

Master thesis in Software Engineering and Management

REPORT NO. 2008:016

ISSN: 1651-4769

Department of Applied Information Technology

Using ADO.NET Entity Framework in Domain-Driven
Design: A Pattern Approach

ANDREY YEMELYANOV

IT University of Göteborg

Chalmers University of Technology and University of Gothenburg

Göteborg, Sweden 2008

 I

Using ADO.NET Entity Framework in Domain-Driven Design: A Pattern Approach

ANDREY YEMELYANOV

© ANDREY YEMELYANOV, 2008

Report no. 2008:016

ISSN: 1651-4769

Department of Applied Information Technology

IT University of Göteborg

Chalmers University of Technology and University of Gothenburg

P O Box 8718

SE – 402 75 Göteborg

Sweden

Telephone +46 (0) 31-772 4895

 II

Using ADO.NET Entity Framework in Domain-Driven Design: A Pattern Approach

ANDREY YEMELYANOV

Department of Applied Information Technology

IT University of Göteborg

Chalmers University of Technology and University of Gothenburg

Supervisor: Miroslaw Staron

ABSTRACT

In the object community domain-driven design philosophy has recently gained prominence. The

application of domain-driven design practices in iterative software development projects promises to

conquer complexity inherent in building software. And with the reduced complexity comes more

intimate understanding of a problem domain, which results in better software, capable of effectively

addressing user needs and concerns. The ADO.NET Entity Framework with its emphasis on modeling

conceptual business entities and handling persistence can potentially facilitate domain-driven design.

However, it is not clear exactly how the framework should be used in the context of domain-driven

development. This exploratory case study was commissioned by Volvo Information Technology (Volvo

IT) and it sought to provide guidance on using the Entity Framework in domain-driven design at the

company. The study produced a number of important results. Firstly, a total of 15 guidelines were

proposed for adopting the framework at Volvo IT. These guidelines address such issues as domain

modeling during requirements engineering, efficient mapping among various models, reverse-

engineering of legacy databases, and a number of others. Secondly, six critical factors (performance,

abstraction, competence, features, simplicity and support for multiple data sources) were identified that

must be considered in adopting the Entity Framework in domain-driven design at the company. Finally,

based on one of these factors, performance evaluation of the framework’s querying mechanisms was

performed, which further strengthened the guidelines.

Keywords

Domain-driven design, ADO.NET Entity Framework, persistence, domain model, patterns, object-

relational impedance mismatch.

 III

ACKNOWLEDGEMENTS

This Master thesis has been a great exercise in knowledge discovery which would have been impossible

without:

The Swedish Institute, whose kind support in cultural and monetary aspects has kept me going

throughout my whole stay in Sweden. I would like to thank the Swedish Institute for granting me a

scholarship to pursue my studies at the IT University.

Miroslaw Staron – Software Engineering and Management program manager at the IT University, who

was an academic supervisor of mine. Miroslaw provided valuable guidance on tackling the study most

effectively. I would like to thank him for his patience, understanding and, most importantly, objective

criticism of my work.

Ludwik Wallin – an architect at Volvo Information Technology, who was an industrial supervisor of

mine. Ludwik provided a valuable insight into the issues concerning building enterprise software and

also guided me towards relevant aspects of the Entity Framework and domain-driven design that need be

carefully studied. I would also like to thank all the employees from the Software Process Improvement

group and other departments at Volvo IT who contributed to this study with important interviews and

informal discussions.

Thanks again to all of you for your help, time and willingness to share experience and insightful

comments!

Andrey Yemelyanov

May 17, 2008

Gothenburg, Sweden.

 IV

TABLE OF CONTENTS

1. INTRODUCTION... 1

2. CASE STUDY DESIGN ... 3

2.1 Context and Subjects .. 3

2.2 Study Subjects... 3

2.3 Data Collection and Analysis.. 3

2.4 Study Execution .. 3

2.5 Threats to Validity .. 4

3. RELATED WORK ... 4

4. THEORETICAL FRAMEWORK .. 5

4.1 Structuring domain logic... 5

4.1.1 Procedural style (Transaction Script)... 6

4.1.2 Domain Model style .. 7

4.2 Domain-driven design... 7

4.2.1 The building blocks of domain-driven design ... 8

4.2.1.1 Layered architecture.. 8

4.2.1.2 Entities .. 8

4.2.1.3 Services ... 8

4.2.1.4 Aggregates .. 9

4.2.1.5 Factories.. 9

4.2.1.6 Repository ... 9

4.3 The ADO.NET Entity Framework.. 9

4.3.1 The building blocks of the Entity Framework... 9

4.3.1.1 The Entity Data Model.. 10

4.3.1.2 Entity client ... 10

4.3.1.3 Entity SQL .. 10

4.3.1.4 Object Services ... 10

4.3.1.5 LINQ to Entities.. 10

4.3.2 Accessing data via the Entity Framework and SQL Client................................... 11

4.3.3 Concluding remarks.. 12

5. ADOPTING THE ENTITY FRAMEWORK

 IN DOMAIN-DRIVEN DESIGN: MAIN REQUIREMENTS .. 12

5.1 Main goals... 12

5.2 Main requirements .. 13

 V

5.3 The role of the guidelines requirements.. 13

6. ENTITY FRAMEWORK IN DOMAIN-DRIVEN

DESIGN: CRUCIAL FACTORS .. 13

6.1 Interviews.. 13

6.2 Factors... 13

6.3 Data retrieval performance.. 14

6.4 Support for higher-level abstractions.. 14

6.5 In-house competence level in objects, databases and object-relational mismatch........ 15

6.6 Rich feature set ... 15

6.7 Simplicity.. 15

6.8 Support for heterogeneous data sources for the domain model 15

6.9 Concluding remarks .. 15

7. QUERY PERFORMANCE EVALUATION.. 16

7.1 SqlDataReader .. 17

7.2 NHibernate .. 17

7.3 Entity Framework ... 17

7.3.1 Entity SQL ... 18

7.3.2 LINQ to Entities .. 18

7.3.3 Compiled LINQ to Entities ... 18

7.4 Analysis... 18

8. ENTITY FRAMEWORK GUIDELINES………………………………………………..19

8.1 Pattern discovery process.. 20

8.2 Core guidelines ... 20

8.2.1 Guideline 1: Business domain modeling... 20

8.2.2 Guideline 2: Capturing domain logic ... 20

8.2.3 Guideline 3: Expressing domain model in software ... 20

8.2.4 Guideline 4: Validating the domain model ... 21

8.2.5 Guideline 5: Applying the Aggregate pattern ... 21

8.2.6 Guideline 6: Applying the Repository pattern .. 21

8.2.7 Guideline 7: Reverse engineering... 21

8.2.8 Guideline 8: Implementing business rules in the Entity Framework.................... 21

8.3 Mapping patterns………………………………………………………………………21

8.3.1 Pattern: Object Association .. 21

8.3.2 Pattern: Object Aggregation... 21

8.3.3 Pattern: Object Composition .. 21

 VI

8.3.4 Pattern: Object Self-Association... 21

8.3.5 Pattern: Object Inheritance .. 22

8.3.6 Pattern: Domain Object.. 22

8.3.7 Pattern: Advanced Mapper ... 22

8.3.8 Mapping pattern example ... 23

9. DISCUSSION .. 23

9.1 Why patterns? ... 23

9.2 Initial evaluation ... 23

10. CONCLUSION ... 24

10.1 Key findings.. 24

10.2 Future research.. 24

11. ACKNOWLEDGMENTS .. 25

12. REFERENCES.. 25

LIST OF FIGURES

Figure 1: Part of a banking application built in a procedural style………………………………...6

Figure 2: Transitioning from procedural database-driven

design to domain-driven design……………………………………………………………………7

Figure 3: A navigation map of the language of domain-driven design...8

Figure 4: Layered architecture according to DDD…………………………………………………8

Figure 5: Aggregate…………………………………………...9

Figure 6: Entity Framework architecture………………………………………………………….10

Figure 7: Order application relational schema…………………………………………………….11

Figure 8: Data access with the SQL Client..………………………………………………………11

Figure 9: Conceptual Entity Data Model built

on top of the relational database schema in the order application..……………………………….12

Figure 10: Data access with LINQ in the Entity Framework...……………………………………12

Figure 11: Domain aggregate retrieved from the relational database……………………………..16

Figure 12: Relational model underlying the Blog Aggregate……………………………………..16

Figure 13: SQL query to retrieve the Blog aggregate………… …………………… …………..16

Figure 14: SQL Client... ...17

Figure 15: hSQL in NHibernate……………………………… …………………………… …..17

Figure 16: The Entity Data Model generated from the Blog relational model……………………18

Figure 17: Compiled LINQ to Entities query…………………………………………………......18

 VII

Figure 18: A comparative evaluation of query performance

with DataReader, NHibernate and the Entity Framework……………………………………....19

Figure 19: Taxonomy of the Entity Framework Guidelines………………………………….....20

Figure 20: Object association……………………………………………………………………21

Figure 21: Object aggregation…………………………………………………………………...21

Figure 22: Object composition…………………………………………………………………..21

Figure 23: Object self-association……………………………………………………………….22

Figure 24: Table-Per-Hierarchy inheritance mapping…………………………………………...22

Figure 25: Table-Per-Concrete-Class inheritance mapping…………………………………......22

Figure 26: Table-Per-Class inheritance mapping………………………………………………..22

Figure 27: Multiple association………………………………………………………………….22

Figure 28: Mapping to relational model…………………………………………………………22

LIST OF APPENDICES

Appendix A: Interview questions..27

Appendix B: C# code to retrieve the Blog aggregate with the SQL client…....…………………29

Appendix C: Example domain model based on domain-driven design principles.......................31

1

Using ADO.NET Entity Framework in Domain-Driven
Design: A Pattern Approach

Andrey Yemelyanov
IT University of Göteborg

yemelyan@ituniv.se

ABSTRACT
In the object community domain-driven design philosophy has

recently gained prominence. The application of domain-driven

design practices in iterative software development projects

promises to conquer complexity inherent in building software.

And with the reduced complexity comes more intimate

understanding of a problem domain, which results in better

software, capable of effectively addressing user needs and

concerns. The ADO.NET Entity Framework with its emphasis on

modeling conceptual business entities and handling persistence

can potentially facilitate domain-driven design. However, it is not

clear exactly how the framework should be used in the context of

domain-driven development. This exploratory case study was

commissioned by Volvo Information Technology (Volvo IT) and

it sought to provide guidance on using the Entity Framework in

domain-driven design at the company. The study produced a

number of important results. Firstly, a total of 15 guidelines were

proposed for adopting the framework at Volvo IT. These

guidelines address such issues as domain modeling during

requirements engineering, efficient mapping among various

models, reverse-engineering of legacy databases, and a number of

others. Secondly, six critical factors (performance, abstraction,

competence, features, simplicity and support for multiple data

sources) were identified that must be considered in adopting the

Entity Framework in domain-driven design at the company.

Finally, based on one of these factors, performance evaluation of

the framework’s querying mechanisms was performed, which

further strengthened the guidelines.

Keywords
Domain-driven design, ADO.NET Entity Framework, persistence,

domain model, patterns, object-relational impedance mismatch.

1. INTRODUCTION
In a use-case driven software development process [3, 8, 14, 39]

use cases serve as a primary artifact for establishing system

requirements, validating system architecture, testing and

communicating with domain experts and other project

stakeholders [13]. Such a process is often used alongside with the

Unified Modeling Language (UML) [8]. After the use case

specification is fed into further development stages, two major

artifacts are conceived: analysis model and design model. There is

an interesting dichotomy between the two models in that they

address two distinct dimensions (problem and solution) of the

same given domain. The analysis model represents the product of

analyzing a problem domain to organize its concepts. What role

these concepts will play in software is not important in that

context [22]. It specifies what problem needs to be solved. The

major content of the analysis model includes collaborations in the

UML and analysis classes [19]. The design model, on the other

hand, specifies how the given problem is to be solved. Crain [19]

refers to this model as a platform-specific model because it

captures “a mixture of behavior and technology”. For example,

the design model may include a JDBC 1class to specify how the

lifecycle of persistent business objects is handled.

Such a seeming redundancy in models is necessary in order to

ensure a smooth transition from a problem space (use case

specifications and analysis model) to a solution space (design and

implementation models), which is not trivial. Evans [22] argues

that once the implementation begins, analysis and design models

grow increasingly disjoint. This happens because the analysis

model is created with no design issues in mind. Mixing

implementation concerns into analysis models is considered bad

practice and is, therefore, highly discouraged. As a result, the pure

analysis model proves impractical for design purposes and is

abandoned as soon as programming begins [22]. There is a danger

to such practice, Evans [22] continues. While analysis models

may accurately capture business needs and incorporate valuable

knowledge about the problem domain, there is no guarantee that

the design model will successfully rediscover the insights gained

during analysis. Eventually, as the gap between the models

widens, it becomes progressively difficult to feed insights from

analysis into design.

Domain-driven design (DDD) [22] vision seeks to bridge the

chasm between analysis and design by introducing a single model

(domain model) that addresses both concerns. A domain model

not only represents an important analysis artifact that captures

essential business concepts and constraints but also offers a

concrete design in the form of object-oriented design classes.

Constituting an essential part of application design and

architecture, domain models in DDD are expressed in terms of

object-oriented constructs such as classes, attributes, operations

and relationships and are drawn with the UML class diagram

notation (see for example [22, 31] and Appendix C). These

models may be referred to as domain object models or conceptual

models [25, 31]. We will henceforth refer to such models as just

domain models2. The basic premise behind DDD is the

maximization of knowledge about the domain. This is achieved by

a close cooperation between a project team and domain experts

with the goal of creating an explicit model of the problem domain.

As a result, it is possible to reduce complexity inherent in most

1 Java Database Connectivity (JDBC) is a technology for connecting to

relational databases from Java applications.

2 Note that in this thesis we address domain-driven design in the context

of business information systems. We do not consider DDD as applied in

embedded systems design or any other domain.

2

businesses. This, in turn, should lead to better software that

effectively supports business operations.

There is a challenge in using domain models in applications. On

the one hand, to effectively model a complex business domain

with all its valuable operation logic, domain models would

necessarily have to use a number of object-oriented constructs,

such as inheritance, aggregation/composition and design patterns.

These are so-called ‘rich’ or ‘deep’ domain models [22, 25]. On

the other hand, to provide persistent storage of the domain model

state, relational databases are widely used. The fact that these

databases use a relational data model to organize data places a

practical limit on the ‘richness’ of domain models [25]. This is

caused by a paradigm difference between object-oriented and

relational models, which in literature is referred to as object-

relational impedance mismatch [7, 16, 18, 33, 38]. The basic

premise behind it is that objects and relations are fundamentally

different and their interplay is not trivial [38]. Fowler [25]

discusses structural and behavioral aspects of the impedance

mismatch. In a structural sense, the author identifies two major

distinctions between objects and relations: identity and

relationships handling. From the behavioral perspective, a

problem arises when it comes to maintaining data in objects and

their corresponding database tables in a consistent state. Issues

that need to be considered, for example, are loading objects,

ensuring no object for the same row is read more than once and

handling database updates. Due to impedance mismatch efficient

mapping of ‘rich’ domain models to relational models presents a

problem.

