
Institutionen för
INFORMATIK

Handelshögskolan
Göteborgs universitet

Managing Changing Requirements

with Tools Supporting

the Unified Process
November 1998 – January 1999

Examensarbete I

Author: Katarina Werkström
Supervisor: Bengt Hagebratt

Abstract

Managing Changing Requirements with Tools Supporting the Unified Process

ABSTRACT
Several modern software engineering processes advocate an iterative life-cycle
approach. This involves that the set of requirements are refined throughout the system
life-cycle. An ongoing refinement demands an active control of the requirements,
which can be enabled with the support of a requirements management tool. This tool
should provide capabilities to document, organize, track, and query requirements. It is
important that the requirements management tool can be integrated with a process and
tools used to support other activities of the development. It must be possible to
transfer data between the different tools in order to ensure consistency. This thesis
deals with the management of changing requirements according to the Unified
Process, with the support of the requirements management tool RequisitePro. The
requirements document of an existing system was used as a starting point. This
document was imported to RequisitePro, and then altered to comply with the
guidelines of the Unified Process. The results showed that the combination of the
Unified Process with RequisitePro can be very useful, but that there are some
problems. If requirements are organized as recommended in the Unified Process,
RequisitePro makes it possible to actively control requirements by queries,
traceability, and change history. The problems found concerned: lack of guidelines for
documentation of use cases in RequisitePro, and difficulties with synchronization with
the visual modeling tool Rational Rose. The conclusion drawn was that the solution to
the problems of requirements management is found in the guidelines of a process and
the experience of a skilled requirements engineer. The tool is the assistant that ensures
that developers can perform their job more efficiently, and alleviates cumbersome
tasks.

Table of Contents

Managing Changing Requirements with Tools Supporting the Unified Process

CONTENTS
1 Introduction..1

1.1 Problem Statement..1
1.1.1 Intention..1
1.1.2 Hypothesis ..2
1.1.3 Scope and Limits ..2

2 Processes Overview..3
2.1 Traditional -Waterfall Model ..3
2.2 Modern - Unified Process ...4

2.2.1 Iterative Approach ..4
2.2.2 Use Case Driven ...4
2.2.3 Two Dimensions ...5
2.2.4 Tool Support...6

3 Requirements Management Overview ..7
3.1 Features and Activities of Requirements Management7

3.1.1 Guidelines for Documenting Requirements ..7
3.1.2 Requirement Types ...8
3.1.3 Requirement Attributes ...9
3.1.4 Traceability...10
3.1.5 Change History ...12

3.2 Tools for Requirements Management ...13
3.3 Traditional versus Iterative Approach to Requirements Management13

4 Methods ...14
4.1 Tools ..14

4.1.1 RequisitePro ...14
4.1.2 Rational Rose..15
4.1.3 SQA Suite 6.0...15
4.1.4 Tools Integrated with RequisitePro ...16

4.2 Theoretical Studies ...17
4.3 Case Study..17

4.3.1 Organization of Requirements in RequisitePro......................................17
4.3.2 Modeling in Rose..18
4.3.3 Establishing and Testing Traceability Links in RequisitePro19
4.3.4 Testing Synchronization Capabilities ..19

5 Results..20
5.1 RequisitePro ...20

5.1.1 Project ..20
5.1.2 Documentation..21
5.1.3 Creating Requirements..22
5.1.4 Guidelines for Managing Changing Requirements24

5.2 Rose ...26
5.3 Synchronization Between RequisitePro and Rose ...27

6 Discussion ..29
6.1 Can Benefits of the Tool Justify the Investment? ..29
6.2 Combining a Process with Tool Support ...30
6.3 Benefits and Drawbacks with Synchronization..31

Table of Contents

Managing Changing Requirements with Tools Supporting the Unified Process

6.4 Conclusions ..31

7 Acknowledgments ..33

8 Glossary ...34

9 References..37

Introduction

Managing Changing Requirements with Tools Supporting the Unified Process 1 (38)

1 INTRODUCTION
Managing the evolution of requirements for information systems is a major
problem to software engineers. Problems with handling changing requirements
are large contributing factors to software project failure. No matter how
carefully the requirements are designed there are always changes to the
original set of requirements. Requirements change because stakeholders
change their minds, because the external environments change, and because
developers fail to find the right requirements at the right time. The problem
with changing requirements goes beyond spending time at implementing new
features. It is important to know what impact a change will have on other
requirements and artifacts. The effects of one small change can become far
more fundamental than it was possible to imagine. Therefore it is important to
structure and organize the requirements in a way that makes them resilient to
changes, and easy to track.

Development of software system has evolved from chaotic and unstructured
(and still is chaotic and unstructured in many ways), to a process intensive
practice. Processes are needed to create order and structure, to organize the
projects. There are many books and articles on the market that concerns
software development processes. They vary from traditional waterfall models,
to modern use case driven and iterative approaches. Even though dealt with
very differently, a common factor among these processes is that requirements
management is of major concern. Further, there is also consensus on the need
of supporting tools to ensure compliance with certain normative criteria, such
as completeness, traceability, verifiability, and reusability.

1.1 Problem Statement
Two of the essential factors for successful management of requirements are
assistance from a process and tool support. The process provides guidelines
for activities and artifacts such as documents and models, whereas tools
facilitate active control of the requirements. Different tools concentrate on
different aspects of system development, therefore it is needed that
information stored in different tools can be exchanged and related to maintain
consistency throughout the project.

1.1.1 Intention
The intention of this study was to investigate if a process with tool support can
facilitate management of requirements, and how the process and tool support
is combined. The emphasis was placed on tool support:

• How should requirements be managed with the tool to be conducted in
accordance with the process?

