the IS’s and source code in order
to get an accurate estimation of the software size and complexity.

During the tests we consulted some of the people involved in the project in order to
receive guidance in some details of the system. Most of our work was devoted to
understand the functionality of the different modules. The counting of the project took
about one week, but to grasp the system in order to apply the methods correctly we
had to initiate ourselves in the project for about three or four weeks before then.

4.2.3.3 Validation of our results

It is important to point out that the purpose of these tests were not to make a fully
scientific examination of the suitability of the FPA and FFP methods on real-time
systems. These studies have already been made HQ�PDVVH�(Conte, Shen and
Dunsmore, 1986; Jones, 1996; Grady, 1992; Desharnais, Maya, St-Pierre and
Bourque, 1998). Our objective were rather to see which method is the most applicable
and practicable when it comes to applying it to the systems developed at ERV. For
this reason our only alternative to gain such knowledge would be to validate our
results based on the opinions of the people involved in the system development. Three
respondents, involved in the system development project, were therefore picked to
perform this validation.

The reason for only choosing three respondents was two-fold. Firstly, some of the
people involved in the project were no longer available at ERV. Secondly, many
people who took part in the project did not have a complete picture of all parts of the
project. They claimed that they could only have opinions of the modules they had
actively been working on. This meant that only a few persons were possible as
subjects of these tests.

4.2.4� Determine suggestions for Ericsson

From the knowledge base that we built up on software complexity; from literature
studies, examination of existing methods and our tests of the methods on the
completed project, we would give suggestions of how ERV could apply a
measurement program from the conclusions we made.

One important factor that would effect our suggestions was that they had to be
applicable almost at once after our work at ERV was done. This meant that they had
to be easy to implement. Our approach was therefore to give suggestion applicable
without too much effort. This implied that the suggested measurements might not be
complete. However, as ERV become used to the measures they are free to develop
their measurement methods further. Due to this tactic we would give ERV both short-
term and long-term suggestions of the measurement methods we came up with.

22

Software Complexity and Project Performance Chapter 5
Department of Informatics The Situation at Ericsson Mobile Data Design

23

5� The Situation at Ericsson Mobile Data Design
Ericsson Mobile Data Design (ERV) is established in the field of mobile data system
design, as the name indicates, and is also the competence center for Ericsson as a
corporation within this area. The company has experience of designing mobile data
systems since the beginning of the 1980’s but it was not until 1988 that the company
itself was founded. Then it was a cooperation between Ericsson and Telia, and owned
by them jointly. 1994 Ericsson took over the complete financial and operational
responsibility for the company and it was incorporated in the Ericsson group of
companies. ERV is situated in Gothenburg, but it is also operating in collaboration
with other units within Ericsson all over the world (ERV, 1999a).

In order to give an explanation of our argumentation of which measures should be
used, and to support the suggestions being made, we will try to sort out those
conditions at ERV that are relevant. Specifically, we will give a picture of which kind
of systems and products the company is dealing with, how their projects are working
and finally how one can characterize their model of software development. This
information will then form the basis of which measures that should be performed, in
what way, and at what time.

5.1� Characteristics of the products at ERV
The business concept of ERV is to develop systems for future mobile data and
telecommunications. One of the best-known products ERV has developed, a
developing process that started in the early 1980’s, is Mobitex. It is a land-based
system for mobile data communications that has been installed on all continents and
has in practice formed a standard for mobile data systems (ERV, 1999a).

To be able to understand what mobile data systems are, it may be useful to get a
notion of in what kind of business the systems can be used. In the following section
we will try to give some examples of who the users of the mobile data systems can be
and where we can find areas of applications for these systems.

5.1.1� The users of mobile data systems

Mobile data systems are an increasingly important support for many activities in our
society. By combining the datacom and telecom opportunities that the mobile
telephone standards are giving us today there is an ever-growing need for applications
that use mobile networks to transmit data in one form or another. In Figure 5:1 we
show some examples of how mobile data systems can be and are being used.

For salesmen using laptops and mobile telephones the mobile data systems can help
them for example to report orders to the head office. At SRLQWV�RI�VDOH the systems
transmit information about the customer and his/her credit card to the bank that
updates the account of the customer. The technique can also be used for sending H�
PDLO messages in mobile networks and there are also prospects of using the systems
for browsing the Internet. Today mobile automatic teller machines (ATM’s) are not as
common as the stationary ones, but as the mobile standards develop these and other
services can be offered to EDQNV by mobile systems. 7UDQVSRUWV, WD[LV and ILHOG�VHUYLFH
have an obvious use of mobile systems, since they are literally mobile. The systems
can offer effective means for transmitting information about the traffic situation,

Software Complexity and Project Performance Chapter 5
Department of Informatics The Situation at Ericsson Mobile Data Design

24

possible routes to the customer, information about orders etc. In the service of SXEOLF
VDIHW\ mobile systems can even be used to save lives. Examples of such systems are
the applications that are implemented in ambulances and use mobile networks to
transmit information (for example ECG’s and EEG’s) about the patient to the
hospital, where the physicians can make a diagnosis of the patient before he or she has
arrived.

)LJXUH�����8VH�FDVHV�IRU�PRELOH�GDWD�V\VWHPV

�(59������E��PRGLILHG��

This picture of mobile data systems is of course not all-embracing. There are many
fields of application that have not been mentioned here. In fact, finding and
developing the needs for mobile data systems is one of the most important
assignments for ERV today and even more so in the future. When new and more
powerful standards are evolving, it is probable that still unexplored fields of
application can be targets for mobile data systems.

It is obvious that business considerations are depending on the product that is
developed. For some of the mobile data systems, such as those implemented in public
safety vehicles, the reliability of the product is extremely important. It may even be
necessary to exceed budget and time-plan in order to ensure that the system is reliable
and of high quality. However, in other situations the timeliness of the product is the
superior attribute. If we know that the market is ripe for the product in a year, we are
forced to develop it in that year, otherwise we will end up with an obsolete product
that our competitors already have developed. In that situation, we can consider to
lower our quality requirements, in order to deliver the system in time. We will get
back to this discussion in Chapter 10, 3URGXFWLYLW\��4XDOLW\�DQG�3HUIRUPDQFH, when

Field sales Points of sale e-mail

Banks

Transport

Public safety

Taxi
Field service

0RELOH
'DWD
1HWZRUN

Software Complexity and Project Performance Chapter 5
Department of Informatics The Situation at Ericsson Mobile Data Design

25

we are developing our notion of performance, an overall measure of productivity and
quality.

We are now turning to the technical characteristics of this type of system, and the
characteristic that is interesting from the viewpoint of this master thesis is its real-time
feature.

5.1.2� Real-time systems

In this section we will use the same approach to explain the concepts in question as in
the last section, i.e. by exemplifying. Later we will also give a more precise definition
of real-time systems and point at some principal characteristics of this type of system.

The category of real-time systems is evolving rather than static. Examples might
include:

• Radar systems
• Missile guidance systems
• Navigation systems
• Safety systems
• Telephone switches
• Satellite communications
• Automated process control systems

Real-time software and the real world are inseparably related. Real time cannot be
turned back and thus, the consequences of previous influences may last for a long
time and the undesired effects may range from being inconvenient to disastrous in
both economic and human terms.

The main distinguishing characteristic of a real-time system is that the software must
execute almost instantly, at the boundary of the processing limits of the Central
Processing Unit (CPU). Secondly, the inputs could occur at either fixed or random
intervals, selectively or continuously, which means that the processing pattern of a
real-time system in most cases is parallel. The inputs can also require interruption to
process input of a higher priority, often utilizing a buffer area or queue to determine
processing priorities. Therefore the developers have to consider synchronization
aspects. Thirdly, it is an on-line, continuously available, critically timed system that
generates event driven outputs almost simultaneously with their corresponding inputs.
This demand comes from the fact that the system must meet deadlines in order to
satisfy real physical time constraints. Finally, real-time systems typically have long
mission times. When they have been implemented and delivered to the customer it is
supposed to be used continuously during several years, maybe decades. This implies
that the system on the one hand has to deal correctly with situations that is expected to
happen, and on the other to recover quickly and properly from extraordinary ones
(Quirk, 1985).

We have chosen to summarize these characteristics and describe them in different and
more concrete terms. Moreover, we encourage the reader to recall these
characteristics further on when we are describing different measures of complexity
and size, and above all when we present our ERV-specific conclusions and
suggestions. These characteristics of real-time systems include:

Software Complexity and Project Performance Chapter 5
Department of Informatics The Situation at Ericsson Mobile Data Design

26

• $OJRULWKPV��PDWKHPDWLFDO�DQG�ORJLFDO�� We will define the notion of algorithms
in the following chapters that deal with the measures of software complexity. At
this stage we content ourselves with the statement that algorithms are the solution
of a given system development problem, in our case implemented in source code.
There are usually more algorithms, and more complex ditto, in a real-time system
compared to a MIS (Management Information System).

• 0HPRU\�FRQVWUDLQWV� Data is frequently, but not always, stored in memory. Since
real-time software sometimes is implemented in devices with limited resources,
e.g. memory, the systems have to take account of these restrictions.

• 7LPLQJ�FRQVWUDLQWV�DQG�H[HFXWLRQ�VSHHGV� We have already touched upon this
problem. The time is, as the name of the system type indicates, very important.
The real world sets this limitation.

• &RQWLQXRXV�DYDLODELOLW\� This characteristic has also been addressed earlier in
this chapter and means that the demands on the system may occur in parallel
rather than in sequence.

• 3URFHVV�HYHQW�GULYHQ��This aspect of real-time software is perhaps the most
important when it comes to which size and complexity perspective we should
choose. Usually real-time systems are constructed to wait for system calls and
signals during the main part of the operation time. This also means that a real-time
system consists of a large number of processes that in their turn is made up of
even a larger number of sub-processes. We will see that this is an important
feature when we want to measure size or other attributes of real-time software.

Now that we have tried to give a more comprehensive picture of what type of
software that is produced at ERV, we will turn to the methods and organization that
form the basis of the business. This will give us a starting-point for the discussion of
how software metrics should be adapted to the prerequisites at ERV.

5.2� ERV project organization
ERV as a company is divided into departments. Each of them is responsible for a
separate product or area of competence. Apart from staff and more administrative
departments there are today eight departments that are directly connected to the
principal business. These are (ERV, 1999a):

• M: Responsible for the Mobitex Infrastructure
• K: Responsible for Mobitex Modems
• A: Responsible for design of systems associated with American Standards for

mobile data communication (CDPD)
• N: Responsible for Switch Technology and design of systems associated with the

2nd generation mobile data communication standard in Europe (GPRS)

Software Complexity and Project Performance Chapter 5
Department of Informatics The Situation at Ericsson Mobile Data Design

27

• Y: Responsible for Router Technology
• J: Responsible for design of systems associated with the 3rd generation mobile

data communication standard in Europe (UMTS)
• S: Responsible for Systems & Air Interface
• L: Responsible for Network Management Systems and Information Design

These departments are further divided into a number of sections. Usually there are at
least one design section and one section for system verification at each department. In
addition, special functions such as user documentation, system development methods
etc., are distributed to separate sections at the different departments, so that each
department is responsible for at least one such special competence area.

)LJXUH�����3URMHFW�RUJDQL]DWLRQ�DW�(59

�(59������F��PRGLILHG��

All development work is effected in the form of projects. A typical project consists of
40 to 120 people, normally lasts for about one year and is divided into several sub-
projects. The projects are fully responsible for their work, on time delivery, product
quality and functionality. Moreover, they have the financial and budget responsibility.
The people that make up a project are drawn from different sections and departments.
Usually is staff from other Ericsson companies also participating in the projects. This
means that people that work at the same section do not necessarily have to work at the
same project. Each project also has a project leader appointed from one of the
participating sections or drawn from some other department at ERV. Moreover,
people responsible for the different subprojects, subproject leaders, are appointed.
Thus, even if it is a rather strict hierarchic organization the project organization at
ERV is a complex one with people from different parts of ERV, from different
Ericsson companies, and from different parts of the world (ERV, 1999a).

The tools used for software development are usually the same for every project.
Moreover, the framework for managing the development process is standardized.
ERV is an organization with a large group of new employees due to its recent
expansion. This means that inexperienced personnel are mixed with experienced ditto.
However, the mix is rather similar from case to case, and this implies that there are

Department Department

Section Section Section Section

Project
Leader

Subproject
Leader

Subproject
Leader

Software Complexity and Project Performance Chapter 5
Department of Informatics The Situation at Ericsson Mobile Data Design

28

usually small differences in the total project “experience quota” when comparing
different projects. This is an important assertion to make when defining how we
should measure the effort of our project. We will come back to this in Chapter 10,
3URGXFWLYLW\��4XDOLW\�DQG�3HUIRUPDQFH.

5.3� Darwin – ERV’s model for system development
Before we begin to describe the Darwin model, we would like to state that this section
is based entirely on internal oral and written information, that we have received at
ERV (M. Timmerås, personal communication, 22nd March, 1999; ERV, 1999d). ERV
has developed a model, called Darwin, for how project work should be arranged with
regard to planning and controlling. It is based on a model common for Ericsson
companies, but some changes have been made in order to adjust it to the prerequisites
at ERV. We will give a quick overview of the model and focus on those parts that are
important in order to understand our further discussion, especially our ERV-specific
recommendations.

)LJXUH�����'DUZLQ

�(59������G�

Darwin can be illustrated in a two-dimensional figure, in the shape of a V. The
horizontal axis represents time, with the start of the project at the left end. The vertical
axis represents the level of abstraction, which increases as we move upwards in the
figure. The most concrete parts of a project, for example low-level design and coding,
are situated in the bottom of the V. Activities, where knowledge of details is less
important, are pictured in the upper part of the V. In other words, they are located at
the start and end of the project.

The activities are not different from those normally identified in a system
development process. First a prestudy is made to collect information about the general
conditions for the project. A feasibility study is then made in order to see if the project
is technically and economically practicable. When these studies are done the more
concrete design activities are performed; first system and subsystem design and then

Software Complexity and Project Performance Chapter 5
Department of Informatics The Situation at Ericsson Mobile Data Design

29

lower level design and coding. During the time that these activities are performed the
planning of verification and test activities are also made. During coding some module
testing is carried out. Moreover, during and after the code phase is completed, module
integration and system integration can be executed. In the end of a project, focus is
put on the system verification and installation of the system at the customer, before
the project is consolidated and concluded.

The so-called milestones (MS) and tollgates (TG) guide the management of the
project. Milestones are focusing on the project history, i.e. what has been
accomplished, to be able to issue early warnings if something is delayed or not
performed as planned. Tollgates are instead future oriented, and they are supposed to
work as points in the development process where decisions of the further direction of
the project are made. The idea behind this construction is that there is a passage
criteria for each milestone, which specifies which actions and documents that must be
performed before the project can pass the milestone. The model also specifies which
measurements that should be made between two milestones.

Moreover ERV is applying incremental development. Simplified this means that the
product is created by adding functionality in partly parallel processes. The design and
test phases of the development process are in a way run many times. One can
illustrate this by comparing the software with an onion. Just like an onion consists of
many layers, incremental development of software mean that you start with a kernel
of functions that you complete before you add “layers” with more functionality. In
this way you have a product ready for release each time you have accomplished one
“layer”, and you do not run the risk to have a half-finished product in your hands
when the project is over.

Darwin has been newly developed by ERV, and is going to be implemented in the
projects of the company. It has been the expressed wish of the company that we
should connect our findings and recommendations to this model in one way or
another. In the following chapters we are going to lay the theoretical foundation for
these conclusions.

5.4� Summary
In this chapter we have spelled out the circumstances at ERV that we find important
for the further discussion in this report. We have defined the area of business for
ERV, by exemplifying the users of mobile data communication systems. Applications
can be found in such areas as field sales, point of sales, e-mail and Internet, bank
transactions, transport, public safety, taxi and field services. Moreover the systems
designed at ERV can be described as real-time systems. The main characteristics of
such systems are the great number of mathematical and logical algorithms, memory
constraints, timing constraints and execution speed, the continuous availability and
most importantly that they are process or event driven.

The line organization is hierarchical with departments as the main unit, which in turn
are made up of sections. Each project can consist of up to 120 persons and lasts for a
long period, usually a year or more. The people in a project are drawn from different
departments and sections at ERV, as well as from other Ericsson companies, which
means that a project is a rather complex structure, and takes the form of a matrix

Software Complexity and Project Performance Chapter 5
Department of Informatics The Situation at Ericsson Mobile Data Design

30

organization. ERV is using their own model of system development, called Darwin,
which specifies the activities and documents that should be accomplished at a specific
time during the development process. Now we are turning to the theoretical parts of
this master thesis, beginning with defining software metrics.

Software Complexity and Project Performance Chapter 6
Department of Informatics Software Metrics

31

6� Software Metrics

:KHQ�\RX�FDQ�PHDVXUH�ZKDW�\RX�DUH�VSHDNLQJ�DERXW��DQG�H[SUHVV�LW�LQWR�QXPEHUV��\RX
NQRZ�VRPHWKLQJ�DERXW�LW��EXW�ZKHQ�\RX�FDQQRW�PHDVXUH�LW��ZKHQ�\RX�FDQQRW�H[SUHVV�LW
LQ�QXPEHUV��\RXU�NQRZOHGJH�LV�RI�D�PHDJUH�DQG�XQVDWLVIDFWRU\�NLQG��,W�PD\�EH�WKH
EHJLQQLQJ�RI�NQRZOHGJH��EXW�\RX�KDYH�VFDUFHO\�LQ�\RXU�WKRXJKWV�DGYDQFHG�WR�WKH�VWDJH
RI�VFLHQFH�

Lord Kelvin (1824-1904)

Before we begin our discussion of complexity and its nature we need a more
comprehensive understanding of what software metrics is and why we would like to
use measurements to evaluate the software process. This section is trying to answer
questions such as: Why are we measuring software projects? What kind of
information do we expect to get from the measurements? Who would want this
information? To reach this perception we need some kind of definition of the concept
“software metrics”. That is where we start our investigation.

6.1� Definitions of software metrics
Intuitively one could guess that “software metrics” is involved with numbers and
measuring different aspects of the software development process. But to structure our
own minds, and to give a more precise idea of what we mean by “software metrics”,
we need a definition. If we turn to the literature we can find several such definitions,
which give more or less the same interpretation of the term.

Goodman (1993) defines software metrics as “the continuous application of
measurement-based techniques to the software development process and its products
to supply meaningful and timely management information, together with the use of
those techniques to improve that process and its products” (p. 6). As one can
understand, this definition covers quite a wide field of application, but the main focus
is on improving the software process and all the aspects of the management of that
process.

The main situation for use of software metrics is in decision making, which is
emphasized by Grady (1992): “Software metrics are used to measure specific
attributes of a software product or software development process … they help us to
make better decisions” (p. 1). This definition also pinpoints one of the problems of
software development today: the lack of information for predicting and evaluating
software projects. We will come back to this in the following sections.

Some of the authors make a distinction between VRIWZDUH�PHDVXUHPHQW and VRIWZDUH
PHWULFV. They mean that the terms measure and measurement are more mathematical
correct when discussing the empirical value of different measured objects in the
software development process. Further they establish that a metric is a criterion used
to determine the difference or distance between two entities, for example the metric of
Euclid, that measures the shortest distance between two points. These authors claim
that the use of the term software metrics is built on a misunderstanding of the correct
meaning of it, and that software measurement should be used instead (Zuse, 1991).
Despite this formal difference between the terms, we have chosen to use software

Software Complexity and Project Performance Chapter 6
Department of Informatics Software Metrics

32

metrics, for the simple reason that we feel it is the most applied and acknowledged
term in the literature as a denomination of the phenomenon we are going to study.

Yet another aspect of software metrics that is often emphasized when defining the
term, is that it can be applied during the whole development lifecycle, from
initiations, when costs must be estimated, to monitoring the reliability of the end
product in the field, and the way that the product changes over time with
enhancement. Used correctly and consistently a project can therefore benefit from the
software metrics during all stages of the software development (Fenton & Pfleeger,
1996).

Sometimes one can come across attempts to classify different types of software
metrics. One such distinction is made between primitive and computed metrics.
Primitive software metrics are directly measurable or countable, such as counting
lines of code. Computed software metrics use some kind of mathematical formula to
calculate the value of an attribute of a software project, such as the productivity
measure of non-comment source statements per working month (Zuse, 1991).

To sort out the measurements that are used for high-level decision making the term
“global metrics” is often used. This expression is most often used when referring to
metrics, which is giving as a result information about size, product, and development
process quality that are of interest to the managers of a software development or
maintenance activity. This notion implicates that there could also be a such thing as a
“local metrics”, which is tied up with a more limited practice of software metrics
during one phase of the product life cycle, for example code measures for a separate
module. These small-scale metrics, usually called “phase metrics”, could be combined
for a high-level use, and according to our definition, phase metrics are in this way the
constituent parts of the managerial global metrics (Goodman, 1993).

This discussion has led us to a definition of software metrics that we are going to use
in this report. 6RIWZDUH�PHWULFV�FDQ�EH�GHILQHG�DV�WKH�SUDFWLFH�RI�PHDVXULQJ
GLIIHUHQW�DWWULEXWHV�RI�WKH�VRIWZDUH�GHYHORSPHQW�SURFHVV�DQG�SURGXFWV�LQ�RUGHU�WR
JHW�XVHIXO�DQG�UHOHYDQW�LQIRUPDWLRQ�IRU�HIILFLHQW�PDQDJHPHQW�GXULQJ�WKH�HQWLUH
GHYHORSPHQW�SURFHVV. Our view of software metrics is goal-oriented (or top-down).
The primary problem for us is not what kind of metric(s) we should use, but rather
what the goal of the measurements is and which kind of information we would like to
come out of it. Only when we know the context of the metrics, the purpose of it and
the people interested in it, we can correctly identify and evaluate the applicable
measurements.

6.2� Why software metrics?
Now that we have a more established idea of what software metrics is, we also need
to ask ourselves if and why software metrics matters. Why do we need to measure
software? One way to answer this question is to identify the problems that could arise
if we do not use software metrics in our projects. We have identified at least three
groups of difficulties for developers and managers, who do not have a notion of
software metrics:

Software Complexity and Project Performance Chapter 6
Department of Informatics Software Metrics

33

1. They cannot set up measurable goals for their software products, since they do not
know if they have reached them. For example, they can promise that this or that
product should be user-friendly, reliable and easy to maintain, but as long as they
do not clearly and objectively specify what they mean by these terms they do not
know if they have met their goals. Tom Gilb (1988) has summarized this in his
Principle of Fuzzy Targets. This principle says: 3URMHFWV�ZLWKRXW�FOHDU�JRDOV�ZLOO
QRW�DFKLHYH�WKHLU�JRDOV�FOHDUO\.

2. For most projects it is rather easy to establish the total cost, but it is harder to
distinguish the costs at different stages of the software development process from
each other, for example the cost of design from the cost of coding or testing. One
reason for many complaints from the customers is also the failure to give a correct
estimate of cost. If the managers cannot measure the components of cost it is
almost impossible to control the total cost, and consequently hard to give an
accurate quotation to the customer (Bache & Bazzana, 1994).

3. Finally, developers and managers fail to quantify or predict the quality of the
products they produce. Thus, if the customer want to know how reliable a product
will be, or how much work will be needed to change the product, they cannot give
him the answer. The result of this is that the customer, since he is lacking valuable
information, that perhaps other companies supply him with, recognizes that he is
taking a risk if he chooses their product and therefore purchases a substitute
(Fenton & Pfleeger, 1996).

Based on this inventory of software development pitfalls we can list three basic
activities for which measurements are important. First, we can identify measures,
which are used to XQGHUVWDQG what is happening during the different stages of
development and maintenance. Through measurements we can see clearly the
relationships among activities, which factors that influence the development process
and how they can be influenced. Second, software metrics can help us FRQWURO the
activities in our projects. When we understand the relationships, we can use our goals
and baselines to try to predict what will happen and make changes to processes and
products in order to meet our goals. Third, measurement supports the activity to
LPSURYH our processes and products. For example, by sorting out those parts of the
project that does not meet our quality requirements, and deposit more resources to
monitoring these parts, we can improve our overall quality.

6.3� Recipients and use of software metrics information
We have already shortly described which members of the software development team
that may be interested in the information we get from software metrics. We choose,
perhaps somewhat roughly, to separate them into two groups: managers and
engineers. However, we acknowledge that there could be many different kinds of
managers (economical managers, software quality managers, technical managers,
staff manager etc.) and engineers (“design engineers”, “code-generating engineers”,
“testing and verifying engineers” etc.). If we leave this distinction out of
consideration, we can identify a wide range of useful information for these two
groups. In addition, the interests of customers/users/clients can be satisfied by
software metrics’ information.

Software Complexity and Project Performance Chapter 6
Department of Informatics Software Metrics

34

6.3.1� Managers

One question that most managers have is how much a process cost. If we can measure
the time and the effort we use in the software production, we can also understand not
only the cost of the total project, but also how the different parts contribute to the
whole.

When we have a measure of cost or effort we can also combine this with a measure of
size, in order to get a notion of the productivity of the project. By collecting
productivity information about a large set of projects, we can then make attempts to
predict the cost and duration of future projects.

Software metrics’ information can also be used to evaluate the quality of the products
we use. For instance, different kinds of fault measures can be used to assess the code
being produced for comparing, predicting and setting targets for process and product
improvement. But the relative occurrence of faults is not the only measure of software
quality. In order to satisfy the customer we also need a high level of functionality. If
we can measure usability, reliability, response time, and other characteristics we can
also find out if our customers will be happy with both functionality and performance.

An overall objective of most managers is to improve their business by focusing on
those activities that will generate the largest revenue relative to the cost of the
improvement. If we can measure the time it takes to perform each development
activity, and calculate its effect on quality and productivity, we can also weigh the
costs and benefits of each practice to determine if the benefit is worth the cost.
Another way of improving the business is for example to compare two different
design methods and measure the results to decide which one is the best (Fenton &
Pfleeger, 1996).

6.3.2� Engineers

One obvious advantage of software metrics, that we already have touched upon, is
that different attributes of the software process are objectively measurable and can
therefore be expressed in numbers. The developers then have the opportunity to
translate the requirements from words to testable entities. For example, the reliability
requirement can be replaced by one that states that the lower limit for mean time to
failure is 15 elapsed hours of CPU time.

If we measure the number of faults during the different phases of the software product
life cycle, and build a database on this information, it is also possible to set up models
of expected detection ratios. These models can help us to evaluate future testing
efforts and decide whether they have been successful or not, i.e. if it is probable that
we have found all the faults.