1.1 Problem definition
While Evans [22] stresses that DDD is a set of principles focusing

on modeling a business domain and needs no technological and

methodological support other than object orientation, we believe

that effective adoption of DDD practices is contingent on the

availability of tools. Essentially, such a tool would need to

directly support domain modeling activity and offer concrete

solutions to overcoming object-relational mismatch. In the late

2007, Microsoft Corporation announced the Beta 3 release of the

ADO.NET Entity Framework (further abbreviated to EF or just

referred to as Entity Framework) [34]. The EF is .NET-based

middleware that represents an abstraction layer that promises to

alleviate impedance mismatch by decoupling application domain

models from underlying relational storage models. A

distinguishing characteristic of the EF is the built-in support for

development based on an explicit model. It introduces the Entity

Data Model (EDM), which captures essential business (domain)

entities and their relationships in an explicit conceptual model.

The EF can potentially facilitate DDD as it not only largely

overcomes object-relational mismatch but also promotes model-

based development of business applications. The resulting

adoption of DDD in software development promises to raise the

quality of delivered software. However, it is not clear how the

feature set offered by the EF can support the DDD practices. To

our best knowledge, no guidance has been published on how the

EF should be effectively integrated into a software development

process with a particular emphasis on DDD. To date, one credible

source on the EF is the documentation released by Microsoft [35].

However, it is limited to programming scenarios and

walkthroughs. There exists no formal advice on mapping between

models should be performed, how and when domain modeling

should occur, how models can be validated with the EF, or how

DDD with the EF will affect requirements engineering stage.

These, we believe, are important issues that must be considered.

1.2 Thesis objective
This exploratory study was commissioned by Volvo Information

Technology (Volvo IT) – a subsidiary of the Volvo Corporation

based in Gothenburg, Sweden. The impetus for Volvo IT to move

toward DDD practices with the EF is the potential reduction in

code complexity and further improvement of maintainability of its

enterprise applications. Accordingly, the objective of this study is

to formulate guidance on applying the Entity Framework in DDD

in the context of an iterative software development process at

Volvo IT. It addresses the following main research question:

How should software development projects that emphasize

domain-driven design incorporate the Entity Framework for

domain modeling and domain object persistence?

The main research question can be broken down into the

following sub-questions:

RQ1: What are the main goals behind the company’s move to

further develop domain-driven design practices with the Entity

Framework?

RQ2: What are the most important factors that must be taken into

account when adopting the Entity Framework in domain-driven

design in the company?

RQ3: What are the most important guidelines for adopting the

Entity Framework in domain-driven software development in the

company?

The thesis achieved a number of important results. Firstly, a set of

15 guidelines were proposed for adopting the EF at Volvo IT.

These guidelines address such issues as domain modeling during

requirements engineering, efficient mapping between domain

models and the EDM, reverse-engineering of legacy databases,

and a number of others. Secondly, a number of critical factors

were identified that must be considered in using the EF with

DDD. Based on one of these factors, performance evaluation of

EF querying mechanisms was performed, which further

strengthened the guidelines.

1.3 Disposition
The remainder of the report is structured as follows. Section 2

discusses the research methodology used in the study. Section 3

presents a brief overview of the related work. Section 4 delves

into the theoretical framework which served as the knowledge

foundation for the study. Section 5 addresses RQ1 by presenting

main goals of moving to DDD practices with the Entity

Framework at Volvo IT. This section also discusses important

requirements that the guidelines have to fulfill. Section 6

addresses RQ2 and presents critical factors that must be taken into

consideration when adopting the Entity Framework for DDD at

Volvo IT. Section 7 builds upon the preceding section and

presents the evaluation of the most important factor– query

performance. Section 8 presents the overview of the Entity

Framework Guidelines (RQ3). Section 9 offers some further

reflections on the guidelines. Finally, Section 10 ends the report

by presenting important conclusions and outlining recommended

future research.

3

2. CASE STUDY DESIGN
The main purpose of this study was to design a set of guidelines

for incorporating the EF into a domain-driven software

development process at Volvo IT. We used a qualitative

exploratory case study as the methodology behind the study

design [48]. Exploratory case studies are suitable for performing

preliminary studies where it is not clear which phenomena are

significant to look into, or how to quantitatively assess these

phenomena [21]. Moreover, to our best knowledge, research

concerning the adoption of Entity Framework in domain-driven

development is non-existent and current literature provides no

conceptual framework for theorizing. This circumstance makes

the formulation of a proper hypothesis or theory prior to

commencing the study difficult. Another justifiable rationale for

choosing an exploratory case study is the descriptive nature of

research questions. Rather than asking to provide causative links

(why?), research objectives in this study mainly focus on so-called

what?-questions where the major goal is to develop hypotheses

for further scientific inquiry.

The research paradigm of this case study can be characterized as

interpretive. Unlike positivist approach where reality can be

objectively described with measurable properties, interpretive

paradigm seeks to gain knowledge through less precise

constructions such as language and shared meanings [9, 41]. It is

particularly applicable in cases where a degree of uncertainty

surrounds the problem (i.e. very little prior research exists).

Essentially, we tried to understand the phenomena of domain

modeling and object persistence at Volvo IT through the

meanings that people assign to them. The aim was to interpret

how software architects and system analysts understand domain

driven design and object persistence, what they view as best

practices and why. This was achieved through a series of semi-

structured interviews (see later in the section). Our interpretations

were then used in formulating the Entity Framework guidelines,

which can be understood as the tentative theory behind applying

the EF in DDD. The guidelines represent an initial theory – a

theory that must be tested repeatedly to be corroborated or

disproved.

2.1 Context and Subjects
The studied company in this research project was Volvo

Information Technology (referred to as Volvo IT henceforth). The

company is a wholly-owned subsidiary of AB Volvo (Volvo

Group), one of the largest industrial groups in the Nordic region.

Volvo IT is the information technology competence center for

Volvo Group. It provides software solutions to support industrial

processes with competencies in Product Lifecycle Management,

SAP solutions, and IT operations. This case study was

commissioned by Software Process Improvement (SPI) group

within Volvo IT, which is responsible for developing and

maintaining processes and methods for application development.

The group was exploring a possibility of adopting the Entity

Framework as a persistence mechanism in software development

projects that emphasize domain-driven design. Accordingly, the

development of guidance on adopting the framework is a unit of

analysis (case) in this study. To our best knowledge, no previous

studies have been performed in this area. Thus, the conclusions

drawn in this case study could potentially inform critical decisions

about incorporating the framework into domain-driven

development in a number of similar enterprises. Due to the

confidentiality agreement with Volvo IT, the guidelines developed

in the thesis are a proprietary asset of the company and, therefore,

only their outline will be presented in this report.

2.2 Study Subjects
The subjects in the case study were 1 senior .NET architect, 3

software architects and 2 system analysts. The senior .NET

architect provided much-needed guidance on identifying real

industrial problems with regards to domain-driven development

and object-relational mismatch. He outlined important

benchmarks and requirements that the guidelines had to satisfy.

The rationale for selecting other software architects as primary

subjects was their first-hand exposure to object modeling and

persistence. These architects provided critical data that allowed us

to identify common object modeling and persistence mechanisms,

their characteristics, and also factors affecting the adoption of

Entity Framework at Volvo IT. In involving system analysts in the

study we sought to identify common methods and techniques used

for requirements modeling in the company. In this way, we could

see whether system analysis (in which domain modeling should

play an important part) placed any limitations on using pure

domain-driven design approaches in building business

applications.

2.3 Data Collection and Analysis
To increase overall reliability of the study a method of data

triangulation was used. That is, a number of data collection

methods were used to collect evidence. The primary method for

data collection was interviewing. Five semi-structured interviews

were conducted with software architects and system analysts to

gain knowledge about object persistence approaches and domain

modeling in general. Each interview lasted about one hour. Due to

time limitations, interview questions tended to be very focused

and concrete (see Appendix A). Still, an interviewee was allowed

maximum reasonable latitude in elaborating. Interview questions

were refined after each interview to account for new information.

Each interview was recorded. Subsequently, all interviews were

transcribed and the transcripts were analyzed on the subject of any

recurring words or phrases. The transcripts were explicitly

analyzed according to expected outcomes of the thesis work. No

statistical analysis was performed on data extracted from

interviews.

In addition to interviews, extensive body of software

documentation was reviewed from the software portfolio at Volvo

IT. Important information from the documentation was noted and

later revisited for analysis. This initial study made further

interview questions more focused and relevant. Moreover, an

experiment aimed at evaluating the performance of the Entity

Framework query execution provided important input to thesis

result. Finally, a number of informal discussions with the senior

.NET architect also complemented evidence gathered during the

study.

2.4 Study Execution
The case study was performed on Volvo IT premises in

Gothenburg (Sweden) during the 20-week spring semester period.

The study was executed in the following stages:

Stage 1: Several initiation interviews were conducted with the

senior .NET architect to identify main goals for transitioning to

DDD with the Entity Framework at Volvo IT. The interviews also

sought to elicit important requirements that the Entity Framework

4

guidelines would need to fulfill. The data collected during the

interviews addressed RQ1 and served as the basis for further

guidelines verification.

Stage 2: Five interviews with software architects and system

analysts were performed. The goal of these interviews was to

identify the most common pattern of working with object

modeling and persistence during software development at the

company. Furthermore, this stage sought to elicit specific

concerns that needed to be addressed in adopting the EF. The data

obtained from the interviews was augmented by observing one

software architect working with a persistence layer in an actual

system. Besides, considerable amount of data was collected

through studying documentation for the Entity Framework and

some internal Volvo IT production systems as well as during

informal discussions with the senior .NET architect. In this way,

not only RQ2 was addressed, but also enough information was

gathered to begin creating the EF guidelines.

Stage 3: Based on the evidence collected during stages 1 and 2 a

set of guidelines for adopting Entity Framework in domain-driven

design were created. RQ3 was thus partially addressed.

Stage 4: The purpose of this final stage was to perform initial

evaluation of the guidelines proposed in Stage 3. The objective

was the verification of understandability and readability of the

guidelines. This was achieved through a joint Entity Framework

workshop where the researcher and all study subjects discussed

the guidelines. Thus, RQ3 was completely addressed.

Eventually, by answering all three research sub-questions we were

able to address the main research question of the case study.

2.5 Threats to Validity
According to Yin [48], a case study design needs to satisfy the

following important quality conditions: construct validity, internal

validity, external validity, and reliability. Due to its exploratory

nature this case study’s design is not exposed to internal validity

threat. That is, the current case study does not seek to identify

causal links in phenomena, which makes internal validity not a

concern.

To achieve sufficient reliability the case study design adhered to

the two basic principles specified by Yin [48]. First, data

triangulation was applied to minimize the risk of bias in data

collected from a single source. Accordingly, we augmented

interview data with data from software documentation reviews

and informal discussions with stakeholders. Second, the study

design maintained a chain of evidence [48] by following a well-

defined multi-stage process (see previous subsection) spanning

from initial positing of research questions to deriving ultimate

case study conclusions.

Admittedly, there exists an external validity threat in that only one

company was investigated. This could largely undermine the

potential for making generalizations beyond the immediate case.

However, this threat cannot be minimized to any significant extent

at the present stage as more research is needed to corroborate or

disprove the case study findings in a wider industrial context.

There is also a construct validity threat in this case study. The

danger to construct validity comes from the fact that data

collection methods and resulting evidence may be biased due to

investigator subjectivity [45, 48]. To counteract this we used

multiple sources of information: interviews, documents and

informal conversations. Moreover, the findings from data

collection were evaluated by interviewees during a joint Entity

Framework workshop.

However, the construct validity threat to this study still remains

because we cannot guarantee that during the one-hour workshop

the understandability and the readability of the guidelines could

be verified with absolute certainty. During the presentation some

of the interviewees deemed the guidelines too abstract in their

pattern form, while others considered the level of abstraction

appropriate. Ultimately, we believe the most reliable way to verify

the guidelines in this regard would be to test them in a real

development project. However, we did not have this opportunity.

Still, we believe we managed to curtail this threat to some extent

by including concrete examples within each guideline.

Another threat to construct validity relates to the fact that only the

Beta 3 version of the ADO.NET Entity Framework was used in

the performance experiment (see Section 7). Thus, the results

from an experiment with the release-to-manufacturing version of

the framework could diverge from our results, which were

obtained with the Beta 3 version.

3. RELATED WORK
The primary source for domain-driven design principles is Evans

[22]. The author introduces a number of important fundamental

concepts and guidelines for adopting DDD practices within a

software development project. However, he does not provide the

guidelines in the context of any specific tool. Fowler [25] also

offers a relevant discussion of object-oriented domain models and

other alternatives to modeling domain logic. Besides, the author

presents a detailed discussion of object-relational mapping

approaches. Nilsson [36] offers an interesting discussion of

implementing domain object models in C# programming

language. He considers such issues as building a domain object

factory, creating a repository for object aggregates and mapping

domain objects to relational tables with the NHibernate mapping

tool.

Still, after an extensive literature review we found no studies of

how the Entity Framework, based on a conceptual data model, can

be incorporated into domain-driven software development. To our

best knowledge, there is no research into how rich domain models

should be mapped and persisted to a relational database via an

Entity Data Model (EDM) supplied by the EF. As the reader may

recall, by rich domain models we understand models that describe

a complex business domain by using a number of advanced

object-oriented techniques, such as inheritance and design

patterns [25]. However, several studies of domain-driven design,

handling persistence and applying object/relational mapping tools

in industrial projects exist.

Landre et al.[30], presenting their experiences from building an

oil trading application with an object-based domain model in its

core, describe how Java Data Objects (JDO) - based mapping

approach was used to persist domain entities. The authors argue

that domain-driven design along with a proper object-relational

mapping tool generally improved system performance and

reduced the code size relative to some of their existing legacy

applications. An important improvement came from incorporating

a Repository domain pattern [22]. According to this pattern all

persistence-related code was encapsulated inside a repository and

5

the resulting business logic code, oblivious of persistence

infrastructure, operated only on pure business entities. This in turn

resulted in cleaner code, which facilitated communication within

the team. However, it was difficult at first, as authors noted, to

change the mindset of database-oriented developers to an object-

oriented way of formulating JDO queries. The JDO mapping

approach did eventually pay off as developers no longer had to

concern themselves with the minute details of the relational

database schema and instead focus on core business entities. Still,

while the authors presented important drivers behind migrating to

a mapping layer, no meaningful guidelines were offered on how

mapping tools should be integrated into domain-driven

development or what role domain modeling should play in the

process.

Wu [47] presents an enterprise system intended to assess human

performance. The system domain model was generated by the

Entity Object framework3. This framework closely resembles

Repository pattern [22]: it encapsulates all persistence-related

issues through object-relational mapping and thus enables a

developer to work with a pure object-based domain model. The

author claims that the architecture based on the Entity Object

framework effectively decoupled the database from the rest of the

application and improved the overall design since developers no

longer had to be aware of the intricacies in the relational database

schema. Still, the author fails to examine the framework in the

wider context of domain-driven design and domain modeling.

A promising approach to domain-driven design is proposed by

Philippi [38]. The author discusses experiences from developing a

model-driven tool that allows visually modeling an object domain

model and then automatically generating persistence-related code

and data definition language (DDL) SQL queries. The mapping

between domain objects and relational tables is specified with a

wizard tool. Essentially, an application developer specifies

different trade-off criteria, such as maintainability,

understandability, which in return generates mappings for a

chosen object-relational tool vendor. The system currently

supports TopLink. The author also discusses how mappings of

attributes, associations and inheritance hierarchies can be

performed. He also makes a seminal analysis of different

mappings in terms of understandability, maintainability, storage

space and performance. We actively used the results from this

analysis in formulating mapping patterns which are a part of the

Entity Framework guidelines. Finally, the author argues that the

starting point for the automatic generation of object-relational

mappings is an application object model – a domain model.