• How is the tool support used in the most efficient way?
• Are there any possibilities of information interchange between tools

supporting the process?

Introduction

Managing Changing Requirements with Tools Supporting the Unified Process 2 (38)

1.1.2 Hypothesis
The assumption made was that there is an existing process with tool support
that is capable of efficient enhancement of requirements management. There
are several companies that claim that their products can achieve this. One of
those is the Rational Software Corporation. They propose the combination of
the Unified Process and the tools RequisitePro, Rational Rose, and SQA
Suite∗. The hypothesis was that the Rational products could provide a solution
to the problem of managing changing requirements.

1.1.3 Scope and Limits
This thesis deals with the problem of how to document, classify and structure
requirements in order to manage change. This thesis is concerned with
managing requirements and not how to capture them.

The Unified Process is a Software Engineering Process, which describes a
family of related processes sharing a common structure, and a common
architecture. A member of this family is requirements management. The
guidelines conveyed by the Unified Process encompass far more than attended
to in this thesis. The features of the Unified Process of interest for the current
investigation were

• Guidelines for documenting and organizing requirements, in order to
manage change.

• How the guidelines can be combined with the supporting tool
RequisitePro.

• How RequisitePro can be synchronized with other software
engineering tools, such as Rational Rose, in order to exchange
information.

∗ The Unified Process, RequisitePro, Rose, and SQA Suite are all products of the Rational
Corporation, but for simplicity the Rational prefix will be dropped in most of the future
descriptions of the process and the tools.

Processes Overview

Managing Changing Requirements with Tools Supporting the Unified Process 3 (38)

2 PROCESSES OVERVIEW
A process can be defined as a set of ordered steps intended to reach a goal. In
the concept of software engineering the goal is to build, or to change, an
existing system. Even with good architecture and methods present, the
software development is quite unproductive without a sophisticated
development process. It is important to know what information should be put
into the repository or generated out of it at each development stage, and who is
responsible for each activity. The order of the steps to be followed vary from
project to project, depending on which process is used. In the traditional
Waterfall model the steps are sequentially ordered, whereas in the Unified
Process the development is iterative.

2.1 Traditional -Waterfall Model
The process used by most software projects in the past is the Waterfall model
that was first presented in 1970, in a paper by Winston Royce [13]. In this
model, depicted in Figure 1, an activity is pursued until a document is
reviewed and approved, and then this document becomes the input of the
following activity. This procedure is conducted from requirements
specification until the final delivery of the system.

Implementation

Users’ Needs

Analysis

Design

Integration

Testing

Software System

Figure 1: The Waterfall Model

The fundamental steps of the Waterfall model are [13, 14]:

1. Analysis – Completely understand the problem to be solved, its
requirements and its constraints. Capture them in writing and get
all interested parties to agree that this is what they need to achieve.

2. Design – Design a solution that satisfies all requirements and
constraints. Examine this design carefully and make sure that all
interested parties agree that it is the right solution.

Processes Overview

Managing Changing Requirements with Tools Supporting the Unified Process 4 (38)

3. Implementation/Coding – Implement the solution using your best
engineering techniques.

4. Testing – Verify that the implementation satisfies the stated
requirements.

5. Integration – Deliver the system. Problem solved!

In principle this model is very reasonable, as a matter of fact these are the
steps used by other engineering disciplines, as e.g., when building bridges and
skyscrapers. But engineers of bridges and skyscrapers have learned their
“lesson” from hundreds of years of experience, whereas software engineering
has been in existence only for a few decades. One of the main complaints
about the Waterfall model is that it does not allow any feedback. When one
activity is completed it is final and there is no return. Another complaint about
the Waterfall model is that it leads up to a big bang [13, 14, 17]: Many errors
or problems are not discovered until the end of the development when testing
is performed. This result in projects being delayed and over budgeted [6].

2.2 Modern - Unified Process
The Unified Process is a controlled iterative and use-case driven software
engineering process. It consists of guidelines dealing with technical as well as
organizational aspects of software development.

2.2.1 Iterative Approach
Working iteratively means that the system is developed in several individual
steps, where each step is a complete life cycle including analysis, design,
implementation and test. In other words, an iterative process can be viewed as
being composed of many small waterfall models. In order to work iteratively it
is important that the iterations are controlled and that each iteration should
result in a release of a subset of the final product, as e.g. a piece of executable
code.

2.2.2 Use Case Driven
Use cases represents the behavior of the system. A use-case is a sequence of
actions the system performs. To be defined as a use-case the actions must
“… yield a result of observable value to a particular actor” [10]. This is an
important factor that centers the development on users’ needs. Use cases are
documented both in visual models and textual descriptions. When a use case is
identified it is defined briefly in a textual description called the brief
description. Further on, the use case is described more thoroughly in flow of
events.

The development process is driven by use-cases, from start to end, see Figure
2, on page 5. Requirements are expressed as use cases. In the use case
descriptions classes are discovered, and the goal is that the classes should
realize the complete use case model. Classes and their objects are visualized in
a design model. The design model is used to structure the implementation
model. The implementation model describes how classes are mapped to
subsystems and their correspondent components. Components include both
deliverable components, such as executables, and components from which the
deliverables are produced, such as source code files. The different system

Processes Overview

Managing Changing Requirements with Tools Supporting the Unified Process 5 (38)

sequences described by the use cases influence the structure of the
implementation model. During testing, use cases constitutes the basis for
identifying test cases and test procedures. Each use case is performed to verify
the system behavior.

realization

influence

verification

Use Case Model

express requirements

Design Model
(classes and objects)

Implementation Model
(source code)

Test Model
(test cases and procedures)

Figure 2: The Use Case Driven Approach.