The measurement of the characteristics of the products and processes can also tell us
whether we have met our quality standards and our quality goals. For instance, if we
have specified that the software should not contain more than 20 failures per time
unit, we can easily control this during the test phase. But software metrics are not only
useful for a retrospective view on the development process; we can also use it for
predicting attributes of the future products and processes, such as probable system
size, maintenance problems and software reliability (Fenton & Pfleeger, 1996).

Software Complexity and Project Performance Chapter 6
Department of Informatics Software Metrics

35

6.3.3� Customers

Software metrics is of obvious interest for the people who will use the system
produced. Firstly, it is important for them to have information about quality, cost,
time consumption etc., to be able to compare different products or companies with
each other. When this information is available for all the alternatives that a customer
has, he can make a more rational and well-founded choice. On the other hand, if the
information is not available for some alternatives, the customer is more likely to
choose those products from companies that have bothered to gather the information.

Secondly, information from a software metrics’ program is meaningful for the user,
when he would like to evaluate a project developed or product produced by another
company (outsourcing). Measurements can then be used to assess the quality of a
software system. The question is whether the system have the reliability,
maintainability, usability, efficiency etc., that we would like it to have. Software
metrics can also be used to discover if a project has not performed as good as we have
hoped relative to the cost of the project, i.e. those projects with too low productivity
(Möller & Paulish, 1993).

Evidently, there are problems associated with companies giving this type of
information to its customers. If competitors can capture this information they can use
it for own purposes, for example by discrediting the measured company in marketing.
“Bad” figures of e.g. fault density or programmer productivity can do a great harm to
a software company, and thus it is likely that it will retain the information if it can
suspect that it will be public if it is released to the customers.

6.4� The components in software metrics
Software metrics includes many types of models and measures used in the situations
described above. There are many proposals in the literature of how to classify these
areas (Möller & Paulish, 1993; Fenton & Pfleeger, 1996; Ohlsson, 1996; Grady,
1992), and we have tried to summarize them in the following categories:
1. &RVW�DQG�HIIRUW�HVWLPDWLRQ�PRGHOV� The aim of these models is to predict the total

cost of a software development project mainly at the requirement stage, but also to
track the costs during the whole product life cycle. An example of such a model is
Albrecht’s Function Points model that we will return to in the following chapters.
The models often share the approach of effort expressed as a function of one or
more variables (for example size, capability of the developers and level of reuse).
Size is usually computed by counting Lines of Code or number of functions
points.

2. 3URGXFWLYLW\�PRGHOV�DQG�PHDVXUHV� When combining measures of size and effort
or cost there is the possibility to reach a productivity measure. Based on the
collection of productivity data from finished projects, managers can also build
models for assessing and predicting staff productivity in future projects. These
models and measures are on different levels of sophistication from the traditional
ones, that divides size by effort, to ones that take more factors into consideration,
such as quality, functionality and complexity.

3. 4XDOLW\�PRGHOV�DQG�PHDVXUHV� As we have noticed productivity cannot be viewed
in isolation. The speed of production is meaningless if the product is of inferior
quality. This discovery has led software engineers to develop models of quality
whose measurements can be combined with those of productivity models.

Software Complexity and Project Performance Chapter 6
Department of Informatics Software Metrics

36

4. 5HOLDELOLW\�PRGHOV� Most quality models include reliability as a factor, but the
need, above all generated from the customers, for reliable software has led to the
specialization in reliability modeling and prediction. Reliability models are
usually statistical models for predicting mean time to failure or expected failure
interval.

5. 6WUXFWXUDO�DQG�FRPSOH[LW\�PHWULFV� Some quality attributes, like reliability and
maintainability, are not measurable until the operational version of the code is
available. To be able to predict which modules in a system that are less reliable
than others, different predictive theories have been established to measure
structural attributes of the software to support quality assurance, quality control
and quality prediction. Examples of such theories are Halstead’s measures of
effort, difficulty, volume and length, as well as McCabe’s cyclomatic number.

6.5� Summary
Although the discipline of software metrics is a rather young one, it has already
spread to many areas of the software development process. In this chapter we have
tried to give a definition of the concept, and explain in which areas and for whom it is
useful. We developed our own definition of software metrics, based on the literature,
and we established that software metrics is the practice of measuring different
attributes of the software development process and products in order to get useful and
relevant information for efficient management during the entire development process.

Three main reasons for using software metrics can be identified. Firstly, if we are not
able to measure our products and processes, we cannot set up measurable goals, since
we do not know if we have reached them. Secondly, we may want to distinguish costs
at different stages of the software development process from each other. This is
possible with software metrics. Finally, the customers will not choose our products if
we are not able to quantify or predict the quality of the products we produce.

We also distinguished three main recipients of software metrics information:
managers, engineers and customers. 0DQDJHUV use it mainly for controlling and
predicting the cost of projects, but also to evaluate the quality, and calculate the
effects of a more cost-effective solution. The HQJLQHHUV are more concerned with the
quality of the system, and especially if the system is meeting the requirements.
&XVWRPHUV are also very interested in the quality of the system, but mainly from their
own viewpoint and according to their own requirements. Problems with giving this
kind of information to the public can also be recognized.

In the end of the chapter, we tried to categorize different components in software
metrics, and we came up with the following suggestion: cost and effort estimation,
productivity models and measures, quality models and measures, reliability models,
performance evaluation and models, and finally structural and complexity metrics.

Software Complexity and Project Performance Chapter 7
Department of Informatics Software Complexity

37

7� Software Complexity
Most experts today agree that complexity is a major feature of computer software, and
will increasingly be so in the future. Some even states that computer programs are the
most complex entities among human products (Brooks, 1995). But what is software
complexity? From where does it originate? What are the apparent effects of it?

When studying the literature about the concept software complexity one is struck by
the fact that there is not much work done about the origins and nature of software
complexity. Almost all attention has been given to which effects it has on software
projects, above all the costs and quality of the product. This is a natural development,
since the incentive to care about software complexity is derived from the need of
software project managers and engineers to control and predict project productivity
and quality, as we discussed in the earlier chapters. However, to be able to better
understand how the complexity influences other attributes of software projects, we
will explain how complexity is created and what it is made up of.

In this chapter we will summarize some of the research about software complexity
and its findings. In the end of the chapter we will build a model of software
complexity and explain how it is connected to other factors such as error-proneness,
size, reliability, maintainability, quality, productivity etc. We are not picturing the
model until in the end of this chapter (Figure 7:1), but the reader may want to have a
look at it during the reading, to comprehend the relationships established.

7.1� Sources of software complexity
One way to start the quest for a model of software complexity is to examine the
origins of the concept. The intention is to be able to define what we mean by software
complexity by examining where it comes from. To solve this problem we set out by
looking at the different phases of the software product life cycle and try to derive
different types of complexity from these stages.

Although there is very little written about the origin and nature of software
complexity, some suggestions of a definition can be found. Most of them are based on
the notion that VRIWZDUH�FRPSOH[LW\�LV�WKH�GHJUHH�RI�GLIILFXOW\�LQ�DQDO\]LQJ�
PDLQWDLQLQJ��WHVWLQJ��GHVLJQLQJ�DQG�PRGLI\LQJ�VRIWZDUH (Zuse, 1991; Ohlsson,
1996; Fenton & Pfleeger, 1996; Grover & Gill, 1995). Our approach to the concept of
software complexity, in this master thesis, will be similar to the one of these
researchers.

With this basis it could be expected that different types of complexity are created
during each stage of the product life cycle. Hence, we are suggesting a twofold
classification of complexity:
- FRPSOH[LW\�RI�WKH�SUREOHP, which is the inherent complexity, created during the

requirements phase, and;
- FRPSOH[LW\�RI�WKH�VROXWLRQ (also referred to as DGGHG�FRPSOH[LW\), which is the

complexity being attached to the complexity of the problem. This type of
complexity is added during the development stages following the requirements
phase, primarily during the designing and coding phases.

Software Complexity and Project Performance Chapter 7
Department of Informatics Software Complexity

38

Another way to look at software complexity is to see it as the resources needed for the
project, or the efficiency of the project. With this approach, the complexity of a
problem can be defined as the amount of resources required for an optimal solution of
the problem. Then complexity of a solution can be regarded in terms of the resources
needed to implement a particular solution. These resources have at least two aspects:
time, i.e. computer time and man-hours, and space, i.e. computer memory (Goodman,
1993).

The idea behind this typology is that when we can measure how and when complexity
is brought into the project, we will also know which stage in the product life cycle we
need to focus on, to be able to control and hopefully reduce the software complexity.
The advantage of this approach is also that by concentrating on how to measure
complexity at different phases of the development, we can create models for
predicting how much complexity will be added to the project later in the process.

The fact that complexity is created over time makes it also hard to define and
measure. How are we going to summarize the complexity deriving from the problem,
the design and the code in one single number? Researchers have recognized this
difficulty, and therefore suggested that complexity should be discussed from several
perspectives and that there are several characteristics of software that must be
measured to get a general understanding of what complexity is (Zuse, 1991; Fenton &
Pfleeger, 1996). This leads us to an attempt of defining what we mean by software
complexity.

7.2� Nature of software complexity
That complexity is strongly connected to the amount of resources needed in a project
is something that is stated by most of the researchers of software metrics (Jones,
1996; Fenton & Pfleeger, 1996; Möller & Paulish, 1993; Goodman, 1993; Grady,
1992). The notion is that a more complex problem or solution is demanding more
resources from the project, in form of man-hours, computer time, support software
etc. A large share of the resources is used to find errors, debug, and retest; thus, an
associated measure of complexity is the number of software errors.

But since our intuition tells us that a solution that is more complex than another also is
more likely to need a larger amount of effort, the notion of complexity is naturally
bound to the concept of size. We think that by examining these relationships, firstly
between complexity and size and secondly between complexity and number of errors,
we can also understand how complexity is connected to productivity and quality.

We have already recognized that there are many categories of software complexity,
but that it is hard to combine all these categories in one overall measure of
complexity. Rather, our approach is to interpret complexity in different ways, and
then try to build a model of how these different aspects of complexity is influencing
productivity and quality (we will come back to this later in the chapter).

In that case, how are we going to properly define software complexity? Based on the
literature (Fenton & Pfleeger, 1996; Zuse, 1991; Ohlsson, 1996) we would like to
suggest that software complexity is made up of the following parts:
1. 3UREOHP�FRPSOH[LW\ (which is also called FRPSXWDWLRQDO�FRPSOH[LW\) measures

the complexity of the underlying problem. This type of complexity can be traced

Software Complexity and Project Performance Chapter 7
Department of Informatics Software Complexity

39

back to the requirements phase, when the problem is defined. If the problem can
be described with algorithms and functions it is also possible to compare different
problems with each other, and try to state which problem is the most complex.

2. $OJRULWKPLF�FRPSOH[LW\ reflects the complexity of the algorithm implemented to
solve the problem. This is where the notion of efficiency is applied. By
experimentally comparing different algorithms we can establish which algorithm
gives the most efficient solution to the problem, and thus has the lowest degree of
added complexity. This type of complexity is measurable as soon as an algorithm
of a solution is created, usually during the design phase. However, historically
algorithmic complexity has been measured on code, where the mathematical
structure is more apparent.

3. 6WUXFWXUDO�FRPSOH[LW\�measures the structure of the software used to implement
the algorithm. Practitioners and researchers have recognized for a long time that
there may be a link between the structure of the products and their quality. In
other words, the structure of requirements, design, and code may help us to
understand the difficulty we sometimes have in converting one product to another
(as, for example, implementing a design as a code), in testing a product (as in
testing code or validating requirements, for instance) or in predicting external
software attributes from early product measures.

4. &RJQLWLYH�FRPSOH[LW\�measures the effort required to understand the software. It
has to do with the psychological perception or the relative difficulty of
undertaking or completing a system. However, since this aspect of complexity is
more an object of study for the social scientists and psychologists, we are not
considering it in this report. Nonetheless, it is important to notice that the human
mind is a constraint for the software process, and that it influences the attributes of
the software we want to measure, such as quality and productivity.

Algorithmic and structural complexity (together with cognitive complexity) can be
used to measure the complexity of a solution and especially the added complexity.
Problem complexity is instead directly connected to the complexity that is generated
by the originally requirements. Therefore, it is obvious that the aspects of complexity
that are measurable during the software development process, are algorithmic and
structural complexity. But measuring the problem complexity is also of interest to us
when we want to predict the effort or resources needed for a specific project. By
comparing new problems with old ones and considering the effects of the solutions to
the old problems, we are able to predict the attributes of the solution to the new
problem, such as cost, fault density, size etc.

Thus, we will neither try to find a general definition of software complexity, nor try to
find an overall measure of it. Rather, we will use this typology of complexity in order
to sort out those measures of software complexity that can help us understand the
effects of complexity and the connections to project productivity and quality.
However, to be able to do this we need to specify the consequences of complexity.

7.3� Effects of software complexity
The reason to why we bother about complexity is that it is related in one way or
another to more important attributes of the software process. But how does these
relationships look more in detail? This is the subject for the following section.
According to our view, software complexity is a determinant factor for two of the
main attributes of the software product: HUURU�SURQHQHVV and VL]H.

Software Complexity and Project Performance Chapter 7
Department of Informatics Software Complexity

40

7.3.1� Error-proneness

Throughout this master thesis a number of fundamental process entities will be
referred to. The definitions in this section are based on the framework of Fenton and
Pfleeger (1996). A GHIHFW is a result of an HUURU during the software development
process. The error occurs because of the human factor, often of ignorance or
negligence. A IDXOW is a defect, which has persisted until the software is executable
and is at some time discovered. A fault that is discovered manifests itself in a IDLOXUH.
(UURU�SURQH modules are the modules that is most likely, statistically, to have a high
proportion of errors, IDXOW�SURQH modules are the modules that have the highest
proportion of faults, and IDLOXUH�SURQH modules are the modules with the highest
proportion of faults discovered after release. The idea with identifying error-prone
modules is that we have the possibilities and the time to correct the errors and prevent
them from resulting in faults and failures. When we are able to measure fault-
proneness and failure-proneness we have most often reached a point in the
development process where we can not take care of the problem.

The main idea behind the relationship between complexity and error-proneness is that
when comparing two different solutions to the same computational problem, we will,
provided that all other things are equal, notice that the most complex solution is also
generating the most number of errors. This relationship is one of the most analyzed by
software metrics’ researchers and previous studies and experiments have found this
relationship to be statistically significant (Curtis, Sheppard & Milliman, 1979; Henry,
Kafura & Harris, 1981; Shen, Yu, Thebaut & Paulsen, 1985).

This confirmation of the existence of a relationship between software complexity and
errors, and understanding the characteristics of the relationship, is of important
practical benefit. Since a great deal of software development costs are directed to the
software integration testing, it is crucial for the project performance to possess the
instruments for predicting and identifying the type of errors that may occur in a
specific module (Basili & Weiss, 1984; Boehm, 1981).

We have found at least three ways where error-proneness can influence quality and
productivity: through the XVDELOLW\ and UHOLDELOLW\ of the software and through the
QHHG�RI FKDQJLQJ the system. The concept of XVDELOLW\ is connected to what the
customer expects from the product. If the customer feels that he can use it in a way
that he intend to, he will more likely be satisfied and regard it as a product with high
quality. Thus, a large number of errors in software are presumably something that
would lower the usability of the program.

The UHOLDELOLW\ of a system is often measured by trying to determine the mean time
elapsed between occurrences of faults (the result of the software errors) in a system.
The idea is that a relatively more reliable product is more stable and has fewer
unexpected interruptions than a less reliable product. However, a product impaired by
many errors must also be FKDQJHG in one way or another, in order to lessen the
number of faults. By trying to prevent the errors from arising or by detecting them and
then try to correct them afterwards we can take care of the errors. Either way, a
module that has more errors also needs more resources to remedy it (Ohlsson, 1996;
McCarty, 1999).

The expectation of the system developer is that the usability and reliability of the
software can be improved over time, but in order to do that we need to use more

Software Complexity and Project Performance Chapter 7
Department of Informatics Software Complexity

41

resources to make improvements in the product. Thus, the error-proneness influences
both the quality and the productivity dimension of software. By creating a more
reliable and stable product we are building quality into it, and by preventing and
correcting errors we are hopefully improving the overall quality. But the need for
change is also restraining the productivity through the resources that is used for all the
activities associated with changing the software: preventing, detecting and correcting
errors. When we spend more time on these activities our overall productivity
decreases. Thus, productivity and quality is interconnected by the factor of error-
proneness. Products with relatively high quality do not need as much corrections, and
therefore the time used for error-correcting and error-preventing activities is shorter.
From this viewpoint it is therefore correct to say that project productivity increases as
quality increases (Burr & Owen, 1996).

7.3.2� Size

The same amount of effort as have been directed to study the relationship between
complexity and error-proneness, has not been aimed at analyzing the connection
between complexity and size. However, most researchers in the field of software
metrics would agree that the complexity of the problem and the solution is one of the
factors that determine the size of the project (Fenton & Pfleeger, 1996; Treble &
Douglas, 1995; Symons, 1991). All other things equal, it is obvious that a more
complex problem will need more effort to be solved, and a more complex solution
will need more resources to be implemented. However, to elucidate the connection
between size and productivity, we will need to outline this relationship more in detail.

We can identify three results of software size: it influences the testability or
PDLQWDLQDELOLW\ of the software product, the XQGHUVWDQGDELOLW\ of the software
product, and the FRPSXWDWLRQDO�SRZHU (time, memory etc.) needed to implement the
software product. Maintainability is a requirement when we want our software to be
easy to understand, enhance, or correct. Size is one of the factors that make the
PDLQWHQDQFH more difficult to implement. A larger product is in general also
demanding a larger share of resources to modify and correct. An objection can be
raised against our separation of maintainability and need of changing, which we
discussed as a factor of error-proneness. The reason why we have made this division
is that the maintenance activity includes much more than just preventing, detecting
and correcting errors. That is, we do not need visible errors to have incentives for
maintaining a software product. Rather, the maintenance activity also includes such
things as preventive and perfective measures to improve the product in one way or
another. The level of maintainability influences both the quality and the productivity.
When we create programs that are easy to maintain, it is also easier to detect and
correct our mistakes, and thereby reach our quality goals. Further, a maintenance-
friendly module does not need as much time and other resources to keep in repair, and
thus it is also acting on the project productivity.

In this context we should also acknowledge the interconnection between
maintainability and change. If the maintainability of the system is high this will
probably lead to lesser time spent on changing activities. Likewise, changes can be
made to the system in order to increase the maintainability of the system. In other
words, the maintainability and the level of change of a system are connected with
each other, and this connection also influences the productivity and quality of the
software.

Software Complexity and Project Performance Chapter 7
Department of Informatics Software Complexity

42

Since the human mind is limited, the size of software is also influencing the ability for
programmers and system developers to XQGHUVWDQG and comprehend how the software
is structured. A large unit of code is more time-consuming and resource-demanding to
familiarize oneself with, and it is even possible that it is too sizable to be able to
comprehend at all. Thus, when added complexity in this way creates unnecessary
large software modules it requires resources that could be used for other activities,
and thereby it lowers the productivity of the project.

Finally, sizable software also uses more FRPSXWHU�SRZHU, i.e. computer memory and
time, for compiling, executing and testing the program. When building large systems
the developers may have to sit idle and wait for the computer to make its share of the
job, because the computational resources do not keep up with its human
counterpart(s). When the human workforce is underutilized in this way the
productivity is also suffering.

7.4� A model of software complexity
We started this chapter by saying that our goal was to build a model of software
complexity. With the discussion of the sources, the nature and the effects of
complexity we have also laid down the theoretical framework for a graphical
disclosure of our understanding of the concept software complexity (Figure 7:1). It
may look confusing in the beginning, but most of the relationships have already been
explained in this chapter.

The sources of complexity have been discussed in the beginning of this chapter. The
problem gives the project its inherent complexity, and further complexity is added
during the design and code phase of the software development process. According to
our model complexity is then uniting with other factors in determining the error-
proneness and size of the system. We are not claiming that this model is
encompassing all thinkable factors, but examples of components that are settling the
occurrence of errors in the software and the size of the project are given. The
PDQDJHPHQW is interesting because a project can suffer as much from a defective
leadership as it can benefit from a good one. Our belief is that a manager who has the
ability to direct a project also creates better prerequisites for a low level of error
density.

The HQYLURQPHQW in itself, e.g. the working place, the colleagues, the workload etc., is
also a determinant factor for the error-proneness of the system. A “negative”
environment usually means small possibilities of creating high-quality software. The
use of good and relevant working PHWKRGV is also important for the ability to reduce
the number of errors in a program, as well as the FRPSHWHQFH, i.e. the experience and
knowledge, of the people working with the project.

Software Complexity and Project Performance Chapter 7
Department of Informatics Software Complexity

43

)LJXUH�����$�PRGHO�RI�VRIWZDUH�FRPSOH[LW\

The methods, the management and the environment of the project also influence the
size of software and the effort needed for creating it. But the magnitude of the
software is also influenced by many other factors. One of the most obvious of these is
the physical OHQJWK of the project, measured for example by pages or lines of text
(principally in the requirements and design phases) or code (in the coding phase and
later).)XQFWLRQDOLW\ captures an intuitive notion of the amount of function contained
in a delivered product or in a description of how the product is supposed to be. It is
indicating that when we are creating a system that is supposed to “do more things” we
are also creating a larger system.

PROBLEM SOLUTION

Design Code

COMPLEXITY
Tools

Management

Environment

Methods

Module
Length

Functionality

Competence

Reuse

Language

Outsourcing

(5525�
3521(1(66

6,=(

5HOLDELOLW\ &KDQJH

8VDELOLW\ &RPSXWHU
SRZHU

8QGHUVWDQGDELOLW\

0DLQWDLQDELOLW\

352'8&7,9,7<48$/,7<

Software Complexity and Project Performance Chapter 7
Department of Informatics Software Complexity

44

The concepts of WRROV and ODQJXDJH are in fact referring to much of the same
phenomena. Most of us have experience telling us that we do not need as much effort
when coding a system in a 4GL (4th Generation Language) and with a visual tool, as
we may need when implementing the same system in lower level languages, and with
the help of a text editor. Moreover, most projects do not start from scratch. Usually
some of the work has been done before, and we can UHXVH it in our new projects.
Another alternative is to�RXWVRXUFH some of the work to internal or external
companies. Both these practices influence how much effort that is demanded from us
in the immediate project.

The effects of errors and size have already been discussed in this chapter, and we will
not repeat that analysis here. What we would like to point out once more is the
intricacy of the model, how complicated the relationship is between complexity on
one hand and productivity and quality on the other. This means that our prospects of
finding one single measure, or even a set of measures, that reflects all aspects of
complexity, is rather small. Rather, we will try to give an overview of the most
important and also widely used measures of complexity, and what aspect of
complexity that it is supposed to measure. We have chosen to divide these measures
into two categories. The first one is complexity measures that are supposed to be used
for predicting the number of errors in software, i.e. it is predicting the HUURU�SURQHQHVV
of a program. The second is connected to the VL]H and HIIRUW dimension of complexity
and includes measures that combine complexity with other factors (mainly
functionality) to predict and establish the size of a software product. The following
two chapters will deal with these issues.

7.5� Summary
The concept of complexity is very hard to define, and it is even more so when it
comes to software complexity. We proposed a rather loose definition of the concept
and said that software complexity is the degree of difficulty in analyzing, maintaining,
testing, designing and modifying software, i.e. software complexity is a subject during
the entire software development process.

When we established this definition, we turned to the sources of complexity. They
were divided in two main classes: complexity of the problem and complexity of the
solution. The last-mentioned was also divided in complexity generated during the
design and code phases of the development.

To explore the nature of complexity, we can classify the concept, in order to look at it
from different viewpoints. One such classification was proposed in this chapter and it
divided software complexity into problem complexity (also called computational
complexity), algorithmic complexity, structural complexity and cognitive complexity.

The effects of complexity were divided in two main parts: error-proneness and size. A
program that is more complex than another is also more likely to contain more errors
and generate a larger system. The error-proneness, in its turn, influences such
attributes of the system as the usability, reliability and need of change. Size, on the
other hand, influences the maintainability, understandability and computational power
needed for implementing the system. The discussion resulted in a model of software
complexity that will form the basis for our continuous exploration of the subject.

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

45

8� Structural Measures of Software Complexity

8.1� Types of structural measures
In our model of complexity we found that the link between software complexity, size
and productivity is not as simple and obvious as it seems. We would like to assume,
that, all other things being equal, a large module takes longer to specify, design, code,
and test than a small one. But we argued that also the structural complexity by means
of its effect on the error-proneness of the program is determining the productivity
level of the project. Thus, we must investigate characteristics of product structure, and
determine how they influence the outcomes we seek. In this chapter, we focus
primarily on code measures, but many of the concepts and techniques we introduce
here can also be used on other documents produced during the product life cycle.

The notion of structural complexity can also be seen from different viewpoints, each
playing a different role. We can identify at least three different aspects of structure
(Fenton & Pfleeger, 1996):

1. control-flow structure
2. data-flow structure
3. data structure

The FRQWURO�IORZ is concerned with the sequence in which instructions are executed
in a program. This aspect of structure takes into consideration the iterative and
looping nature of a program. Thus, whereas size counts an instruction only once,
control flows make more visible the fact that an instruction may be executed many
times as the program is actually run.

'DWD�IORZ follows the trail of a data item as it is created or handled by a program.
Many times, the transactions applied to data are more complex than the instructions
that implement them; data-flow measures depict the behavior of the data as it interacts
with the program.

'DWD�VWUXFWXUH is the organization of the data itself, independent of the program.
When data elements are arranged as lists, queues, stacks, or other well-defined
structures, the algorithms for creating, modifying, or deleting them are more likely to
be well-defined, too. So the structure of the data tells us a great deal about the
difficulty involved in writing programs to handle the data, and in defining test cases
for verifying that the programs are correct. Sometimes a program is complex due to a
complex data structure rather than complex control or data flow.

We will discuss each of these categories in the following sections. Moreover we will
give examples of measures that are used to characterize these aspects of structural
complexity. Since over hundred measures of structural complexity have been
proposed (Zuse, 1991), we will have to limit ourselves to three types, one for each
category. The reason why we have chosen these three measures is that they are the
most discussed in the literature, the most frequently used, and, not least important,
they are the original measures that most of the other measures have been developed
from (Zuse, 1991; Fenton & Pfleeger, 1996; Ohlsson, 1996).

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

46

8.2� Control-flow structure
Measures of control-flow structure have been the interest of software metrics work
since the beginning of the 1970’s. In fact, they were the first ones proposed for
measuring software attributes in general, and especially software complexity. The
control flow measures are usually modeled with GLUHFWHG�JUDSKV, where each node
(or point) corresponds to a program statement, and each arc (or directed edge)
indicates the flow of control from one statement to another (Fenton & Pfleeger, 1996).
We call these directed graphs FRQWURO�IORZ�JUDSKV or IORZJUDSKV. An example of
one such graph can be seen in Figure 8:2.