Generally, the problem of a paradigm schism between object and

relational models has been a longstanding one [18] and has been

widely studied [4, 7, 11, 15, 25, 29, 33, 46]. Several pattern

languages have been created, which catalogue best practices in

mapping objects to relations [15, 29]. We used a number of these

patterns to complement our own mapping patterns, especially

when it came to mapping the EDM to a relational model.

Moreover, to define the pattern language we consulted [29].

Cook and Ibrahim [18] review numerous issues affecting the

language/database integration and develop these issues into

criteria against which different solutions to impedance mismatch

3 .NET-based enterprise framework for domain-driven design. Available

at http://neo.sourceforge.net/

can be evaluated. The authors also present the results from a

qualitative evaluation of existing solutions. Their study included

such tools as object/relational mapping tools, object-oriented

database systems and orthogonal persistence systems.

Researchers and practitioners have developed a number of

solutions helping to mitigate or altogether eliminate the object-

relational impedance mismatch. Some of the proposed solutions

are discussed below.

One solution that completely prevents the mismatch is to use

object-oriented database systems (OODBS). OODBS enable a so-

called transparent persistence [36], whereby both persistent

objects and in-memory objects are accessed in the same way. This

is achieved through storing objects directly rather than

transforming them to relational constructs before persisting [49].

As a result only one object-based domain model needs to exist in

the application, resulting in overall design improvements [49].

However, predictions of a wide adoption of OODBS did not

materialize as they have achieved only a 2% share of the

international database market [32]. Relational databases remain

the dominant persistence mechanism [15].

Another interesting approach to persistence is orthogonal

persistence [5, 40]. Orthogonality in this sense considers

persistence as merely an aspect of an application. The basic tenet

behind orthogonal persistence is the obliviousness of the

persistence concern. Once persistence has been “aspectisized”, the

rest of the application can be built as if no data needs to be

persisted. The persistence mechanism can be plugged in at a later

time. There have also been some attempts to embed persistence

capabilities directly into a programming language [12].

4. THEORETICAL FRAMEWORK
This section seeks to define important terms actively used

throughout the thesis report. It contrasts two approaches to

addressing domain logic in enterprise applications. The section

then introduces the basic concepts of domain-driven design.

Finally, the section delves into the Entity Framework: its

architecture and its basic premise of conceptual data

programming.

4.1 Structuring domain logic
Oldfield [37] discusses three types of requirements that any

application software has to fulfill. First, there are requirements

originating from users, which determine system’s purpose and

how the system is used. These requirements are usually captured

in Use Cases [10]. Second, there are non-functional requirements

that capture quality attributes of a system: reliability, performance,

security and many others. Finally, there are domain requirements.

A domain of a software product is the subject area in which the

user applies this product [22]. Domain requirements capture

essential domain concepts, their relationships and important rules.

Business rules, for example, constrain and control the way a

business operates. In this report, we use the term business rules

interchangeably with terms like domain logic, business logic or

application logic. We also use the terms business object, domain

object and business entity interchangeably in this report.

Historically, in the object community there have been several

approaches to organizing and implementing business logic in

applications. Fowler [25] identified three patterns of organizing

domain logic in enterprise applications: table-based record set

6

(Table Module), procedural (Transaction Script) and domain

model-based (Domain Model). Table Module and Transaction

Script patterns are largely database-driven in a sense that the

relational model determines the structuring of domain objects and

their relationships. Subsequently, all logic is concentrated in a set

of heavyweight application services operating on database table-

like objects (data containers), instead of actual business entities

where they naturally belong. Domain Model (DM) pattern, on the

other hand, stresses the importance of decoupling the object

model from the database model and structuring the whole

application around the object-based domain model4 – a domain-

driven approach [22]. According to this pattern, encapsulating all

domain logic in a set of interconnected business objects (domain

model) is a way to manage complexity inherent in most

businesses. In the following subsections we contrast Transaction

Script and Domain Model patterns for illustrating two distinct

approaches to structuring domain logic.

4.1.1 Procedural style (Transaction Script)
The basic premise behind this style is that all application logic is

organized into a set of procedure-like scripts (“fat services”), each

of which handles a single request from the presentation layer.

Normally, a single script is responsible for one business

transaction, such as book a hotel room, transfer money from one

account to another, etc [25]. Figure 1 illustrates a part of a

banking application5 built with the Transaction Script pattern.

The most salient characteristic of this design approach is that

domain objects/entities (Account, Customer and

BankingTransaction) do not encapsulate any business logic per se.

Domain objects in this model represent bare data containers (with

getter/setter fields), which is in a fundamental conflict with the

object-oriented paradigm of encapsulating both data and behavior

[23]. In fact, the structure of the database schema largely

determines the design of these objects. Fowler [23] refers to such

a model as anemic domain model – database-driven with no

domain logic. While there is nothing wrong with a domain model

structure closely resembling that of a relational model (one-to-one

mapping), a mechanic derivation of a domain object model from a

database with no regard to the principle of encapsulation could

cause problems in later stages of development. Most importantly,

this could lead to broken abstractions in the application. For

example, a real-world entity Order could be split into several

Order-related tables in the database due to normalization

requirements. Following the procedural pattern, these tables

would be one-to-one mapped to domain objects in the data tier.

As a result, the Order entity will be fragmented over a number of

related objects in the object model and the mental model of the

application will be disrupted. It is necessary to remember that a

relational model with its mathematical underpinnings may not be

suited for modeling real world domains at a high level of

abstraction. It is a logical representation of how data is stored in

4 Essentially, a domain model is a way to express domain requirements by

explicitly capturing essential business concepts, their relationships and

rules in a concrete model.

5 This example was inspired by the presentation made by Chris

Richardson on “Improving Application Design with a Rich Domain

Model”. Available at

http://www.parleys.com/display/PARLEYS/Improving+Application+De

sign+with+a+Rich+Domain+Model?showComments=true

the database [4, 11]. In fact, recognizing this limitation in

relational modeling, Peter Chen in 1976 devised the entity-

relationship model approach [17] to conceptual data modeling.

Domain object models, unlike their relational counterparts, model

conceptual real-world business entities and operate at a higher

abstraction level.

All business logic in the procedural style resides in the business

tier within MoneyTransferService. This service performs a

transfer of money assets from one account to another. The service

definition executes all business rules (such as overdrafting policy)

before crediting and debiting accounts.

Web TierASPXController

Business Tier

+TransferMoney(in fromAccount, in toAccount, in amount)

MoneyTransferService

Data Tier

-accountID

-accountType

-balance

Account

-customerID

-firstName

-lastName

-address1

-address2

Customer

-transactionID

-amount

-date

BankingTransaction

-fromAccount

1

*

-toAccount1

*

1

*

Account
accountID

accountType

accountBalance

customer_FK

BankingTransaction
transactionID

amount

date

fromAccount_FK

toAccount_FK

Customer
customerID

firstName

lastName

address1

address2

Maps one-to-one to

Web Tier

Figure 1: Part of a banking application built in a procedural

style

This design style has some properties that make it attractive for

building non-sophisticated enterprise applications [25]. First, it is

easy to add new functionality by implementing a new transaction

script. Second, it does not require significant object modeling

skills. In fact, some enterprise application frameworks (e.g. J2EE

7

EJB6) even encourage this style. However, a significant

disadvantage of this approach is that it does not scale well to

complex business domains. As more and more functionality is

added, transaction scripts tend to multiply and swell in size. As a

result, the potential for the same business logic to be repeated in

several places becomes more pronounced, which seriously

undermines application maintainability. Another problem with the

style, as we mentioned, is that the resulting object model is largely

database-driven – hence, some adverse implications for

application abstractions.

4.1.2 Domain Model style
The Domain Model pattern prescribes offloading all the domain

logic from services (transaction scripts) and encapsulating it

inside a domain layer – a layer of objects that model the business

area. Essentially, the business logic is modeled as operations on

classes and spread among a collection of domain objects. See

Figure 2 for the comparison of the two design approaches.

Figure 2: Transitioning from procedural database-driven

design to domain-driven design (adapted from Richardson
7)

Most importantly, a domain model is intended to be purely

conceptual: classes in this model directly correspond to real-world

objects. It is, therefore, likely that the domain model will often

diverge from its relational counterpart. To ensure that data can be

transparently passed between the two potentially diverging models

(due to object-relational impedance mismatch), Fowler [25]

suggests that a Data Mapper be used. The sole purpose of the Data

Mapper is to move “data between objects and a database while

keeping them independent of each other and the mapper itself”

[25]. It could be understood as a translator that performs data

transformations as it crosses object-relational boundary. Object-

relational mapping tools emerged as a result of the need for

automatic data translation and mapping of object models to

database models. To date, a number of commercial (LLBLGen

Pro, Apple WebObjects) as well as open source

(Hibernate/NHibernate as the most popular) solutions exist. In

fact, a whole new discipline appeared as a result of pursuing

6 It is notable how its reference architecture encourages Transaction Script

thinking: Enterprise Java Beans (EJB) implement procedures by

operating on an anemic Entity Bean-based model.

7 See

http://www.parleys.com/display/PARLEYS/Improving+Application+De

sign+with+a+Rich+Domain+Model?showComments=true

application design with the domain model at the core – domain-

driven design. Next sub-section addresses this approach at length.

There are a number of benefits to having a domain model at the

core of the application design. Firstly, because the domain model

is decoupled from the relational model, such design reflects the

reality of business better. Clients to a domain model are able to

operate in terms of real business concepts. Secondly, a domain

model represents a model of business and its core concepts. These

concepts rarely change and are quite stable. Therefore, by

encapsulating all business-related functionality in a domain

model, it becomes possible to reuse the model in a new context

(new applications, for example). Finally, as Evans [22] stresses, a

domain model represents a ubiquitous language – a common

language shared by domain experts, developers, managers and

other stakeholders. Ubiquitous language facilitates shared

understanding of the domain, and, ultimately, leads to better

software that is more in line with the user concerns and needs.

4.2 Domain-driven design
Evans [22] sees domain-driven design (DDD) as the

“undercurrent of the object community”. The principles of DDD

have been known for a long time, yet only recently has the DDD

gained increased attention and interest from software developers

[22]. The fundamental premise behind the DDD is that most

software projects should primarily focus on the problem domain

and domain logic. Application design should be based on a

domain model. This is achieved by closely mapping domain

concepts to software artifacts. DDD should not be viewed as a

software development process in its own right. Rather, it is a set

of guiding principles, practices and techniques aimed at

facilitating software projects dealing with complicated domains.

DDD should be applied in the context of an iterative development

process, where developers and domain experts have a close

relationship.

The centerpiece of the DDD philosophy is a domain model [22].

A domain model represents essential knowledge about the

problem area. It is a tool for overcoming information overload and

overall complexity when a development team attempts to extract

domain knowledge from system users. A domain model “is not

just the knowledge in a domain expert’s head; it is a rigorously

organized and selective abstraction of that knowledge” [22] (p.

3).

Fowler [25] offers a relevant discussion of domain models. A

domain model captures the business area in which an application

operates. It models essential business entities (domain objects)

and their intrinsic qualities such as attributes or constraints from a

conceptual perspective. But above all, a domain model

encapsulates all domain logic, which might include business rules,

constraints and other important components.

Importantly, a domain model is not necessarily a diagram or some

other illustration, rather, it is the notion that a diagram seeks to

convey. A diagram can communicate a model, as can more textual

representation. However, considering that object-orientation is

largely based on modeling real-life objects, object-oriented

models (namely, a class diagram) have become a de-facto

standard for capturing domain knowledge (see Appendix C).

In a sense that DDD espouses a model as the primary artifact in

software development, it is closely related to model-driven

8

development (MDD) philosophy. Both methodologies strive to

reduce complexity inherent in application domains by raising the

level of abstraction in software construction to a level that is

closer to a problem domain [42]. However, unlike DDD, MDD

stresses automatic generation of programs based on corresponding

models [43]. In this context, DDD does not see the domain model

as a platform for code generation. Rather, the domain model in

DDD is considered to be a facilitator of a common language

shared by all stakeholders [22]. Moreover, instead of having just

one central model (e.g. a domain model in DDD), MDD

prescribes producing a number of models targeted at different

abstraction levels [1]. Such models may include computation-

independent models (domain models), platform-independent and

platform-specific models [1, 26].

4.2.1 The building blocks of domain-driven design
A domain model seeks to bridge the gap between analysis and

design by addressing concerns belonging to both of the activities.

One can find not only familiar business objects/entities in the

model (business analysis model), but also objects representing

services, repositories and factories (design model). Figure 3

presents a navigation map of the DDD concepts.

Figure 3: A navigation map of the language of domain-driven

design

(source: Evans [22])

In the paragraphs to follow, we briefly discuss each of the

building blocks. For a more detailed text the reader is referred to

Evans’ book on domain-driven design [22].

4.2.1.1 Layered architecture
From an architectural viewpoint, a domain model comprises a

distinct layer in an application that encapsulates a set of stable

business object types [44]. In DDD a domain layer constitutes the

core of the application design and architecture. It is responsible

for all fundamental business rules. It is in the domain layer that

the model of the problem area resides. This appears in sharp

contrast with the procedural approach in Transaction Script where

all domain logic is concentrated in the application (service) layer.

Figure 4 illustrates the layered architecture to which most DDD

applications adhere:

A
p

p
lic

a
tio

n
D

o
m

a
in

In
fra

s
tru

c
tu

re
U

s
e
r

In
te

rfa
c
e

Figure 4: Layered architecture according to DDD

(source: Evans [22])

Infrastructure layer provides technical support for all application

services. Such technical capabilities can include message sending,

persistence for the domain model, etc. Domain layer is the place

where the domain model ‘lives’. It is responsible for representing

business concepts (state) and business rules. Application layer is

supposed to be thin: it only orchestrates use case flows (task

coordination) and then delegates to behavior-rich domain objects

for most domain logic. Finally, the User Interface layer is a

regular front-end of the application. It is either a graphical user

interface (GUI) through, which users feed commands to a system,

or a system interface to which external applications can connect

(e.g. a Web service).

4.2.1.2 Entities
An entity represents a domain object that is defined not by its

attributes, but rather by continuity and identity [22]. Entities

usually directly correspond to essential business objects, such as

account or customer. Thus, entities are usually persistent: they are

stored in the database. From database storage comes one of the

defining characteristics of an entity: continuity. Continuity means

that an entity has to be able to outlive an application run cycle.

However, once an application is re-started, it should be possible

to reconstitute this entity. To differentiate one entity from another

a concept of identity is introduced. Every entity possesses an

identity that uniquely identifies it in a set. Accordingly, even if

two entities have the same attribute values, they are considered

distinct so long as their identities differ.

4.2.1.3 Services
Services represent concepts that are not natural to model as

entities [22]. Services are responsible for pieces of domain logic

9

that cannot be encapsulated in an entity. A service can be

considered as an interface or an entry point into the domain model

for external clients. A proper service possesses three important

characteristics[22]: 1. the operation a service implements directly

relates to a business concept; 2. the service interface is defined in

terms of the elements of a domain model (intention-revealing

interface); 3. a service operation is stateless.

As an example of a ‘good’ domain service, consider the case

when an application implements a transfer of funds between two

bank accounts. The transfer operation directly relates to the

banking domain term “funds transfer”. Modeling the transfer

operation on one of the entities (e.g. account) would be somewhat

undesirable because the operation involves two accounts. Thus, a

funds transfer operation is best factored into a separate domain

service operating on domain entities (see Appendix C). A service

can be directly accessible from the application or a presentation

layer.