2.2.3 Two Dimensions
The Unified Process is organized around two dimensions: Time (phases) and
content (workflows). The time dimension is dynamic and represents the life-
cycle aspect. It consists of the four phases inception, elaboration, construction
and transition. For a more thorough description of these phases see Kruchten
[14]. The content dimension, on the other hand, is static and consists of
workflows and activities. The workflows are divided into core process
workflows and supporting workflows. The core workflows are business
modeling, requirements, analysis & design, test, and deployment, while the
supporting workflows are configuration & change management, project
management and environment, see Figure 3, on page 6.

Processes Overview

Managing Changing Requirements with Tools Supporting the Unified Process 6 (38)

Business Modeling

Phases

Iterations

Core Process Workflows

Core Supporting Workflows

Requirements

Analysis & Design

Implementation
Test

Environment

Deployment

Configuration & Change Mgmt
Project Management

Figure 3: The Two Dimensions of The Unified Process: Phases and Workflows. The Humps
Describes an Estimation of the Time Needed on Each Workflow, Distributed on Iterations.

2.2.4 Tool Support
It is possible to use the process independent of tools, but there are supporting
tools that can facilitate development by automating part of the work. Some of
the tools that support the Unified Process are: RequisitePro for requirements
management, Rose for visual modeling, SQA Suite for testing, and SoDA for
documentation.

Requirements Management Overview

Managing Changing Requirements with Tools Supporting the Unified Process 7 (38)

3 REQUIREMENTS MANAGEMENT OVERVIEW

Requirements Management∗ is a systematic approach to establishing an
agreement between the customer and the development team on the changing
requirements of the system. Requirements Management consists of activities
aimed at finding, organizing, documenting, and tracking requirements.

What are requirements?

Requirements are descriptions of the customers’ and users’ needs, their visions
of the intended system. These descriptions define what the system should do,
and can be used to measure the success of the implemented system.
Requirements can be specified by visual models, and by textual descriptions.
The requirements are the foundation of the system. When a new system is
developed it is created from the requirements, any further development means
that the system has to conform to the new or modified requirements. To
produce a high quality product it is therefore essential to have well defined and
organized requirements.

Problems with Managing Requirements

There are many problems that arise when managing requirements. Some of the
major problems perceived are that requirements do not reflect the real needs of
the customer, they are incomplete and inconsistent, it is expensive to make
changes, and there are misunderstandings between customers and those
developing the system [15]. Common causes for those problems involves the
following [5, 7, 10, 11]:

• Requirements are difficult to find, because they are not always obvious
and have many sources.

• Requirements change and the changes can not be tracked.
• Requirements are badly organized.
• Requirements are difficult to write.
• There are many different types of requirements at different levels of

detail.

3.1 Features and Activities of Requirements Management
In order to deal with the problems of requirements management the following
features and activities of requirements management can be applied: guidelines
for documentation, requirement types and requirement attributes, traceability,
and change history.

3.1.1 Guidelines for Documenting Requirements
Sommerville and Sawyer [15] defines the requirements document as:

… an official statement of the system requirements for customers,
end-users and software developers. Depending on the organization,

∗ There is an ongoing debate whether the term Requirements Engineering, or Requirements
Management should be used: Are they different names for the same practice, or do they
actually convey a meaningful distinction. This will not be debated here. As far as this study is
concerned the terms could be used interchangeably to describe a practice that includes
elicitation, analysis, specification, verification, and management of requirements.

Requirements Management Overview

Managing Changing Requirements with Tools Supporting the Unified Process 8 (38)

the requirements document may have different names such as
‘functional specification’, ‘the requirements specification (SRS), ‘the
safety/reliability plan’, etc. These documents are all basically
similar. They specify what services the system should provide,
system properties such as reliability, efficiency, etc. and the
constraints on the operation and (…) the development of the system.

At the start of a project, before eliciting the requirements, guidelines must be
drawn that provide instructions about how to document the requirements. This
should be done to assure that the requirements are documented in a consistent
manner, which will make them easier to review and manage. The decision is
not whether requirements should be documented, but how to document them.

The guidelines for documenting requirements should contain information
about [5, 10, 15, 16]:

• What document types to use, and a definition of the structure of those
document types.

• Instructions about how to capture requirements in the document, i.e., in
textual descriptions, visual models, representation language (e.g. UML),
etc.

• What requirement types should be used, and what attributes should the
different types possess.

• How much time should be spent on documenting

3.1.2 Requirement Types
There are many kinds of requirements, which makes it convenient to arrange
them into different types and subtypes. A requirement type is a class or group
of requirements that have a common set of attributes. By organizing
requirements by types they can be distributed to smaller, more manageable
units. This is especially useful when dealing with large sets of requirements.

Different Levels of Requirement Types

Requirement types can be decomposed into varying levels of specificity [7, 10,
11, 15, 16]. All requirements can be categorized as either functional or non-
functional. A functional requirement defines the behavior of the system in
terms of the required inputs and outputs. Non-functional requirements, on the
other hand, define the attributes and constraints on the system. This is a very
general classification of requirements, which can be refined in an infinite
number of ways. In the Unified Process high level requirements are
documented in vision statements as product requirement types. More detailed
functional software requirements are expressed as use cases, which in turn are
used to derive test requirements. The non-functional requirements are
documented either in a special section of the use case specification, or in a
global supplementary specification. The allocation of requirement types to
different documents in the Unified Process is depicted in Figure 4, below.