Thus, directed graphs are depicted with a set of nodes, and each arc connects a pair of
nodes. The arrowhead indicates that something flows from one node to another node.
The in-degree of a node is the number of arcs arriving at the node, and the out-degree
is the number of arcs that leave the node. We can move from one node to another
along the arcs, as long as we move in the direction of the arrows. A SDWK is a
sequence of consecutive (directed) edges, some of which may be traversed more than
once during the sequence. The reason why we explain these concepts is that this
terminology is used in the measure we are going to describe. To be able to understand
description of McCabe’s cyclomatic number it is necessary to recognize these notions.

Normally we can construct a program using the structural primitives: VHTXHQFH,
VHOHFWLRQ and LWHUDWLRQ. Since most programming languages have formalized ways of
expressing these constructs, it is possible to extract a flowgraph from existing code.
Most automated tools that are applied to source code also work in this way. They try
to identify the structural primitives, then build a flowgraph model of this program,
and by this time it is rather easy to compute the equation used by the measure. We
will describe one of these measures, McCabe’s cyclomatic number, which also was
the first measure of software complexity proposed, introduced in 1975.

8.2.1� McCabe’s cyclomatic number

McCabe (1976) proposed that program complexity could be measured by the
cyclomatic number of the program’s flowgraph. The measure is expressed in the
equation:

Y�)�� �H�±�Q����

where Y stands for McCabe’s cyclomatic number,) is the flowgraph that is studied, H
is the number of directed edges and Q is the number of nodes in the flowgraph. We
will try to illustrate this measure by an example.

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

47

)LJXUH�����([DPSOH�IRU�0F&DEH·V�F\FORPDWLF�QXPEHU

3URFHGXUH�VRUW��YDU�[��DUUD\�RI�LQWHJHU��Q��LQWHJHU��
YDU�L��M��VDYH���LQWHJHU�
EHJLQ

���� IRU�L� ��WR�Q�GR �QRGH���
����� IRU�M� ��WR�L�GR �QRGH���
���� ,I�[>L@�[>M@�WKHQ� �QRGH���
����� %HJLQ �QRGH����LQFOXGLQJ�URZV�����
���� VDYH� [>L@�
���� [>L@� [>M@�
���� [>M@� VDYH�
���� HQG �QRGH���
����� HQG� �QRGH���

The flowgraph for this module would be:

)LJXUH�����)ORZJUDSK�RI�H[DPSOH�LQ�ILJXUH����

In this module McCabe’s cyclomatic number would be 6, i.e. there are 10 directed
edges and 6 nodes (v(F) = 10-6+2 = 6). On the basis of empirical research, McCabe
claimed that modules with high values of v were those most likely to be error-prone
and unmaintainable. He proposed a threshold value of 10 for each module; that is, any
module with v greater than 10 should be redesigned to reduce v. However, as we
already have mentioned, the cyclomatic number presents only a partial view of
complexity. It can be shown mathematically that the cyclomatic number is equal to
one more than the number of decisions in a program, and there are many programs
that have a large number of decisions but are easy to understand, code and maintain.
Thus, relying only on the cyclomatic number to measure actual program complexity
can be misleading.

�

�

�

�

�

�

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

48

8.2.2� Strengths and weaknesses of McCabe’s measure

Among the advantages of this measure one can notice that it is rather easy to compute
from the program text, and flowgraph as well. Most of the software tools available for
code measuring, support the use of McCabe’s cyclomatic number, which is a sign of
its user-friendliness. The measure also supports a top-down development process to
control module complexity in the design phase, i.e. before actual coding takes place.
As we mentioned in the previous section it can also be used to FRQWURO the complexity
of program modules, with regard to McCabe’s recommendation of an upper bound of
10. Moreover it can be adapted to HYDOXDWH alternate program design to find the
simplest possible program structure, and also as a guide for allocating testing
resources (Fenton & Pfleeger, 1996).

The critics against the measure are mainly of a theoretical nature. Researchers have
argued that it measures only the psychological complexity and not the computational
complexity (Zuse, 1991), i.e. it may be hard for a human to understand a program
with a high number of cyclomatic complexity, but it may not be as hard for a
computer. Moreover, it views all predicates, either selection or iteration, as
contributing the same amount of complexity. Other objections that have been raised
against McCabe’s measure are that it is insensitive among other things to the
frequency and the types of input and output activity, to the size of purely sequential
programs, to the number of variables in the program and to the intensiveness of fatal
operations in the program, i.e. things that is captured by other measures (Ohlsson,
1996).

Despite all this criticism it is still one of the most practicized measures of software
complexity, probably because it is simple to understand and implement. Empirical
investigations do not give clear evidence of the usefulness of the measure. Some of
them claim that McCabe’s cyclomatic number correlates strongly with the error-
proneness of a module, but others assert that simple measures of program size, such as
Lines of Code, can be used as just as good estimates of error-proneness as the
cyclomatic number (Zuse, 1991).

8.3� Data-flow structure
When the measures of the control-flow structure focus on the attributes of individual
modules, the measures of data-flow structure emphasize the connections between the
modules. The main object for the study is a collection of modules, either at the design
stage or when the program is implemented in code. It is the inter-module
dependencies that interest us, and measures of these attributes are called LQWHU�
PRGXODU�PHDVXUHV (Fenton & Pfleeger, 1996).

However, first we have to establish a definition of a module, and in this context we
rely on the one suggested by Yourdon & Constantine (1979): ³$�PRGXOH�LV�D
FRQWLJXRXV�VHTXHQFH�RI�SURJUDP�VWDWHPHQWV��ERXQGHG�E\�ERXQGDU\�HOHPHQWV�
KDYLQJ�DQ�DJJUHJDWH�LGHQWLILHU´�(p. 37). This deliberately vague definition permits a
liberal interpretation. Thus, a module can be an object that, at a given level of
abstraction, you wish to view as a single construct. We insist additionally that a
module is (at least theoretically) separately compilable.

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

49

To describe inter-modular attributes, we build models to capture the necessary
information about the relationships between modules. Figure 8:3 contains an example
of a diagrammatic notation capturing the necessary details about designs (or code).
This type of model describes the information flow among modules; that is, it explains
which variables are passed between modules. However, when measuring some
attributes we do not need to know the fine details of a design, so our models suppress
some of them. For example, when we just have to know if a module calls (or depends
on) another module we use a more abstract model of the design, a directed graph
known as the module call-graph.

)LJXUH�����*UDSK�RI�PRGXOH�LQWHUDFWLRQ��GHVLJQ�FKDUWV�

�)HQWRQ�	�3IOHHJHU��������S������

Information flow metrics can be applied to any functional decomposition of a
software system. Examples of these include structure charts and dataflow diagrams.
For example, in a dataflow diagram we do not have ‘calls’, instead we have data
flows between processes. Given that information flow metrics apply to these forms of
functional decomposition, they come into play from as early as the high-level design
stage, and serve a useful purpose right the way down to low-level design when you
can start to use McCabe metrics, or some other intra-modular measure (Fenton &
Pfleeger, 1996).

What we are concerned with is consequently the information flow between modules.
Researchers have attempted to quantify several aspects of information flow (Boehm,
Brown & Kaspar, 1978; Hausen, 1989; Henry & Kafura, 1984), including:

• The total level of information flow through a system, where the modules are
viewed as the atomic components (an inter-modular attribute); and

• The total level of information flow between individual modules and the rest of the
system (an intra-modular attribute).

The measure we are about to study is recognizing both of these aspects but is focusing
on the latter. However, we start by explaining a few of the concepts used by Henry
and Kafura (1981) in their information flow complexity metrics.

0DLQ

5HDGB6FRUHV $YHUDJH

&DOFB$Y 3ULQWB$Y

scores

average

average

scores

scores

eof

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

50

8.3.1� Henry and Kafura’s information flow measure

To understand this measurement, we will have to consider the way in which data
move through a system. The central concept is ORFDO�IORZ, which can be GLUHFW or
LQGLUHFW. It is direct if: a) a module A invokes module B and passes information to it
(active), or b) the invoked module B returns a result to the caller, module A (passive).
Similarly, we say that a local indirect flow exists if a third module C invokes A and
moves the result to B. A�JOREDO�IORZ exists if information flows from module A to
module B through a global data structure, that A writes to and B reads from.

)LJXUH�����'LUHFW��LQGLUHFW�DQG�JOREDO�LQIRUPDWLRQ�IORZ

����������'LUHFW ��������,QGLUHFW *OREDO

Using these notions, we can describe two particular attributes of the information flow.
The fan-in of a module M is the number of local flows that terminate at M, plus the
number of data structures from which information is retrieved by M. Similarly, the
fan-out of a module M is the number of local flows that emanate from M, plus the
number of data structures that are updated by M.

Based on these concepts, Henry and Kafura (1981) measure information flow
“complexity” as:

,QIRUPDWLRQ�IORZ�FRPSOH[LW\�0�� �OHQJWK�0��[�>IDQ�LQ�0��[�IDQ�RXW�0�@�

Figure 8:5 shows an example of how this measure is calculated from a design’s
modular structure.

The length factor in Henry and Kafura’s equation can be measured in different ways,
but usually the method of counting lines of source code is applied. The formula also
includes a power component to model the non-linear nature of complexity. The
assumption is that if something is more complex than something else, then it is much
more complex rather than just a little bit more complex.

Some authors propose that as a guide, the 25 percent of modules with the highest
scores for fan-in, fan-out and information flow complexity values should be
investigated (Rapps & Weyuker, 1985). High information flow complexity values
indicate highly coupled components. These modules need to be looked at in terms of
fan-in and fan-out to see how to reduce the complexity level. Sometimes a ‘traffic
center’ may be hit. This is a module where, for whatever reasons, there is a high
information flow complexity value, but things cannot be improved. Switching
components often exhibit this. Here there is a potential problem area, which, if it is

A B

C

A B A B

GDS

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

51

also a large component, may be very error-prone. If the complexity cannot be
reduced, then one should make sure that the component is thoroughly tested.

)LJXUH�����([DPSOH�RI�+HQU\�DQG�.DIXUD·V�LQIRUPDWLRQ�IORZ�FRPSOH[LW\�PHDVXUH�

0RGXOH IDQ�LQ IDQ�RXW >�IDQ�LQ��IDQ�RXW�@� OHQJWK µFRPSOH[LW\¶
WC 2 2 16 30 480
FD 2 2 16 11 176
CW 3 3 27 40 1080
DR 1 0 0 23 0

GDN 0 1 0 14 0
RD 2 1 4 28 112

FWS 1 1 1 46 46
PW 1 1 1 29 29

DOC 0 1 0 18 0

�)HQWRQ�	�3IOHHJHU��������S������

8.3.2� Strengths and weaknesses of Henry and Kafura’s measure

The measure of Henry and Kafura has received considerable attention. It was the
subject of a major validation study using industrial software, in the sense that its
prediction ability was investigated. Henry and Kafura established a correlation with
their measure and maintenance change data for the UNIX operating system; those
modules with excessively high values for information flow complexity were well-
known by the maintenance staff as being the source of many serious problems (Henry
& Kafura, 1981).

The merit of this measure is that it addresses a higher level of complexity than in the
case of McCabe’s metrics. To get an overall picture of complexity one need also to
study the interactions between modules, not only the transactions within it. Modules
with either a low fan-in or low fan-out are, in a sense, isolated from the system and
hence have low complexity. This is recognized by Henry and Kafura’s measure, and
they justify the multiplication of fan-in and fan-out, by referring to this observation.

However from a measurement theory perspective, researchers have questioned the
basis for this action. In particular, they are concerned about the lack of complexity for

:&

)' &: '5

*'1 5'):6 3:

'2&

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

52

many modules, as the multiplication leads to a value of zero complexity for any
module in which either the fan-in or fan-out is zero. Many experts have also
questioned the length factor, partly because it is a separate attribute and partly because
it contradicts measurement theory. Consequently Martin Shepperd studied Henry and
Kafura’s measure in depth and identified a number of theoretical problems with it
(Shepperd & Ince, 1990). He proposed a refinement to the measure, by excluding the
length factor:

6KHSSHUG�FRPSOH[LW\��0�� �>IDQ�LQ�0��[�IDQ�RXW�0�@�

Moreover, he changed the definitions of some of the concepts used in the original
model, like local and global flows, global data structures and which modules that
should be counted. Shepperd’s refinements attempt to capture a specific view of
information flow structure, and are thus consistent with measurement theory. His
empirical validation studies examined how closely the measure correlate with a
specific process measure, namely development time. Interestingly, the relationship
between development time and the Henry-Kafura measure was not significant for
Shepperd’s data, but Shepperd’s pure-information flow-structure is significantly
related. However, other studies say that both Henry and Kafura’s and Shepperd’s
models are not very useful when trying to predict the error-proneness of a program
(Ohlsson, 1996; Goodman, 1993). In these studies even Lines of Code correlate
closely to attributes of error than these measures do.

8.4� Data structure
We have seen how information flow (or data flow) can be measured, so that we have
some sense of how data interact with a system or module. However, once again we
are turning to the intra-modular level of measurement, and focus on the attempts that
have been made to define measures of actual data items and their structure. In this
section, we examine one representative data-structure measure to see what it can tell
us about system products.

The focus of data structure is of course data itself, i.e. the atomic components of the
program (if we ignore the bit level). We want to capture the “amount of data” for a
given system by trying to identify those constructs that make up the program and
weigh them in a way that they accurately reflect the total complexity of the system.
The idea is that when we use more constructs we are also creating a more complex
program. This complexity increases even further if we use a large number of GLIIHUHQW
constructs. Thus the overall complexity of a system cannot be depicted completely
without measures of data structure; control-flow measures can fail to identify
complexity when it is hidden in the data structure.

8.4.1� Halstead’s measures of complexity

Maurice Halstead’s measures of complexity (Halstead, 1977) were proposed shortly
after McCabe presented his cyclomatic number in 1975. Halstead intended to make
his measurement an alternative to the counting of Lines of Code as a measure of size
and complexity, but it has, since the end of the 1970’s, mainly been used as a
predictive measure of the error-proneness of a program.

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

53

Halstead’s software science attempted to capture attributes of a program that
paralleled physical and psychological measurements in other disciplines. He began by
defining a program P as a collection of tokens, classified as either operators or
operands. The basic definitions for these tokens were:

Q�� �QXPEHU�RI�XQLTXH�RSHUDWRUV
Q�� �QXPEHU�RI�XQLTXH�RSHUDQGV

1�� �WRWDO�RFFXUUHQFHV�RI�RSHUDWRUV
1�� �WRWDO�RFFXUUHQFHV�RI�RSHUDQGV

The identification of operators and operands depends on the programming language
used. We will illustrate the basic tokens with the code example we had in the section
about McCabe’s cyclomatic number (8.2.1, Figure 8:1). If we separate this procedure
in operators and operands we get the following numbers:

7DEOH�����([DPSOH�RI�FRXQWLQJ�RSHUDWRUV�DQG�RSHUDQGV

2SHUDWRU 1XPEHU�RI
RFFXUUHQFHV

Procedure 1
sort() 1
Var 2
: 3
Array 1
; 6
Integer 2
, 2
begin … end 2
for … do 2
if … then 1
:= 5
< 1
[] 6
Q�� ��� 1�� ���

2SHUDQG 1XPEHU�RI
RFFXUUHQFHV

X 7
n 2
i 6
j 5
save 3
2 1
1 1
Q�� �� 1�� ���

The choice of counting a token as an operand or an operator is a matter of judgement,
and the definition of the terms depends on the programming language used. The tools
available today for implementing Halstead’s measures are also adjusted to a specific
language, like C, C++, Java, Pascal etc.

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

54

Based on these notions of operators and operands, Halstead defines a number of
attributes of software. These are shown in Table 8:2.

7DEOH�����7KH�PHDVXUHV�RI�+DOVWHDG

Size of Vocabulary Q� �Q����Q�

Program Length 1� �1����1�

Program Volume 9� �1�/2*��Q�

Programming Effort (� ��Q�1�1�/2*��Q��������Q��

Programming Time (seconds) 7� �(���

Approximation for N 1� �Q��ORJ�Q���[�Q��ORJ�Q��

�=XVH��������SS����������

The measures “Size of Vocabulary” and “Program Length” is rather self-explanatory,
but we will clarify the others somewhat. The volume of a program is akin to the
number of mental comparisons needed to write a program of length N. It is supposed
to correspond to the amount of computer storage necessary for a uniform binary
encoding. Thus, Halstead has proposed reasonable measures of three internal program
attributes that reflect different views of size.

The measure of effort is based on the relationships reported in the psychology
literature (Ohlsson, 1996). The unit of measurement of E is elementary mental
discriminations needed to understand the program, and Halstead referred to
psychologists claiming that the human mind is capable of making a limited number of
such elementary discriminations per second. These psychologists asserted that this
number lies between 5 and 20. Halstead claimed that this number LV 18, and hence the
programming time T for a program of effort E is expressed as in the equation for
Programming Time above.

8.4.2� Strengths and weaknesses of Halstead’s measures

Of the measures presented in this chapter, Halstead’s metrics is probably the most
criticized. One of the problems associated with Halstead’s model is how to define
operands and operators. We have already touched upon this issue when we discussed
the dependence on programming language. Halstead assert that all commandos in a
program can be separated in operators and operands, but the problem is that even if
we have succeeded in categorizing the components of one language, we have to do it
all over again when we begin to use another language. Moreover the definition of
operators and operands may differ between different users, since there is no standard,
which will make comparisons between software developers difficult (Ohlsson, 1996).

Halstead’s argumentation has also been accused of not giving a consensus of the
meaning of attributes such as volume and effort. In other words, the relationship
between the empirical relational system (that is, the real world) and the mathematical
model is unclear. Further, Halstead gives no real indication of the relationships among
different components of his theory. And we cannot tell if he is defining measures or
prediction systems (Fenton & Pfleeger, 1996).

The psychological assumptions that Halstead makes in his measurement of effort and
programming time have also been criticized. The opponents have claimed that the

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

55

postulation that the human mind is capable of 18 mental discriminations per second is
too exact, and does not have enough empirical evidence to be accepted as scientific
(Ohlsson, 1996).

Moreover, the model was originally developed for use in measuring small-scale
systems developed during the 1970’s, and experts have thus claimed that it is not as
useful, when measuring the more extensive modern software systems. Davis and
Leblanc (1988) made a study of a number of classical measures of software, among
them Halstead and McCabe, and their results indicated that Halstead’s size measures
where the best predictors of error-proneness of a program. Their object of study was
also smaller systems, which may explain why they reached this result.

Despite the shortcomings of the model, Halstead’s measures are still widely used, as
the other measures presented in this chapter. Above all, it is important to realize its
importance of this work as the first major effort attempting to relate program
characteristics with complexity. This work provided the impetus to others in the area
of software metrics.

8.5� Conclusion of the structural complexity metrics
As we have seen from this survey, there is no such thing as the perfect measure of
structural complexity, that encompasses all aspects of the concept. Rather, each
measure has its benefits as well as shortcomings. Moreover, since the researchers do
not agree on the predictive power of the measures with regard to error-proneness, it is
not possible to give a distinct answer of which measure is the “best”. We think that
each company has to make its own study of the relationship between these measures,
or a combination of them, and error-proneness, in order to find the measure/measures
that suit their business.

Since each of these measures is addressing one aspect of structural complexity it may
be advisable to combine two or more of these measures in order to get a more
complete picture of the complexity, and perhaps also increase the predictive power of
the measurements. Due to lack of time, we have not been able to carry out such an
extensive study of the structural complexity measures. We will suggest this as an
assignment for future master students. However, as we will see in Chapter 10,
3URGXFWLYLW\��4XDOLW\�DQG�3HUIRUPDQFH, we need to have a measure that can predict
the quality of the software developed. This means that we have to suggest one of these
measures to be used, together with other measures described in this report, at ERV.

We believe that McCabe’s cyclomatic number can be preferred for three reasons. It is
widely used among software companies, for predicting error-proneness and reliability.
Moreover, it is almost always supported in the automatic measuring tools available at
the market, and for many different languages. Finally, it can be used early in the
software development process, in contrast to, for example, Halstead’s measures.

8.6� Summary
In this chapter we have focused on measures for structural complexity, mainly for
predicting error-proneness and the quality dimension of computer software. We
divided structure in three different categories: control-flow structure, data-flow

Software Complexity and Project Performance Chapter 8
Department of Informatics Structural Measures of Software Complexity

56

structure and data structure. Control-flow structure is focusing on what we call the
structural primitives of a program: sequence, selection and iteration. Program design
or code can be depicted by flowgraphs, from which we can develop different
measures of the executable nature of a program. McCabe’s measure of cyclomatic
complexity was investigated, and an example of how to count it was elaborated. The
strengths identified with the measure are mainly its ease of use and understanding,
together with the applicability in different stages of the software development process.
The criticism against the model is mainly of a theoretical nature, meaning that it is not
measuring the computational complexity, but rather the psychological complexity of
the program. Additionally, it is not relating to other aspects of complexity that is
captured by other measures.

Data-flow structure emphasizes the inter-modular aspect of complexity, i.e. the
connections and relationships between the modules. Models and graphs of this
structure can also be made, and from these pictures of the program we can develop
measures of how the information flow through the system. The example of Henry and
Kafura’s measure shows how we can capture the complexity of this information flow,
by defining the concepts of local and global flows and summarize them in the model
of fan-in and fan-out of modules. The measure should be seen as a complement to the
intra-modular models of complexity, since it focuses on a different level of program
complexity. In subsequent studies evidence have been found that Henry and Kafura’s
measure is rather useful when trying to predict the error-proneness of a program.
However, it has been criticized for not being mathematical correct according to
measurement theory, and revisions of the formula have been made.

Then, we turned once again to the intra-modular level, and focused on measures of
actual data items and their structure, to make the picture of structural complexity
complete. An example of these measures is Halstead’s original measures of size and
complexity. He identifies two data components of programs, operators and operands,
and divide each of these in two categories, which results in four parameters: number
of unique operators, number of unique operands, total occurrences of operators and
total occurrences of operands. Based on these concepts Halstead propose different
measures of size, effort and time for estimating and evaluate different aspects of a
program, such as error-proneness and development time. Many experts have
recognized the problems with these measures. Above all the model is criticized for its
lack of standard definitions of the concepts used and for the psychological
assumptions made. Moreover, it has been dismissed as not applicable for larger
systems. The studies that claim that the measure correlates strongly with error-
proneness have also been made on small-scale systems, as the model originally was
developed for.

Even if we recognized that there is no consensus of which measure correlates
strongest with error-proneness, we suggested that McCabe’s cyclomatic number
should be used at ERV. This choice was based on its widespread use, its incorporation
in most of the automatic measuring tools and its applicability early in the
development process�

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

57

9� Algorithmic Complexity and Size Measures.

9.1� Software size and productivity
In Chapter 7, 6RIWZDUH�&RPSOH[LW\, we described software complexity with a model
that was divided in two main tracks. One of the tracks bears upon error-proneness,
which in the end leads to quality issues. The other track considers size and effort,
which in its final step influence productivity. Our mission with this report is partly to
look at productivity of software projects. As our model of software complexity shows
the divided tracks of error-proneness and size/effort merges again, to some part, when
it comes down to quality and productivity. In other words, the tracks can not be totally
apart since they both have influences on each other. However, in Chapter 8, 6WUXFWXUDO
0HDVXUHV�RI�6RIWZDUH�&RPSOH[LW\, we had the discussion of quality issues and
structural complexity. Now it is time to enter deeply in the field of algorithmic
complexity and size metrics in software projects. As quality can be related to
structural complexity, productivity is related to algorithmic complexity. In this
chapter we discuss the issues of algorithmic complexity and how it influences
software size. We also describe different functional metrics that measures software
project. But first we need a brief introduction of productivity as an overall subject for
later discussions.

When it comes to measuring software projects, productivity is one of the most
interesting measurements for software management. We have already discussed this
in Chapter 6, 6RIWZDUH�0HWULFV. Anyway, it is obvious that the ability of making
accurate estimations of costs and time-efforts in the pre-face of projects, as well as
getting a concluding confirmation of project efficiency, are desirable for management.
So far we have learned that software development projects are influenced by various
factors not always concrete or measurable. This makes it difficult to measure software
projects: How efficient is the project? Are the estimated development costs accurate?
Is the final application well-structured, maintainable, reliable etc.? One way to
measure these kind of projects is by comparing similar projects to each other, and
from this gaining a baseline of comparable measures. Due to the fact that productivity
is influenced by size/effort, which in turn is influenced by various subjective factors
such as the language used, tools, desired functionality etc., no complete productivity-
formula has been developed. The most common way to measure productivity is still
by using the equation:

HIIRUW
VL]H

W\SURGXFWLYL =

However, from the equation above one can see that software size is an essential
parameter for measuring productivity. The traditional size counting metric is Lines of
Code (LOC) which still is used by several software development corporations. This
method has many disadvantages, as will be discussed later, and software developers
have therefore tried to invent alternative methods. Size as a simple volume metric is
maybe enough when producing physical products as clothes, furniture, cars etc. For
software projects, though, a more accurate size metric should also consider the factors
of complexity as we have discussed. Development of alternative metrics is still an
ongoing process, since no method has gained total acceptance. One reason is because
of the differences between software applications that make it hard to find general

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

58

methods that work on all kinds of projects. Another reason can be that parts of the
software development community have not yet settled down with the fact that their
work has to be measured.

The development of alternative methods to counting lines of code has lead to the
origin of functional metrics. They are also size measures, but include some
algorithmic complexity too. Instead of counting a static value like LOC they focus on
user functionality and counts functional parameters as input, output, inquiries, internal
and external logical data files, and in some cases also algorithms.

9.2� Algorithmic complexity
Algorithmic complexity reflects the complexity of the algorithm implemented to solve
the problem. It also reflects the degree of algorithms within a specific application.
Harder kinds of systems seem to require more algorithms than Management
Information System (MIS) software and therefore have a higher algorithmic
complexity.

In a broader sense algorithmic complexity deals with VSDWLDO�FRPSOH[LW\, i.e. the
length and size of the software, and DOJRULWKPLF�YROXPHV. Problems with high
complexity seem to require longer algorithms and the basic concepts for this measure
is therefore the length and structure of algorithms (Jones, 1996).

9.2.1� Algorithms

Before we get further into the field of algorithmic complexity it is appropriate to give
the definition of an "algorithm". An algorithm is defined as the rules which must be
completely expressed in order to solve a significant computational problem (Jones,
1996). To make it easier to understand what an algorithm really is we will give you
some examples of typical algorithms:

• 6RUWLQJ
One of the earliest forms of algorithms created during the computer era.