4.2.1.4 Aggregates
An aggregate is a set of related entities that can be treated as a

unit for the purpose of data changes [22]. In a system with

persistent data storage there must be a scope for a transaction to

change data. Consider a case when a certain number of related

entities are loaded from the database into the main memory. After

modifying the state of some of the objects a user attempts to save

their work. A database transaction is spun to maintain data

consistency during the save operation. However, should the

transaction apply only to the saved object or should it also apply

to its related object(s)? Another issue arises when a deletion of a

domain object occurs. Should the related objects also be deleted

from the persistent storage? Essentially, an aggregate addresses

these issues by identifying a graph of objects that are treated as a

unit. Any operation performed on an object within the graph

automatically applies to all other graph members (e.g. a

transaction). Figure 5 illustrates an aggregate.

Figure 5: Aggregate (adapted from Evans [22])

Each aggregate has a root object (Car) and a boundary. The root

is a single specific entity which is considered primary. All other

objects (Wheel, Position and Tire) within an aggregate are

subjected to the root. The boundary defines what is inside the

aggregate and what is outside. The defining characteristic of a

root is that outside objects are allowed to hold references only to

the root of an aggregate.

Aggregates play an important role in a domain model. They

provide an abstraction for encapsulating references within the

model. For an outsider, a domain model consists only of

aggregates and their roots. Clients of a domain model can only

hold direct references to aggregate roots. Other non-root objects

should be accessed via traversal. Importantly, should an aggregate

root be deleted from persistent storage, all aggregate members will

also be removed. Also, when a root is saved, the ensuing

transaction spans the whole aggregate.

4.2.1.5 Factories
A factory is a mechanism for creating complex aggregates [22].

An aggregate, as a rule, has to maintain invariants (constraints). A

factory ensures that an aggregate is produced in a consistent state.

It makes certain that all entities are initialized and assigned an

identity. So instead of directly creating an object from an

aggregate via a constructor, a client requests a specific factory to

construct an entire aggregate and return a reference to the

aggregate root.

4.2.1.6 Repository
A repository represents all domain objects of a certain type as a

collection [22, 25]. Main responsibilities of a repository are:

query databases and return (reconstitute) a collection of objects to

the client, delete domain objects from persistence storage and also

add new objects to persistent storage. It acts as an object-oriented

application programming interface (API) for data, entirely

encapsulating database access infrastructure. A repository

contains all database-related queries and object-relational

mapping specifications. It acts as an additional layer of abstraction

over the domain layer. Accordingly, through a repository only

aggregate roots can be reached. Other objects internal to an

aggregate are prohibited from access except by traversal from the

root.

4.3 The ADO.NET Entity Framework
Microsoft Corporation released the beta 3 version of the Entity

Framework (EF) in the late 2007 [2]. The fundamental principle

behind the EF is that the logical database schema is not always the

right view of the data for a given application. Accordingly, the

main goal of the framework is to build a level of abstraction over

a relational model. This abstraction is realized with the conceptual

data model which is composed of entities representing real-world

objects. In this way, a database application can view data as

conceptual entities rather than as logical database relations. By

introducing a conceptual abstraction over a relational store, the

EF attempts to isolate the object-oriented application from the

underlying database schema changes. In doing so it is very similar

to traditional object-relational mapping tools. However, the EF

also introduces a distinctive feature – the Entity Data Model –

which we discuss in the following subsection. Section 4.3.2

presents the comparison of traditional data access with the SQL

Client and new data access with the Entity Framework.

4.3.1 The building blocks of the Entity Framework
Figure 6 illustrates the basic elements of the Entity Framework.

10

ADO.NET Entity Framework

Entity Framework Metadata Layers

CONCEPTUAL

MAPPING

LOGICAL

Entity Data Model

Entity-to-Relation

mapping specification

Relational database

model

Datasource

Entity Client

Entity SQL ObjectServices LINQ to Entities

Figure 6: Entity Framework architecture (adapted from [4])

EF is claimed to largely overcome impedance mismatch problem

by elevating the level of abstraction in data programming from

logical (relational schema) to conceptual [4, 11]. This implies that

the application can be oblivious of the relational schema by

accessing persistent data through an explicit conceptual model

called Entity Data Model (EDM). EDM abstracts away logical

(relational schema) design from the rest of the application by

exposing high-level business entities as data containers. In this

way, persistence layer is decoupled from the application layer,

which mitigates impedance mismatch problem.

4.3.1.1 The Entity Data Model
The Entity Data Model (EDM) follows the notation of the Entity-

Relationship model [17]. The key concepts introduced by the

EDM are [4]:

• Entity: entities directly correspond to the same concept in

the domain-driven design. They are characterized by

continuity (persistent) and have a unique identity. Entities in

the EDM represent conceptual abstractions over the

relational model and, therefore, model exclusively real-life

objects. Each entity is an instance of Entity Type (e.g.

Employee, Order). At runtime entities are grouped into

Entity Sets.

• Relationship: relationships associate entities to one another.

Currently, the EDM supports three types of relationships:

association, containment (entities contained are dependent

on the parent entity – similar to object composition) and

inheritance.

Consisting of conceptual entities and corresponding relationships

the EDM hides the relational model of the database from the rest

of the application. It corresponds to a conceptual layer in the EF.

The EF performs mapping of a conceptual layer to a logical layer

(relational model) by introducing two additional layers below the

EDM: mapping specification and storage schema definition.

Storage schema definition is essentially a specification of a

relational database model. Mapping specification reconciles the

object-relational impedance mismatch by mapping conceptual

entities in the EDM to relations (tables) in the storage schema.

4.3.1.2 Entity client
While the concepts of the EDM and mapping may seem abstract

at first, during program execution they are made concrete with a

special ADO.NET8 interface – EntityClient. Entity client is a data-

access provider for the EF, which is also called mapping provider.

It encapsulates and handles database and EDM connections. It is

very similar to a regular SQL Client in ADO.NET, which allows

applications to connect to relational data sources. However, unlike

SQL Client, Entity Client provides access to data in the EDM

terms. In this case, the EDM acts as a conceptual database similar

to Repository concept from DDD.

4.3.1.3 Entity SQL
When an application uses the Entity Framework and its mapping

provider to access data, it no longer connects directly to the

database. Rather, the whole application operates in terms of the

EDM entities. Therefore, it is no longer possible to use the native

database query language for retrieving data. The EF enables

querying against the EDM by introducing a query language –

Entity SQL (eSQL) [4]. The overall structure and syntax of Entity

SQL is very similar to those of the standard SQL (usual SELECT-

FROM-WHERE sequence). Unlike the SQL, eSQL introduces

additional features such as support for navigational properties (it

is possible to traverse entities instead of using JOIN) and support

for inheritance.

4.3.1.4 Object Services
Considering that most applications are written in object-oriented

languages and thus operate on objects, the EF introduces Object

Services feature [4]. The EF includes a tool that, given the EDM

definition, will generate a domain object layer for use in the

application. By using Object Services it is possible to query the

EDM with eSQL and retrieve strongly-typed objects from the

store. In the same manner, once the application has finished

working with objects in memory, it only has to invoke the

SaveChanges operation. Subsequently, the mapping provider will

persist these objects by transforming them into corresponding

SQL statements to relational database.

4.3.1.5 LINQ to Entities
When it comes to querying databases for data, application

programmers have to use two languages for this purpose: the

query language and the programming language for manipulating

the retrieved data. This not only implies that programmers have to

master two distinct languages, but also that queries specified as

8 ADO.NET is a set of software components that can be used by

application developers to access data and data services in .NET

environment.

11

string literals are usually ignored by a compiler and, therefore, can

be validated only during the runtime [16]. To address these issues,

Microsoft introduced the Language-Integrated Query (LINQ) into

its programming languages (C#, Visual Basic). Essentially, LINQ

became a part of the language definition and its syntax. Therefore,

it became possible to perform compile-time validation of queries.

The Entity Framework directly supports LINQ and refers to it as

LINQ to Entities query language. LINQ to Entities is an

alternative to eSQL as a query mechanism9. Like eSQL, LINQ to

Entities supports complex queries to the EDM which return

strongly-typed domain objects.

4.3.2 Accessing data via the Entity Framework and

SQL Client
In this example we demonstrate how the emphasis on conceptual

modeling changes the way data is accessed through the EF. We

will show that a higher-level data model can help express the

application semantics more explicitly. Consider a hypothetical

application that manages orders in an enterprise. The application

works with the database schema shown in Figure 7.

Order

orderID

placedDate

LineItem
lineItemID

description

quantity

productID_FK

orderID_FK

Product
productID

name

price

version

productAssembly

Figure 7: Order application relational schema

The order application can handle orders for two kinds of products:

software products and hardware products. A traditional way of

discriminating the products stored in a relational table is to have a

convention: if version column is null (or productAssembly is not

null) then the table row represents the hardware product; if

productAssembly column is null (or version is not null) then the

table row represents the software product.

Note that if the application object model (domain model) maps

one-to-one to such a schema (one domain object for each database

table), then violations of conceptual abstractions will occur in the

domain layer. An application would like to reason about order

data in terms of concepts: a software product concept and a

distinct hardware product concept, rather than a single relation -

Product. As the reader recalls, inappropriate abstractions were one

9 In fact, one goal of our performance study discussed further in the report

was to investigate these querying mechanisms in terms of verbosity and

simplicity.

of the drawbacks of a database-driven procedural style of

organizing domain logic.

Suppose the application is given a command to build a report on

all software products with a price under 100 units. Figure 8

illustrates what the SQL client provider code for retrieving

information about software products would look like. The SQL

query (lines 12-15) shown in Figure 8 is relatively simple.

However, its semantics is not obvious. That is, unless a person

reviewing the code is familiar with the database model and the

requirements for the operation, it is difficult to relate this code to

a specific use case requirement. More specifically, the expression

“version IS NOT NULL” (line 14) actually means “a software

product”; however, its meaning will need to be documented

separately as it cannot be derived from the query without the

appropriate context (a person familiar with the system or detailed

documentation).

The basic premise behind the Entity Framework is to hide these

storage-specific details from the application programmer and

instead expose only first-class business-oriented concepts, such as

Software product or Hardware product. Figure 9 illustrates the

Entity Data Model that was built on top of the relational schema

(in Figure 7) with the goal of abstracting all storage-specific

details and presenting only high-level conceptual entities for an

application programmer to interact with.

void PrintSoftwareProducts(){
 using (SqlConnection connection = new

SqlConnection
 (@"Data Source=itl3df788\sqlexpress;
 Initial Catalog=EFandSQLClient;Integrated
Security=True"))
 {
 connection.Open();
 SqlCommand cmd =
connection.CreateCommand();
 string cmdText =

@"SELECT name, price, version

 FROM Product
 WHERE version IS NOT NULL

AND price<100;
 ";

 cmd.CommandText = cmdText;
 SqlDataReader dr =
cmd.ExecuteReader();
 while (dr.Read())

 {
Console.WriteLine("{0}\t{1}\t{2}",
 dr["name"],
dr["price"],dr["version"]);

 }
 }
}

1.

2.
3.
4.
5.
6.
7.
8.
9.
10.

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.

Figure 8: Data access with SQL Client

12

public void PrintSoftwareProducts()
{
 using (EFandSQLClientEntities objModel =
 new EFandSQLClientEntities())
 {

 var software = from sw in objModel.Product
 where sw is SoftwareProduct
 && sw.price<100
 select sw;

 foreach (SoftwareProduct sw in software)
 {

Console.WriteLine(sw.name+"\t"+sw.p

rice+"\t"+sw.version);
 }
 }
}

Figure 9: Conceptual Entity Data Model built on top of the

relational database schema in order application

In the EDM the rule that “if product version is null then the row is

a hardware product” has now been made explicit and new

conceptual domain entities have been extracted from the database

schema: SoftwareProduct and HardwareProduct. With the EF it is

possible to query the EDM instead of the relational database.

Therefore, queries become more expressive and intention-

revealing as they can operate on real-life business entities. Figure

10 illustrates how the same query can be executed with the LINQ

to Entities from the EF.

Note how, by querying the Entity Data Model instead of the

relational data store, the query has changed. It is no longer

necessary to compare a column with null to determine whether a

certain row contains a software product. Rather, the query

operates in purely conceptual terms and directly requests the

EDM for all software products (line 7-10). This improves the

overall semantic understanding of the code. In some sense,

programming code becomes more self-documenting. Also note

that the query returns strongly-typed domain objects as a result of

execution. There is no need to manually iterate through a dataset

and instantiate domain objects. In lines 12-15 the foreach loop

iterates through a collection of SoftwareProduct domain objects

and prints them on a screen.

4.3.3 Concluding remarks
As the preceding example has shown, the Entity Framework

stresses conceptual modeling prior to any database-related

modeling. It ensures that a client application can interact with data

in terms of business objects rather than database-like constructs

(tables, joins through foreign and primary keys). It should also be

noted that although the EF has a number of features similar to

those of most object-relational mapping tools, it should not be

considered such. Object-relational mapping capabilities in the EF

account for a significant part of the product. However, it is the

EDM that constitutes the true core of the framework and places it

in stark contrast with analogous products where by convention an

object model is directly mapped to database tables.

5. ADOPTING THE ENTITY

FRAMEWORK IN DOMAIN-DRIVEN

DESIGN: MAIN REQUIREMENTS
This section addresses RQ1. Upon the inception of the study we

performed a set of initial interviews with the senior .NET architect

(referred to as the architect in this section) with the goal of

eliciting important requirements that would apply to the Entity

Framework guidelines. The initial interview was subsequently

complemented by a number of informal discussions with the

architect about his expectations about the guidelines. Thus, in the

first part of the initial study we sought to identify the main goals

of further adopting the domain-driven design practices at Volvo

IT. In the second part of the initial study the goal was to identify

the main requirements which the guidelines would have to fulfill.

5.1 Main goals
The main goal was identified as follows:

Reduce the overall complexity in applications.

Application complexity in this particular case is related to how

abstractions are handled in code. As indicated by the architect, it

was important to ensure with the DDD practices that the overall

complexity could be reduced by making the code operate on more

business-oriented abstractions, such as an Order or Spare Part.

Having abstractions that are closer to the problem domain would

largely reduce the gap between a problem part and a solution part.

Closely related to the application complexity is the issue of code

understandability. Hence, the second major goal of embracing

DDD practices is:

Further increase code understandability.

By code understandability we mean the extent to which a code

reviewer can relate a certain portion of application code to

1.
2.
3.

4.
5.
6.
7.
8.
9.
10.
11.
12.

13.
14.
15.
16.
17.

Figure 10: Data access with LINQ in the Entity

Framework

13

corresponding system requirements. This might be necessary, for

example, during a system maintenance cycle. Self-documentation

property of application code was identified as the main factor in

ensuring acceptable understandability. Self-documentation is one

of the pillars of agile development and it relates to the ability of

source code to reveal intention behind itself with expressive

function names or abstractions that are more in line with the

problem domain. Essentially, source code represents the system

documentation. Thus, considering that the Entity Framework

emphasizes programming at a conceptual level of abstraction

(which is more in line with the real-world objects), Volvo IT was

interested in how this framework could facilitate the DDD

practices from the perspective of reduced complexity and

enhanced code understandability.

5.2 Main requirements
During an initial interview and a number of subsequent

discussions with the architect we identified a set of main

requirements or pre-conditions that the Entity Framework

guidelines would have to fulfill. The following requirements were

elicited:

The guidelines must be explicit in providing guidance in

effective usage of the Entity Framework.

The architect stressed that the effectiveness of using the EF must

be the primary issue addressed by the guidelines. By effectiveness

in this context he implied the extent to which the EF enabled

conceptual abstractions in the application layer and the

decoupling of a domain model from the database relational model.