Requirements Management Overview

Managing Changing Requirements with Tools Supporting the Unified Process 9 (38)

Use Case Model

Vision

Supplementary
Specification

Product Requirements

Functional Software
Requirements

Non-Functional Global
Software Requirements

Figure 4: Allocation of Requirements of Different Types to Documents

Number of Requirement Types to Use

The number of requirement types used vary with different projects, the larger
and more intricate the system, the more requirements types are needed.
Moreover, different experts do not only name their requirement types
differently, but they also suggest different numbers of requirement types. In
the GREP Handbook [11] as many as thirteen different requirement types are
recommended, while Rational experts recommends a maximum of five to
seven requirement types. The benefit of having many requirements types is
that they help verify that all aspects of the system are considered. The negative
effect of having many requirement types is that too much effort is spent on
assigning requirements to different types.

3.1.3 Requirement Attributes
Attributes are used to provide information that can be used to evaluate, track,
prioritize and manage requirements. Each type of requirement has attributes,
and each individual requirement has different attribute values [7, 16].
Attributes differ depending on the type of element that needs to be tracked,
i.e., what questions they are intended to answer. Attribute values should be
decided in the initial stage of the development. They should be able to answer
questions that are pertinent to both stakeholders and developers. The Unified
Process recommends using attributes to help in:

• Assigning resources
• Assessing status
• Calculating software metrics
• Managing project risk
• Estimating costs
• Assuring user safety
• Managing project scope

Requirements Management Overview

Managing Changing Requirements with Tools Supporting the Unified Process 10 (38)

Some commonly used attributes are described here below in Table 1:

Name of Attribute Explanation

Rationale Reason for the requirement

Development Priority Order/priority of development

Status Proposed, approved, incorporated, validated,
rejected

Risk Probability of adverse project impact (schedule,
budget, technical)

Safety/Criticality Ability to affect user health, welfare, or economic
consequence of failure

Responsible Party Who is responsible for the requirement

Origin Source of the requirement

Stability Probability whether the requirement will change
Table 1: List of Common Attributes

3.1.4 Traceability
To manage requirements, traceability information is needed. A requirement is
considered to be traceable if it is possible to discover [15]:

• Who suggested the requirement.
• Why the requirement exists.
• What requirements are related to it.
• How the requirement relates to other information.

What is Requirements Traceability?

Requirements traceability is a technique that is used to follow requirements
from their origin, through development and ongoing iterations of refinement,
to subsequent implementation and use, in intermediate as well as final
products. Further, traceability provides the ability to discover the history of
system features and supports maintenance of the system. Traceability should
be a bi-directional path, with both forward and backward recordings [3, 4, 11,
15, 16]. Forward traceability is needed in order to demonstrate how a
requirement is manifested in a system. It supports the software engineer in
keeping track of the requirements, and ensures that all requirements are
properly transformed at each level of development. Backward traceability is
required to maintain the integrity of the requirements, when changes of the
design and the environment occur. It can be used to determine which
requirement was the origin of a certain piece of code.

Requirements traceability has been in practice for more than two decades [4],
but still there is little consensus on how to apply it. The practices and
usefulness of traceability vary considerably. Different stakeholders have

Requirements Management Overview

Managing Changing Requirements with Tools Supporting the Unified Process 11 (38)

different views of traceability, and standards of requirements traceability are
too vague in their definitions.

Why Use Requirements Traceability?

The main stated purposes for establishing traceability are [10, 15]:

• To verify that all customer requirements are fulfilled in the
implemented system.

• To verify that the application does what it was intended to do.
• To manage change.

Depending on which stakeholder is asked why he/she uses requirements
traceability the answer varies. In a case study by Ramesh et al. [4], the upper
management viewed the use of requirements traceability as a must for
survival, essential to keep customers happy. The Project managers, who
needed to trace requirements to a more detailed level, believed that traceability
provided a means to show that they were in full control of the project.
However, the most significant use of traceability was achieved by the system
engineer, who through traceability could trace proposed changes down to the
computer software units, thus identifying which entities would be affected by
a change.

Different Levels of Traceability

Different standards mandate varying degrees of requirements traceability,
therefore each specific situation must decide which level of traceability to use.
In the strictest sense, to achieve complete traceability means that all individual
customer requirements are traced to each related specification, test procedure,
model element, and ultimately the source code. Never the less, it is not always
pertinent to have complete traceability. It is often recommended that
traceability should only be established between requirements. The main
disadvantage of traceability is that it requires a considerable investment to set
up and maintain. It is important to evaluate the costs and benefits, to establish
the level of traceability that a project calls for. Requirements traceability is
much more difficult to achieve the larger the system, but also more important
the larger the system.

Establish Traceability Paths

Irrespective of the level of traceability chosen, it is important to use
traceability consistently. According to The International Council on Systems
Engineering [2] a consistent use of traceability should be able to answer the
following questions:

• What is the impact of changing requirements?
• Where is a requirement implemented?
• Are all requirements allocated?
• What mission need is addressed by a requirement?
• Why is this requirement here?
• Is this requirement necessary?
• What design decisions affect the implementation of a requirement?
• Why is the design implemented in this way and what were the other

alternatives?

Requirements Management Overview

Managing Changing Requirements with Tools Supporting the Unified Process 12 (38)

• Is the implementation compliant with the requirements?
• What acceptance test will be used to verify a requirement?
• Is this design necessary?
• How do I interpret this requirement?
• Are we done?

Consistent use of traceability can be achieved by establishing traceability
paths. The paths describe how the requirements are traced to different
elements, e.g., other requirements, use cases, classes etc. Figure 5 show an
example of how traceability paths can be established.