• 6HDUFKLQJ
Binary searches, tree searches radix searches, and many others.

• 6WHS�UDWH�FDOFXODWLRQ�IXQFWLRQV
E.g. calculations of income tax rates, where a certain level of taxable income is
related to a certain tax rate.

•)HHGEDFN�ORRSV
Very common in process control applications, hospital patient monitoring
applications, and many forms of embedded software such as that for fuel injection,
radar and navigation.

When an algorithm is defined the next step is to appoint the degree of difficulty for
that specific algorithm, in other words to weigh the algorithm. There is still no
taxonomy of how to do this, except for some guiding lines made by Capers Jones at
the SPR (Software Productivity Research). The basis so far for how to determine
algorithm weights is twofold: 1) the number of calculation steps or rules required by

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

59

the algorithm and 2) the number of factors or data elements required by the algorithm
(Jones, 1996).

9.3� Size measures
Earlier we described the standard equation of productivity as size divided by effort.
In this section we will describe the main categories for software size metrics. The first
one, namely Lines of Code (LOC), can be classified as a natural deliverable of a
software project. Other natural deliverables are the number of pages of paper
documents and test cases. These are all strictly volume deliverables and the tangible
outputs of many tasks.

The other category of software size metrics is functional size metrics and they are
classified as synthetic deliverables of a software project. They are the volumes of
abstract constructs and include Function Points (in all variations) and Feature Points.
All these techniques will be further described. According to Capers Jones (1996) the
synthetic functional deliverables are superior to the natural deliverables for economic
studies, but it is useful to record the natural deliverables anyway.

In this report we categorize the metrics that we are about to describe as SODLQ�VL]H
PHWULFV (Lines of Code) or IXQFWLRQDO�VL]H�PHWULFV (variants of Function Points and
Feature Points). We have focused on four fundamental metrics, IFPUG’s Function
Points, SPR’s Function Points, SPR’s Feature Points, and a new technique called Full
Function Point, which is under development at the University of Québec. We have
also found some other techniques but they are only mentioned briefly. The original
functional size metrics is Albrecht’s Function Points, which has developed into
IFPUG’s Function Points, or also referenced to as Function Point Analysis (FPA). An
overall introduction to Function Points will therefore be given before we describe the
different techniques one by one. But first of all, let us have a brief look at some
elements that can influence the results of size measurements before we enter more
deeply into the size metrics.

Measurements can be effected by subjective factors due to human actions. People
have a tendency to not like being measured, even if they understand that this is
necessary. This is why every organization that measures productivity, or suchlike,
must clarify the reason for measuring. Negative pressure on programmers or project
leaders from doubtful measurements can make them add unnecessary code just to
allocating resources or rewards since the productivity increases with the present
productivity equation. This is actually one of the criticisms of the metric LOC.

9.3.1� Lines of Code

Counting lines of code is the most traditional method for measuring software size. It
is a quick method that can be performed with automated tools. This is one reason why
counting lines of code has been so widespread among software development
companies, despite of the limitations of the measure. We have recently talked about
algorithmic complexity and that it is the track of our complexity model that handles
size and effort. Counting lines of code is however a pure quantitative measure and it
does not consider algorithmic complexity at all. This method is so commonly known
though, and is for this reason needed as a historical background for later discussion of
alternative size measures.

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

60

Since the actual counting is made on code, the possibilities for estimating software
size early in the project are often small. If management lack information about the
size of the program, they have difficulties to estimate development costs. A desirable
feature should be to know how much one line of code costs, and how many lines of
code the specific program requires. In the economic sense lines of code is neither
goods nor services. A customer does not know how many lines of code that exist in a
software product and can therefore not buy lines of codes directly. Often they neither
know, nor care, how much code was written or in what language, as long as they
know the functionality and costs of the program.

Another restriction for using Lines of Code is the language dependency. To be able to
compare software products with measures of lines of code they must be coded in the
same language. When developing software in a homogenous environment that is not a
problem. But today almost every software project uses a mixture of languages.
Comparison between a mixed language product and another product coded strictly in
COBOL for example is not accurate when counting lines of code. We also face the
problem of size variations that are due to individual programming style. A minor
controlled study carried out by IBM illustrated that code size varied due to the styles
of the programmers and their interpretations of what the specifications asked for
(Jones, 1996). Since there is no standard of how to measure lines of code the ability to
compare industry data is limited. Every company may have their own internal rules of
how to measure their products and projects. Questions could arise about if blank lines
count or comments. Should data declaration be included, and what happens if a
statement extends over several lines? Some guidelines have been published by
organizations like the Software Engineering Institute, but they still do not represent
any totally accepted standard.

Other serious deficiencies associated with Lines of Code (6RIWZDUH�0HWULFV�±�ZK\
ERWKHU"� 1998):
1. The lack of a national or international standard for a line of code metric that

encompasses all procedural languages.
2. Software can be produced by methods where entities such as lines of code are

totally irrelevant. Example: program generators, spreadsheets, graphic icons,
reusable modules of unknown size, and inheritance.

3. Lines of Code metrics paradoxically move backward as the level of the language
gets higher, so that the most powerful and advanced languages appear to be less
productive than the more primitive low-level languages. This is due to the
equation of productivity (3URGXFWLYLW\� �6L]H���(IIRUW) which generates a lower
productivity if the size of the code decreases.

The ability to estimate size of software projects is of increasing interest for most
companies. Lines of Code fails with this approach as it can only be counted after the
application is coded. A final reason for not using LOC in studies of software
production costs is that it does not include the other deliverables of the product. As we
said in the introduction to counting lines of code, the metric do not consider
algorithmic complexity.

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

61

9.3.2� Function Points in general

Function Point counting is one of the fastest growing software management
techniques in the software industry today (Garmus & Herron, 1996). To some, the
Function Point methodology is the cornerstone of their software development and
management. To others, it is simply one of many software management tools that are
used to successfully build systems.

Software metrics talks about quantitative and qualitative aspects to software
measurement. Function Points are classified as one of the key quantitative measures.
In contrast with counting lines of code which has the producers point of view of the
project, the Function Point method is more focused on the users point of view. The
intention of the Function Point technique is to give equivalent results regardless of the
application or the technologies used.

Function Points do not reveal as much by itself as with the combination of other
metrics. It is just one of a number of required measures for software development
projects. This will be brought up only briefly in this section but more thoroughly
discussed in Chapter 10, 3URGXFWLYLW\��4XDOLW\�DQG�3HUIRUPDQFH. The main focus in
this section will be on describing development of Function Points and different
function point techniques.

9.3.2.1 History of Function Points

It was in the mid-1970s that the Function Point methodology developed by Allan
Albrecht at IBM. They needed to establish a more effective and predictable measure
of system size, to better predict or estimate delivery of software. The ambition of
Albrecht was therefore to create a function point metric that could meet five main
goals. The final method he developed had the following characteristics (Jones, 1996):

1. It dealt with the external features of software.
2. It dealt with features that were important to users.
3. It could be applied early in a product’s life cycle.
4. It could be linked to economic productivity.
5. It was independent of source code or language.

These goals were the fundamentals of Albrecht’s Original 1979 Function Point
Methodology and was discussed publicly for the first time at a joint Share/Guide/IBM
conference. Continued statistical analysis was made from 1979 to 1984. The
refinements that were made resulted in the Function Point method we use today,
named IFPUG Function Points or Function Point Analysis (FPA).

In the beginning, Function Point activities were mostly limited to those selected
organizations that had the insight to understand the usefulness of the Function Point
method. High profile companies such as AT&T, Motorola, Hewlett-Packard, and
Boeing were among the early users of the methodology. With their reputations as
quality producers of software, Function Points began to gain exposure to a wider
audience (Garmus & Herron, 1996).

At the beginning of the year 1986, several hundred companies had been using
Function Points. A critical mass or function point users occurred and it was decided to
form a nonprofit organization to handle questions and development of the method.

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

62

The organization was named the International Function Point User Group, but is often
referenced just as the IFPUG (Garmus & Herron, 1996).

)XQFWLRQ�3RLQW�$QDO\VLV, authored by Brian Dreger, is considered to be the first
practical layman’s guide and instruction to Function Point analysis (Garmus &
Herron, 1996). It was published in the fall of 1989 and was generally accepted as a
standard for counting Function Points. Since the need to update Dreger’s original
work became obvious and the IFPUG organization had grown in size and prominence,
it naturally took the role as being the keeper of the Function Point guidelines. Today
there is a well-documented and maintained set of counting guidelines that are
available to all IFPUG members. Since the inception of the Function Point
methodology, the enhancements that are made have commonly been focused on
improving the clarity of definitions, rules, and guidelines. The general counting rules,
that were initially established, have hence never really changed.

9.3.2.2 Function Points measurement opportunities

Function Points can be used as a stand-alone metric to monitor the application domain
at a high level, or in combination with other measures to create a variety of valuable
software process performance and quality measures. Some of these measures are
considered to be normalized and therefore allowed for comparison among industry
segments. In the software measurement practice there are a commonly accepted set of
core metrics used in combination with Function Points: level of effort, costs, defects,
and duration. Together they result in commonly accepted industry measures as shown
in Table 9:1.

7DEOH�����&RPPRQ�,QGXVWU\�6RIWZDUH�0HDVXUH

Type Metrics Measure
Productivity
Responsiveness
Quality
Business

Function Points / Effort
Function Points / Duration
Defect / Function Points
Costs / Function Points

Function Points per person month
Function Points per calendar month
Defects per Function Points
Cost per Function Point

�*DUPXV�	�+HUURQ��������S�����

Increased cost consciousness among organization has affected their need to gain
control over their application domain. By establishing a SRUWIROLR�EDVHOLQH of
functional metrics they can get a better understanding of their software assets. A
portfolio baseline can be describes as a history record. Results from previous projects
are collected in the record, and with a baseline big enough conclusions from these
projects can help to predict or estimate the results of new projects under development.
Portfolio counts thus provide an organization with size data for comparing
applications and potentially making comparisons to purchased software packages
(Garmus & Herron, 1996).

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

63

9.3.2.3 Different counting groups

To actually perform a count or even get insight into the nature of Function Points and
function point counting requires training. The great benefit is that it only takes a one-
day class and a little on-the-job training by an experienced counter to learn the
technique. There are no limitations of who is best suited to count the Function Points
either. According to Bohem (1997), every category has their benefits and
disadvantages:

• 7HFKQLFDO�SHRSOH have traditionally been the main function point counters. They
have great experience in the coding area and are therefore good at estimating
Function Points. Unfortunately they also know how much effort a certain function
may have demanded and do not accept a low value of the function when measured
in Function Points. As long as they apply the counting rules correctly they are
well skilled people to count Function Points.

• 6HQLRU�OHYHO�SHRSOH are also suitable for counting Function Points. After counting,
a senior technical person will have a good idea of whether the project is proceeded
as planned. In addition to the number of function points, he will also know if the
right functions are among them.

• Even XVHUV (clients or customers) can in some cases be suited for counting
Function Points. Sometimes outsourcing agreements can place system
development in the hands of people that have no knowledge of the well being of
the firm. If they can be a part of the counting process they also can control that
they are getting the required functionality in their system.

9.3.2.4 Number of people counting in an organization

Three possible constellations of counting groups can be established: everyone, a small
group, or a single person. All project personnel should be familiar with Function
Points but most of them will not be able to count them accurately. It is important to
understand how they are being applied, but for getting an accurate result of the
Function Points the personnel counting must count on a regular basis. If they only
count every six moth, or so, they have forgotten the rules between these occasions. To
have constant retraining for everybody in a large organization is not very cost
effective. The ideal constellation in a large organization is therefore a small group
involved with function point counting and other estimation activities (Bohem, 1997).
If they also are project independent, less bias feedback will be provided regarding the
projects. As a group, they will also be able to look at each other for assistance with
difficult counting situations.

With light workload, allocating a single person to be the counting guru has the same
advantages as allocating a small counting group in larger organizations. A relationship
with an industry consultant is probably a must to be able to bounce off different
interpretations of counting rules (Bohem, 1997).

9.3.3� IFPUG’s Function Point method

The IFPUG’s Function Point methodology, or simply Function Point Analysis (FPA)
as we will also refer it to, is equivalent to the 1984 revision of Allan Albrecht’s
original method. The counting process involves the identification of five parameters

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

64

categorized into two function type groups: GDWD�IXQFWLRQ�W\SHV and WUDQVDFWLRQDO
IXQFWLRQ�W\SHV. The two data function types are called Internal Logical File (ILF) and
External Interface File (EIF). The transactional function types are External Input (EI),
External Output (EO) and External Inquiry (EQ). All three types are identified as
elementary processes that perform updates, retrievals, outputs, etc. Both data function
types and transactional function types are defined as user identifiable groups of
logically related data or control information. A full definition of these terms is given
in Appendix B.

Before we describe the method more thoroughly, let us get an overview of the seven
steps of the total process used to size Function Points.

��� 'HWHUPLQH�WKH�W\SH�RI�)XQFWLRQ�3RLQW�FRXQW
��� ,GHQWLI\�WKH�DSSOLFDWLRQ�ERXQGDU\
��� ,GHQWLI\�DOO�GDWD�IXQFWLRQV�DQG�WKHLU�FRPSOH[LW\
��� ,GHQWLI\�DOO�WUDQVDFWLRQDO�IXQFWLRQV�DQG�WKHLU�FRPSOH[LW\
��� 'HWHUPLQH�WKH�8QDGMXVWHG�)XQFWLRQ�3RLQW�FRXQW
6. 'HWHUPLQH�WKH�9DOXH�$GMXVWPHQW�)DFWRU�±

IRXUWHHQ�*HQHUDO�6\VWHP &KDUDFWHULVWLFV
7. &DOFXODWH�WKH�ILQDO�$GMXVWHG�)XQFWLRQ�3RLQW�&RXQW

The description of each of these steps that will follow has the purpose to give a notion
of how Function Points are calculated. It will only be a brief explanation of the
technique, though. Complete guidelines of how to calculate Function Points are
distributed by the IFPUG with their Function Point Manual.

Determine the type of Function Point count

• Development Project Function Point counts
• Enhancement Project Function Point counts
• Application Function Point counts

Development Project Function Point counts and Application Function Point counts
are basically the same. A development project of 1,000 function points will result in
an application that has an application count of 1,000 function points. The
Development Project Function Point Count measures the functionality provided to
end-users with the first installation of the application. The Application Function Point
count on the other hand, measure an installed application, and provides counts of the
current functionality whether the application has been changed or not. The
Enhancement Project Function Point Count measures modifications to an existing
application. This includes the combined functionality provided to users by adding new
functions, deleting old functions, and/or changing existing functions. After
modifications are made, the Application Function Point Count must be revised to
reflect the appropriate changes in the application’s functionality. Even the
Development Project Function Point Count must be updated as the development
process proceeds. During development of new applications there can be
modifications, such as added functionality that otherwise would not be captured in the
count.

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

65

Identify the application boundary

Boundaries indicate the border between the project or application being measured and
external applications or the user domain. Figure 9:1 illustrates the application
boundaries. It also shows the connection to the data and transactional functions that
are identified in the following two steps of the counting process.

Identify all data functions and their complexity

The data functions, internal logical files (ILFs) and external interface files (EIFs),
relate to the logical data stored and available for update and retrieval. When they are
identified each ILF and EIF is assigned a functional complexity based on the number
of data element types and record element types. Using a complexity matrix the
complexity level for each ILF and EIF is set from low, average to high as show in
Table 9:2. The concepts of Record Element Types (RETs) and Data Entity Types
(DETs), in the table, are defined in Appendix B.

)LJXUH�����)XQFWLRQ�3RLQW�&RXQWLQJ�&RPSRQHQWV

�*DUPXV�	�+HUURQ��������S�����

 ([WHUQDO�8VHU

 External External External
 Input Output Inquiry

Application Boundary Other Applications

 External Input
 External Output

Internal
Logical File

External
Interface File

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

66

7DEOH�����&RPSOH[LW\�0DWUL[�IRU�,QWHUQDO�/RJLFDO�RU�([WHUQDO�,QWHUIDFH�ILOHV

'DWD�(QWLW\�7\SHV5HFRUG�(OHPHQW
7\SHV

���� ����� ���
< 2 L L A

2 - 5 L A H
> 5 A H H

L=Low, A=Average, H=High

�*DUPXV�	�+HUURQ��������S�����

Identify all transactional functions and their complexity

The transactional functions, external inputs (EIs), external outputs (EOs), and external
inquiries (EQs), perform the processes of updates, retrieval, outputs etc. They are each
identified and counted and weighted in a complexity matrix similar to that of data
functions. The difference is that Record Element Types are exchanged for the number
of File Types Referenced (FTRs) instead (see Appendix B). The grades of the data
fields also differ for each of the transactional functions.

Determine the Unadjusted Function Point Count

Now the number of data and transactional functions are counted and their contributed
level of complexity is assigned to each of them. Each component is then weighted in
the Unadjusted Function Point table. The summarized values results in Unadjusted
Function Points. In table 9:3 the Unadjusted Function Point (UFP) table is combined
with an example of how to count the UFP. The bold figures in the Function Level
columns correspond to the number of components found. With this procedure the
algorithmic complexity of the software is evaluated.

7DEOH�����,)38*�8QDGMXVWHG�)XQFWLRQ�3RLQWV

Function LevelsComponents
Low Average High 6XP

Internal Logical File (ILF) �X7 �X10 �X15 41
External Interface File (EIF) �X5 �X7 �X10 27
External Input (EI) �X3 �X4 �X6 23
External Output (EO) �X4 �X5 �X7 17
External Inquiry (EQ) �X3 �X4 �X6 10

8QDGMXVWHG�)XQFWLRQ�3RLQWV ���

 Data Function Types
 Transactional Function Types

�*DUPXV�	�+HUURQ��������S������PRGLILHG��

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

67

Determine the Value Adjustment Factor

User/owner functions are also characteristics that affect the performance of an
application. The General System Characteristics lines fourteen different factors to be
considered to identify the Value Adjustment Factor (VAF). This is a multiplier that is
used on the Unadjusted Function Point Count in order to calculate the Final Adjusted
Function Point Count. Each General System Characteristic (GSC) must be evaluated
independently of its Degree of Influence (DI), which is a scale of zero to five:

0. Not present, or no influence
1. Incidental influence
2. Moderate influence
3. Average influence
4. Significant influence
5. Strong influence throughout

The scores of the assigned values are summed to calculate a Total Degree of Influence
(TDI). A real-time, telecommunication, or process control system should expect a
total score between 30 and 60. Then, the TDI will be used in a separate calculation to
determine the Value Adjustment Factor (VAF).
The equation to produce the Value Adjustment Factor:

VAF = (TDI * 0.01) + 0.65

The General System Characteristics examined:
1) Data Communications
2) Distributed Data Processing
3) Performance
4) Heavily Used Configuration
5) Transaction Rate
6) On-Line Data Entry
7) End-User Efficiency
8) On-Line Update
9) Complex Processing

10) Reusability
11) Installation Ease
12) Operational Ease
13) Multiple Sites
14) Facilitate Change
Further reading of what each GSC stands for can be found in 0HDVXULQJ�WKH�6RIWZDUH
3URFHVV� by David Garmus and David Herron (1996).

Calculate the final Adjusted Function Point Count

This is the last step of the Function Point Count. Depending on which type of
Function Point Count that has been performed, there are different equations to
calculate the final Adjusted Function Point Count. The three types are Development,
Enhancement or Application Project Function Point Count.

Now when we have described the method it can be interesting to know how long it
takes to count function points with this method? Different suggestions are made of
course. The difference is from 100 to 4000 function points per day. Including

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

68

preparation and possible presentation of complete project view, the 100 function
points per day counting rate seems reasonable.

9.3.3.1 Criticism of Function Points

It is not to be forgotten that Function Points were developed in, and for, an MIS world
and do not consider all the elements of complexity that are inherent in other types of
software. A lot of critics to the methodology are thereby tended to originate from
people in the scientific, telecommunications, and real-time/embedded software
communities. However, this technique is still superior to the measures of counting
lines of code. New methodologies as Feature Points, Mark II Method, and 3D
Function Points have arisen to compensate the lack of complexity issues in the
Function Point method. As some of them are based on the Function Point method, and
in most cases are at the experimental stage, it can be a good approach to start explore
the Function Point method and then continue with a complimentary method.

9.3.4� SPR’s Function Point and Feature Point method

Software Productivity Research (SPR) introduced a new way to calculate function
points in October 1985. The SPR function point variation simplified the way
complexity was dealt with and reduced the human effort associated with counting
function points. As described earlier the IFPUG technique assesses complexity by
weighting 14 influential factors and evaluating the numbers of field and file
references. This has been a target of criticism since it is a subjective way of counting
and needs human effort. The aim of the SPR function point methodology is to get
around these factors but still result in a reliable count. In fact, the method yields
function point totals that are essentially the same as the current IFPUG function point
method, with an average within 1.5 percent of the IFPUG method. The methodology
has three additional goals to the original five goals Albrecht intended to meet (se
9.3.2.1). The additional SPR goals, according to Jones (1996) are:
6. To create function point totals easily and rapidly and to be able to create function

points prior to the availability of all of the IFPUG factors in a normal project life
cycle.

7. To predict source code size for any known language
8. To retrofit function points to existing software

The primary difference between the IFPUG and SPR function point methodology is,
as said before, the way they deal with complexity. Compared to the IFPUG method,
the SPR method does not use complexity matrixes based on RETs, DETs and FTRs.
Instead it tries to separate the overall topic “complexity” into three distinct questions:
1. How complex are the problems or algorithms facing the team?
2. How complex are the code structure and control flow of the application?
3. How complex is the data structure of the application?
Each question has a numeric value range from one to five and is based on the level of
complexity. The questions are described below (Jones, 1996):

Problem complexity?
1. Simple algorithms and simple calculation
2. Majority of simple algorithms and calculation
3. Algorithms and calculations of average complexity
4. Some difficult or complex calculations
5. Many difficult algorithms and complex calculations

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

69

Code complexity?
1. Nonprocedural (generated, spreadsheet, query, etc.)
2. Well structured with reusable modules
3. Well structured (small modules and simple paths)
4. Fair structure but with some complex modules and paths
5. Poor structure with large modules and complex paths

Data complexity?
1. Simple data with few variables and low complexity
2. Numerous variables but simple data relationships
3. Multiple files, fields, and data interaction
4. Complex file structures and data interactions
5. Very complex file structures and data interactions

The complexity sum of the problem and data complexity matches an adjustment
multiplier as showed in Table 9:3. The code complexity question is actually not used
by the SPR method for normal function point calculation. Code complexity is used
when retrofitting Function Points to existing software as we will be describe later.
Anyway, the adjustment multiplier that we have gained from the complexity sum is
used in the final step of the SPR Function Point Method to calculate the Adjusted
function point total.

Counting example:
Let’s say that we have collected the number of data and transactional functions for a
simple application, and the complexity sum of problem and data complexity is found
to be 2 (1+1). From Table 9:3 we than can get the adjustment multiplier which is 0.6.
The unadjusted total function point count that is summed up to be 24 is then
multiplied with 0.6 to yield the Adjusted function point total of 14.4. The calculations
are showed further in Table 9:4.

7DEOH�����7KH�635�&RPSOH[LW\�$GMXVWPHQW�)DFWRUV

Sum of logical (problem) and
data complexity

Adjustment multiplier

1
2
3
4
5
6
7
8
9

10
11

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

�-RQHV��������S�����

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

70

7DEOH�����7KH������635�)XQFWLRQ�3RLQW�0HWKRG

Significant parameter Raw data Empirical weight Total

Number of inputs?
Number of outputs?
Number of inquiries?
Number of data files?
Number of interfaces?
Unadjusted total
Complexity adjustment
Adjusted function point total
Integer value of adjusted total

1
2
0
1
0

X 4 =
X 5 =
X 4 =
X 10 =
X 7 =

 4
10
 0
10
 0
24
0.6

 14.4
 14.0

�-RQHV��������S������PRGLILHG��

9.3.4.1 Establishing a baseline with the SPR technique

Earlier we talked about the benefits of establishing a business portfolio baseline,
preferably in function points. Collecting such project data in function points can take
quite a long time, especially if it must be done by hand. Previous projects may have
been developed in other languages than those used at present. This complicates the
reason for establishing a baseline, namely to compare function points between
different projects. By using a programming language table (see Appendix D) these
limitations can actually be evaded. To understand this technique a short description of
what a language level is may be preferred.

9.3.4.2 Language level

The level of a language was at first defined as the number of basic assembly language
statements that it would take to produce the functionality of one statement in the
target language. Thus COBOL is defined as a level 3 language as it takes about three
assembly language statements to create the functionality of one COBOL statement.
After the publication of the function point metric in the late 1970s the definition
enhanced to approach function point counts. The current definition it thus: “The
number of source code statements required to encode one function point” (Jones,
1996, p. 78). SPR merged the new definition of “level” with the old and created a list
of 300 common languages that showed both the traditional “assemble-level” and the
average number of source code statements per function point. As language levels go
up, fewer statements to code one Function Point are required. For example, COBOL
is as we described earlier a level 3 language and requires about 105 statements per
Function Point. The fact that various languages have a numeric value makes it
possible to convert size from one language to another. Even to estimate function point
size for applications written in mixed languages is possible by using the language
level table.

9.3.4.3 Retrofitting existing software to Function Points

The table of language levels can be applied to terminated software projects to make a
rough estimation of the degree of function points in each project. The language level
table makes the count independent of the language environment used. An application
coded in COBOL consisting of 91,000 lines of code can be estimated with the
language table to be equivalent to a system of 1,000 function points. With this

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

71

technique, called backfiring, it should be possible to guess how many function points
are implemented based on the number of lines of code. This makes it possible to
establish a business portfolio baseline in function points (Bohem, 1997).

However, even though languages of the same level empirically require the same
number of source code statements to implement one function point, the complexity of
the application and its code have a strong impact. The relationship between function
points and source code size often fluctuates widely partially due to individual
programming styles and variations in the dialects of many languages. Therefore the
programming language table displays the average source statements per function point
as well as the maximum and minimum ranges.

9.3.4.4 Counting with SPR’s 1985 Backfire Method

The SPR function point method supports retrofitting of Function Points to existing
software and also takes the issue of different complexity into consideration. That
makes the SPR algorithms bi-directional. If function points, code complexity, and the
source language are the inputs, then the algorithms will predict source code size. If the
inputs are source code size, code complexity, and source language, the algorithms will
predict function points (Jones, 1996).