In this context, the architect also identified the anti-pattern of

using the EF (ineffective use): the framework is used to

mechanically derive the domain model from the database schema

(database-driven approach). Therefore, the main topic of the

guidelines should be the domain-driven development with the EF

and the primary focus should be on how to build a conceptual

model over a relational model and expose it to application

programmers.

All subsequent requirements concerned domain models as such.

The architect stated that the guidelines must be premised on the

following expectations:

Domain models are object-oriented.

This requirement was stated early in the study by the architect.

The reason that the requirement was stated explicitly is that the

Entity Data Model in the EF, although it is a conceptual model of

a domain, is a data model based on the Entity-Relationship (ER)

model. The EDM does not support such object-oriented

constructs as operations on entities, aggregation or composition,

and others. Therefore, the guidelines would have to reconcile the

differences between the two models (object-oriented and the ER

model) and offer solutions to bridging the gap between them.

Inheritance is allowed in domain models

The guidelines would have to be such that it would be possible to

use inheritance hierarchies during initial domain modeling as well

as in subsequent software representations of a domain model.

Domain models encapsulate both state and behavior

The guidelines would have to show how to enable rich domain

models with the Entity Framework. These domain models would

encapsulate not only data but also contain all domain logic.

5.3 The role of the guidelines requirements
The requirements identified in the preceding section played an

important role in formulating the guidelines. Together with the

input from other interviewees, these requirements could be

considered as the primary determinants of the guidelines.

Moreover, these requirements were actively used in designing

interview questions during Stage 2 of the study.

6. ENTITY FRAMEWORK IN DOMAIN-

DRIVEN DESIGN: CRUCIAL FACTORS
This section presents important results from interviews with

software architects and system analysts. More specifically, the

section discusses critical factors affecting the adoption of the

Entity Framework in domain-driven design from the perspective

of interviewees.

6.1 Interviews
During a series of interviews conducted at Volvo IT with system

analysts and architects we sought to gain knowledge about

domain modeling and object persistence handling at the company.

For confidentiality reasons we cannot directly report on these

activities. Rather, we present the results from our aggregation and

subsequent interpretation of the collected information. In this

section, specifically, we discuss critical factors that must be

considered when adopting the Entity Framework in DDD. These

factors were derived from knowledge gained during the

interviews. The discussions of the factors are interspersed with

actual quotes from the interviews which are there to support some

parts of a logical reasoning. As mentioned earlier, in total 6

interviewees were involved in the process: 1 senior .NET

architect, 2 system analysts and 3 software architects. To

differentiate among quotation authors, these individuals are

henceforth coded as: [NETARCH], [SYSAN1], [SYSAN2],

[SOFTARCH1], [SOFTARCH2], [SOFTARCH3], respectively.

6.2 Factors
We identified six major factors for consideration. The overview is

presented below. Note that the factors are listed in the order of

decreasing importance - as deemed by the interviewees.

1. Data retrieval performance – the Entity Framework should

provide effective mechanisms for retrieving deep object

graphs (aggregates).

2. Support for higher-level abstractions – the framework

should provide intrinsic support for modeling higher-level

business-oriented abstractions in the domain object layer.

3. In-house competence level in object-relational mapping –

effective use of the Entity Framework will largely depend

on the skill set possessed by project members in the

organization. The required skill set spans object-oriented

modeling, relational database modeling and object-

relational mapping strategies.

4. Rich feature set – the framework should offer flexible

querying mechanisms and provide the ability to customize

generated database queries.

5. Simplicity – the framework should be easy to master and

use. Mostly, this applies to how comprehensible mapping

specification is in the framework.

14

6. Support for heterogeneous data sources for the domain

model – the framework should support a number of data

sources for domain objects. These could include services,

data in XML format, databases from several vendors, and

others.

The following sub-sections address each of the factors in detail.

6.3 Data retrieval performance
This factor was identified by software architects to be the most

important in determining the success of adopting the EF in

domain driven design. Performance requirements represent the

cornerstone of enterprise applications, as indicated by

interviewees:

“…lately relational database work is not so much about entities

and domain models; it is more about the technical optimizations:

performance issues and deadlock issues…” [SOFTARCH2], or:

“…the performance requirements are so data-centric…On a

scale, object-relational impedance mismatch gets 1 point and

performance gets 10 points …so if I have a problem with object-

relational impedance mismatch and I would rate that:

performance versus coding for three weeks to go around the

mismatch - there is no comparison …” [SOFTARCH3]

It was a surprising finding that object-relational mismatch was not

identified as a special concern by interviewees. Mostly, as they

noted, it was a concern for vendors of object-relational mapping

software. In their experience, however, impedance mismatch was

handled effectively so long as object models did not diverge too

far from relational models. Although, one of the architects

indicated that he experienced difficulties in mapping inheritance

hierarchies once, most interviewees concurred that impedance

mismatch was not considered as a ‘blocker’ in their database

work. Read performance, on the other hand, represented an

important issue to consider.

Read performance is related to loading persistent object graphs

from relational storage. Persistent domain objects outlive the

runtime of the application. Commonly, this is achieved by storing

object state in a relational database. When an application is started

again, persistent objects need to be re-constituted or materialized

into the main memory from the relational store [22, 25]. By

following object-relational mapping strategies we can restore the

whole domain model from data in relational tables. The process of

transforming relational data into domain objects (re-constitution)

spans a number of activities which include querying the database

for data, parsing and iterating through the resulting dataset,

instantiating and populating proper objects, constructing object

graphs and others. The web of activities in this process may

potentially inhibit object retrieval and adversely affect overall

application performance.

Re-constituting domain objects in the form of aggregates is one of

the services provided by the Entity Framework. An important

consideration that needs to be made in adopting the framework is

the time it takes to re-constitute a deep graph of domain objects

from the relational store. As the reader recalls, DDD philosophy

refers to these graphs as aggregates. One of the software architects

indicated the importance of aggregate read performance during

the interview:

“…reading aggregates… is highly important… From my

perspective, this is something very important to take into selecting

the new framework…because those structures are present and

they are very frequently accessed…It would be really interesting

to see how it [Entity Framework] executes this query [reading

aggregates]…It can be very inefficient and this is usually very

inefficient…” [SOFTARCH3]

As this interviewee stated, the issue of how efficient the EF is in

retrieving aggregates should be considered carefully before

adopting the EF in company’s applications. His concern about

performance of the EF is not surprising: the framework introduces

a number of layers which perform object-relational transformation

and this can lead to significant performance penalties when it

comes to retrieving aggregates. Ponder the following quote:

“…my big concern with the new Entity Framework is that it

introduces too many layers in regards with metadata,

abstractions and other performance reducing layers. The more

layers you have, the slower you get …” [SOFTARCH3]

Thus, how well the framework addresses this issue represents the

major deciding factor in its adoption for DDD. In Section 7, we

present a short comparison of aggregate read performance with

the Entity Framework, NHibernate and a traditional SQLClient

DataReader.

6.4 Support for higher-level abstractions
It is essential that the Entity Framework enforce the conceptual

abstraction layer of indirection on top of the relational storage. It

is important that the framework effectively decouple the two

distinct models from each other.

One of the software architects during an interview mentioned an

interesting example of a broken abstraction:

“…you have an Order entity but in reality it consists of ten tables.

That is a more interesting problem [assembling a conceptual

entity in a domain layer from several tables] than an object-

relational mismatch…this is something I am looking forward to in

the new framework…” [SOFTARCH3]

The interviewee indicated that better abstractions in the

application layer would go a long way towards reducing overall

complexity and, by extension, improving maintainability in the

long run. Our view that the Entity Framework should encourage

designing applications in terms that are closer to the problem

domain was reinforced by a testimony from other two software

architects.

“… I need higher abstractions to be able to be efficient in my

software development…” [SOFTARCH1], or:

“…I want that layer of freedom [abstraction layer] to be

introduced. It would mean a lot. I want to have a full 100% of the

schema and mapping: how it works and affects performance, and

so on. For the general public [application developers] using the

API10, this [relational model] could be transparent…”

[SOFTARCH3]

As can be seen from the quotes above, extent to which the EF

allows for relational and domain models to diverge is an

important factor. Support for powerful abstractions represents an

important factor in adopting the Entity Framework in DDD.

Essentially, what practitioners expect from the EF is that it will

effectively abstract away the relational model and expose data

10 Application Programming Interface – in this specific case, an

abstraction layer over the database exposed to application programmers.

15

storage with a simple object-oriented interface to application

programmers. This factor played an important role in creating

Entity Framework guidelines discussed in Section 8.

6.5 In-house competence level in objects,

databases and object-relational mismatch
This factor largely concerns a wide set of skills: domain modeling

with an object-oriented paradigm, relational modeling, and object-

relational mapping strategies. The effective use of the Entity

Framework in domain-driven software development projects is

contingent upon the availability of these skills within an

organization.

The interviewees stressed an important mismatch between

communities of object modelers and database designers. In fact,

Ambler [6] terms this phenomenon as the cultural impedance

mismatch. This term refers to the difficulties encountered by

object-oriented and database-oriented developers when working

together [6]. Cultural mismatch creates an interesting dichotomy:

application developers tend to ignore proper modeling of

relational databases by excessively relying on persistence

frameworks to generate a data model from the domain model; data

professionals, on the other hand, advocate for domain models

being driven by relational data models. Interviewees indicated that

in which direction the balance shifts depends largely on what

generation a certain developer belongs to.

It appears that the adoption of the Entity Framework will be

determined by whether the issue of cultural mismatch between

object and data professionals is solved. This can be achieved by

maintaining or raising the level of competence in object-relational

mismatch. Object-oriented application developers will need to

understand the implications of having rich domain models for

relational data models. By the same token, database designers will

need to realize the importance of abstracting object models from

relational models.

6.6 Rich feature set
“…It [adoption of the Entity Framework] is also a feature thing.

You get a lot of features with this [OR mappers]. You should not

underestimate that either. If you ignore the abstraction level, the

ability to do queries and custom things without hand-coding

yourself a lot of infrastructure is a big benefit... ” [SOFTARCH3]

As the interviewee above indicated, in adopting the Entity

Framework querying features would represent an important factor.

It should be possible to create flexible queries to interrogate the

data store about specific domain objects based on a number of

criteria. It is best to be able to create declarative queries for data

and have them retrieve the data in corresponding object graphs

(aggregates). Moreover, an important factor is to have a full

control over the generated SQL code as it can potentially prove

very inefficient.

6.7 Simplicity
No matter how efficient the framework is in generating code and

generous in its feature offerings, these merits will be largely

debased if it requires prolonged training sessions to master. The

fundamental premise behind this idea – simplicity – is that the

Entity Framework is expected to provide sensible mechanisms to

declare mappings between a domain model and its relational

counterpart. For example, the availability of visual modeling tools

for creating domain objects and specifying their mappings could

be an important factor, as indicated by the following architect.

“…[on the Entity Framework] as few layers as possible, as fast

as possible, with a comprehensible metadata approach…”

[SOFTARCH3]

The key word here is comprehensible metadata approach. Indeed,

specifying mapping declarations in XML format with Hibernate

can be rather difficult and confusing. This implies that mapping

specification should be as simple as possible for the framework to

be actively used. But ultimately it is all about simplicity and

understandability:

“…In my opinion the more I stay in this business is that you have

to keep it simple because people do not understand it [any tool] if

it is too fancy…” [SOFTARCH1]

6.8 Support for heterogeneous data sources

for the domain model
This factor concerns how various data sources can underlie

entities in the Entity Data Model. Interviewees indicated that

being able to have multiple data sources for their domain models

would be a welcoming development:

“…[We need] a layer of indirection. Let’s say that we have two

databases, let’s say we have a service. From my

perspective…resource access layer is not only a database, it

could be whatever – it is a resource! In a prolonged term, that

could be another system…You might not need to do that, but the

possibility must be there…” [SOFTARCH3]

Even though this factor appears to be of the least importance, it

would be desirable for the Entity Framework to enable several

data sources for the domain model. This abstraction could make

possible, for example, retrieving domain objects from an XML

store, a number of databases from different vendors and services

into a single domain model. This, in turn, would provide a more

unified view of data for all applications using the given domain

model. A unified view of data would be beneficial in integrating a

number of disparate corporate applications into a new application

or a service.

6.9 Concluding remarks
These were the major factors that the practitioners view as critical

in adopting the Entity Framework for domain-driven design. We

actively used these valuable insights in designing the Entity

Framework guidelines11. For example, the guidelines, by offering

a number of mapping patterns, explain how to effectively build

business abstractions in the domain layer. Also the guidelines

provide recommendations on resolving the cultural impedance

mismatch by showing how to proceed with the domain-driven

development using the Entity Framework. As the reader might

notice, the majority of the factors are technical in their nature with

the main input from software architects. Software analysts also

provided essential input into the guidelines that concern domain

modeling in large.

11 See Section 8

16

7. QUERY PERFORMANCE

EVALUATION
To address the concern of aggregate read performance in the EF,

which was identified as the most important factor in adopting the

EF for DDD, we designed and executed an experiment to measure

the time it takes to retrieve an object graph (aggregate) from a

relational database. Dawson [20] already performed the

evaluation of Entity Framework performance. However, the

author failed to consider a case of retrieving an object graph

instead of a single entity, which we believe is a very important

aspect. Moreover, no studies have been performed contrasting the

EF with NHibernate - another potential tool for DDD. Figure 11

illustrates the aggregate that was used in the experiment.

+Block()

+Allow()

-BlogID : float

-Name : string

-Description : string

-Locale : string

-TimeZone : string

Blog

+ViewSimilar()

-ID : int

-Title : string

-Excerpt : string

-Body : string

-Date : Date

BlogEntry

+PostReply()

-CommentID : int

-AddedBy : string

-Excerpt : string

-Body : string

EntryComment

1 *

1

*

Blog Aggregate

+findBlog()

+addBlog()

+deleteBlog()

BlogRepository

1

*

Figure 11: Domain aggregate retrieved from the relational

database

Domain object Blog is an aggregate root. A reference to it is

returned from a repository. The other domain objects (BlogEntry

and EntryComment) can be accessed only by traversing the graph

from the root. Note that a Blog contains a number of BlogEntries,

each of which is composed of several EntryComments. Figure 12

illustrates the relational model to which the Blog Aggregate maps.

To measure the time it takes to perform the query we used the

.NET standard library class – Environment. It has a property

TickCount which returns a number of milliseconds elapsed since

the system started. See the code below:

int start = Environment.TickCount;
//run the query
int end = Environment.TickCount-start;

Before the query was executed, the time was registered as Start.

Once the query has finished execution and the program moved to

the next line we recorded the End time.

Blog
blogID

name

description

locale

timeZone

BlogEntry
ID

title

excerpt

body

date

FK_BlogID

EntryComment
commentID

addedBy

excerpt

body

FK_entryID

Figure 12: Relational model underlying the Blog Aggregate

Essentially, to retrieve the entire aggregate from the database, a

sequence of operations has to occur, which has the following

rough structure: Firstly, a SQL query is submitted to the database.

To retrieve the data necessary for building the aggregate, the three

relations are joined via LEFT OUTER JOIN and a Cartesian

product is returned (see Figure 13).

Secondly, the resulting dataset is iterated over and, depending on

the algorithm, objects are instantiated and populated with data.