Design Model Test Model
User

Documentation

Vision

Supplementary
Specification

Use Case
Model

1

3 54

1

2

1. Trace top level
requirements into detailed
requirements.

2. Trace use cases to
supplementary requirements.

3. Trace requirements into
design.

4. Trace requirements into
test procedures.

5. Trace requirements to user
documentation.

Top Level
Requirements

Detailed
Requirements

Figure 5: Traceability Paths

3.1.5 Change History
As changes are made to a requirement, it is important that a record of all of the
changes is maintained. There is a need to understand and record the history of
requirements as they evolve because:

• Capturing reasons for change will avoid making the same mistakes over
again.

• Change history enables developers to retreat to a certain version of the
requirement, e.g., if a requirement proves impossible to implement.

• Find the reasons for why and how a requirement evolved.

In order to meet these demands the data collected in the change history record
must be able to answer questions such as: What changed and when did it
change, why did it change, and who authorized the change? An example of the
kind of change data to maintain for the change history record is shown in
Table 2, on page 13.

Requirements Management Overview

Managing Changing Requirements with Tools Supporting the Unified Process 13 (38)

Version Modifier Date Change Reason

1.1 Donald Duck 98.05.01 Put up new
fence

Pluto thrashed the old
one

1.2 Mickey Mouse 98.06.02 Bought a
Leash

Pluto don’t obey the
order: Stay Home!

Table 2: Modification History (Requirement: Keep Pluto out of Donald’s Garden)

3.2 Tools for Requirements Management
Not very long time ago traceability was maintained with no more support than
a paper and pen [2]. Then engineers started to use simple word processors and
spread sheets to document the requirements and their dependencies. Even with
the help of word processors and spreadsheets requirements management is a
cumbersome task. Today the market is starting to realize the need of tools that
supports traceability. Tools for requirements management, modeling (analysis
and design), test and documentation, that can save effort and lighten the
workload. Unfortunately there are few possibilities to relate the information
stored within one tool to information stored in another tool. Developers know
that it is near impossible to achieve traceability without tools, but the question
is does the benefits justify the investment?

3.3 Traditional versus Iterative Approach to Requirements
Management
In the traditional waterfall model requirements management is restricted to
occur at the beginning of the development cycle. In the initial phase an attempt
is made to precisely define all requirements to be implemented. This approach
treats requirements as equally important and depends on that the requirements
remain constant throughout the development life.

However, requirements do not remain constant, they change. As a matter of
fact it is not always desirable that requirements remain constant. In the initial
stage of a project the customer has a vision about the desired system. This
vision functions as a base for the original set of requirements. As the project
continues the original set changes: New requirements are created, and some
requirements are modified or rejected.

It is now generally accepted that requirements must be treated as dynamic
entities. They should not be confined to a certain stage of the development, but
they should be maintained and refined during the entire life cycle. This
dynamic view of requirements calls for a different approach to software
development. Software systems need to be developed in an iterative manner
that allows requirements to evolve with the system.

Methods

Managing Changing Requirements with Tools Supporting the Unified Process 14 (38)

4 METHODS
This study was conducted during ten weeks as part of a thesis course at the
Institute of Informatics, at the University of Gothenburg. Since time was one
of the major limiting factors methods and tools had to be chosen with
consideration to this, and the work had to be planned accordingly. At the
initial stage of the study an outline of the overall planning was created. The
workload of each week was planned in detail at the beginning of the week and
summarized at the end of the week.

The process chosen was the Rational Unified Process, and the main tool used
was Rational RequisitePro. Complimentary tools were supposed to be both
Rational Rose and Rational SQA Suite. The choice of this process and the
tools was due to the need of an evaluation. Another influencing factor was
earlier familiarity with both the process and some of the tools, primarily
RequisitePro. This reduced some of the time that had to be spent on learning.

4.1 Tools
This section contains a short presentation of the tools that were intended to be
used in this investigation, i.e., RequisitePro, Rose and SQA Suite∗. For a more
complete description of the tools see References [9, 10, 12], on page 37.

4.1.1 RequisitePro
RequisitePro is a Windows-based tool that supports Requirements
Management. Regardless of which process is used it helps organize, document
and manage change. With RequisitePro it is possible to query, track, and trace
requirements as they evolve throughout the project life cycle. Requirements
are organized by linking Microsoft Word to an integrated database, which
stores and manages the requirements.

RequisitePro is comprised of three different workplaces where interrelated
work is done. These workplaces are the Tools Palette Workplace (Figure 6),
the Views Workplace and the Word Workplace. When RequisitePro is started
the, the Tools Palette Workplace, and the Views Workplace are displayed. The
Tools Palette is used to work with requirements in documents, and to
manipulate/modify projects, while the Views Workplace is an interface to the
database. The Word Workplace is a window to Microsoft Word, which is not
started until a document is created or opened.

Figure 6: The RequisitePro Tools Palette

∗ The versions of the tools used were: RequisitePro 3.1, Rational Rose 98 (Enterprise Edition),
while SQA Suite never was investigated, which is discussed later.

Methods

Managing Changing Requirements with Tools Supporting the Unified Process 15 (38)

4.1.2 Rational Rose
Rational Rose is a visual modeling tool, which provides the capability to
represent different perspectives of a system. In Rose, model components can
be created, viewed, modified and manipulated. Models are abstractions of real
world ideas and are used to show the essentials of complex problems. In Rose
a model is a representation of the problem domain and the system software.
Each model contains views, diagrams and specifications (detailed descriptions
of specific entities), which are conveyed with the UML (Unified Modeling
Language) notation.