When backfiring is performed to an old application and the total function points have
been calculated, it is time to take complexity into consideration too. Highly complex
code tends to require more source statements per function point than extremely simple
code. The complexity sum (code complexity, problem complexity and data
complexity) of the SPR function point method that were described earlier now
becomes useful again. This time the complexity sum relates to a code size adjustment
multiplier as shown in the table below. The initial function point total is divided by
the code size adjustment factor to calculate the final function point total.

7DEOH�����$GMXVWPHQW�)DFWRUV�IRU�6RXUFH�&RGH�6L]H�3UHGLFWLRQ

Sum of problem, code an data complexity Code size adjustment multiplier

3
4
5
6
7
8
9

10
11
12
13
14
15

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30

�-RQHV��������S�����

This technique can be used for normal forward calculations as well with good results.
It should be noted, though, that overall impact of complexity on source code size is
not yet an exact science.

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

72

9.3.4.5 Efforts with the SPR Function Point count

With this technique it is not necessary to count the number of data element types, file
types, or record types as it is with the current IFPUG method. Neither it is necessary
to assign a low, average, or high value to each specific input, output, inquiry, data file,
or interface or to value the 14 influential as defined by the IFPUG method. Since the
SPR method deals with a reduced number of complexity considerations, the method
can be applied somewhat earlier than the IFPUG method. The benefits of this method
are above all that there are less parameters to count and simple calculations.
According to Jones (1996), users who are generally familiar with function point
principles and the application, can easily generate function point totals in less than a
minute.

9.3.4.6 Development of Feature Points

Allan Albrecht’s aim, when he developed the Function Point metric, was to be able to
measure and compare different software projects independent of language and
computer environment. In other words, he wanted to create a general-purpose metric
for all kinds of software. The method was, however, first applied to Management
Information Systems (MIS) and this lead to the misconception that the metric was
only suitable for such systems. Even though this was not true, from the beginning
anyway, the main focus has been to solve the measurement of classical MIS. This has
lead to a lot of criticism from the scientific community. They state that the Function
Point method may not bee optimal for real-time software (Jones, 1996). Capers Jones,
who developed the SPR Function Point Count, also developed an experimental
method for applying Function Point methods to software systems including operating
systems and telecom systems. The method is known as Feature Points.

9.3.4.7 Feature Points vs. Function Points

The most visible difference between Function Points and Feature Points is that
Feature Points make use of an additional component, algorithms, adding the set of the
five Function Point components: inputs, outputs, inquiries, external interface files, and
internal logical files. Harder systems seem to have a higher algorithmic complexity
than MIS software, but less inputs and outputs. Therefore it can be a bit misleading to
count these kinds of systems with Function Points. The Feature Point method is a
good alternative for this matter as it compensates these problems by taking algorithms
into consideration. Each algorithm is also assigned weight value, as with the rest of
the components. In addition, the values assigned for logical data files are reduced, as
they are less significant to harder kinds of systems.

7DEOH�����5DWLRV�RI�)HDWXUH�3RLQWV�WR�)XQFWLRQ�3RLQWV�IRU�6HOHFWHG�$SSOLFDWLRQ�7\SHV

Application Function points Feature points

Batch MIS project
On-line MIS projects
On-line database project
Switching systems projects
Embedded real-time projects
Factory automation projects
Diagnostic and prediction projects

1
1
1
1
1
1
1

0.80
1.00
1.00
1.20
1.35
1.50
1.75

�-RQHV��������S������

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

73

In applications where the number of algorithms and logical data files is the same,
Function Points and Feature Points generates practically the same numerical total. But
when there are many more algorithms than files, Feature Points get a higher value
than Function Points. Conversely, if there are several files and only a few algorithms,
which is common with most information systems, the Feature Point total will be less
than the Function Point total. The conclusion is to use the Feature Point Method when
the algorithmic complexity is more prominent than the data files. Feature Points are
still considered as an experimental method even though it has been successfully
applied in several organizations, including Perker Elmer, Instrumentation Labs, and
Motorola (Garmus & Herron, 1996).

9.3.4.8 Counting and weighting algorithms

The definition of an algorithm in standard software engineering texts is, as we have
mentioned, “the set of rules which must be described and encoded to solve a
computational problem” (Jones, 1996, p. 98).�For feature point counting purposes, an
algorithm can be defined in the following terms: “An algorithm is a bounded
computational problem which is included within a specific computer problem” (Jones,
1996, p. 99). As a helping guideline for determining an algorithm and its complexity,
Capers Jones at the SPR, developed a list of supplemental rules that can be followed.
These rules have not gone past generalized definitions so the determination is still
very subjective. However, they are being tuned and evaluated and research is
underway to develop a more rigorous taxonomy and weighting scale for algorithms.
When assigning the value of complexity, the SPR treatment of algorithms assumes a
range of 10 to 1 for algorithmic complexity. In reality the range could be 1000 to 1,
but the range must be limited or else it will be too difficult for humans to categorize
the grade of complexity for each algorithm.

9.3.4.9 Shortcomings of Feature Points

Although algorithms are described and discussed in more than 50 books, there is no
available taxonomy for classifying algorithms. Since there are no standard of how to
determine and weighing an algorithm the method will continue to be treated as
experimental. The method will not gain full acceptance until a consistent definition is
achieved.

9.3.5� Full Function Points

During our research of finding methods of counting functional size we have
continuously run in to new methods. Our latest finding is the Full Function Point
Method, which is an extension of Function Points for real-time software. It is based
on work done by the Software Engineering Management Research Laboratory at the
Université du Québec à Montréal and Software Engineering Laboratory in Applied
Metrics (SELAM) and was presented in 1997.

Full Function Points (FFP) is based on the observation that real-time software has
several characteristics not taken into account in Function Point Analysis (FPA). Real-
time software often contains more control data and sub-processes that MIS software.
Since FFP is an extension of the standard FPA technique, all IFPUG rules are
included in this new measurement technique, the small number of subsets of IFPUG
rules dealing with control concepts having been expanded considerably. FFP solves
this by introduces additional data and transactional function types (St-Pierre, Maya,
Abran and Desharnais, 1997b).

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

74

9.3.5.1 Characteristics of real-time software

Both FPA and FFP separates the characteristics of an applications into transactional
and data characteristics. The real-time software characteristics can be described as
follows (St-Pierre et al., 1997a, 1997b):

7UDQVDFWLRQDO�FKDUDFWHULVWLFV� The number of sub-processes of a real-time process
varies substantially. By contrast, the processes in the MIS domain display a more
stable number of sub-processes. To measure the characteristics of a variable number
of sub-processes adequately, it is necessary to consider not only processes as defined
in FPA (elementary processes), but sub-processes as well.

'DWD�FKDUDFWHULVWLFV� There are two kinds of control data structure: multiple
occurrence groups of data and single occurrence groups of data. Multiple occurrence
groups of data can have more than one instance of the same type of record. Single
occurrence groups of data have one and only one instance of the record. There are
usually a large number of single-occurrence control variables in a real-time software
product.

The reader should also recall the discussion about real-time systems in Chapter 5, 7KH
SUHUHTXLVLWHV�DW�(ULFVVRQ�0RELOH�'DWD�'HVLJQ, for a more complete description.

9.3.5.2 FFP Function Types

The new function types introduced in FFP are only used to measure control data and
control processes. Management data and other processes are still counted using the
standard FPA technique. All FFP function types are listed in Table 9:7

7DEOH�����)XOO�)XQFWLRQ�3RLQW�)XQFWLRQDO�7\SHV

FFP Management Function Types:
Internal Logical File (ILF) exists in FPA, unchanged in FFP
External Interface File (EIF) exists in FPA, unchanged in FFP
External Input (EI) exists in FPA, unchanged in FFP
External Output (EO) exists in FPA, unchanged in FFP
External Inquiry (EQ) exists in FPA, unchanged in FFP

FFP Control Function Types:
Updated Control Group (UCG) new function type, similar to ILF
Read-only Control Group (RCG) new function type, similar to EIF
External Control Entry (ECE) new function type, similar to a subset of EI
External Control Exit (ECX) new function type, similar to a subset of EO/EQ
Internal Control Read (ICR) new function type, similar to a subset of EI/EO/EQ
Internal Control Write (ICW) new function type, similar to a subset of EI

�6W�3LHUUH�HW�DO�������D��S�����

The unadjusted count of an application using the proposed extension (FFP) can be
expressed as follows (St-Pierre et al., 1997a):

FFP = Management FP + Control FP = (FPA – Control information) + Control FP

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

75

9.3.5.3 Point assignment

When the function types are identified each type will be assigned different points.
FFP differ between point assignment for Management Function Types and Control
Function Types. For the Management Function Types the procedure is the same as
with FPA. For Control Function Types the point assignment is quite different. First of
all there is a difference in how to assign points between Control Data Function Types
and Control Transactional Function Types (St-Pierre et al., 1997a)

• Control Data Function Types
These functions are divided in two groups, multiple occurrence group of data or
single occurrence group of data.

a) Multiple occurrence groups of data
This group has the same structure as ILFs and EIFs in FPA. Consequently,
they are counted in the same way by using the number of Data Element Types
(DETs) and Record Element Types (RETs) and the corresponding complexity
matrix.

b) Single occurrence groups of data
The number of points assigned to this group only depends on the number of
DETs. For UCGs the number of points is calculated as ((number of DETs / 5)
+ 5). The formula for RCGs is (number of DETs /5)

• Control Transactional Function Types
The number of points assigned to these types depends on the number of DETs.
With the help from a translation table, the number of DETs is translated into a
determined number of function points.

9.3.5.4 Counting procedure and rules

All definitions, point assignment table etc. are given in Appendix C, which can be
used as a guideline for counting FFPs. In Figure 9:3, however, a comprehensive
graphical description of the procedures of the FFP method is given.

9.3.6� Mark II Method

Charles Symons developed this method, published in 1988, because of the
shortcomings he thought Function Points contained. The two methods both use the
same basic parameters in their calculations, but the Mark II method has fewer total
parameters and is therefore thought to be conceptually simpler to use. Performance
based on effort and size correlation is also considered equal using the two methods,
but with greater variations expected on small projects when using the Mark II method.
The acceptance of the Mark II method has been limited, though, due to the lack of
wide-scale usage. It is mainly companies centered in the U.K that uses this method
(Garmus & Herron, 1996).

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

76

9.3.7� 3D Function Points

The 3D Function Point technique was developed between 1989 to 1992 by the Boeing
Company to address two classical problems with the Albrecht approach. First the
Function Point technique was considered difficult to use. Secondly the method was
not a metric that could serve the scientific and real-time community very well. The
3D method has three dimensions: data, function, and control. These are considered as
the problem types than an application can be expressed in. Each dimension represents
some of the complexity that an application exists of. Sometimes one dimension
dominates, but all of them must be analyzed to get an accurate measure. This
technique is still an experimental metric and not widely used at this time (Garmus &
Herron, 1996).

)LJXUH�����'LDJUDP�RI�))3�)XQFWLRQ�7\SHV

�6W�3LHUUH�HW�DO�������D�

User 1
(Person or

application)

User 2
(Person, application

or mechanical device)

Management
Processes

Control
Processes

EIF

ILF UCG RCG

ICW

ICR

ICR

E
C

X

E
C

E

E
Q

E
OE
I

Boundary

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

77

)LJXUH�����))3�&RXQWLQJ�3URFHGXUH�'LDJUDP

�6W�3LHUUH��HW�DO�������D��S�����

9.4� Conclusion of the size metrics
Even though we have stated in this chapter that Function Points do not fit very well
for real-time systems the method should not be neglected at once. According to
Garmus and Herron (1996) the basic Function Point Analysis (FPA) actually works
very well for embedded and real-time software. Even practitioners agree that the
method is flexible enough to be adaptable to other software environments than MIS
software. Some of the definitions of inputs and outputs are however necessary to
expand to fit better with real-time systems. Successful tests with Function Points have
actually been applied to both public and private telephone switching systems and
suchlike.

As the function point metric develops, the need for specialized variations such as
feature point metrics will probably be reduced. However, the overall IFPUG literature
needs to be revised and expanded to facilitate the use of Function Points for other
applications than MIS systems. The conclusion is thus that a standardized method,
like FPA, will have much greater potential of gaining acceptance. As the IFPUG also
tries to adjust the method to other systems it will remain at a strong position. So far,
the method is as we know not adjusted well enough for real-time systems. Full
Function Points (FFP) on the other hand should be very well suited for these kind of
systems. We have already described the character of real-time systems so you should
be familiar with that they contain a large amount of sub-processes. This is considered
in FFP with their several functional types. The algorithmic complexity is thus
considered in FFP, both with concern to algorithmic volume (size) and difficulty
(functionality). As FFP is an extension of FPA it is also developed with the intention
to be comparable to those systems counted with FPA.

Determine
Type of
Count

Identifying
Counting
Boundary

Identifying
groups of data

Identify
processes

If Management
data

If Control
data

Count Management
Data Function Types

Count Control
Data Function

Types

If Management
process

If Control
process

Count
Management
Transactional

Function Types

Count Control
Transactional

Function Types

Determine
Unadjusted

Function Point
Count

Determine Value
Adjustment

Factor

Calculate Final
Adjusted

Function Point
Count

Software Complexity and Project Performance Chapter 9
Department of Informatics Algorithmic Complexity and Size Measures

78

The facts we have stated here are the basis of our choices for the continued work.
Mark II Method and 3D Function Points is not considered at all, as they do not have a
wider acceptance in the software community. Feature Points also falls under this
criteria. Our first intention was actually to continue with all three of the methods;
FPA, Feature Points and FFP. Due to lack of time we had to withdraw one of them.
As we just explained there is a natural bond between FPA and FFP. Therefore we find
it reasonable to continue with these methods and test both of them in a pilot project to
learn more of how they work in reality. This way we may also give well-grounded
reasons for our later suggestions to ERV.

A clarification may also be made of why we considered functional size metrics at all.
One general characteristic for all of the functional size metrics, which confirms our
choice of them over Lines of Code, is that they consider the problem complexity we
discussed in Chapter 7, 6RIWZDUH�&RPSOH[LW\. If the solution is adding more
complexity this has no effect on the functionality of the application. It does not
generate more points, but only decreases the productivity. This implies that functional
size metrics are well suited to productivity measures.

9.5� Summary
Algorithmic complexity deals with spatial complexity and algorithmic volumes. It
also reflects the complexity of the algorithm implemented to solve the problem and
the degree of algorithms within a specific application. Algorithmic complexity is thus
a measure of size that also comprehends the difficulty of the problem. As a size
measure it is suitable for productivity measures. The traditional formula of
productivity is size divided by effort. The most common way of measuring
productivity of software projects has been by using number of lines of code as the size
metric and man-hours as the effort metric. Counting Lines of Code is very easy as it
can be executed by automated tools. It is a simple but insufficient metric and
alternative metrics has therefore been demanded. In 1979, Allan Albrecht developed a
method called Function Points. It was refined to what we today called the IFPUG
Function Points Method or Function Point Analysis (FPA). IFPUG is an abbreviation
of the International Function Point User Group, which is an unprofitable organization
that supervises standardization and development suggestions for the method. Anyway,
the method has a users perspective and measures size with user functionality. The
more functionality and difficult degree of the functionality, the higher function point
counts. The Function Point count has been criticized to not be applicable to real-time
and other scientific systems. It was originally developed in and for the MIS
environment, so the criticism is justified. Alternative methods like Feature Points and
Full Function Points have therefore been developed to measure these harder kind of
systems. The IFPUG is continuously improving their method, though, so that it can be
adjusted to fit better with such systems. A common method for all types of systems
would be best for the whole software community.

Based on extensive use and standardization work performed by IFPUG we chose FPA
as one of our candidates for further test. The other metric we chose was FFP, since it
is adjusted to real-time systems, is an extension of FPA and therefore comparable to
systems counted with FPA.

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

79

10� Productivity, Quality and Performance
We have now moved one step further down in our model of software complexity, and
have reached the concepts of productivity and quality. In the following chapter we
will try to give a description of how the measures of complexity in connection with
error-proneness and size can be used for describing such attributes of the software
development processes and products as quality and productivity. Our main focus is on
how quality and productivity respectively can be defined and measured. In the end of
the chapter we will try to depict how these two attributes can be combined into one
measure. We have chosen to use the concept “performance” to describe this fusion
between the productivity and quality dimension.

10.1� Productivity
In 1975, Brooks observed that if you throw more people on to a late software project,
you will make it later (Brooks, 1995). Many who have worked on large projects
agree. Brooks’ wisdom reflects our frequent emphasis on productivity. Because we do
not always understand how to get the most and best from ourselves and others, we
sometimes treat software production as if it were much like other production. By
speeding up the assembly line or adding more personnel, we somehow expect to
finish on time. We think of productivity as the production of a set of components over
a certain period of time, and we want to maximize the number of components built for
a given duration. But in fact, individual programmer productivity usually decreases as
we add people to our projects. The added personnel can influence the quality and not
always positively.

We begin our investigation of productivity in a rigorous way. That is, we ask
ourselves what attribute we are measuring, and what intuitive properties it has that
must be preserved by any measurement we make. Next, we ask which entities have
the attribute. Only then can we address specific measures of productivity.

10.1.1� A definition of productivity

In economics, productivity is defined in a straightforward way (The New
Encyclopaedia Brittanica, 1991, p. 719):

“a measure of productive efficiency calculated as the ratio of what is
produced to what is required to produce it. The inputs taken as the
denominator of the ratio are usually the traditional factors of production –
land, labour, and capital – taken singly or in the aggregate”

The idea of comparing input with output is useful for software developers, as well.
Intuitively, the notion of productivity involves the contrast between what goes into a
process and what comes out. Somehow, increasing the inputs should increase the
outputs, or improving the process for the same inputs should increase the outputs.
However, measuring the productivity of a software engineer, or of a software-
engineering process, is not at all intuitive. In other words, we do not believe that it its
entirely simple to apply this way of thinking on the software development process.
The relationship between input and output is not that straightforward, when the input
is the experience, knowledge and time of the system developer and when the output is
computer software. This finding originates from the fact that one has difficulties to

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

80

understand what constitutes the set of inputs, and to know how process changes
influence the relationship of input to output. What we have found instead is that
software engineers define productivity in terms of a measure, rather than considering
carefully what attribute is being captured. The measure most commonly used is one of
size over effort (Jones, 1996). That is, the size of the output is compared with the
amount of effort input to yield a SURGXFWLYLW\�HTXDWLRQ:

HIIRUW
VL]H

W\SURGXFWLYL =

Size is usually measured as Lines of Code (but can be any size measure, including
those described in Chapter 9, $OJRULWKPLF�&RPSOH[LW\�DQG�6L]H�0HDVXUHV), and effort
is measured in person days or person months (Fenton & Pfleeger, 1996). Thus,
software developers often calculate productivity as:

PRQWKV�SHUVRQ
&RGH�RI�/LQHV

W\SURGXFWLYL =

The equation’s simplicity hides the difficulty of measuring effort. Effort is not
something that can be recorded as easily as reading the speed of a car or the
temperature. Indeed, many projects that have reached completion cannot report actual
expended effort. When a person spends a day working on a project, the “day” measure
does not reflect whether the day consisted of 8, 12 or 16 hours.

More importantly, as some of us are more effective on some days than on others, one
eight-hour day of work can mean eight hours of productive effort for one person but
only two hours for another. Similarly, we often count two half-time workers to be
equivalent of one full-time worker. But the contributions of a half-time worker may
be very different from 50% of a full-timer. Other effort considerations involve the
contributions of support staff whose hours are charged directly to the project, and of
corporate staff (such as researchers) whose time is paid from non-project funds but
who nevertheless make a significant contribution to the project’s output (Goodman,
1993).

The numerator, size, presents problems too. The productivity equation view output
only in terms of size, so that the value of the output is ignored. We must consider
productivity in light of the benefit we deliver, not just the size of the code. It does no
good to be very effective at building useless products. We will come back to how we
can take account of quality factors later in this chapter.

There are other concerns about the productivity equation and its underlying
assumptions. By considering output solely in terms of the number of components
produced, this view of productivity treats software development to be much like any
traditional manufacturing process. For example, consider the automobile production.
Designing a car is clearly similar to designing a complex software system, and both
design processes involve prototyping and choosing among several alternatives.
However, for automobile manufacture, the primary focus of the implementation
process is replication: building many copies of the same item, perhaps with mild
variations (such as color, trim, or radio type). Here, it is customary and reasonable to

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

81

measure productivity in terms of the number of items produced per person month.
Each item has a clearly understood utility in terms of a known market price, and this
measure of productivity corresponds well with our intuition about the effectiveness of
the manufacturing process.

By contrast, there is usually little or no replication in software development. And even
when replication is required, the cost of each copy is generally minimal in comparison
with the cost of building the original. This small replication cost is a key feature that
distinguishes software “manufacture” from more traditional manufacturing. Another
aspect is the role of the creative process. Just as it would be silly to measure the
productivity of poets by computing the number of words or lines they produce and
dividing by the number of hours they spend writing, it may be equally inappropriate
to measure software productivity using the productivity equation (Fenton & Pfleeger,
1996).

Instead, we need a measure of productivity that has a more direct relationship to
quality. Similarly, we need to measure input by more than effort or time, as other
resources (such as tools and training) are “consumed” during the production process.
The combination of the productivity and quality dimensions will be discussed later in
this chapter. However, we feel that, for reasons explained in Chapter 5, 7KH�6LWXDWLRQ
DW�(ULFVVRQ�0RELOH�'DWD�'HVLJQ, man-hours is a simple but useful estimate of effort
used in an ERV software project. If we choose to take other factors into consideration
when determining effort, we may create a model that is too complex to be useful.

10.1.2� Productivity of what?

The discussion above shows us that we must take care to distinguish the productivity
of a process from the productivity of the resources. In many instances, we are more
concerned about the latter. We want to know how productive the developers are, so
that we can take steps to improve their productivity. This need to measure and
understand personnel productivity has its drawbacks though. When people feel they
are being monitored and measured, they may become suspicious and resentful, and
they may supply poor-quality data as a result. By relying on a goal-driven approach to
measurement, and by making clear the likely benefits to all concerned, a measurement
program can avoid this problem.

Of course, there are other resources whose productivity we can measure. For example,
we may evaluate the productivity of a compiler. Even in this relatively simple
example, people may confuse product or resource attributes with process attributes.
Although the productivity of a compiler (a product or a resource, depending on
whether we are building it or using it) must take into account the process of
compilation (that is, running it on some source code), it is incorrect to talk of the
productivity of the compilation process.

In the discussion that follows, we do not differentiate clearly between product,
process, and resource productivity, as they are in fact intertwined. We can
meaningfully refer to personnel productivity during a given process while working on
a particular product, and it is in this sense that productivity is an external resource
attribute. That is, we need a context for measuring and assessing productivity. For
example, consider the productivity of an individual programmer during the coding of
a program. Any measure of the programmer’s productivity must reference the coding

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

82

activity, as opposed to design or testing. Table 10:1 shows some examples of typical
processes and products we should consider when measuring the productivity of
certain typical resources. We have also added a column for relevant resources used,
since they may also be important.

7DEOH������3URGXFWLYLW\�RI�UHVRXUFHV

5HVRXUFH
(whose productivity we
wish to assess)

3URFHVV 3URGXFW ([DPSOHV�RI�UHVRXUFHV
XVHG

Programmer Coding Program Compiler
Programming team Coding Program Compiler
Programmer Testing Program Debugger
Programmer Coding and

documenting
Program, documentation, and
user manual

Compiler and word-
processor

Designer Developing Set of detailed module designs CASE tool
Specifier Constructing Formal specification -
Programmer Maintaining Set of programs plus

documentation
Program

Compiler Compiling Source-code program Microprocessor

�)HQWRQ�	�3IOHHJHU��������S�������PRGLILHG��

Table 10:1 highlights several possible limitations of the productivity equation. Notice
how the formula addresses only the first two examples; that is, it can be used only to
measure the productivity of programmers during coding. It is irrelevant for assessing
the productivity of other software personnel performing other development tasks. In
fact, whether the formula actually measures programmer productivity during software
development in the intuitive sense discussed earlier is also highly questionable. We
are not suggesting that the productivity equation should never be used. Rather, we
suggest that the equation should not be defined and used as the only measure of
(personnel) productivity, as it captures only a narrow sense of what we intuitively
mean about productivity (Fenton & Pfleeger, 1996).

We have mentioned code reuse in earlier chapters, and obviously there is a difficulty
in measuring the size of reused code. From the perspective of productivity, we must
also consider the impact of reuse. The inclusion of previously constructed code will
certainly increase the value of the productivity equation, but unless the code is
executed, we have no real increase in productivity (Möller & Paulish, 1993). Thus,
productivity as a measure defined by the productivity equation fails to satisfy, what
mathematical theorists call, the representation condition for measurement. We can
demonstrate this failure with an example.

When we measure programmer productivity, our entities are individuals producing
specific programs. Suppose that P is the entity “Fred producing program A”, that it
takes Fred 100 days to complete A, and that A is 5000 Lines of Code (LOC).
According to the productivity equation, the productivity of P is then 50 LOC per day.
Does this proposed measure capture our intuition about productivity in the sense of
satisfying the representation condition? To see that it does not, suppose that Fred adds
another copy of program A to the original one, in such a way that the second copy is
never executed. This new program, A’, has 10000 LOC, but is functionally equivalent
to the old one. Moreover, since the original version of A was already tested, the

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

83

incremental development time is nil, so the total time required to create A’ is
essentially equal to the time required to create A.

Intuitively, we know that Fred’s productivity has not changed. However, let P’ be the
entity “Fred producing program A’”. The productivity equation tells us that the
productivity of P’ is then 100 LOC per day. This significant increase in productivity
(according to the measure) is a clear violation of the representation condition, telling
us that the productivity equation does not define a true measure, in the sense of
measurement theory. You may protest, saying that we can still use the productivity
equation if we do not count reused code. However, consider the situation in which a
programmer decides to remove a block of code from his program. Has his
productivity suddenly decreased? We think not.

10.1.3� Proposed measures of productivity

Despite its theoretical problems, the productivity equation will continue to be used for
many years. Its appeal derives from its simplicity and ease of automatic calculation.
Moreover, because productivity (as defined by the productivity equation) is a ratio
scale measure, we can perform all reasonable statistical analyses on it. In particular,
we can meaningfully compute arithmetic means, yielding information about average
team productivity across people in a given process or average programmer
productivity across a number of different projects. We can also have meaningful
discussions about proportional increases, decreases or comparisons in productivity.