Thirdly, an entire object graph is constructed by initializing inter-

object references. Finally, a reference to the aggregate root is

returned to the caller.

select
b.blogID,
b.name,
b.description,

b.locale,
b.timeZone,
a.entryID,
a.entryTitle,
entryExcerpt,
a.entryBody,
a.entryDate,
a.commentAddedBy,
a.commentID,

a.commentExcerpt,
a.commentBody

from Blog b left outer join
 (select

ID as entryID,
title as entryTitle,
BE.excerpt as entryExcerpt,
FK_BlogID,
BE.body as entryBody,

date as entryDate,
addedBy as commentAddedBy,
EC.commentID as commentID,
EC.excerpt as commentExcerpt,
EC.body as commentBody

from BlogEntry BE left outer join
EntryComment EC on ID=FK_entryID) as a

on b.blogID=a.FK_BlogID;

Figure 13: SQL query to retrieve the Blog aggregate

17

Under the current experiment settings, the Cartesian product

returned from joining the three tables was composed of total 4536

tuples. The resulting object graph consisted of 5 Blog objects, 175

BlogEntries and 4534 EntryComments. For example, one of the

Blog objects was associated with 35 BlogEntries and each of the

entries was associated with 30-40 EntryComments. The

experiment measured the time it would take to retrieve the entire

graph.

A total of five distinct variables were measured in this experiment.

The main variable represents the time it takes to retrieve the

aggregate by using a conventional SQLClient SqlDataReader.

With this approach, a native .NET SqlDataReader is used to

iterate over the dataset returned from the query and from it re-

construct the object graph. In this case, no persistence frameworks

were used to perform the translation. SqlDataReader approach

represents the benchmark against which the remaining four

variables were judged. The second measured variable was the time

it takes to load the object graph with NHibernate object-relational

mapping tool. The third, fourth and fifth variables measure the

time for loading the object graph with EntitySQL, LINQ to

Entities and compiled LINQ to Entities queries in the Entity

Framework, respectively.

The following configuration was used to run the tests:

• Microsoft Visual Studio 2008;

• SQL Express (installed with Visual Studio);

• ADO.NET Entity Framework Beta 312;

• NHibernate 2.0;

• Entity Framework Tools December 2007 CTP;

• A C# console application built under the release mode

configuration;

• A laptop with a dual core 1.66 GHz processor and 1 GB of

RAM.

7.1 SqlDataReader
This test represented the benchmark for evaluating the

performance of NHibernate and the Entity Framework. Figure 14

illustrates a portion of the C# source code that was used in

running the test (see Appendix B for the full source code).

Essentially, a batch query is submitted to the database (lines 10-

16), which returns three distinct datasets corresponding to Blog,

BlogEntry and EntryComments. The DataReader then iterates

through each of the datasets (line 18) and proper domain objects

are instantiated and initialized. In this way the entire object graph

is constructed and the reference to the aggregate root is returned.

The test was executed 100 times and the average execution time

was 45 milliseconds. Note that the first execution took 187

milliseconds and was disregarded due to one-time costs of

establishing a database connection and generating an execution

plan.

12 The framework and its tools are available from

http://www.microsoft.com/downloads/details.aspx?FamilyId=15DB998

9-1621-444D-9B18-D1A04A21B519&displaylang=en

7.2 NHibernate
The same object graph was retrieved with NHibernate 2.0. The

following query was executed (Figure 15):

The test was executed 100 times and the average execution time

was 385 milliseconds. The first execution took 625 milliseconds.

7.3 Entity Framework
In the Entity Framework three querying mechanisms were tested:

Entity SQL, LINQ to Entities and compiled LINQ to Entities. The

following Entity Data Model was queried in the experiment

(Figure 16).

List<Blog> blogs = new List<Blog>();
SqlConnection connection = new
SqlConnection
(@"Data
Source=itl3df788\sqlexpress;Initial
Catalog=BlogDatabase;Integrated

Security=True");
connection.Open();
SqlCommand cmd =
connection.CreateCommand();
string cmdText =
 @"select * from Blog; select *
from BlogEntry; select * from
EntryComment";
cmd.CommandText = cmdText;

SqlDataReader dr = cmd.ExecuteReader();

if(dr.HasRows)
{
 while (dr.Read())
 {
 //starting with first data set - Blog
 Blog b = new Blog();

if (!dr.IsDBNull(0))

b.BlogID =dr.GetInt32(0);
 if (!dr.IsDBNull(1))

b.Name = dr.GetString(1);
 if (!dr.IsDBNull(2))

b.Description =
dr.GetString(2);

 if (!dr.IsDBNull(3))
b.Locale =

dr.GetString(3);
 if (!dr.IsDBNull(4))

b.TimeZone =
dr.GetString(4);

 blogs.Add(b);
 }
}

…

Figure 14: SQL Client

1.
2.
3.
4.
5.
6.

7.
8.
9.
10.
11.
12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.

ISession session =
HibernateSessionFactory.OpenSession();
ICriteria criteria;

criteria =
session.CreateCriteria(typeof(Blog)).

SetFetchMode("Entries",FetchMode.E
ager).

SetFetchMode("BlogEntry.Comments",
FetchMode.Eager);
IList<Blog> blogs=criteria.List<Blog>();

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.

Figure 15: hSQL in NHibernate

18

Figure 16: The Entity Data Model generated from the Blog

relational model

7.3.1 Entity SQL
Entity SQL represents one of the main querying mechanisms in

the Entity Framework. The following query was executed to

retrieve the object graph:

using (BlogDatabaseEntities objModel = new
BlogDatabaseEntities())
{
 ObjectQuery<Blog> blogs = objModel.Blog.Include

 ("BlogEntry.EntryComment");
 blogs.Execute(MergeOption.OverwriteChanges);

}

The query was executed 100 times and the average execution time

was 350 milliseconds. The first execution took some 828 seconds.

This was due to a number of operations that the Entity Framework

performed, such as view generation, metadata initialization and

others. See Dawson [20] for a detailed explanation of the

initialization process.

7.3.2 LINQ to Entities
LINQ to Entities represents a strongly-typed LINQ-based query

language integrated into C# programming language. The

following query was executed:

var blogsQuery = from blog in objModel.Blog
 select new { Blog=blog, Entry=blog.BlogEntry,

Comment=(from entry in blog.BlogEntry
 select new {Comment=entry.EntryComment})};

Note how the LINQ query differs from the SQL query. Instead of

operating on relations and joins based on foreign keys, the query

operates on domain objects and their associations. Moreover, the

query is more expressive and far less verbose. The test was

executed 100 times and the average execution time was 360

milliseconds. The first execution took 1062 milliseconds.

7.3.3 Compiled LINQ to Entities
A compiled LINQ query differs from its non-compiled

counterpart in that on its first run the query execution tree is built

and cached. On subsequent executions the execution tree is

reused, which in theory should improve performance. The

following compiled query was executed (figure 17).

Figure 17: Compiled LINQ to Entities query

Like all previous tests, this query was executed 100 times and the

average execution time was 336 milliseconds. The first execution

took 1032 milliseconds.

7.4 Analysis
Interestingly, the read performance of the two persistence

frameworks does not even remotely match the performance of the

regular SqlDataReader. SqlDataReader may thus seem as a viable

option to create the data access layer. However, for large systems,

writing custom mapping infrastructure could represent an

intimidating task. According to Keene [28], building and

configuring object/relational data access could account for some

30-40% of total project effort.

At the same time, the Entity Framework appears to perform well

compared to NHibernate. In fact, the performance of its three

querying mechanisms is slightly better than that of NHibernate.

This could be explained by different caching strategies employed

by the EF. However, on the average, the costs associated with the

first-time initialization in the EF appear to be higher than those of

NHibernate. In the EF the first execution took from 828 to

upwards 3045 milliseconds. The first execution time in

NHibernate was relatively stable at 625 milliseconds. Yet, during

subsequent query executions, the EF performed better than

NHibernate (see Figure 18). Dawson [20] argues that high

initialization costs in the EF are mainly caused by the run-time

view generation – creating SQL views based on the specified

mappings. According to him, some 56% of the first-time

execution time is expended on generating entity-relation views.

This step can be avoided by generating views at compile-time. As

a result, Dawson continues, the first-time execution can be

decreased by 28%.

var compiledQuery = CompiledQuery.Compile(
(BlogDatabaseEntities context) => from blog

in context.Blog
select new
{

Blog = blog,
Entry = blog.BlogEntry,
Comment = (from entry in
blog.BlogEntry
select new { Comment =
entry.EntryComment })

});

using (BlogDatabaseEntities objModel = new
BlogDatabaseEntities())
{

var blogsQuery =
compiledQuery.Invoke(objModel);

}

19

Figure 18: A comparative evaluation of query performance with DataReader, NHibernate and the Entity Framework

Even though the Entity Framework performs poorly compared to

the SqlDataReader, its feature set needs to be taken into account.

It not only performs automatic object state tracking and

management but also offers a number of querying options. These,

in turn, could dramatically improve developers’ productivity.

Accordingly, we believe that the Entity Framework will need to

be further tested in real project settings to determine if the posed

tradeoff is acceptable.

Eventually, the results from this performance evaluation served as

an important input to the Entity Framework guidelines. For

example, based on this experiment we could give informed

recommendations on using querying mechanisms in repositories.

8. ENTITY FRAMEWORK GUIDELINES
The Entity Framework Guidelines contain a number of

recommended activities that need to be performed when using the

EF in DDD. In many ways, we view them as best practices. The

guidelines cover a wide range of issues: domain modeling, model-

driven development in the EF, applying domain patterns and

mapping domain objects to relations. In designing the structure of

the guidelines we sought to ensure that they could be easily

catalogued and accessed. With this goal in mind, we opted for a

pattern language [27] approach. According to Jessop [27], a

pattern language is a collection of patterns, “each of which is a

simple description of a problem and a suggestion for its solution

and contains links to other patterns in the language”. To our best

knowledge, no pattern languages addressing the use of the EF in

DDD exist in literature. Figure 19 illustrates the taxonomy of the

Entity Framework guidelines.

After cataloguing our best practices of using the EF in DDD, we

created a repository consisting of a total 15 patterns. The

repository has two main parts: core guidelines (8 patterns) and

mapping patterns (7 patterns). The partitioning of the guidelines

into two distinct compartments was motivated by the structuring

requirements. More specifically, it was necessary to organize the

guidelines around domain modeling and design on one side (core

guidelines), and resolving object-relational impedance mismatch

on the other (mapping patterns). Accordingly, core guidelines

address the most basic principles that need to be followed for

effectively using the EF in DDD. Mapping patterns concern the

issues of mapping a domain model to the Entity Data Model and

database tables. Note that mapping patterns play an auxiliary role

in relation to the core guidelines. They present detailed

instructions on how to perform certain activities within the core

guidelines. Each pattern follows a well-defined structure, which is

presented below:

• Applicability – in what cases the given pattern should be

used;

• Goal of the pattern – what expected results the pattern

produces;

• Problem description – a description of a problematic

situation, which the given pattern tries to solve;

• Solution – how should the posed problem be solved;

• Example – shows a concrete example of applying the

pattern.

385

350

360

336

45

0

50

100

150

200

250

300

350

400

Nhibernate 2.0

(EF) EntitySQL

(EF) LINQ to Entities

(EF) Compiled LINQ to Entities

SQLClient (DataReader)

Time (milliseconds)

20

Figure 19: Taxonomy of the Entity Framework Guidelines

Essentially, we see this structure as the language of a pattern. It

serves as a common language for defining a pattern, which could

potentially allow a broader range of people within Volvo IT to

consume patterns and contribute new ones, thus increasing the

overall knowledge base in the domain-driven design. Eventually,

this language was used to develop all the Entity Framework

guidelines, which were then presented to the Software Process

Improvement Group at Volvo IT. The guidelines were presented

in the context of a real-world sample domain-driven application:

the guidelines show how to proceed with the DDD, beginning

from initial domain modeling and ending with the implementation

of a portion of a DDD application supported by the EF. The

following sub-sections discuss the pattern discovery process and

present an overview of the guidelines, which are the main result of

this Master thesis. The details of the guidelines are a proprietary

asset of Volvo IT and cannot be published according to our

confidentiality agreements.

8.1 Pattern discovery process
The main goal of the discovery process was to capture ‘hidden’

organizational knowledge about domain modeling and design, and

document it in the form of a structured description of a solution to

a recurring problem. In this way, we sought to make implicit

(tacit) knowledge within Volvo IT explicit and universally

accessible to all employees within the organization. To achieve

this and catalogue a collection of patterns, we interviewed

software architects and systems analysts on such topics as domain

modeling, object-relational mismatch and object persistence. For

example, an architect was interviewed about domain-driven

design in his projects. Then, his suggestions for incorporating

DDD into a software development process or domain modeling in

general were used in formulating guidelines 1 and 2. In the same

manner, systems analysts contributed to these two guidelines.

Some other guidelines (GL3, 5 and 6, for example) were elicited

from studying available literature on the topic and then validated

with the senior .NET architect. Also, jointly with this architect all

mapping patterns were identified.

8.2 Core guidelines

8.2.1 GL 1: Business domain modeling
As opposed to the database-driven design, the designers should

already at the domain modeling stage use object-oriented

constructs (such as inheritance) rather than database-related

constructs (i.e. constructs that can be readily stored in the

database). This guideline ensures that an object-oriented domain

model captures domain concepts and their relationships in a more

precise way than do database-oriented object models. Essentially,

it offers guidance on collecting knowledge about a domain from

domain experts and distilling it in a model. It shows when in a

generic software development process at Volvo IT domain

modeling should take place. This guideline is largely based on

recommendations made by Evans [22], but it also offers advice

based on knowledge gained during interviews with systems

analysts. We view this guideline to be one of the focal ones as it

addresses primary issues raised by interviewees:

“…The biggest value of a domain model is that you have a

common language and you have a base for…[application]

architecture…If you know the domain, how concepts are related

to each other, you can reflect this in the architecture of the

software. And then you do better software…” [SOFTARCH1]

8.2.2 GL 2: Capturing domain logic
A central characteristic of a domain model is that it not only

captures essential business concepts but also provides a

mechanism for structuring domain logic. This guideline addresses

the issue of capturing domain logic and illustrates how the process

should be organized. It was largely informed by software

architects and complemented by the work of some authors [22,

25]. Essentially, the guideline is about what domain logic should

be modeled in entities and what logic should be modeled as

services, for example. This guideline was largely inspired by a

software architect interviewed during the study:

“…business rules are very important…If you don’t think about

business rules and just go ahead and specify your use cases, you

will have serious problems because business rules are normally

quite complex and they are not flows like use cases…When you do

use cases, you have to be aware that you have business

rules…”[SOFTARCH1]

8.2.3 GL 3: Expressing domain model in software
Once the domain model has been produced, it is necessary to

make it explicit in software: transform it into its software

representation. This guideline shows how to express a domain

model with the Entity Framework and make the model executable.

The guideline addresses a number of issues in performing

21

mappings of different domain model constructs to their software

peers.

8.2.4 GL 4: Validating the domain model
Once the first versions of a domain model have been released in

the project, it is critical to perform the validation of a model with

domain experts. This is explained by the need to ensure that the

domain model accurately captures important domain concepts,

their relationship and essential business rules. This guideline

shows how to effectively perform validation of a domain model

with the Entity Framework.

8.2.5 GL 5: Applying the Aggregate pattern
This guideline shows how to apply the Aggregate pattern within

the Entity Framework. Such important issues are considered as:

the choice of a query language for retrieving aggregates, aggregate

boundary definition, implementing aggregates within the EDM

and others. The guideline actively uses the results from evaluating

performance of the EF querying mechanisms.