The User Interface is Windows based and it consists of the following:
• A standard toolbar, which is independent of the diagram window

currently open.
• A diagram toolbar, that can be customized differently for each view.
• A Browser, which provides the capability to textually view and

navigate between components of the different views.
• A documentation window, where the documentation of the selected

item can be entered or edited.
• A diagram window, where diagrams are created and manipulated.
• Documentation Window that shows a description of the selected item.

Figure 7: Rational Rose with a Use Case Diagram, in the Use Case View

4.1.3 SQA Suite 6.0
SQA Suite is an integrated product suite for the automated testing of cross-
Windows client/server applications.

There are two versions of SQA Suite:

TeamTest Edition can be used to thoroughly test your code and determine if
your software meets requirements and performs as expected.

Methods

Managing Changing Requirements with Tools Supporting the Unified Process 16 (38)

LoadTest Edition provides integrated testing of structure, function, and
performance of web-based applications.

4.1.4 Tools Integrated with RequisitePro
To enhance the requirements management capabilities RequisitePro can be
integrated with other Rational tools, where Rose and SQA are two of them
(see Figure 8). This makes it possible to exchange information between the
different tools and thereby automate parts of the development process.

Code

SQA

Requisite Pro

Requirement
Document Use Case

Descriptions

Sequence Diagram

Class Diagram

Rose

Use Case Diagram

User InterfaceTest Case

Figure 8: Integration Between RequisitePro, Rose and SQA

In RequisitePro requirements are traced to use cases, which can be
synchronized with use cases in Rose. The use cases are refined to classes and
objects. Code can be generated in Rose, and is then further elaborated by other
means. When this code is tested the use cases are the foundation for the test
cases. This can be accomplished through the synchronization between
RequisitePro and SQA, or Rose and SQA.

Methods

Managing Changing Requirements with Tools Supporting the Unified Process 17 (38)

4.2 Theoretical Studies
For the purpose of achieving both a comprehensive and complete insight to the
concepts, features, and problems of Requirements Management: books,
articles, reports and other documents where studied thoroughly. The Unified
Process and the integrated tools, were treated similarly, but were
supplemented with tools newsgroups on the Internet, and interviews and
discussions with experts from the Rational corporation. In addition to this
seminars were attended.

4.3 Case Study
As a foundation for this study the original requirements documentation of an
existing system was used. The first step to take was to get fairly acquainted
with the documentation. Then a project was created with the requirements
management tool RequisitePro. The documentation was altered in order to
treat the requirements according to the Unified Process. This meant that
different document types and requirement types were used, and that use cases
had to be defined. Further hierarchies and traceability links were established
between the requirements.

With a synchronization wizard the use cases created in RequisitePro were
generated in Rose. The next step consisted of creating different views and
diagrams in Rose. The use cases served as starting points to create, first use
case diagrams, and then sequence and collaboration diagrams (see Visual
Modeling with Rational Rose and UML [12], for detailed descriptions of these
diagram types). The use case descriptions and the sequence diagrams served as
guidelines when class diagrams were created. The classes created in Rose
were exported to RequisitePro in order to establish traceability links between
requirements and classes. Then the synchronization capabilities were tested
thoroughly by adding, deleting and modifying both requirements and items of
the Rose model.

Finally the process and the tools were evaluated with respect to:

• Synchronization between the tools
• Support between process and tools
• Ease of use and facilitating capabilities
• Documentation and structuring capabilities
• Usability in requirements management

The original intention of this study was that RequisitePro also should be
synchronized with SQA. However, the time that had to be spent on examining
RequisitePro and Rose proved to be more extensive than estimated. Therefore
the decision was made that a thorough research of RequisitePro and its
integration with Rose was more purposeful than a cursory study that
encompassed all tools.

4.3.1 Organization of Requirements in RequisitePro
A project was prepared in RequisitePro, which was performed as follows:

Methods

Managing Changing Requirements with Tools Supporting the Unified Process 18 (38)

• Document types were chosen according to the Unified Process. The
document types were Use Case Description, and Vision Document
(Product Requirement Document).

• It was decided that the requirement types to use in the project were to be
Use Case requirement type, Software requirement type and Product
requirement type. Defining requirements types included defining their
respective attribute sets.

• A project was created based on a RequisitePro project template, which
was later adjusted to fit this particular study.

Vision

When the project outline had been created the original requirements document
was imported to RequisitePro, and served as a Vision document. Two different
requirement types were used: Product requirement types, and software
requirement types. Further, the requirements were organized in hierarchies of
appropriate levels.

Use Cases

Use cases were captured through examination of the original document and in
cooperation with one of the developers of the system. The use cases were
documented in RequisitePro in Use Case Description Documents, with one
document for each use case. The use cases were then organized as hierarchical
requirements in the following structure:

• The name of the use case served as the parent requirement.
• Basic flow of events, and alternative flow of events were given names

in order to use them as the next level in the hierarchy.
• The details of the flow of events were then ordered into descending

levels of hierarchies.

In each use case document influenced actors, and pre- and post conditions,
were also documented.

4.3.2 Modeling in Rose
The use cases created in RequisitePro were generated in Rose through a
synchronization wizard. Then diagrams were created and organized in
different views.

Use Case View

In this view a use case diagram was constructed, to show the relationships
between the use cases and actors that interacts with the system. For each use
case specific sequence- and collaboration diagrams were elicited. The purpose
of these diagrams was to achieve a more thorough understanding of the
system.

Logical View

In this view class diagrams were created. The use case descriptions and the
sequence diagrams were used to find the classes. Moreover, the sequence
diagrams were used to find class operations and relationships between the
classes.

Methods

Managing Changing Requirements with Tools Supporting the Unified Process 19 (38)

Synchronization with RequisitePro

Through a synchronization wizard the classes were exported to the
RequisitePro project.