In Chapter 9, $OJRULWKPLF�&RPSOH[LW\�DQG�6L]H�0HDVXUHV, we pointed at some
problems associated with measuring the size of software with Lines of Code. These
problems stem from using Lines of Code not as a measure of length but as a measure
of effort, utility, or functionality. If Lines of Code truly measured effort, utility, or
functionality, then the measure ought to be indifferent to variations in counting
convention and expressive power. In fact, it was precisely this problem, which lead
Albrecht to formulate Function Points as a measure of functionality. As a result, some
researchers (Fenton & Pfleeger, 1996; Möller & Paulish, 1996; Jones, 1996) have
proposed that we measure programmer productivity as:

PRQWKV�SHUVRQ
GLPSOHPHQWH�3RLQWV�)XQFWLRQ

W\SURGXFWLYL =

If Function Points really do capture functionality, then this measure is attractive for
several reasons:
• The function-points-based measure reflects more accurately the value of output.
• It can be used to assess the productivity of software-development staff at any

stage in the life cycle, from requirements capture onwards. For example, to
measure the productivity of the architectural designers, we only need to compute
the number of Function Points for those parts of the system for which architectural
design has been completed.

• We can measure progress by comparing completed Function Points with
incomplete ones.

Many managers refuse to use Function Points because they find Lines of Code to be
more tangible. That is, they understand what a line of code means, but they have at

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

84

best an intuitive grasp of the meaning of Function Points. Such managers prefer to
“translate” function-point counts to line of code counts (Fenton & Pfleeger, 1996).
Both Albrecht and Gaffney (1983) and Behrens (1983) have investigated the
empirical relationship between Function Points and Lines of Code, and they have
published tables showing the correspondence (Appendix D). Some cost-estimation
tools calculate Function Points and translate them to Lines of Code automatically, for
use as input to a Lines-of-Code-based cost model. This was also discussed in section
9.3.4.2--9.3.4.4.

A drawback of Function Points is their computational difficulty, compared with Lines
of Code. For this reason, many practitioners prefer an alternative measure of
functionality that can be extracted automatically by certain CASE tools. However,
many of these automatic extractions depend on the use of a particular notion, and
there does not exist any usable tool that can calculate Functions Points directly from
source code (Jones, 1996).

Measures of length do not capture information about the quality and utility of
software; neither do measures of functionality. Ideally, we want to relate our measures
of productivity to the quality of the products, wherever possible and relevant. To do
so, the measure of performance may be helpful, and we will return to it in section
10.3. For example, if test or operational failure data are available, then we can
compute the operational reliability. This measure is relevant to a particular
programmer’s productivity only if the failures counted are attributable to errors made
by an individual programmer. If we are measuring the productivity of the whole
software-development team, as in the case of ERV, our data need not have such a fine
granularity.

When it is not possible to compute external quality attributes directly, we can turn to
the internal attributes described in Chapter 8, 6WUXFWXUDO�0HDVXUHV�RI�6RIWZDUH
&RPSOH[LW\. In particular, we are forced to make this compromise when we
investigate the productivity of specifiers and designers. A designer may rapidly
transform specifications into detailed designs. If the specifications are thereby poorly
structured, we can relate the designer’s productivity to quality for a more complete
picture of design effectiveness.

10.2� Quality
A principal objective of software engineering is to improve the quality of software
products. But quality, like beauty, is very much in the eyes of the beholder. In the
philosophical debate about the meaning of software quality, proposed definitions
include (Fenton & Pfleeger, 1996):

• fitness for purpose
• conformance to specification
• degree of excellence
• timeliness

However, from a measurement perspective, we must be able to define quality in terms
of specific software product attributes of interest to the user. That is, we want to know
how to measure the extent to which these attributes are present in our software

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

85

products. This knowledge will enable us to specify (and set targets for) quality
attributes in measurable form.

External product attributes can be defined as those that can be measured only with
respect to how the product relates to its environment. For example, if the product is
software code, then its reliability (defined in terms of the probability of failure-free
operation) is an external attribute; it is dependent on both the machine environment
and the user. Whenever we think of software code as our product and we investigate
an external attribute that is dependent on the user, we inevitably are dealing with an
attribute synonymous with a particular view of quality (that is, a quality attribute).
Thus, it is no coincidence that the attributes considered in this section relate to some
popular views of software quality (Pfleeger, 1991).

In Chapter 8, 6WUXFWXUDO�0HDVXUHV�RI�6RIWZDUH�&RPSOH[LW\, we considered a range of
internal attributes believed to influence quality in some way. Many practitioners and
researchers measure and analyze internal attributes because they may be predictors of
external attributes. There are two major advantages to doing so. First, the internal
attributes are often available for measurement early in the life cycle, whereas external
attributes are measurable only when the product is complete (or nearly so). Second,
internal attributes are often easier to measure than external ones.

The objective of this chapter is to focus on defining which external attributes that are
especially important, and consider how they can be measured. We begin by
examining one of many standard quality models. However it is proposed as the basis
for an international standard for software quality measurement, the IEEE (Institute of
Electrical and Electronics Engineers) Std 1061 (IEEE, 1993). We use this model to
identify key external attributes of interest, including UHOLDELOLW\, represented by the
number of known defects. Given the increasing use of software in systems that are
crucial to our life and health, software reliability is particularly important.

10.2.1� IEEE Standard for a Software Quality Metrics Methodology

For many years, the user community sought a single model for depicting and
expressing quality. The advantage of a universal model is clear: it makes the
comparison easier between one product and another. In 1992 IEEE proposed the
standard 1061 called “Standard for a Software Quality Metrics Methodology”, that
builds on and further develops the ISO 9126 model (“Software Product Evaluation:
Quality Characteristics and Guidelines for their Use”) (ISO, 1991). In the standard,
software quality is defined to be “the degree to which software possesses a desired
combination of attributes … required for that system” (IEEE, 1993, p. 4). Then
quality is decomposed into six factors (some of these are defined differently in our
model of software complexity):

•)XQFWLRQDOLW\, i.e. the existence of certain properties and functions that satisfy
stated or implied needs of users.

• 5HOLDELOLW\, i.e. the capability of software to maintain its level of performance
under stated conditions for a stated period of time.

• (IILFLHQF\, i.e. the relationship of the level of performance to the amount of
resources used under stated conditions.

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

86

• evaluation of results) and the individual assessment of such use by users.
• 0DLQWDLQDELOLW\, i.e. the effort needed for specific modifications.
• 3RUWDELOLW\, i.e. the ability of software to be transferred from one environment to

another.

The standard claims that these six are comprehensive; that is, any component of
software quality can be described in terms of some aspect of one or more of the six
factors. In turn, each of the six can be refined through multiple levels of
subcharacteristics. The standard defines a process for evaluating software quality.
Numerous companies use the IEEE Std 1061 model and framework to support their
quality evaluations (Fenton, Iizuka & Whitty, 1995). Thus, despite criticisms, the
standard is an important milestone in the development of software quality
measurement.

10.2.2� Defect density as a measure of reliability

Software quality measurement using the decomposition approach clearly requires
careful planning and data collection. Proper implementation even for a small number
of quality attributes uses extra resources that managers are often reluctant to commit.
In many situations, we need only a rough measure of overall software quality based
on existing data and requiring few resources. For this reason, many software
engineers think of software quality in a much narrower sense, where quality is
considered only to be a lack of defects. Here, “defect” is interpreted to mean a known
error, fault, or failure as discussed in section 7.3.1.

A GH�IDFWR standard measure of software quality is GHIHFW�GHQVLW\. For a given product
(anything from a small program function to a complete system), we can consider the
defects to be of two types: the known defects that have been discovered through
testing, inspection, and other techniques, and the latent defects that may be present in
the system but of which we are as yet unaware (Ohlsson, 1996). Then we can define
the defect density as:

�VL]HSURGXFW
GHIHFWV�NQRZQ�RI�QXPEHU

GHQVLW\�GHIHFW =

Defect density is certainly an acceptable measure to apply to projects, and it provides
useful information. However, before we use it, either for our own internal quality
assurance purposes or to compare our performance with others, we must remember
the following (Ohlsson, 1996; Fenton & Pfleeger, 1996; Grady, 1992):

• There is no general consensus on what constitutes a defect. A defect can either be
a fault discovered during review and testing, or a failure that has been observed
during software operation. The terminology differs widely among those who
measure defects; fault rate, fault density and failure rate are used almost
interchangeably. Thus, to use defect density as a comparative measure, we must
be sure that all parties are counting the same things in the same ways.

• There is no consensus about how to measure software size in a consistent and
comparable way. Unless defect densities are consistently calculated using the
same definition of size, the results across projects or studies are incomparable.

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

87

• Although defect density is a product measure in our sense, it is derived from the
process of finding defects. Thus, defect density may tell us more about the quality
of the defect finding and reporting process than about the quality of the product
itself.

• Even if we were able to know exactly the number of residual faults in our system,
we would have to be extremely careful about making definitive statements about
how the system will operate in practice. Our caution is based on two key findings.
Firstly, it is difficult to determine in advance the seriousness of a fault. Secondly,
there is great variability in the way systems are used by different users, and users
do not always use the system in the ways that were expected or intended. Thus, it
is difficult to predict which faults are likely to lead to failures, or to predict which
failures will occur often.

• Studies show that it is quite possible to have products with a very large number of
defects failing very rarely, if at all (Ohlsson, 1996). Such products are certainly of
high quality, but their quality is not reflected in a measure based on defect counts.
Hence, a very accurate residual fault density prediction may be a very poor
predictor of operational reliability.

Despite these problems with using defect density, we understand the need for such a
measure and the reason it has become a GH�IDFWR standard in industry. Commercial
organizations argue that they avoid many of the problems with the measure by having
formal definitions that are understood and applied consistently in their own
environment. But what works for a particular organization may not transfer to other
organizations, so cross-organizational comparisons are dangerous. Nevertheless,
organizations are hungry both for benchmarking data and for predictive models of
defect density.

To get a comprehensive picture of software quality it is obvious that we need to take
all factors IEEE Std 1061 into consideration. Depending on which sub-factor of
quality that is most important for the system in question, we can choose to focus on
measuring one or a few sub-factors. Researchers have also developed methods and
measures to evaluate primarily the maintainability and usability factors. Measuring
maintainability inevitably involves monitoring the maintenance process, capturing
process measures such as the time to locate and fix faults. Some internal attribute
measures, notably the structural measures described in Chapter 8, 6WUXFWXUDO
0HDVXUHV�RI�6RIWZDUH�&RPSOH[LW\, may also be used as indicators of likely
maintainability.

Usability must involve assessing people who use the software, and an associated
concept with usability is user-friendliness. To get a useful measure of this factor we
have to quantify the effort required for learning and operating a system. We will not
develop this discussion of maintainability and usability measures any further. Instead,
we are referring to Chapter 5, 7KH�6LWXDWLRQ�DW�(ULFVVRQ�0RELOH�'DWD�'HVLJQ,
especially section 5.1.1, where we explained why reliability is the most important
quality attribute for ERV. As we have seen in this chapter, defect density is a widely
used and acknowledged approximation of reliability. Therefore we would like to
suggest defect density (or “inverted defect density” as we will see in Chapter 12,
&RQFOXVLRQV�DQG�5HFRPPHQGDWLRQV), and internal structural attributes as equivalents
of software quality. Further, if our model of complexity is correct, the structure

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

88

complexity measures could be used as estimators of other quality factors, as well,
such as usability and maintainability.

10.3� Performance
As we mentioned in our discussion of productivity the measures of productivity and
quality is more useful if we can combine them and weigh them in a way that helps us
to understand our overall achievement. If we focus to hard on productivity, we may
improve our efficiency and lower our project costs, but this gain is worthless if we are
not building quality systems that meet the demands from our customers. Similarly, if
we are aiming to create the perfect system, we may loose control of the costs.
Moreover, the time it takes to improve and correct the system may cause a late
delivery of the product. In the software and computer business this often means that
the product is delivered at a time when it is obsolete.

The approach of combining the quality and productivity dimensions of software is
also useful for companies from another perspective. As we have seen in Chapter 5,
7KH�6LWXDWLRQ�DW�(ULFVVRQ�0RELOH�'DWD�'HVLJQ, the situation at ERV is such, that for
some projects the level of reliability is crucial for the decision if the system should be
delivered or not. The quality is not allowed to fall below a certain level, because of
internal or external demands, and if it does, the company must be prepared to bring
more resources into the project in order to improve the quality. In other projects, the
timeliness of releasing the product is the most important success factor. If our surveys
tell us that the market will be ripe for our product in, let us say 6 months, it is
important that our project will be finished before this juncture. If we fail to
accomplish the product in 6 months, our competitors will most likely manage to do it,
and we will loose market shares.

Thus, of these reasons it is important to find a way to integrate the two main aspects
of software: productivity and quality. We will propose one way of doing this, and we
call this a SHUIRUPDQFH�PHDVXUH. The method behind the measure builds on something
called 'DWD�(QYHORSPHQW�$QDO\VLV (DEA), which is in its turn a development of the
mathematical technique known as linear programming (Goodman, 1993). The idea is
that we can identify two characteristics of our process or products that are common
across the organization. In our example we will consider productivity and quality (or
more theoretically correct reliability). The next step is to define measures associated
with these characteristics, and collect data from a number of projects.

One thing to consider in this case is to present a graph with productivity as the y-axis
and quality (or reliability) as the x-axis (see Figure 10:1). The performance of each
project can then be described in terms of two-dimensional vector coordinates. If the
managers would rather want the information in non-graphical form, to make
comparisons against “best in class” we can identify the boundary cases and use these
to describe an envelope around the set of observations. For any particular project,
drawing a vector from the origin, through the project point to the boundary can then
represent its performance. Performance is then expressed as a ratio of the distance
from the origin to the project point compared to the total length of the vector to the
boundary.

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

89

)LJXUH������*UDSKLFDO�SUHVHQWDWLRQ�RI�WKH�SHUIRUPDQFH�PHDVXUH

��

�

[[

[
�SURMHFW�RI�H3HUIRUPDQF

+
=

�*RRGPDQ��������S�������PRGLILHG��

The advantage of DEA is that the technique can be applied to more dimensions than
two, in fact any number, subject to the computation capabilities available. We will
develop this measure further in Chapter 12, &RQFOXVLRQV�DQG�5HFRPPHQGDWLRQV, when
we will discuss which specific measures of productivity and quality (reliability) ERV
should use and at what time during the software development process the performance
measure should be implemented. However, we do not recognize the need to develop
the theoretical foundations of DEA further in this report. Those can be found in
Goodman (1993).

10.4� Summary
Productivity was defined in this chapter by using the common productivity equation,
where productivity equals the quotient between size and effort. Historically the lines-
of-code-measure has been used as an estimation of software size, but the Function
Points measure is gaining more use as an alternative size measure. The productivity
equation still has some shortcomings that also have been discussed in this chapter.

Commonly, people are the only resource that is thought of as an object for
productivity measurements. However, we also have to recognize that different types
of personnel can be measured, and different measures and techniques must then be
applied. Programmers, programming teams, designers and specifiers can all be the
subjects of productivity measurements. Even a compiler is applicable for this
purpose.

Software quality can be defined in many different ways, depending on who is making
the definition. We are using the definition in IEEE (Institute of Electrical and
Electronics Engineers) Standard for a Software Quality Metrics Methodology, where
IEEE suggests that quality consist of six factors: functionality, reliability, efficiency,
usability, maintainability and portability. For reasons discussed in Chapter 5, 7KH

;�

;�

Reliability

Pr
od

uc
ti

vi
ty

Project α

Software Complexity and Project Performance Chapter 10
Department of Informatics Productivity, Quality and Performance

90

6LWXDWLRQ�DW�(ULFVVRQ�0RELOH�'DWD�'HVLJQ, we will concentrate on reliability as our
main quality concern. A GH�IDFWR standard measure of software quality in general, and
reliability in particular, has been developed in the industry, usually called defect
density. Even if there are some cautions to be made when applying this measure, we
would like to suggest it as a useful and relevant estimation of software quality.

The last section of the chapter is devoted to a combined measure of project
performance, where the two dimensions of project productivity and software quality is
connected to get an overall picture of the project and what it has produced. The
measure builds on a technique called Data Envelopment Analysis (DEA), and can be
expressed both graphically and in an equation.

Software Complexity and Project Performance Chapter 11
Department of Informatics Field Tests at ERV

91

11� Field Tests at ERV
During the latter part of our work at ERV we were focusing on the evaluation of the
chosen functional measures of software, Function Point Analysis (FPA) and Full
Function Points (FFP), in relation to the ERV’s organization and business. We applied
both these methods to a part of a project that was concluded about a year ago (June
1998). It can shortly be described as a mobile data system based on the Japanese
standard for mobile data communication (PDC). It lasted for about one year and
involved about 50 persons.

We divided the application into modules, according to objective standards spelled out
in the system documentation. Each one of these modules was logically coherent and
related to the other modules, which meant that they together formed a working unit. In
FPA and FFP terms we looked at each of these modules as separate applications. A
wide range of module sizes was represented in this application. We wanted this
distribution of size, since comparisons between the modules were then easier to make.
The reader may want to recall the method we used during these field tests. If this is
the case, we refer to section 4.4, for a more extensive explanation of the course of
action.

Our hypothesis before the tests began was that the FFP would be more useful than
FPA for the ERV organization. If we could falsify this hypothesis, then FPA would be
better for ERV. In the following sections we will try to specify how the tests were
performed combined with our continuous results and the final results we received
concerning the applicability of the methods.

11.1� The results
As mentioned we separated the project of study in modules, all to all twelve pieces.
For reasons of simplicity we will call them A, B, C, D, E, F, G, H, I, J, K and L. In the
IWD document module A, B, C and D were treated as one unit. Thus, during the first
phase of the tests, we did not count A, B, C and D as separate modules, since that was
not possible. However, this does not mean that the sum of FPA and FFP count for
these modules in the second round of the counting is comparable to the figure we
received after the first phase for A, B, C and D as a unit. This is due to the fact that
when applying FPA and FFP some parts of these modules are counted several times,
above all the communication internally and externally with other modules.

The results that came out of testing the methods on this project are summarized in
Table 11:1. Some important conclusions can be drawn when looking at this table.
First of all the modules H, I, J, and perhaps also modules A and K could be regarded
as I/O-heavy modules, i.e. modules with a large degree of communication with other
parts of the system, but not so much algorithmic complexity. This can be concluded
by looking at the quota between the figures for FPA and FFP. If this quota is
relatively high the FPA method has a greater impact, and thus it is probable that these
modules contains much input and output, processes that are counted high with the
FPA method. The modules B, C and D, on the other hand, could be regarded as
modules with many sub-processes and complex algorithms, since the FFP method has
a greater impact relatively to FPA. Finally, the figures in the two columns for the
second round of counting are higher than in the columns representing the first round.

Software Complexity and Project Performance Chapter 11
Department of Informatics Field Tests at ERV

92

This means that when we increase the level of detail, regarding the documents and
code analyzed, we usually find more functionality to take into account. The
exceptions are modules H and I. The reason for this is that they are only concerned
with input and output, i.e. the functionality is included in the IWD document.

7DEOH������5HVXOWV�RI�FRXQWLQJ�)3$�DQG�))3

&RXQWLQJ�EDVHG�RQ�,:'¶V &RXQWLQJ�EDVHG�RQ�,6¶V�DQG
VRXUFH�FRGH

0RGXOH)3$))3)3$))3
$�%�&�' 231 42
$ 455 116
% 296 134.4
& 276 183
' 268 81
(200 35.6 283 89.6
) 184 54.2 252 79.2
* 153 42.2 201 62.4
+ 117 22 121 17
, 91 21 86 16
- 89 18 170 38.4
. 65 13 137 32.8
/ 65 13 113 37.2

11.2� Validation of our results
Our main concern was to validate the results we got from our tests from an objective
viewpoint. However, a fully objective view of this specific project at ERV was hard to
acquire. The approach we chose was therefore to compare our results with the jointed
opinion of the system developers involved in the project. When we had concluded our
tests, we asked three of the system developers involved in the project to place the
modules in order of precedence. We explained that we wanted them to order the
modules according to size DQG complexity, since FPA and FFP combine these factors.
The results of our tests were not shown to them until their order of precedence was
done.

Naturally their knowledge of the modules varied. Some of the modules they had
developed themselves, others were examined by them, but there were always one or a
few modules that they had very little knowledge of. Thus, we compiled the opinions
from these three persons. In this compilation, when a person had greater knowledge of
a module than the others, his opinion took precedence over the others regarding this
specific module. However, the opinions were very similar, especially regarding which
modules that were the most and the least complex. The order of precedence that
became the result of the “opinion compilation” can be seen in Figure 11:1.

Software Complexity and Project Performance Chapter 11
Department of Informatics Field Tests at ERV

93

)LJXUH������0RGXOH�FRPSOH[LW\�DFFRUGLQJ�WR�WKH�V\VWHP�GHYHORSHUV

The first thing to notice is that we can distinguish three groups of modules. The most
complex group (C, B, F, D, E and A) consists of modules with many lines of code and
many algorithms. The middle group (J, G, K and L) is made up of modules that
contains a certain amount of input and output, but also fragments with algorithms and
complex functionality. The last group (H and I) of modules are units with a pure I/O-
functionality.

If we compare our tests of the FPA and FFP methods on these modules with the
opinion of the system developers, we find that they are rather congruent. The column
in Table 11:1 that best agrees with Figure 11:1 is without doubt, the counting of FFP
on IS’s and source code (4th column). The order of precedence there is C, B, A, E, D,
F, G, J, L, K, H and I. The explanation for the exceptions (A and G is counted higher
with FFP than according to the system developers, and F is counted lower) can be
found in the system developer’s perception of the problem. We suspect that they
interpreted the order of precedence only as a software complexity issue and
disregarded the size factor. If we look at A and G we also find that they are made up
of relatively many lines of code, and F is rather complex but is also a low-volume
module.

Thus, the outcome of this simple but rather straightforward validation of our results
speaks in favor of a detailed counting with the FFP method. As we predicted, the FPA
method fails to take into account the complexity factors that are inherent in real-time
systems, such as the number of algorithms and the number of sub-processes (see
5.1.2, 5HDO�WLPH�V\VWHPV). Moreover, we need a detailed and comprehensive
documentation in order to make accurate use of the FPA and FFP methods. To be able

Increasing
software size
and complexity C

B F

ED

A

J
G K L

H I

Software Complexity and Project Performance Chapter 11
Department of Informatics Field Tests at ERV

94

to count all functionality included in a system, we need low-level design documents,
and perhaps even source code to find the parameters needed.

11.3� Limitations
There are a number of possible sources of error that have to be recognized regarding
our test results. Firstly, we may have misunderstood the functionality of the modules
studied. Despite the fact that we spent almost four weeks on reading documentation
on the system, we may have missed out important parts. Tele- and data
communication systems are technically very complicated, and since we do not have a
thorough knowledge of electronics and telecommunications it is hard to understand all
parts of such a system.

We may also have misinterpreted the rules for FPA and FFP counting. In the case of
FPA, the method is, as we have mentioned before, adjusted for MIS systems
(Management Information Systems). Thus, when counting a real-time system, the
definitions of the elements of the FPA method have to be interpreted from case to
case. Regarding FFP the situation is more favorable. However, since the method is
rather new, some initial difficulties (“teething problems”) may be identified, which
means that rules are not as clear as one would like them to be. We have tried to
minimize this source of error by writing e-mails to one of the researchers that
developed the method, Jean-Marc Desharnais (1999). He answered our questions
about the interpretation of FFP rules in detail and with great enthusiasm.

Finally, miscalculations may have occurred during the counting sessions. To err is
human, and the human factor may have taken its toll, when the summation was done
or the equations used. Despite all these problems we think that our tests show that the
FFP method are superior when it comes to estimating the size and complexity of real-
time systems. In other words, the hypothesis established in the beginning of these
tests, could not be falsified.

11.4� Summary
To be able to decide if Function Point Analysis or Full Function Points should be used
for counting the projects at ERV, both methods were tested on a concluded project (or
more correctly: SDUW of a project). The tests were made in two rounds. In the first
round only general documents, overviews of the system, were considered, and in the
second round more specific documents of the low-level design and the source code
were included. These results were then compared to the opinions of some of the
system developers that had been involved in the project. The comparison showed that
the FFP method applied to detailed documentation and code was most successful in
terms of agreement with the opinions of the developers. These results will be used as
one of the pieces in the puzzle of recommendations and suggestions we are going to
put together in the next chapter.

Software Complexity and Project Performance Chapter 12
Department of Informatics Conclusions and Recommendations

95

12� Conclusions and Recommendations
We have now reached the end of our journey through the problem of software
complexity, and we have arrived at the terminal station: the conclusions of our
research and our recommendations for Ericsson Mobile Data Design AB (ERV).
This chapter is made up of three parts. In the first section we are going to sum up
our findings in this master thesis, and the set of questions we had in the first chapter
will be answered. In the second section we are spelling out the concrete
recommendations for ERV we have arrived at during our research. As a final round
off, we will give suggestions for further research in the area of software metrics at
ERV.

12.1� Conclusions
During this report we have answered the set of questions that we established in
Chapter 3, 3UREOHP. Some of them have been easier to answer than others, and in
some cases we have not been able to give a complete and comprehensive solution to
the problems that formed the basis for this master thesis. Detailed answers to our
questions are given in Chapter 7-11. However, in this section we will give a summary
of our conclusions. Each set of questions will in turn be presented and answered.

• How can software complexity be defined? Where does software complexity come
from and what does it lead to? How is software complexity related to software
productivity and quality?

The first set of questions dealt with the concept of software complexity. The reply to
the first question was a definition of software complexity, saying that it is the degree
of difficulty in analyzing, maintaining, testing, designing and modifying software.
Moreover we defined the concept by dividing software complexity in four different
parts: problem complexity, algorithmic complexity, structural complexity and
cognitive complexity. Since we related mainly DOJRULWKPLF�DQG�VWUXFWXUDO�FRPSOH[LW\
to productivity and quality, we focused on these concepts in the rest of the report. In
the same chapter we also answered our second question about software complexity by
claiming that there are two sources of software complexity: the FRPSOH[LW\�RI�WKH
SUREOHP and the FRPSOH[LW\�RI�WKH�VROXWLRQ. The last-mentioned concept can also be
referred to as FRPSOH[LW\�DGGHG during the different development phases, mainly
design and coding. We found two main effects of software complexity: HUURU�
SURQHQHVV and VL]H. These main effects were related to productivity and quality in
order to answer our third question. In our model of software complexity (Figure 4:1)
we connected error-proneness to the TXDOLW\ dimension of software through the
concepts of XVDELOLW\, UHOLDELOLW\ and QHHG�RI�FKDQJH. Moreover, we related size to the
concept of SURGXFWLYLW\, by determining the level of PDLQWDLQDELOLW\, XQGHUVWDQGDELOLW\
and FRPSXWHU�SRZHU needed. However, error-proneness is also, through the need of
changing a system, influencing project productivity in different ways, as well as size,
through maintainability, influences the quality level of software. Thus, the relationship
between software complexity, productivity and quality is not straightforward.