8.2.6 GL 6: Applying the Repository pattern
The repository is an abstraction over a domain model. It

represents an object-oriented collection of domain objects: an in-

memory object database. This guideline discusses how Entity

Framework features can be leveraged for creating an effective

mechanism for managing domain objects in an application. Such

issues are considered as: managing ObjectServices context,

defining and building proper transactions and others. Moreover,

this guideline addresses the problems of defining Factories for

creating domain aggregates with the Entity Framework. Finally,

this guideline discusses the creation of services that consume

domain objects from the repository. In this context, the guideline

provides recommendations in scoping and creating transactions.

Also, strategies for preventing optimistic concurrency violations

are addressed in this guideline.

8.2.7 GL 7: Reverse engineering
It is likely that a new object-oriented application will need to be

built on an existing legacy database. In such a project it may be

the case that no documentation will exist short for the legacy data

model. Therefore, considering that object-oriented languages are

best suited for operating on concepts, it becomes essential to be

able to effectively reverse-engineer the legacy database and

extract important concepts from its relational model. This

guideline shows how the Entity Framework should be used for

reverse engineering existing databases and, subsequently,

migrating these systems to domain-driven design practices. For

example, the guideline shows how to:

• extract inheritance structures from a relational model;

• extract aggregation/composition relationships;

• extract associations of different cardinalities, especially

many-to-many associations;

8.2.8 GL 8: Implementing business rules in the

Entity Framework
An essential characteristic of a domain model is that business

logic is embedded directly into domain objects. However, the

EDM is only a data model: it is impossible to specify business

rules in this model. We need to find a way of encapsulating

business logic in domain objects. This guideline discusses

different possibilities of implementing domain logic in domain

objects generated by the Entity Framework.

8.3 Mapping patterns
Mapping patterns complement the core guidelines with the

detailed guidance on mapping a domain model to the Entity Data

Model and then mapping the latter to a relational database model.

We identified a set of 7 major patterns. Possibly, many more may

exist, but the current seven, we believe, represent the most

common cases in domain modeling. The catalogue of patterns was

identified and validated by the senior .NET architect. The details

of some mapping patterns were also informed by [7, 25, 29].

Some mapping patterns are accompanied by a discussion of

implications (consequences) of applying it for maintainability and

performance attributes.

8.3.1 Pattern: Object Association
Object association represents the fact that one object is in some

way related to another (see Figure 20). This pattern describes the

process of mapping object associations to the EDM constructs and

database tables. The pattern considers the following multiplicities:

one-to-one, one-to-many and many-to – many.

Figure 20: Object association

8.3.2 Pattern: Object Aggregation
Object aggregation shows that one object (aggregate) consists of

some other object(s) (see Figure 21). This is a so-called “has-a”

relationship. Object Aggregation pattern shows the options for

mapping aggregation to the EDM constructs and subsequently to

database tables.

Figure 21: Object aggregation

8.3.3 Pattern: Object Composition
Object composition is stronger than aggregation in that the

composite determines the life of its components. That is, should

the composite be destroyed, all of its components will also be

destroyed (see figure 22). This pattern shows how to ensure

composite behavior in both the EDM and the relational model.

Figure 22: Object composition

8.3.4 Pattern: Object Self-Association
Self-association occurs when a class maintains a reference to

itself. More specifically, an object would refer to a subset of

objects of the same class. Consider figure 23.

22

Figure 23: Object self-association

Within the whole staff, there is a subset of managers. Each

manager has a set of subordinates. In this case, on the 1 side of the

relationship a manager is reached. The many side of the

relationship accesses a group of subordinates who report to this

manager. Accordingly, this pattern shows how to perform the

mapping of such an association to the EDM and the relational

model.

8.3.5 Pattern: Object Inheritance
While the EDM supports the concept of structural inheritance

(only attributes are inherited), the notion of inheritance is absent

from a relational model. Instead, it can be emulated by various

schema arrangements. To date, three options exist in mapping

object inheritance to relational tables: table-per-hierarchy (TPH),

table-per-concrete class (TPCC) and table-per-class (TPC) [7, 15,

25, 29].

In TPH, the entire inheritance hierarchy is mapped to a single

database table (figure 24).

Product

productID

name

price

version

productAssembly

Figure 24: Table-Per-Hierarchy inheritance mapping

In TPCC each concrete class is mapped to its own table. Abstract

classes are not mapped (figure 25).

HardwareProduct
productID

name

price

productAssembly

SoftwareProduct

productID

name

price

version

Figure 25: Table-Per-Concrete-Class inheritance mapping

In TPC every single class (concrete or abstract) is mapped to a

database table (figure 26).

SoftwareProduct

productID

version

HardwareProduct

productID

productAssembly

Product

productID

name

price

Figure 26: Table-Per-Class inheritance mapping

Thus, Object Inheritance pattern describes how the mapping

options presented above can be implemented in the EDM with the

Entity Framework.

8.3.6 Pattern: Domain Object
This is a fundamental pattern that discusses mapping a domain

entity to the EDM entity and a relational model. It considers the

mapping of object attributes to the attributes in the EDM entities.

This pattern also discusses how the EDM entity can be split across

several tables to ensure proper normalization in the database, and

yet, have conceptual abstractions in the domain layer.

8.3.7 Pattern: Advanced Mapper
This pattern considers more advanced cases of mappings (beyond

the more common one-to-one mapping) and presents a generic

solution to most complex mapping problems. See figure 27 for an

example of a domain model calling for advanced mapping.

Figure 27: Multiple association

In this case a Customer may possess several Billing and several

Shipping Addresses. Both types may overlap: that is, a Customer

can have a Shipping address which is at the same time a Billing

address. Figure 28 shows a possible relational model to which

such a structure could have to be mapped.

Address
AddressID

Street

City

Country

Customer

CustID

CustomerName

CustomerAddress

CustomerID

AddressID

AddressType

Figure 28: Mapping to relational model

23

In this model, an association table is created which not only

connects customer to addresses but also stores the role a certain

connection plays – AddressType (Billing or Shipping). Mapping

such models to a domain model presented in figure 27 requires

more advanced techniques that go beyond simpler mappings in

the Entity Framework designer. Exactly these situations are

addressed by the Advanced Mapper pattern.

8.3.8 Mapping pattern example
Pattern: Object Association

Applicability

This pattern applies to mapping associations in a domain model.

Goal of the pattern

The pattern shows how to map different types of object

associations to the EDM inter-entity associations and database

tables.

Problem description

How should a one-to-many object association be mapped to the

EDM entity relationship?

Solution

Map one-to-many association to an entity association with the

same multiplicity characteristics. This is possible because EDM

associations are inherently weak, which means that the destruction

of an object does not necessarily lead to the destruction of a

related object.

To map the resulting structure to database tables perform the

following: Create a table for each EDM entity. The keys and

attributes from the EDM remain the same in the database tables.

Add a foreign key to the table that represents the EDM entity on

the many side of the association. The foreign key is the key from

the entity on the one side of the association.

Example

Consider a portion of a domain model below:

This model denotes that an Employee may possess a number of

various Skills. How should we approach mapping this model to

the EDM and the relational database model? Firstly, this model is

mapped to the EDM constructs. By applying one-to-one mapping

between the domain model and the EDM and using a weak

association we can derive the following model:

Then map the resulting EDM model to the following relational

structure:

Employee
SSN

fName

lName

salary

hiringDate

Skill
skillID

skillTitle

skillDescription

employee_FK

The entities are mapped one-to-one to database tables. The keys

from the entities in the EDM remain the same in the tables. Note

the addition of a foreign key to Skill table denoting the one-to-

many relationship from Employee table to Skill table.

9. DISCUSSION

9.1 Why patterns?
We decided to present the guidelines with a pattern approach for a

number of reasons. First and foremost, an individual pattern is

focused on one and only one specific problem/solution pair at a

time. A pattern does not attempt to address numerous issues

simultaneously; rather, it tackles a single problem in an isolated

fashion. Fowler [24] refers to such approach as encapsulating the

problem and states that it is instrumental in solving design

problems in such a massive topic as software. A pattern is very

specific in showing solutions to a concrete problem. Alternatively,

we could formulate the guidelines in the form of general

principles. However, principles are often too abstract and may not

lend themselves well to specific problematic situations in using

the Entity Framework. For example, consider a case of mapping

an abstract conceptual model to a relational model. Unless

mapping is performed by a highly experienced developer (in

which case he does not really need any patterns: he knows the

solutions already), documented best practice will be required for

the less skilled developers to perform effective mapping.

Second, patterns are defined by a language, which imposes a

standard structure on them. With a well-defined structure patterns

can be catalogued and accessed more easily. Considering that a

pattern explicitly states in which context it is applicable, it should

be a more straightforward process finding an appropriate solution

to the given problem.

Finally, a catalogue of patterns is the knowledge base of an

organization. Fowler [24] offers a relevant discussion of the value

of ‘patternizing’ organizational knowledge. The fundamental

irony of patterns is that they, by definition, do not offer anything

new. Rather, they capture what has already been known

(implicitly or explicitly) in a structured description. In fact, they

may even seem trivial to experts in the field. One could argue that

this debases the value of patterns. However, one should also

consider that there are less skilled individuals who are only now

beginning to master the field and they need to gain access to

experts’ knowledge. And here lies the primary benefit of

cataloguing patterns: they help disseminate expert knowledge

within an organization.

9.2 Initial evaluation
To assess whether the pattern approach to presenting guidelines

made sense, we conducted a joint evaluation workshop with the

software architects and analysts (referred to as evaluators in this

24

section) that had been interviewed earlier. During the workshop

we presented some of the core guidelines and mapping patterns to

the evaluators and then solicited their spontaneous comments. Our

primary goal was to see if the method of presenting the guidelines

(pattern approach) was viable within Volvo IT, given the culture

in its project teams. The workshop was organized in two parts.

During the first part we presented the pattern language for

defining the guidelines, which was followed by a demonstration

of sample guidelines prepared prior to the workshop. During the

second part of the workshop we moderated a discussion among

the evaluators where they were asked to elaborate on the strengths

and weaknesses of our pattern approach. A summary of our

deliberations is presented below.

Initially, we had a concern that the pattern approach to the

guidelines would adversely affect their usefulness. Developers

would have to decide for themselves which patterns to use and

when to use. Extracting a proper pattern from a repository and

learning to apply it in a specific context could prove to be

difficult. We suggested to the evaluators that, possibly, a better

option was to present the guidelines in the form of tutorials –

step-by-step instructions on performing domain-driven

development with the Entity Framework. However, the tutorial

method was considered inappropriate by the evaluators for two

main reasons. First, step-by-step instructions are usually too

detailed and context-dependent and therefore cannot be followed

in absolutely all cases. Second, tutorial approach (with numerous

activities and instructions) could obscure important principles

underlying the guidelines.

Interestingly, as the guidelines were presented, some evaluators

appeared to be confused and deemed the guidelines too abstract.

However, once we presented the example part of each guideline,

they admitted that the guidelines were much more understandable

with concrete examples of applying them. Eventually, by the end

of the workshop, evaluators endorsed the pattern approach citing

that it succeeded in conveying the ‘big picture’: applications need

to be structured around a domain model. But there was a

reservation. As of now, it is impossible to be certain about the

applicability of the guidelines and the Entity Framework in

general until they are applied in a real software development

project at Volvo IT. Most importantly, as some of the evaluators

noted, performance of the Entity Framework will need to be

carefully evaluated before any further commitment to the

guidelines can be made.

10. CONCLUSION
The application of the domain-driven design philosophy within an

iterative software development process promises to conquer

complexity inherent in building software. With complexity at bay

comes more intimate understanding of the problem domain. This,

in turn, results in better software capable of effectively addressing

user concerns. There are two essential aspects to domain-driven

design. The first is about modeling: capturing and distilling

domain knowledge in an abstraction – a domain model. In this

context, a domain model represents an analysis artifact – the result

of crunching information about a domain from a number of

sources. The second aspect concerns, not surprisingly, software

design. In this regard, domain-driven design seeks to address the

issue of implementing a domain model in software. It is about

encapsulating a model of business within the overall architectural

framework as well as structuring the logic inside the business

model at the design level.

The adoption of the domain-driven design practices depends on

the availability of appropriate tools that would not only enable

software engineers to perform domain modeling but also address

practical issues in implementing domain-driven applications.

These issues include such cross-cutting concerns as persistence

and transaction management. The ADO.NET Entity Framework

with its emphasis on modeling conceptual business entities can

potentially support domain-driven design.

10.1 Key findings
This exploratory study provided initial knowledge about using the

Entity Framework in domain-driven design at Volvo IT. Most

importantly, a number of guidelines were conceived which

provide guidance in using the Entity Framework for modeling a

domain and implementing it in software. The guidelines re-

iterated the importance of employing conceptual modeling

practices in software development projects as well as following

sound design techniques in working with domain object

persistence. We used a pattern approach to structuring and

presenting the guidelines. Our initial evaluation of the pattern

approach showed that generally it was perceived as

understandable by the key study interviewees: software architects

and systems analysts. However, it is still early to state this with

absolute certainty as the guidelines need to be properly evaluated

in a real software development project within Volvo IT.

Apart from the guidelines, six key factors affecting the adoption

of the Entity Framework in domain-driven design at Volvo IT

were identified. These factors (performance, abstraction,

competence, features, simplicity and multiple data sources) served

as important input to the guidelines. Out of the six factors, the

read performance was stated as number-one concern in adopting

the Entity Framework. Considering this we conducted an

evaluation of aggregate read performance of the Entity

Framework. The performance experiment showed that the

aggregate read performance of the Entity Framework compares

well with that of NHibernate mapping tool. The performance

experiment also demonstrated a number of different querying

mechanisms in the Entity Framework.

10.2 Future research
It is important to remember that this exploratory case study was

conducted at only one company. We believe more similar studies

need to be performed at different software organizations to

confirm or disprove the guidelines proposed in this study. For

example, it is important to conduct a similar study once the Entity

Framework is released to manufacturing. It is conceivable that the

guidelines based on the release version of the framework might in

parts differ from our findings. While the guidelines addressing

modeling are unlikely to differ, more implementation-specific

guidance may well differ. For example, guidance addressing

aggregate and repository patterns might be different. Furthermore,

a more comprehensive performance testing should be performed.

Future research should focus on testing performance of not only

loading objects but also writing data back to the database. Finally,

it would be beneficial to research more options in mapping EDM

entities to database tables with the Entity Framework and

document them in patterns.

25

11. ACKNOWLEDGMENTS
This Master thesis has been an outstanding exercise in knowledge

discovery, which would have been impossible without:

The Swedish Institute, whose kind support in cultural and

monetary aspects has kept me going throughout my whole stay in

Sweden. I would like to thank the Swedish Institute for granting

me a scholarship to pursue my studies at the IT University.

Miroslaw Staron – Software Engineering and Management

program manager at the IT University, who was an academic

supervisor of mine. Miroslaw provided valuable guidance in

tackling the study most effectively. I would like to thank him for

his patience, understanding and, most importantly, objective

criticism of my work.

Ludwik Wallin – an architect at Volvo Information Technology,

who was an industrial supervisor of mine. Ludwik provided a

valuable insight into issues concerning building enterprise

software and also guided me towards relevant aspects of the

Entity Framework and domain-driven design that need be

carefully studied. I would also like to thank all employees from

the Software Process Improvement group and other departments

at Volvo IT who contributed to this study with important

interviews and informal discussions.

Thanks again to all of you for your help, time and willingness to

share experience and insightful comments!

12. REFERENCES
1. MDA Guide Version 1.0.1. 2003: OMG.

2. Microsoft simplifies data-centric development in

heterogeneous IT environment. 2007 [cited 24/04/08];

Available from:

http://www.microsoft.com/presspass/press/2007/dec07/12-

06EntityBeta3PR.mspx.