4.3.3 Establishing and Testing Traceability Links in RequisitePro
In RequisitePro, traceability links were established between product
requirements and use cases. Classes were linked to relevant use cases. Then
changes were done to some requirements, and the requirements and classes
affected by these changes were traced.

4.3.4 Testing Synchronization Capabilities
The synchronization capabilities between RequisitePro and Rose were tested
several times by:

• Synchronizing a RequisitePro project with a blank Rose model, to
export use cases, actors, and classes from the project to the model.

• Synchronizing a Rose model with a RequisitePro project, to export use
cases, actors, and classes from the model to the project.

• Adding, removing and modifying use cases, actors, and classes in a
RequisitePro project, which had already been synchronized with a
Rose Model. Then the wizard was run to update the Rose Model with
the new items in the RequisitePro project.

• Adding, removing and modifying use cases, actors, and classes in a
Rose model, which had already been synchronized with a RequisitePro
project. Then the wizard was run to update the RequisitePro project
with the new items in the Rose model.

• Adding, removing and modifying use cases, actors, and classes in both
a RequisitePro project and a Rose model, and then performing a bi-
directional synchronization.

Results

Managing Changing Requirements with Tools Supporting the Unified Process 20 (38)

5 RESULTS
The results of this study showed that it is fairly simple to learn and use
RequisitePro. The integration with Microsoft Word provides a familiar
environment for requirements documentation of the system. The requirements
can easily be manipulated and displayed in different views according to
varying filtering criteria. Further, RequisitePro also contains wizards and
templates for projects, and synchronization with other tools, e.g. Rose and
SQA. Some of the problems perceived with RequisitePro were that creating
requirements, hierarchies and traceability links was very time consuming, and
that the synchronization with Rose was rather poor. Another problem of major
concern was that the issue of documenting use cases in RequisitePro according
to the Unified Process could not be solved with contentment.

5.1 RequisitePro

5.1.1 Project
In the initial stage of this study a project was created in RequisitePro. There
are three different approaches to create a project in RequisitePro:

1. Create a new project from scratch.
2. Use the project wizard.
3. Use an existing project as template.

All these approaches are quite easy to follow, but the simplest way to do it is
to use a template provided by RequisitePro, and then gradually customize the
template to fit the project in question. This was the approach used by the
current study (see Figure 9). Some aspects of customizing the project were
done with minimal effort, whereas other aspects proved to be unnecessarily
complicated. The changes to a project template that can be performed with
ease are:

• Modify, create, and delete requirement types.
• Modify, create, and delete requirement attributes.

The most complicated part appears when new document types are needed,
which is described below, in section 5.1.2, on page 22.

Figure 9: The General Properties of the Customized
Project in RequisitePro

Results

Managing Changing Requirements with Tools Supporting the Unified Process 21 (38)

5.1.2 Documentation

Guidelines in the Unified Process

In the Unified Process there are Tool Mentors that describe how different
Rational tools can be used in accordance with the process. Unfortunately there
is no Tool Mentor for RequisitePro. This is a major problem since the
guidelines∗ for documenting use cases, which are essential concepts of the
Unified Process, were difficult to apply in RequisitePro. In other respects the
guidelines proved to be useful to manage requirements.

The Unified Process recommends that requirements should be documented in
a Stakeholder Needs document, a Vision document, a Use case model, and
Supplementary specifications. The Stakeholder Needs document, is used to
document the requests a stakeholder (customer, end user, marketing person,
and so on) might have on the system to be developed. It also contains
references to any type of external sources to which the system must comply.
The Stakeholder Needs document was not used during this study, because no
such document was available, and it was considered that an attempt of a
reconstruction would not have been of any interest. The Vision document
corresponds to the traditional Product Requirements Document. It contains a
general vision of the core project's requirements, and provides the contractual
basis for the more detailed technical requirements. The Use case model is a
model of the system's intended functions and its environment, and serves as a
contract between the customer and the developers. It consists of use cases,
actors and their relationships. The use cases are documented both in textual
descriptions (use case specification) and in a visual model consisting of
different diagrams. The supplementary specifications capture the global non-
functional requirements, which can not be captured by the use cases.

The benefits that were perceived by organizing requirements as described
above were:

• Requirements are first described at a higher level in the Vision
document, which gives an overview of the system. The requirements are
then refined in more detail in the use case specification and the
supplementary specification, which conveys more specific and concrete
definitions of the end-users’ needs.

• The use case specifications made it easier to understand the system. The
use case specifications also proved to be essential as a basis for more
detailed modeling, e.g., they served as input to find classes and objects.

Problems with Documentation of Use Cases

In RequisitePro requirements can be documented either in documents or
directly in the database. The former is recommended, since this puts context
around the requirements. Both RequisitePro and the Unified Process have
templates for different document types, including Vision, Use case, and
Supplementary documents. Documenting requirements in RequisitePro

∗ Guidelines refer to how something is accomplished in general, whereas the Tool Mentors
describes how the guidelines can be applied in specific tools.

Results

Managing Changing Requirements with Tools Supporting the Unified Process 22 (38)

according to the Unified Process is not always straightforward, since there are
no direct guidelines for this purpose. The Vision document and Supplementary
specification did not cause any major problems. The use case specifications,
on the other hand, could not be documented in a satisfying manner. The origin
of the problems can be defined as follows: Use cases describe different
sequences performed by the system. These should be conveyed in words that
the end user is comfortable with. A sequence consists of one or several
functional requirements. If each individual requirement in a sequence is to be
stored as a requirement in RequisitePro two dilemmas arise:

1. The document becomes difficult to read and understand, due to each
requirement in RequisitePro is tagged with a unique identifier. Never
the less, this can be remedied by hiding the identifiers.