• How can software complexity be measured? Which methods and measurements
are available for capturing different aspects of software complexity?

Software Complexity and Project Performance Chapter 12
Department of Informatics Conclusions and Recommendations

96

Further on in the report we answered the second set of questions, regarding methods
for measuring software complexity, by identifying different measures of the aspects of
software complexity we chose to focus on: structural and algorithmic complexity.
Thus, the first question was answered by stating that software complexity can be
measured either as structural or algorithmic complexity. To be able to answer the
second question, we focused on the most important and used methods and measures.
The structural complexity measures we identified were 0F&DEH¶V�F\FORPDWLF�QXPEHU,
measuring control-flow structure, +HQU\�DQG�.DIXUD¶V�LQIRUPDWLRQ�IORZ�PHDVXUH,
measuring data flow, and +DOVWHDG¶V�PHDVXUHV, measuring data structure. Regarding
the measures of algorithmic complexity, two alternative groups of size measures were
found: SODLQ�VL]H metrics (Lines of Code) and IXQFWLRQDO�VL]H�metrics (variants of
Function Points). Since there are many shortcomings with using Lines of Code, we
chose to focus on different types of functional size metrics, including Function Point
Analysis (FPA), SPR Function Points and Feature Points, Full Function Points (FFP)
and some minor measures as 3D Function Points and Mark II Function Points.

• Which method or measurement of software complexity should be chosen with
regard to ERV’s need of a comparative measure of project productivity and
quality? How is this method or measure going to be implemented in ERV’s
system development process?

The third set of questions dealt with suggestions to ERV of how to use the measures
and methods that were found. The first question was answered in three steps. First, we
selected McCabe’s cyclomatic number to be used at ERV as a measure of structural
complexity and thereby also an estimate of product quality, since it was widely used,
supported by automatic tools and applicable early in the development process. To be
able to choose a measure of algorithmic complexity and a functional size metric, field
tests were performed at ERV of the two main candidates: FPA and FFP. These tests
showed that FFP is the method that is best adapted to the type of systems produced at
ERV, namely real-time systems. When discussing the measurement of software
project attributes we claimed that a combined measure of productivity and quality,
called SHUIRUPDQFH measure, should be used in order to capture as many aspects of
software complexity as possible. The second question is answered in the next section.

12.2� Suggestions
Since our work has been performed at ERV, the goal for our research has always
been that the conclusions should be used for concrete suggestions to ERV. So far,
we have dropped some hints of how we would like ERV to measure their projects,
but in this section we will spell this out more clearly. We have chosen to break
these suggestions up in two parts: short-term and long-term suggestions. The short-
term suggestions are more concerned with what can be done immediately for
testing software metrics and the measurements proposed in this report. The long-
term suggestions could be implemented right now, but are more of a strategic
nature, i.e. explain how a long-term measurement program could be arranged.

12.2.1� Short-term suggestions

In Chapter 10, 3URGXFWLYLW\��4XDOLW\�DQG�3HUIRUPDQFH, we discussed different ways
of measuring productivity and quality and we reached the conclusion that weighing
these dimensions together in a measure of performance is a preferable way of doing
this. However, we did not relate these findings to the ERV organization and

Software Complexity and Project Performance Chapter 12
Department of Informatics Conclusions and Recommendations

97

business in any way. To specify which measurements should be performed, at
which time and by whom, is our main focus in this section.

If we recall our discussion of performance in section 10.3 it was represented by a
two-dimensional vector, with productivity and quality measurements as inputs. We
would also like the reader to recall the ERV model of system development, Darwin,
spelled out in section 5.3. The design of this model has guided us to a certain way
of defining where in the process the measurements should be performed.

We would like to suggest two types of measurements: expected performance and
real performance. The measurement of expected performance is recommended to
take place in the middle of the system development process. The measure itself
consists of one measure of productivity and one of quality:

7LPH�0DQ

3RLQWV�)XQFWLRQ�)XOO�G,PSOHPHQWH
W\3URGXFWLYL��([SHFWHG� =

1XPEHU�&\FORPDWLF�V0F&DEH

3RLQWV�)XQFWLRQ�)XOO�G,PSOHPHQWH

\5HOLDELOLW��([SHFWHG� =

These measurements are suggested to take place at MS6 in the Darwin model. The
reason for choosing this point of time is that a preliminary version of the source
code is available, as well as the low-level design with documents needed for
carrying out Full Function Points count and the automatic measure McCabe’s
Cyclomatic Number.

The reasons for defining productivity this way has been explained in Chapter 10,
3URGXFWLYLW\��4XDOLW\�DQG�3HUIRUPDQFH, and we refer the reader to section 10.1.3 for
a complete discussion of this subject. The definition of effort as “Man Time” is
made intentionally loose, since we do not have the authority to decide in which unit
ERV should count time spent on a certain project. However, an important thing to
emphasize in this context is that there must be a consistency in the counting of
“Man Time”, i.e. it must be done in the same way and presented in the same unit
(months, days, hours or some other preferable unit) at all times.

Full Function Points have been chosen as the eligible measure of software size at
ERV, after analyzing the test results explained in Chapter 11,)LHOG�7HVWV�DW�(59.
By “Implemented Full Function Points” we mean that only the functionality
included and implemented in the system at the time of measurement, i.e. at MS6,
should be taken into account. Similarly, “Man Time” is defined as the time put into
the project up until MS6. The productivity measure then gives an indication of how
productive the project team has been during the design phases of the project.

In Chapter 8, 6WUXFWXUDO�0HDVXUHV�RI�6RIWZDUH�&RPSOH[LW\, we described alternative
measures of structural complexity and what aspect of structural complexity they are
measuring. In the same chapter McCabe’s measure was chosen because it is widely
used among software developments, tools for automatic counting are available, and
it can be implemented early in the software development process. However, we also
recognized that a more extensive examination of the structural complexity measures
has to be made, in order to decide which measure that best suites ERV’s purpose.

Software Complexity and Project Performance Chapter 12
Department of Informatics Conclusions and Recommendations

98

The measure of expected quality can then be seen as an inverse measure of defect
density, and McCabe’s measure is therefore used as an estimation of the number of
errors in the code.

The measuring of real performance is recommended to take place in the end of the
system development process. The measurements are direct parallels to the ones
used for expected performance:

7LPH�0DQ
3RLQWV�)XQFWLRQ�)XOO�G,PSOHPHQWH

W\3URGXFWLYL =

'HIHFWV�.QRZQ�RI�1XPEHU
3RLQWV�)XQFWLRQ�)XOO�G,PSOHPHQWH

\5HOLDELOLW =

The difference between these measures and the ones proposed for expected
performance is that the actual number of known defects, found during the test
phase, has replaced McCabe’s Cyclomatic Number. In that way we get a measure
of how the system in reality is performing with regard to the quality dimension.

Implemented Full Function Points is here defined as the number of Full Function
Points implemented up until MS9. Between MS6 (when expected performance
measurements are made) and MS9, the main part of the testing activities take place.
Functionality may be added or withdrawn from the system during these sessions,
and Full Function Point counts must therefore be made again.

Spent time between MS6 and MS9 should be calculated and added to the figure for
“Man Time” used for calculating expected performance. In this way we get the total
time invested in the project up until MS9. At MS9 there should also exist reports of
errors localized during the integration and verification phases. We leave to ERV to
decide exactly which figure to choose as representing the number of known defects.
However, consistency is again very important.

When we have calculated these measures of productivity and quality we are then
able to get an overall picture of expected and real performance by drawing the
graph described in section 10.3 (see Figure 10:1), or calculate the performance
ratio. The measure of expected performance can be used to evaluate if more
resources are needed for testing the system, and estimate how long time the
integration and verification sessions will take. If the reliability (quality) of the
system is the principal goal, the project should end up in the right part of the graph.
On the other hand, if timeliness of the product is most important, we are aiming at
placing the project as high up as possible relatively to other projects. As more
projects are developed and productivity and quality data is collected, we can create
a database to compare our current projects with. In this way we are able to estimate
how the project is developing after MS6 by looking at similar projects (in terms of
calculated productivity and quality) that have been concluded.

Real performance, on the other hand, can be used for evaluating the projects after
conclusion. Did we reach our goals regarding reliability? How productive were we
relatively speaking? Did the new methods or tools used in the project have any
effect on the productivity rate? Such questions, and many more, could be answered

Software Complexity and Project Performance Chapter 12
Department of Informatics Conclusions and Recommendations

99

by looking at the real performance measure. The figure could also be used for
comparisons with other Ericsson or external companies or as information to the
customer. However, if the measure is going to be useful in this context, it is obvious
that the same calculations have to be made at the companies in question.

By whom are these calculations going to be made? As we explained in Chapter 9,
$OJRULWKPLF�&RPSOH[LW\�DQG�6L]H�0HDVXUHV, there is no such thing as the ideal
composition of a software measurement group. Since McCabe’s cyclomatic number
can be calculated automatically, and data about the number of defects and man time
are collected already, the counting of Full Function Points (FFP) is the complicated
part. ERV is a rather large organization, and educating everybody involved in
system development on the FFP technique is therefore impracticable. Rather, we
suggest that a few (two or three) employees, preferably people working with
software engineering issues today, should be educated to become “experts” on the
FFP method. However, bearing our own experience of counting FFP in mind, it is
also necessary to include people with advanced knowledge of the software counted,
i.e. the system developers, in the FFP counting group. If the expert knowledge of
the system is combined with the expert knowledge of the FFP method, our opinion
is that the counting session will be more effective and accurate. This implies that
our suggestion is to include one or two experts on the FFP method, and a couple of
system developers involved in the project counted, in the FFP counting group. The
exact number of people depends on the scope of the project. After some practice,
the calculation of FFP should not take more than a couple of days for an average
project.

Some actions could be taken to make the measurement work easier. If the system
developers are familiar with the definitions of the elements in the FFP method (i.e.
UCG, RCG, ECE, ECX, ICR and ICW) they are able to make suggestions of where
these can be found in the system. The experts on the FFP method could then decide
where these parts fit in by interpreting the FFP counting rules. Moreover, a list of
identified UCGs, RCGs, ECEs, ECXs, ICRs and ICWs, could be included in the
design documentation for later use, when the system developers that worked in the
project are not available any more.

The suggestions submitted in this section are things that can be carried out right
away. They are intended to serve as a starting shot for some sort of a performance
measurement program at ERV. Naturally, these actions must be performed in a
context where a long-time strategy for the measurements have to be decided. Some
suggestions of such a strategy are put forward in the next section.

12.2.2� Long-term suggestions

The long-term strategy for the measurements must be based on a well thought-out
answer on the question: For what purpose are the measurements going to be used?
Are they going to be used for comparisons with other Ericsson companies or
perhaps benchmarking against competitors? Are they going to be used for
estimating project development and to plan the consumption of resources and time?
Are they going to be used for evaluating the effect of new methods and tools, by
comparing internally with other ERV projects? There may be more uses that are not
suggested here. However, what we would like to point out by asking these

Software Complexity and Project Performance Chapter 12
Department of Informatics Conclusions and Recommendations

100

questions is that the management have to make clear what the purpose of their
measurements are, because it will decide what strategy the company need to pursue.

In the conditions for this master thesis, ERV established that they needed a measure
to compare their projects to something. During our research we have come to the
conclusion that this “something” is referring to that ERV, at an initial stage, wants a
measure for comparing the productivity and quality of current projects with
concluded dittos, for the purpose of evaluation. However, in the long term, ERV is
interested in comparing their business with other Ericsson companies and
competitors. If ways can be found for planning and estimating projects ERV admits
that it is attractive, but it seems to us that the principal purpose is to use the
measurements for comparisons.

If that is right we are suggesting that the following elements should be included in a
long-term strategy:

• Create a framework for the collection of productivity and quality data. It is
preferable that it is based on ERV’s existing routines for collecting other types
of project data.

• In an initial stage develop the FFP method internally by testing it on more
projects and with system developing personnel included. It is important to carry
through a training program, an advanced one for the two or three experts, and
more basic education for the system developers involved in the counting
sessions. This basic education has a two-fold purpose. On the one hand it is
giving them the means for understanding how the measurements are carried out.
On the other hand it motivates them to collect the data, when they know what it
is used for.

• In the next stage, if comparisons with other Ericsson companies and
competitors are demanded, begin to co-operate with the Software Engineering
Management Research Laboratory (LRGL) and Software Engineering
Laboratory in Applied Metrics (SELAM) at University of Quebec and Montreal
in Canada, the developers of the FFP method, in order to receive guidance and
new releases of the method. As we have mentioned, the method is quite new
and improved versions of the FFP method are released continuously. There are
also Ericsson companies in Canada that have tested the method and are partners
of LRGL and SELAM projects. Using the experience of software
measurements, and especially the FFP method, in these Ericsson companies, is
naturally an important move to make when implementing a software metrics
program at ERV.

• However, ERV should not focus too much on the FFP method, so that they
loose the perspective on functional size measurements in general. Rather, we
advice ERV to follow the development of the FFP and FPA methods closely,
especially the work of IFPUG, the standardization organization for Function
Points. According to the Function Point specialists we have been in contact with
(P. Almén, personal communication, 16th March, 1999; M. Öhlin, personal
communication, 16th March, 1999), it is developing an understanding in the
Function Points’ community that they have to move towards a common
standard method for function point counting, that could be used irrespectively
of which type of software that is developed. When this standard is agreed on,
ERV need to have knowledge of it, to be able to compare their productivity with

Software Complexity and Project Performance Chapter 12
Department of Informatics Conclusions and Recommendations

101

competitors, since this standard probably will be used by most of the companies
using the FPA method today.

These long-term suggestions are consciously presented as guiding principles
without specifying concrete details. The reason for this is that the future is too
uncertain, regarding the development of functional size measurements and ERV’s
business. The detailed strategic decisions have to be made by ERV themselves, but
guidelines for these decisions have been proposed in this section. The short-term
and long-term suggestions are also summarized in Appendix E, together with our
suggestions of future research areas spelled out in the next section, to be used by
the ERV managers as a reminder of our proposals.

12.3� Further research
During our research we have only had the time and resources to get an overview of
the subject and a few solutions to ERV’s software measurement problems. During
this time our attention has also been drawn to the fact that there is still much work
to do in this area. We have gathered these findings under this heading, were we
would like to suggest areas for further research in general and at ERV.

Firstly, the possibilities to automate the FPA and FFP counting should be
investigated. There are companies claiming that they have developed software tools
that are able to count Function Points automatically on certain type of code or
documentation. However, when examining these tools we found that they are
neither accurate nor functional. The input has to be adapted to the tool to a great
extent, and this is too time-consuming to be an alternative to manual counting.
Thus, research could be made in this area, exploring which parts of the FPA or FFP
counting that could be done automatically, exploring available software tools, and
maybe developing an internal tool suited for the ERV organization.

Secondly, the quality dimension of software complexity could be developed further.
Even if quality is a central concept in our master thesis, we have focused on
productivity. This has meant that we have not had as much time as we had hoped to
examine how software quality could be measured and controlled at ERV. There are
existing automatic tools that can perform the measures of structural complexity
presented in Chapter 8, 6WUXFWXUDO�0HDVXUHV�RI�6RIWZDUH�&RPSOH[LW\. These should
be evaluated, together with different ways of predicting, estimating and controlling
software quality.

Thirdly, ERV’s organization should be studied in order to evaluate how a software
measurement program should be implemented, with regard to efficiency and
reliability of the measurements. This research should be aimed at exploring the
prevailing methods and structures used for measuring software as well as attitudes
amongst managers and system developers towards software measurements. This
knowledge will be extremely helpful for an organization like ERV that are relying
very much on their employees and models to get accurate data to a low cost.

There may exist more areas of research that have been overseen in this survey. Our
hope is that the reader, during the study of this master thesis, has developed an
understanding of what work there is to be done in the area of software metrics.

Software Complexity and Project Performance Chapter 12
Department of Informatics Conclusions and Recommendations

102

Naturally, we also hope that the reader has found something that has addressed
his/her interests and maybe this report has stimulated someone to dig deeper into
the subject of software metrics.

103

Software Complexity and Project Performance References
Department of Informatics

104

References

Books
Bache, R. & Bazzana, G. (1994). 6RIWZDUH�0HWULFV�IRU�3URGXFW�$VVHVVPHQW. London:

McGraw-Hill.
Basili, V.R. (1980���7XWRULDO�RQ�0RGHOV�DQG�0HWULFV�IRU�6RIWZDUH�0DQDJHPHQW�DQG

(QJLQHHULQJ. Los Alamitos: IEEE Computer Society Press.
Boehm, B.W. (1981). 6RIWZDUH�(QJLQHHULQJ�(FRQRPLFV. Englewood Cliffs, N.J.:

Prentice Hall.
Boehm, B.W., Brown, J.R., & Kaspar, J.R. (1978). &KDUDFWHULVWLFV�RI�6RIWZDUH�4XDOLW\.

Amsterdam: TRW Series of Software Technology.
Brooks, F.P. (1995). 7KH�0\WKLFDO�0DQ�0RQWK��(VVD\V�RQ�6RIWZDUH�(QJLQHHULQJ (2nd

ed) (originally published in 1975). Reading: Addison Wesley.
Burr, A. & Owen, M. (1996). 6WDWLVWLFDO�0HWKRGV�IRU�6RIWZDUH�4XDOLW\���8VLQJ�0HWULFV

IRU�3URFHVV�,PSURYHPHQW. London: International Thomson Computer Press.
Conte, S.D., Shen, V.Y., & Dunsmore, H.E. (1986)��6RIWZDUH�(QJLQHHULQJ�0HWULFV�DQG

0RGHOV. Menlo Park: Benjamin Cummins Publishing
Fenton, N. E. & Pfleeger, S. L. (1996���6RIWZDUH�0HWULFV���$�5LJRURXV�	�3UDFWLFDO

$SSURDFK. London: International Thomson Computer Press.
Fenton, N.E., Iizuka, Y., & Whitty, R.W. (eds) (1995)��6RIWZDUH�4XDOLW\�$VVXUDQFH�DQG

0HDVXUHPHQW: A Worldwide Perspective. London: International Thomson
Computer Press.

Garmus, D. & Herron, D. (1996). 0HDVXULQJ�7KH�6RIWZDUH�3URFHVV. Upper Saddle
River: Yourdon Press.

Gilb, T. (1988). 3ULQFLSOHV�RI�6RIWZDUH�(QJLQHHULQJ�0DQDJHPHQW. Reading: Addison-
Wesley.

Goodman, P. (1993). 3UDFWLFDO�LPSOHPHQWDWLRQ�RI�VRIWZDUH�PHWULFV. London: McGraw-
Hill.

Grady, R. B. (1992���3UDFWLFDO�VRIWZDUH�PHWULFV�IRU�SURMHFW�PDQDJHPHQW�DQG�SURFHVV
LPSURYHPHQW. New Jersey: Prentice Hall.

Halstead, M. (1977). (OHPHQWV�RI�6RIWZDUH�6FLHQFH. Amsterdam: Elsevier.
Jones, C. (1996). $SSOLHG�6RIWZDUH�0HDVXUHPHQW�±�$VVXULQJ�3URGXFWLYLW\�DQG�4XDOLW\.

New York: McGraw-Hill.
Möller, K.H. & Paulish, D.J. (1993���6RIWZDUH�0HWULFV���$�3UDFWLWLRQHU
V�*XLGH�WR

,PSURYHG�3URGXFW�'HYHORSPHQW. London: Chapman & Hall.
Ohlsson, N. (1996). 6RIWZDUH�4XDOLW\�(QJLQHHULQJ�E\�(DUO\�,GHQWLILFDWLRQ�RI�)DXOW�

3URQH�0RGXOHV�(Linköping Studies in Science and Technology, Thesis No 575).
Linköping: Linköping University, Department of Computer and Information
Science.

Pfleeger, S.L. (1991). 6RIWZDUH�(QJLQHHULQJ��7KH�3URGXFWLRQ�RI�4XDOLW\�6RIWZDUH (2nd
ed). New York: Macmillan.

Putnam, L. (1980). 7XWRULDO�RQ�6RIWZDUH�&RVW�(VWLPDWLQJ�DQG�/LIH�&\FOH�&RQWURO�
*HWWLQJ�WKH�6RIWZDUH�1XPEHUV. Los Alamitos: Compute Society Press.

Quirk, W.J. (1985). 9HULILFDWLRQ�DQG�9DOLGDWLRQ�RI�5HDO�7LPH�6RIWZDUH. Berlin:
Springer Verlag.

Symons, C.R. (1991). 6RIWZDUH�6L]LQJ�DQG�(VWLPDWLQJ���0N,,�)3$ (Function Point
Analysis). West Sussex: John Wiley & Sons Ltd.

Treble, S. & Douglas, N. (1995). 6L]LQJ�DQG�(VWLPDWLQJ�6RIWZDUH�LQ�3UDFWLFH���0DNLQJ

Software Complexity and Project Performance References
Department of Informatics

105

0N,,�)XQFWLRQ�3RLQWV�ZRUN. Berkshire: McGraw-Hill.
Yourdon, E. & Constantine, L.L. (1979). 6WUXFWXUHG�'HVLJQ. Englewood Cliffs:

Prentice Hall.
Zuse, H. (1991). 6RIWZDUH�FRPSOH[LW\�±�PHDVXUHV�DQG�PHWKRGV. Berlin: Walter de

Gruyter & Co.

Periodicals, Reports & Encyclopaedias
Adams, E. (1984). Optimizing preventive service of software products. ,%0�-RXUQDO�RI

5HVHDUFK�DQG�'HYHORSPHQW, 28(1), 2-14.
Albrecht, A.J. & Gaffney, J. (1983). Software function, source lines of code and

development effort prediction. ,(((�7UDQVDFWLRQV�RQ�6RIWZDUH�(QJLQHHULQJ, SE-
9(6), 639-648.

Basili, V.R. & Weiss, D.M. (1984). A methodology for collecting valid software
engineering data. ,(((�7UDQVDFWLRQV�RQ�6RIWZDUH�(QJLQHHULQJ, SE-10
(november), No. 6, 728-738.

Behrens, C.A. (1983). Measuring the productivity of computer systems development
activities with function points. ,(((�7UDQVDFWLRQV�RQ�6RIWZDUH�(QJLQHHULQJ, SE-
9(6), 648-652.

Coté, V., Bourque, P., Oligny, S., & Rivard, N. (1988). Software Metrics: An
Overview of Recent Results. 7KH�-RXUQDO�RI�6\VWHPV�DQG�6RIWZDUH, 8, 121-131.

Curtis, B., Sheppard, B., & Milliman, P. (1979). Third time charm: Stronger prediction
of programmer performance by software complexity metrics. In 3URFHHGLQJV�RI
WKH��WK�,QWHUQDWLRQDO�&RQIHUHQFH�RQ�6RIWZDUH�(QJLQHHULQJ (pp. 356-360).
Munich, Germany.

Davis, J.S. and LeBlanc, R. (1988). A study of the applicability of complexity
measures.�,(((�7UDQVDFWLRQ�RQ�6RIWZDUH�(QJLQHHULQJ, 14(9), 1366-1372.

Grover, P.S. & Gill, N.S. (1995). Composite Complexity Measures (CCM). In Lee, M.,
Barta, B.-Z., & Juliff, P. (Eds.), 6RIWZDUH�4XDOLW\�DQG�3URGXFWLYLW\���7KHRU\�
SUDFWLFH��HGXFDWLRQ�DQG�WUDLQLQJ (pp. 279-283). London: Chapman & Hall.

Halstead, M.H. (1979). Advances in Software Science. In $GYDQFHV�LQ�&RPSXWHUV��YRO�
��. New York: Academic Press.

Hausen, H.-L. (1989). Yet another model of software quality and productivity. In
Littlewood, B. (ed.), 0HDVXUHPHQW�IRU�6RIWZDUH�&RQWURO�DQG�$VVXUDQFH (pp. 131-
145). London: Elsevier.

Henry, S. & Kafura, D. (1981). Software structure metrics based on information flow.
,(((�7UDQVDFWLRQV�RQ�6RIWZDUH�(QJLQHHULQJ, SE-7(5), 510-518.

Henry, S. & Kafura, D. (1984). The evaluation of software systems structure using
quantitative software metrics. 6RIWZDUH�3UDFWLFH�DQG�([SHULHQFH, 14(6) (june),
561-573.

Henry, S., Kafura, D. & Harris, K. (1981). On the relationship among three software
metrics. 6,*0(75,&6�3HUIRUPDQFH�(YDOXDWLRQ�5HYLHZ, 10 (spring), 81-88.

Institute of Electrical and Electronics Engineers (IEEE) (1993). IEEE Std 1061-1992 –
Standard for a Software Quality Metrics Methodology. In ,(((�6WDQGDUGV
&ROOHFWLRQ�±�6RIWZDUH�HQJLQHHULQJ. New York: The Institute of Electrical and
Electronics Engineers, Inc.

International Standards Organisation (ISO) (1991). ,QIRUPDWLRQ�7HFKQRORJ\�±�6RIWZDUH
3URGXFW�(YDOXDWLRQ�±�4XDOLW\�&KDUDFWHULVWLFV�DQG�*XLGHOLQHV�IRU�WKHLU�8VH
(ISO/IEC IS 9126). Geneve: ISO/IEC.

Software Complexity and Project Performance References
Department of Informatics

106

McCabe, T. (1976). A software complexity measure. ,(((�7UDQVDFWLRQV�RQ�6RIWZDUH
(QJLQHHULQJ, SE-2(4), 308-320.

Möller, K.H. (1988). Increasing of Software Quality by Objectives and Residual Fault
Prognosis.)LUVW�(XURSHDQ�6HPLQDU�RQ�6RIWZDUH�4XDOLW\, Apr. 1988.

7KH�1HZ�(QF\FORSDHGLD�%ULWWDQLFD. (1991). Chicago: Encyclopaedia Brittanica, Inc.
Pan, S. & Dromey, R.G. (1995). Using Strongest Postconditions To Improve Software

Quality. In Lee, M., Barta, B.-Z., & Juliff, P. (Eds.). 6RIWZDUH�4XDOLW\�DQG
3URGXFWLYLW\���7KHRU\��SUDFWLFH��HGXFDWLRQ�DQG�WUDLQLQJ (pp. 235-240). London:
Chapman & Hall.

Rapps, S. & Weyuker, E.J. (1985). Selecting software test data using data flow
information. ,(((�7UDQVDFWLRQV�RQ�6RIWZDUH�(QJLQHHULQJ, 11(4), 367-375.