3. (2001) Rational Unified Process: Best Practices for

Software Development Teams. A Rational Software

Corporation White Paper Volume,

4. Adya, A., Blakeley, J., Melnik, S., Muralidhar, S., Anatomy

of the ADO.NET Entity Framework. Proceedings of the

2007 ACM SIGMOD International Conference of

Management of Data, 2007: p. 877-888.

5. Al-Mansari, M., Hanenberg, S., Unland, R., Orthogonal

Persistence and AOP: A Balancing Act. ACM Workshop

ACP4IS, 2007.

6. Ambler, S., Agile Database Techniques: Effective Strategies

for the Agile Software Developer. 2003: Wiley Publishing.

7. Ambler, S. Mapping Objects to Relational Databases: O/R

Mapping in Detail. [cited 23/04/08]; Available from:

http://www.agiledata.org/essays/mappingObjects.html.

8. Anda, B., Sjoberg, D., Investigating the Role of Use Cases

in the Construction of Class Diagrams. Empirical Software

Engineering, 2005. 10: p. 285-309.

9. Bernsten, K., Sampson, J., Osterlie, T., Interpretive

research methods in computer science. Norwegian

University of Science and Technology, 2004.

10. Bittner, K., Spence, I., Use Case Modeling. 2002: Addison-

Wesley. 368.

11. Blakeley, J., Muralidhar, S., Nori, A., The ADO.NET Entity

Framework: Making the Conceptual Level Real. SIGMOD,

2006. 4(35).

12. Bläser, L., A Programming Language with Natural

Persistence. ACM OOPSLA, 2006.

13. Booch, G., Rumbaugh, J., Jacobson, I., The Unified

Modeliling Language User Guide. 2005: Addison-Wesley.

14. Brdjanin, D., Maric, S., An Example of Use-Case-driven

Conceptual Design of Relational Database. EUROCON,

2007. The International Conference on "Computer as a

Tool", 2007: p. 538-545.

15. Brown, K., Whitenack, B., Crossing Chasms: A Pattern

Language for Object-RDBMS Integration. Pattern

Languages of Program Design, ACM, 1996: p. 227-238.

16. Castro, P., Melnik, S., Adya, A., The ADO.NET Entity

Framework: Raising the Level of Abstraction in Data

Programming. SIGMOD'07, 2007.

17. Chen, P., The entity-relationship model - toward a unified

view of data. ACM Trans. Database Systems, 1976. 1(1).

18. Cook, W., Ibrahim, A., Integrating Programming

Languages and Databases: What's the Problem?

Department of Computer Sciences, University of Texas at

Austin, 2005.

19. Crain, A. The Simple Artifacts of Analysis and Design.

2004 [cited 23/04/08]; Available from:

http://www.ibm.com/developerworks/rational/library/4871.h

tml.

20. Dawson, B. ADO.NET Entity Framework Performance

Comparison. 2008 [cited 05/05/08]; Available from:

http://blogs.msdn.com/adonet/archive/2008/03/27/ado-net-

entity-framework-performance-comparison.aspx.

21. Easterbrook, S., Yu, E., Aranda, J., Fan, Y., Horkoff, J.,

Leica, M., Qadir, R., Do Viewpoints Lead to Better

Conceptual Models? An Exploratory Case Study. 13th IEEE

International Conference on Requirements Engineering,

2005: p. 199-208.

22. Evans, E., Domain-Driven Design: Tackling Complexity in

the Heart of Software. 2004: Addison-Wesley.

23. Fowler, M. Anemic Domain Model. 2003 [cited 05/05/08];

Available from:

http://martinfowler.com/bliki/AnemicDomainModel.html.

24. Fowler, M., Patterns. Software, IEEE, 2003. 20(2): p. 56-

57.

25. Fowler, M., Patterns of Enterprise Application

Architecture. 2002: Addison Wesley.

26. Haan, J.d. MDA, Model Driven Architecture basic concepts.

2008 [cited 21/04/08]; Available from:

http://www.theenterprisearchitect.eu/archive/2008/01/16/md

a_model_driven_architecture_.

27. Jessop, A., Pattern language: A framework for learning.

European Journal of Operational Research, 2004(153): p.

457-465.

28. Keene, K., Data Services for Next Generation SOAs. SOA

WebServices Journal, 2004. 4(12).

29. Keller, W., Mapping objects to Tables: A Pattern

Language. Proceedings of European Conference of Pattern

Languages of Programming Conference'97, 1997.

30. Landre, E., Wesenberg, H., Olmheim, J., Agile Enterprise

Software Development Using Domain-Driven Design and

Test First. Companion to the 22nd ACM SIGPLAN

Conference on Object Oriented Programming Systems and

Applications COmpanion, 2007: p. 983-993.

26

31. Larman, C., Applying UML and Patterns: An Introduction

to Object-Oriented Analysis and Design and Iteratie

Development. 3 ed. 2004: Prentice Hall PTR.

32. Leavitt, N., Whatever happened to object-oriented

databases? IEEE Computer, 2000. 33(8): p. 16-19.

33. Lodhi, F., Ghazali, M., Design of a Simple and Effective

Object-to-Relational Mapping Technique. ACM SAC'07,

2007.

34. Michailov, Z. How to Do Custom Mapping Using Entity

SQL Views. 2007 [cited; Available from:

http://blogs.msdn.com/esql/archive/2007/11/21/EntitySQL_

5F00_Views.aspx.

35. Microsoft. ADO.NET Entity Framework documentation.

2007 [cited 24/04/08]; Available from:

http://msdn2.microsoft.com/en-us/library/bb399572.aspx.

36. Nilsson, J., Applying Domain-Driven Design and Patterns:

With Examples in C# and .NET. 2006: Addison-Wesley.

576.

37. Oldfield, P. Domain Modeling. 2002 [cited 05/05/08];

Available from:

http://www.aptprocess.com/whitepapers/DomainModelling.

pdf.

38. Philippi, S., Model driven generation and testing of object-

relational mappings. The Journal of Systems and Software,

2004. 77(2005): p. 193-207.

39. Ramsin, R., Paige, R., Process-Centered Review of Object

Oriented Software Development Methodologies. ACM

Computing Surveys, 2008. 40(1).

40. Rashid, A., Chitchyan, R., Persistence as an aspect.

Proceedings of the 2nd International Conference on Aspect-

Oriented Software Development, 2003: p. 120-129.

41. Rowlands, B., Grounded in Practice: Using Interpretive

Research to Build Theory. The Electronic Journal of

Business Research Methodology, 2005. 3(1): p. 81-92.

42. Selic, B., Model-driven development: its essence and

opportunities. Object and Component-Oriented Real-time

Distributed Computing, 2006.

43. Selic, B., The Pragmatics of Model-Driven Development.

IEEE Software, 2003. 20(5): p. 19-25.

44. Snoeck, M., Dedene, G., Experiences with Object Oriented

Model-driven development. Proceedings of the 8th

international Workshop on Software Technology and

Engineering Practice (STEP'97), 1997.

45. Tellis, W., Introduction to Case Study. The Qualitative

Report, 1997. 3(2).

46. Van Zyl, P., Kourie, D.G., Boake, A., Comparing the

performance of object databases and ORM tools.

Proceedings of the 2006 Annual Research Conference of the

South African Institute of Computer Scientists and

Information Technologists on IT Research in Developing

Countries, 2006. 204.

47. Wu, H., Pure object-based domain model for enterprise

systems. Proceedings of the 43rd Annual Southeast

Regional Conference, 2005. 2: p. 353-354.

48. Yin, R., Case study research: design and methods. 3rd ed.

2003: Sage Publications.

49. Zhu, Y., Crouch, J., Tabrizi, M., In-process object-oriented

database design for .NET. Proceedings of the 6th

Conference on Information Technology Education, ACM,

2005: p. 139-142.

27

Appendix A: Interview questions

Interviews with software architects

1. When building data-centric applications heavily relying on relational databases, do you have

reverse-engineering projects (relational database model already exists) and forward engineering

projects (development is started from scratch, no models exist yet)? What other project types can

you point out?

2. What is the primary method or technique used for requirements modeling?

3. From your experience, do system analysts use any object-oriented techniques for modeling

requirements? Say, for example, domain modeling?

4. Use cases are traditionally more well-suited for capturing usage scenarios, rather than for

capturing business rules or validations. Do you agree? Do other developers share this notion?

5. How are business rules actually captured and modeled?

6. What do you understand by domain models and domain-driven design?

7. In your view, would a domain model represent an effective mechanism for collecting and

distilling requirements?

8. In data-centric applications, there is a data layer with a relational model and an application layer

with an object-oriented model. Are object models defined independently of relational data

models or usually object models are data-driven?

9. Does the relational data schema place any limitations on the object model? For example, does it

prevent developers from using inheritance in object models?

10. How much behavior do object models contain?

11. Do object models contain any of such constructs as inheritance, aggregation/association and

association?

12. In your view, do developers which you observed possess skills in conceptual data modeling, such

as Entity-Relationship modeling or do they usually start off with defining relational schema?

13. Did projects that you observed use object-relational mapping tools? What kind of tools? How

was the mapping specified? Did the tools impose any limitations on the complexity of object

models (mapping inheritance, composition/aggregation and associations)?

14. In your view, are object models and data models (relational models) developed independently of

each other? Or is either of the models is subjected to the other? For example, object models are

primarily driven by relational data models, or vice versa?

15. If the relational schema already exists in the project, how do you derive or build an object model

on top of the relational model? Do you simply generate objects from tables with an object-

relational mapping tool? Or do you build object models independently regardless of the relational

schema?

16. In general, in .NET projects is object persistence challenging? Do you have to expend a lot of

effort trying to map the two models: relational and object-oriented?

28

Interviews with systems analysts

1. What is the primary technique used for requirements modeling in software development

projects?

2. Do you perform conceptual modeling during requirements engineering stage? If so, what is the

method you use?

3. Do you use object-oriented techniques for requirements modeling in your projects? If so, which?

4. Do you perform formal domain modeling to complement use case modeling?

5. How do you capture main business concepts in the problem domain? In other words, how do you

learn about the domain? Do you use use-cases for this? How do you build a common vocabulary

among developers and business customers?

6. What roles do domain models play in your projects? Are they further refined into object-oriented

design or data models?

7. What constructs do your domain models include?

8. How do you capture business rules and validations? Do you incorporate then into use-case

documents?

9. In your view, would a domain model represent an effective mechanism for collecting and

distilling requirements along with use cases?

10. From your experience, do project members usually use conceptual modeling techniques, such as

Entity-Relationship modeling or object-oriented conceptual modeling (class diagrams)?

11. What are the 5 main challenges which occur during requirements modeling in your projects?

29

Appendix B: C# code to retrieve the blog aggregate with
the SQL client
public int PerformSQLCLIENTquery()
{
 int start = Environment.TickCount;
 List<Blog> blogs = new List<Blog>();
 SqlConnection connection = new SqlConnection

(@"Data Source=itl3df788\sqlexpress;Initial
Catalog=BlogDatabase;Integrated Security=True");

 connection.Open();
 SqlCommand cmd = connection.CreateCommand();
 string cmdText =
 @"select * from Blog; select * from BlogEntry; select * from EntryComment";
 cmd.CommandText = cmdText;

SqlDataReader dr = cmd.ExecuteReader();

 if(dr.HasRows)
 {
 while (dr.Read())
 {
 //starting with first data set - Blog
 Blog b = new Blog();
 if (!dr.IsDBNull(0)) b.BlogID = dr.GetInt32(0);
 if (!dr.IsDBNull(1)) b.Name = dr.GetString(1);
 if (!dr.IsDBNull(2)) b.Description = dr.GetString(2);
 if (!dr.IsDBNull(3)) b.Locale = dr.GetString(3);
 if (!dr.IsDBNull(4)) b.TimeZone = dr.GetString(4);

 blogs.Add(b);
 }
 }

 //move to BlogEntry dataset
 dr.NextResult();

 if (dr.HasRows)
 {
 while (dr.Read())
 {
 //re-constitute BlogEntry object
 BlogEntry be = new BlogEntry();
 if (!dr.IsDBNull(0)) be.EntryID = dr.GetInt32(0);
 if (!dr.IsDBNull(1)) be.Title = dr.GetString(1);
 if (!dr.IsDBNull(2)) be.Excerpt = dr.GetString(2);
 if (!dr.IsDBNull(3)) be.Body = dr.GetString(3);
 if (!dr.IsDBNull(4)) be.Date = dr.GetDateTime(4);

 int blogID = dr.GetInt32(5);
 //find the Blog object with the given ID

Blog theBlog=blogs.Find(delegate(Blog b) { return b.BlogID ==
blogID; });

 //add the current BlogEntry to the Blog
 theBlog.Entries.Add(be);
 be.Blog = theBlog;
 }
 }

30

//move to EntryComment dataset
dr.NextResult();

 if (dr.HasRows)
 {
 while (dr.Read())
 {
 //re-constitute EntryComment object
 EntryComment ec = new EntryComment();
 if (!dr.IsDBNull(0)) ec.CommentID = dr.GetInt32(0);
 if (!dr.IsDBNull(1)) ec.AddedBy = dr.GetString(1);
 if (!dr.IsDBNull(2)) ec.Excerpt = dr.GetString(2);
 if (!dr.IsDBNull(0)) ec.Body = dr.GetString(3);

 int blogEntryID = dr.GetInt32(4);
 bool entryFound = false;
 foreach (Blog blog in blogs)
 {
 foreach (BlogEntry entry in blog.Entries)
 {
 if (entry.EntryID == blogEntryID)
 {
 //add the entry comment to the blog entry
 entry.Comments.Add(ec);
 ec.BlogEntry = entry;
 entryFound = true;
 break;
 }
 }
 if (entryFound)
 break;
 }
 }
 }

 connection.Close();

 int end = Environment.TickCount - start;

 return end;

}

-addressID

-street

-region

-city

-country

-zipCode

«Entity»

Address

+CheckCreditworthiness()

-customerID

«AggregateRoot»

Customer

1

-shipping

1..*

1
-billing

1..*

-transactionID

-date

-amount

«AggregateRoot»

BankingTransaction

+debit()

+credit()

-accountNumber

«AggregateRoot»

Account

-balance

«Entity»

CheckingAccount

-interestRate

«Entity»

SavingsAccount

*

-from

1

*

-to1

* *

Transaction Aggregate

Customer Aggregate

AccountAggregate

+Add(in Customer)

+Remove(in Customer)

+FindByID(in customerID)

+FindBySpec(in Specification)

«Repository»

CustomerRepository

1

*

+Add(in Customer)

+Remove(in Customer)

+FindByID(in customerID)

+FindBySpec(in Specification)

«Repository»

TransactionRepository
1*

+Add(in Customer)

+Remove(in Customer)

+FindByID(in customerID)

+FindBySpec(in Specification)

«Repository»

AccountRepository

1

*

-personalNumber

-firstName

-lastName

«Entity»

IndividualCustomer

-taxID

-taxCode

-companyName

«Entity»

CorporateCustomer

+TransferMoney(in toAccount, in fromAccount, in amount)

«DomainService»

MoneyTransfer

+RegisterNewCustomer(in customerData, in accountData, in addressData)

«DomainService»

CustomerRegistration

A
p

p
e
n

d
ix

 C
: E

x
a
m

p
le

 d
o

m
a
in

 m
o

d
e
l b

a
s
e
d

 o
n

 d
o

m
a
in

-
d

riv
e
n

 d
e
s
ig

n
 p

rin
c
ip

le
s

3
1