Shen, V.Y., Yu, T., Thebaut, S.M. & Paulsen, L.R. (1985). Identifying error-prone
software – an empirical study. ,(((�7UDQVDFWLRQV�RQ�6RIWZDUH�(QJLQHHULQJ, SE-
11, No. 4, 317-323.

Shepperd, M.J. & Ince, D.C. (1990). The use of metrics in the early detection of design
errors. 3URFHHGLQJV�RI�WKH�(XURSHDQ�6RIWZDUH�(QJLQHHULQJ�&RQIHUHQFH�
�� (pp.
67-85). Warwick, United Kingdom.

Tan, M. & Yap, C.Y. (1995). Impact of Organisational Maturity on Software Quality.
In Lee, M., Barta, B.-Z., & Juliff, P. (Eds.), 6RIWZDUH�4XDOLW\�DQG�3URGXFWLYLW\��
7KHRU\��SUDFWLFH��HGXFDWLRQ�DQG�WUDLQLQJ (pp. 231-234). London: Chapman &
Hall.

Tervonen, I. (1995). A Unifying Model for Software Quality Engineering. In Lee, M.,
Barta, B.-Z., & Juliff, P. (Eds.), 6RIWZDUH�4XDOLW\�DQG�3URGXFWLYLW\���7KHRU\�
SUDFWLFH��HGXFDWLRQ�DQG�WUDLQLQJ (pp. 200-205). London: Chapman & Hall.

Electronic documents
Abran, A., Desharnais, J.-M., Maya, M., St-Pierre, D., & Bourque, P. (1998). 'HVLJQ�RI

)XQFWLRQDO�6L]H�0HDVXUHPHQW�IRU�5HDO�7LPH�6RIWZDUH� Montréal, Université du
Québec à Montréal [www document]..
URL http://www.lrgl.uqam.ca/publications/pdf/407.pdf

Bohem, R. (1997).)XQFWLRQ�3RLQW�)$4. Metuchen, USA, Software Composition
Technologies, Inc [www document].. URL
http://ourworld.compuserve.com/homepage/softcomp/

Desharnais, J.-M. & Morris, P. (1996). Validation Process in Software Engineering: an
Example with Function Points� In)RUXP�RQ�6RIWZDUH�(QJLQHHULQJ�6WDQGDUGV
�6(6¶�����0RQWUHDO�[www document]..
URL http://www.lrgl.uqam.ca/publications/pdf/104.pdf

Ericsson Mobile Data Design AB (ERV) (1999a, April 13). ,QIRUPDWLRQ�PDWHULDO�DERXW
(59�[www document]. URL http://www.erv.ericsson.se/frames/prod.html &
http://www.erv.ericsson.se/frames/comp.html

Ericsson Mobile Data Design AB (ERV) (1999b, April 13���8VH�FDVHV�IRU�PRELOH�GDWD
V\VWHPV [www document]. URL http://www.erv.ericsson.se/prod/users.html.

Introduction to Function Point Analysis (1998). *,)3$, Issue 2, summer [www
document]. URL http://www.gifpa.co.uk/news/News2Web.pdf

Jones, C. (1999, April 27). 3URJUDPPLQJ�/DQJXDJHV�7DEOH [www document].
URL http://www.spr.com/library/0langtbl.htm

Software Complexity and Project Performance References
Department of Informatics

107

McCarty, W.B. (1999, March 26). An Empirical Study of Software Complexity Metrics
for Prediction of Change-Prone Modules - A Dissertation Presented to the
Faculty of The Claremont Graduate School [www document].
URL http://www.apu.edu/~bmccarty/dissertation/index.htm

Software Metrics - why bother?.(1998). *,)3$, Issue 1, spring [www document].
URL http://www.gifpa.co.uk/news/Issue1_ed2.pdf

St-Pierre, D., Maya, M., Abran, A., Desharnais, J.-M. & Oligny, S. (1997a).)XOO
)XQFWLRQ�3RLQWV��&RXQWLQJ�3UDFWLFHV�0DQXDO. Montréal, Université du Québec à
Montréal [www document].
URL http://www.lrgl.uqam.ca/publications/pdf/267.pdf

St-Pierre, D., Maya, M., Abran, A., Desharnais, J.-M. & Oligny, S. (1997b). 0HDVXULQJ
WKH�IXQFWLRQDO�VL]H�RI�UHDO�WLPH�VRIWZDUH. Montréal, Université du Québec à
Montréal [www document].
URL http://www.lrgl.uqam.ca/publications/pdf/330.pdf

Unpublished electronic documents
Ericsson Mobile Data Design AB (ERV) (1999c). Välkomna till Ericsson Mobile Data

Design AB (Presentation material on ERV for external use).
Ericsson Mobile Data Design AB (ERV) (1999d). Presentation of Darwin at ERV's

intranet.

Personal communication
Almén, P. (1999, March, 16). Phone conversation.
Desharnais, J.-M. (desharnais.jean-marc@uqam.ca). (1999, March, 3; 1999, March, 15;

1999, March, 31; 1999, April, 23). Re: Tools for counting Full Function Points &
Questions about FFP counting. E-mail correspondence.
(claes.sandros@erv.ericsson.se).

Timmerås, M. (1999, March, 22). Oral information about Darwin and measurements at
ERV.

Öhlin, M. (1999, March, 16). Phone conversation.

Software Complexity and Project Performance Appendix A
Department of Informatics

108

Appendix

A. Wordlist
�*/ 4th Generation Language
$70 Automatic Teller Machine
&'3' Cellular Digital Packet Data (American standard for digital mobile

telephony)
&38 Central Processing Unit
'(7 Data Element Types
', Degree of Influence
(&(External Control Entry
(&* Electrocardiogram
(&; External Control Exit
((* Electroencephalogram
(, External Input
(,) External Interface File
(2 External Output
(4 External Inquiry
(59 Ericsson Mobile Data Design AB
))3 Full Function Points
)3$ Function Point Analysis
)75 File Types Referenced
*356 General Packet Radio Service (2nd generation European standard for

digital mobile telephony)
*6& General System Characteristics
,�2 Input/Output
,&5 Internal Control Read
,&: Internal Control Write
,(((Institute of Electrical and Electronics Engineers
,)38* International Function Points User Group
,/) Internal Logical File
,6 Implementation Specification
,62 International Standards Organisation
,:' Interwork Description
/2& Lines of Code
0,6 Management Information System
06 Milestone
3'& Personal Digital Cellular (Japanese standard for digital mobile

telephony)
5&* Read-only Control Group
5(7 Record Element Types
635 Software Productivity Research
7', Total Degree of Influence
7* Tollgate
8&* Updated Control Group
8076 Universal Mobile Telephone System (3rd generation European standard

for digital mobile telephony)
9$) Value Adjustment Factor

Software Complexity and Project Performance Appendix B
Department of Informatics

109

B. Function Points – definitions

'DWD�)XQFWLRQ�7\SHV

,QWHUQDO�/RJLFDO�)LOHV�
An internal logical file (ILF) is a user identifiable group of logically related data or
control information maintained through an elementary process of the application
within the boundary of the application.

([WHUQDO�,QWHUIDFH�)LOHV�
An external interface file (EIF) is a user identifiable group of logically related data or
control information referenced by the application but maintained within the boundary
of a different application.

7UDQVDFWLRQDO�)XQFWLRQ�7\SHV

([WHUQDO�,QSXWV�
An external input (EI) is an elementary process of the application, which processes
data or control information that enters from outside the boundary of the application

([WHUQDO�2XWSXWV�
An external output (EO) is an elementary process of the application, which generates
data or control information that exits the boundary of the application.

([WHUQDO�,QTXLULHV�
An external inquiry (EQ) is an elementary process of the application, which is made
up of an input-output combination that results in data retrieval. The input side is the
control information, which spells out the request, specifying what and/or how data is
to be retrieved. The output side contains no derived data. No ILF is maintained during
processing.

2WKHU�GHILQLWLRQV

'DWD�HOHPHQW�W\SHV��'(7V��
DETs are unique user recognizable, nonrecursive fields/attributes, including foreign
key attributes, maintained on the ILF or EIF.

5HFRUG�HOHPHQW�W\SHV��5(7V��
RETs are user recognizable subgroups (optional or mandatory) of data elements
contained within an ILF or EIF. Subgroups are typically represented in an entity
relationship diagram as entity subtypes or attributive entities, commonly called parent-
child relationships. (The user has the option of using one or none of the optional
subgroups during an elementary process that adds or creates an instance of the data;
the user must use at least one of the mandatory subgroups.)

)LOH�W\SHV�UHIHUHQFHG��)75V��
FTRs or more simply files referenced totals the number of internal logical files (ILFs)
maintained, read, or referenced and the external interface files read or referenced by
the EI transaction.

(Garmus and Herron, 1996)

Software Complexity and Project Performance Appendix C
Department of Informatics

110

C. Full Function Points Counting procedure and rules

In Chapter 9, $OJRULWKPLF�&RPSOH[LW\�DQG�6L]H�0HDVXUHV, we have spelled out the
general characteristics of the Full Function Point (FFP) method and the overall
counting procedure. This procedure includes the following steps:

1. Determine the type of function point count
2. Identify the counting boundary
3. Determine the unadjusted function point count
4. Count data function types
5. Count transactional function types
6. Determine the value adjustment factor
7. Calculate the final adjusted function point calculation

For FFP, steps 1, 2, 4 and 5 are exactly the same as in Function Point Analysis (FPA),
and they are described in Chapter 9, $OJRULWKPLF�&RPSOH[LW\�DQG�6L]H�0HDVXUHV. Step
3 is divided into Management Function Types and Control Function Types, according
to this scheme:

1. Identify groups of data
• If Management data: Count Management Data Function Types, according to

FPA
• If Control Data: Count Control Data Function Types, according to FFP

2. Identify processes
• If Management process: Count Management Transactional Function Types,

according to FPA
• If Control process: Count Control Transactional Function Types, according to

FFP

I. Identify groups of data

This step consists of identifying the groups of data that could represent the
functionality provided to the user by the application being measured. Once the groups
of data are identified, the definitions and rules associated with these function types are
applied to determine whether the identified groups of data are counted as FFP function
types.

,�,�'HILQLWLRQV
*URXS�RI�GDWD� Data identified and grouped together based on the functional
perspective.
0DQDJHPHQW�GDWD� Data used by the application to support users in managing
information, particularly business and administrative information.
&RQWURO�GDWD� Data used by the application to control, directly or indirectly, the
behavior of an application or a mechanical device.

,�,,�,GHQWLILFDWLRQ�SURFHGXUH
The procedure to identify group of data candidate is the following:

Software Complexity and Project Performance Appendix C
Department of Informatics

111

1. Look for groups of data identifiable from a functional perspective, i.e. a point of
view of the functionality delivered by the application; it excludes technical and
implementation considerations.

2. Determine if the group of data is a management group of data or a control group of
data using the previous definitions. For management groups of data, existing FPA
procedures and rules should be applied. For Control Groups of Data, the following
procedures and rules should be applied.

II. Count control data function types

,,�,�'HILQLWLRQV
8SGDWHG�&RQWURO�*URXS��8&*�� A UCG is a group of control data updated by the
application being counted. It is identified from a functional perspective. The control
data live for more than one transaction.
5HDG�RQO\�&RQWURO�*URXS��5&*�� An RCG is a group of control data used, but not
updated, by the application being counted. It is identified from a functional
perspective. The control data live for more than one transaction.
)XQFWLRQDO�SHUVSHFWLYH� Point of view of the functionality delivered by the
application; it excludes technical and implementation considerations.
7UDQVDFWLRQ� All processing associated with an occurrence of an external trigger.

,,�,,�&RXQWLQJ�SURFHGXUH
For each group of data identified in the previous step as a group of control data:
1. Determine if the group of control data is a UCG or an RCG using the definitions

and rules.
2. Determine the UCG or RCG contribution (point assignment) to the unadjusted

function point count.

,,�,,,�,GHQWLILFDWLRQ�UXOHV
8&* identification rules:
The group is either a logically related group of data or a single occurrence group of
data.
The group of data is XSGDWHG within the application boundary.
The group of data lives for more than one transaction.
The group of data identified has not been counted as an RCG, ILF or EIF for the
application.

All the previous counting rules must be applied from a functional perspective and they
are all mandatory for the identification of a UCG.

5&* identification rules:
The group is either a logically related group of data or a single occurrence group of
data.
The group of data is QRW�XSGDWHG within the application boundary.
The group of data is referenced by the application being counted.
The group of data lives for more than one transaction.
The group of data identified has not been counted as an UCG, ILF or EIF for the
application.

Software Complexity and Project Performance Appendix C
Department of Informatics

112

All the previous counting rules must be applied from a functional perspective and they
are all mandatory for the identification of a RCG.

,,�,9�3RLQW�DVVLJQPHQW
The number of points assigned to UCGs and RCGs depends on the kind of control
group of data (single or multiple occurrences). Since multiple occurrence groups of
data have the same structure as ILFs and EIFs in FPA, they are counted in exactly the
same way as these two FPA function types, that is, using their number of DETs and
RETs and the corresponding complexity matrix.

For single occurrence groups of data, the number of points depends only on DETs.
Once the number of DETs is determined using the same rules as for ILFs and EIFs, the
number of points is calculated using the following formulas:

UCG: ((number of DETs/5) + 5)
RCG: (number of DETs/5)

These formulas are designed to keep the size of single occurrence groups of data as
aligned as possible with the size of ILFs and EIFs of FPA.

A single occurrence UCG comprises all single control updated values (from a
functional perspective) of the application being measured. Since it contains all single
values of the application, there can be only one of them in an application.
Consequently, an application can have more than one multiple occurrence UCG, but
only one single occurrence UCG. The same goes for single occurrence RCGs.

In typical real-time applications, the number of such single values varies from a few
up to hundreds. That is why a formula is used rather than a 3-level table like the
standard FPA technique. It allows FFP to consider a large range of single occurrence
groups of data.

III. Identify processes

Once the data function points (management and control) have been counted, the
transactional function types are identified. Transactional function types represent the
functionality provided to the user for the processing of data by an application.
Therefore, to identify transactional function types we have to identify the processes of
the application first.

,,,�,�'HILQLWLRQ
&RQWURO�SURFHVV� Process that controls, directly or indirectly, the behavior of an
application or a mechanical device.

,,,�,,�,GHQWLILFDWLRQ�SURFHGXUH
The procedure for identifying processes is the following:
1. Look for the different processes of the application from a functional perspective.
2. Determine if the process is a management process or a control process using the

following definitions:
• Management process: Process the purpose of which is to support the user in

managing information, particularly business and administrative information.

Software Complexity and Project Performance Appendix C
Department of Informatics

113

• Control process: Process that controls, directly or indirectly, the behavior of an
application or a mechanical device.

If the process is a control process, apply the definition and rules of the four new
control transactional function types. If the process is a management process, apply the
definition and rules of the current FPA transactional functions.

IV. Count control transactional function types

,9�,�'HILQLWLRQV
([WHUQDO�&RQWURO�(QWU\��(&(�� An ECE is a unique sub-process. It is identified from
a functional perspective. An ECE processes control data coming from outside the
application’s boundary. It is the lowest level of decomposition of a process acting on
one group of data. Consequently, if a process enters two groups of data, there are at
least 2 ECEs. ECEs exclude the updating of data, a functionality that is covered by
another Control Function Type (Internal Control Write).
([WHUQDO�&RQWURO�([LW��(&;�� An ECX is a unique sub-process. It is identified from
a functional perspective. An ECX processes control data going outside the application
boundary. It is the lowest level of decomposition of a process acting on one group of
data. Consequently, if a process exits two groups of data, there are at least 2 ECXs.
ECXs exclude the reading of data, a functionality that is covered by another Control
Function Type (Internal Control Read).
,QWHUQDO�&RQWURO�5HDG��,&5�� An ICR is a unique sub-process. It is identified from a
functional perspective. An ICR reads control data. It is the lowest level of
decomposition of a process acting on one group of data. Consequently, if a process
reads two groups of data, there are at least 2 ICRs.
,QWHUQDO�&RQWURO�:ULWH��,&:�� An ICW is a unique sub-process. It is identified from
a functional perspective. An ICW writes control data. It is the lowest level of
decomposition of a process acting on one group of data. Consequently, if a process
writes on two groups of data, there are at least 2 ICWs.

8VHU� Human beings, applications or mechanical devices, which interact with the
application measured.

,9�,,�&RXQWLQJ�SURFHGXUH
Once a process has been identified as being a control process, the following steps must
be performed:
1. Identify all functional (not technical) sub-processes of the control process.
2. Identify each sub-process as being an ECE, ECX, ICR or ICW according to the

definition and rules.
3. Determine the ECE, ECX, ICR or ICW contribution (point assignment) to the

unadjusted function point count.

Steps for identifying sub-processes:
a) According to the logical execution order of the sub-processes within the process,

identify the first sub-process that receives, exits, reads or writes a group of control
data.

b) Apply the relevant ECE, ECX, ICR or ICW set of rules.
c) Determine the ECE, ECX, ICR or ICW contribution (point assignment) to the

unadjusted function point count.

Software Complexity and Project Performance Appendix C
Department of Informatics

114

d) Again according to the execution order, identify the next sub-process that enters,
exits, reads or writes a group of control data. There might be more than one “next
sub-process” (e.g. an “IF” statement with two options). In this case, all paths have
to be explored if there is potential for new sub-processes to be identified.

Repeat steps 2 to 4 until all sub-processes of the processes are identified.
At the end of the cycle, remove all the duplicated sub-processes (same processing and
same DETs).

Note: If the same sub-process is associated with different control processes, it can be
counted more than once. Processing includes not only the entry, exit, reading or
writing of data, but other types of processing as well (calculation, filtering,
comparisons, etc.) associated with the identified sub-process.

,9�,,,�,GHQWLILFDWLRQ�UXOHV
(&(identification rules:
The sub-process receives a group of control data from outside the application
boundary.
The sub-process receives only one group of data. If more than one different group of
data is received, count one ECE for each group of data.
The sub-process does not exit, read or write data.
The sub-process is unique, that is, the processing and data elements identified are
different from other ECEs associated with the same process.

Note 1: Clock triggers are considered external. Therefore, an event that takes place
every 3 seconds is counted as an ECE with 1 DET, for example. However, the process
that generates that event periodically is ignored.

Note 2: Unless a special process is necessary, reading internal time is not counted. For
example, when a process writes a time stamp, no ICR is counted for obtaining the
internal clock value.

All the previous counting rules must be applied from a functional perspective and they
are all mandatory for the identification of an ECE.

(&; identification rules:
The sub-process sends control data external to the application’s boundary.
The sub-process sends only one group of data. If more than one different group of data
is sent outside the application’s boundary, count one ECX for each group of data.
The sub-process does not receive, read or write data.
The sub-process is unique, that is, the processing and data elements identified are
different from other ECXs associated with the same process.

Note: All messages without user data (e.g. confirmation and error) are counted as one
ECX. The number of DETs is the number of different types of messages.

All the previous counting rules must be applied from a functional perspective and they
are all mandatory for the identification of an ECX.

,&5 identification rules:
The sub-process reads a group of control data.

Software Complexity and Project Performance Appendix C
Department of Informatics

115

The sub-process reads only one group of data. If more than one different group of data
is read, count one ICR for each group of data.
The sub-process does not receive, exit or write data.
The sub-process is unique, that is, the processing and data elements identified are
different from other ICRs associated with the same process.

All the previous counting rules must be applied from a functional perspective and they
are all mandatory for the identification of an ICR.

,&: identification rules:
The sub-process writes a group of control data.
The sub-process writes only one group of data. If more than one different group of
data is written, count one ICW for each group of data.
The sub-process does not receive, exit or read data.
The sub-process is unique, that is, the processing and data elements identified are
different from other ICWs associated with the same process.

All the previous counting rules must be applied from a functional perspective and they
are all mandatory for the identification of an ICW.

,9�,9�3RLQW�DVVLJQPHQW
The number of points assigned to control transactional functions (ECE, ECX, ICW
and ICR) depends on the number of DETs. The following rules apply when counting
DETs:

For an (&(and an (&;:
Count one DET for each unique user recognizable, nonrecursive field that crosses the
boundary of the application.
For an ,&5:
Count one DET for each unique user recognizable, nonrecursive field that is read from
an ILF, EIF; UCG or RCG, including keys.
For an ,&::
Count one DET for each unique user recognizable, nonrecursive field that is written in
an ILF or UCG, including keys.

The number of points assigned to Control Transactional Function Types (ECE, ECX,
ICW and ICR) depends on the number of DETs. Once the number of DETs is
determined, the following table is used to translate DETs into points:

'(7V� 1 to 19 DETs 20 to 50 DETs 51+ DETs
3RLQWV� 1 2 3

These range boundaries (1 to 19, 20 to 50, 51+) were chosen in order to bring the size
of Control Transactional Function Types in as close alignment as possible with FPA.

(St-Pierre, Maya, Abran, Desharnais, & Oligny, 1997a)

Software Complexity and Project Performance Appendix D
Department of Informatics

116

D. Sample from a Language Level Table

:KDW�LV�D�ODQJXDJH�OHYHO"
As language levels go up, fewer statements to code one Function Point are required.
For example, COBOL is a level 3 and requires about 105 statements per Function
Point. The numeric levels of various languages provide a convenient shortcut for
converting size from one language to another. For example, if an application requires
1000 non-commentary COBOL (level 3), then it would take only 500 statements in a
level 6 language (such as C++) and only 250 statements in a level 12 language (such
as OBJECTIVE C). As you can see, the average number of statements required is
proportional to the levels of the various languages.

:KDW�LV�WKH�EDVLV�IRU�ODQJXDJH�OHYHOV"
The languages and levels in the table are gathered in four ways.
• Counting Function Points and Source Code
• Counting Source Code
• Inspecting Source Code
• Researching Languages

/LVW�RI�SURJUDPPLQJ�ODQJXDJHV
As of 1996, there were more than 500 languages and major dialects of languages
available to software practitioners. The table lists a sample of them.

/DQJXDJH /HYHO $YHUDJH�VRXUFH
VWDWHPHQWV�SHU
)XQFWLRQ�3RLQW

�VW�*HQHUDWLRQ�GHIDXOW 1.00 320
�QG�*HQHUDWLRQ�GHIDXOW 3.00 107
�UG�*HQHUDWLRQ�GHIDXOW 4.00 80
�WK�*HQHUDWLRQ�GHIDXOW 16.00 20
�WK�*HQHUDWLRQ�GHIDXOW 70.00 5
$FFHVV 8.50 38
$GD��� 4.50 71
$GD��� 6.50 49
$16,�%$6,& 5.00 64
$16,�64/ 25.00 13
$VVHPEO\��%DVLF� 1.00 320
$VVHPEO\��0DFUR� 1.50 213
%$6,& 3.00 107
& 2.50 128
&�� 6.00 53
&2%2/ 3.00 107
&U\VWDO�5HSRUWV 16.00 20
G%DVH�,9 9.00 36
'(/3+, 11.00 29
'26�%DWFK�)LOHV 2.50 128
(,))(/ 15.00 21
(UODQJ 8.00 40

Software Complexity and Project Performance Appendix D
Department of Informatics

117

(;&(/�� 57.00 6
)LOH0DNHU�3UR 9.00 36
)2575$1 3.00 107
+70/���� 22.00 15
-9 6.00 53
/,63 5.00 64
/2786�����'26 50.00 6
0DFKLQH�ODQJXDJH 0.50 640
0DFUR�DVVHPEO\ 1.50 213
0$(6752 20.00 16
0LFURVRIW�& 2.50 128
06�&����9��� 6.00 53
06�&RPSLOHG�%$6,& 3.50 91
1DWXUDO�ODQJXDJH 0.10 3200
1RQ�SURFHGXUDO�GHIDXOW 9.00 36
2EMHFW�2ULHQWHG�GHIDXOW 11.00 29
25$&/(8.00 40
3$6&$/ 3.50 91
3(5/ 15.00 21
3URJUDP�*HQHUDWRU�GHIDXOW 20.00 16
352/2* 5.00 64
48,&.�%$6,&�� 5.50 58
53*�,,, 5.75 56
60$//7$/.�9 15.00 21
6SUHDGVKHHW�GHIDXOW 50.00 6
64/�:LQGRZV 27.00 12
6<%$6(8.00 40
6\PDQWHF�&�� 11.00 29
7XUER�& 2.50 128
7XUER�3$6&$/�!� 6.50 49
81,;�6KHOO�6FULSWV 15.00 21
9LVXDO�%DVLF�� 11.00 29
9LVXDO�&�� 9.50 34

2Q�JRLQJ�UHVHDUFK�RI�ODQJXDJHV
The relationship between source code statements and Function Points has only been
subject to research for a few years, so the margin of error in the table can be quite
high. Even so, the method is useful enough so publication of a preliminary table may
be helpful in filling in the gaps and correcting the errors.

A complete and reliable industry-wide study of languages and their levels is of
necessity a large multi-year project. A reasonable sampling of applications and
languages would require data from 5000 projects, assuming 10 projects in each
language or dialect. The organizing principle used in this research is basically sound
and the construction of a periodic table of languages is potentially as useful to
software engineering as the periodic table of the elements has been to chemical
engineering and to physics.

(Jones, 1999, April 27)

Software Complexity and Project Performance Appendix E
Department of Informatics

118

E. Suggestions to Ericsson Mobile Data Design

6KRUW�WHUP�VXJJHVWLRQV
• Implement two sets of measurements; one after concluding the code phase of

the development (expected performance), and one after in the end of the test
phase (real performance).

• Expected performance should be based on measures of implemented FFP, man
time and McCabe’s cyclomatic number. When real performance is measured
McCabe’s cyclomatic number is exchanged for the actual number of known
defects. Otherwise the same measures, updated of course, are being used for
calculating real performance as for expected performance.

• A measurement group should be established for each project. This group should
consist of one or two experts on the FFP method, and a couple of experts on the
software being counted, i.e. system developers from the project.

• The system documentation should be extended to include information about
identified elements for the FFP method (i.e. UCGs, RCGs, ECEs, ECXs, ICRs
and ICWs). The individual system developer should collect this information.

/RQJ�WHUP�VXJJHVWLRQV
• A framework for collecting productivity and quality data should be created.
• A training program for the “experts” and the system developers should be built

up.
• ERV should establish a co-operation with the institutions developing and

improving the FFP method.
• The progress for the FPA and FFP methods should be followed closely,

especially the standardization work at IFPUG.

)XUWKHU�UHVHDUFK
• The possibilities of automating the implementation of the FFP (and FPA)

method(s).
• A more profound analysis of how software quality can be developed and

controlled.
• ERV’s organization could be analyzed for the purpose of finding the most efficient

and reliable way to implement a software measurement program.