2. One sentence may consist of several requirements, which in many
cases makes the requirements incomprehensible when viewed
separately.

A possible alternate solution to the problems mentioned above, is that
sequences should not be decomposed. This is not an ultimate solution though,
because it limits the advantages of RequisitePro. In this case a requirement is a
composite of many individual requirements. This means that requirements
included in a sequence cannot be given individual attribute values, e.g.,
priority and risk.

Import of Requirements

Sometimes requirements documented outside of RequisitePro need to be
imported. If the requirements have been documented in Word they can easily
be imported to RequisitePro. In the present study requirements documentation
was both imported and written directly in RequisitePro. However, there is a
problem with import of documents: The original document formats can not be
successfully imported without certain preparations. If it is desired that the
original document formats should be preserved the procedure is somewhat
complicated. First a so-called outline, that contains the desired format, must be
created, see The RequisitePro Users’ Guide [9], for a detailed description of
this. The next step is to add the outline to the document type that should be
used for the new document. When this is done the requirements document can
be imported with the original format applied.

5.1.3 Creating Requirements
In RequisitePro the requirements can be created either from within a
document, or directly in the database. During the case study all requirements,
with one exception, were created in different documents. The exception was
requirements of the type class, which were added to the database through a
synchronization with Rose. When requirements are created in a document the
RequisitePro Tool Palette is used. The procedure is very simple: Mark the text
to be a requirement, and then click the Create Req button, or choose the menu
alternative Req => Create… . However simple to perform, this procedure is
very time consuming and tedious. The process of creating requirements is
rather monotonous, and for each requirement that is created the process is
slowed down. This in turn results in that the tool is much slower than the user.
RequisitePro has a solution to this, which is to use the Block Create function.

Results

Managing Changing Requirements with Tools Supporting the Unified Process 23 (38)

The Block Create Function

With the Block Create function (see Figure 10) many requirements can be
created simultaneously from a large selection of text. There are three different
methods that can be used to differentiate between the requirements:

• Specific Keywords
• Text Delimiters
• Word Styles

Here it must be pointed out, that the Block Create function is most useful if the
requirements document has been structured and/or written with consideration
to the use of this function.

Figure 10: The Block Create Dialog Window. Here the Keyword “shall”
has been Used to Differentiate Between Requirements

The Block Create function was used in the Product Requirement Document of
this study. The document had not been prepared in any manner to use this
function, and therefor the keyword shall was chosen to differentiate between
requirements. This was not an efficient way to use the Block Create function.
The document needed thorough reviewing, because all requirements did not
contain the word shall, and sometimes a single requirement contained more
than one shall. Moreover, the appearance of the requirements in the document
had to be adjusted. Another major drawback of the block create function was
that only parent requirements of a hierarchy could be created, which will be
discussed next.

Hierarchical Requirements

Hierarchical requirement relationships make it possible to decompose one
requirement into several more specific requirements. In RequisitePro this is
done by establishing a parent requirement, and creating one or many children
of that parent. A child must always reside in the same location as its parent,
either in a document or in the database.

The part perceived to be most difficult when hierarchies were established was
the analyzing work. Before the hierarchies could be created in RequisitePro it
was necessary to analyze what requirements should be parents, what children
should those parents have, and how many levels of parent-child relationships
should be used. The act of creating the parent-child relationship in

Results

Managing Changing Requirements with Tools Supporting the Unified Process 24 (38)

RequisitePro was easy to perform, but rather slow and monotonous, as when
creating “regular” requirements. There was an obvious need for the block
create function, but as already mentioned, this function is not applicable on
hierarchical requirements.

5.1.4 Guidelines for Managing Changing Requirements
Managing changing requirements include activities like determining which
dependencies are important to trace, establishing traceability between related
items, and keeping a change history record. Further, in the Unified Process,
the artifact Requirements Attributes is essential to the management of
changing requirements. This artifact defines and shows the status of a set of
requirements attributes of each item that is being managed.

Traceability

There are several ways to create traceability relationships in RequisitePro. It
can be done either in the Words workplace or in the Views workplace, see
RequisitePro Users’ Guide [9] for a more thorough description of the possible
ways to create traceability relationships. RequisitePro provides two types of
links between requirements, a Trace To link and a Trace From link. The two
types are provided for convenience, because some users think of decomposing
high level requirements into lower level, whereas other users think of low
level requirements fulfilling high level requirements. Within a project though,
only one type of link should be used as it affects the way traceability trees are
displayed.

During the present study, all different approaches to establishing traceability
relationships in RequisitePro were considered. The approach that was found to
be by far the most convenient was to work with traceability matrices in the
Views workplace, see Figure 11 below.

Figure 11: Traceability Matrix in RequisitePro

Each link is created by: Placing the cursor in the intersection between the
requirements to be linked. Then clicking the right-hand mouse button to
display a menu, from which either of the options Trace To or Trace From is
chosen.

Results

Managing Changing Requirements with Tools Supporting the Unified Process 25 (38)

Creating traceability links is much faster than creating requirements, and it is a
very elementary procedure. The difficulty about establishing traceability links
is that it demands that thorough analyzing is conducted before the links are
created in RequisitePro.

Change History

The tracking of requirement history is a significant concept in requirements
management. By capturing the nature and logical basis of requirements
changes, reviewers receive the information needed to respond to the change
properly. In RequisitePro change history is kept on three different levels: On
the entire project, on the documents and finally, on each individual
requirement (see Figure 12). RequisitePro saves all of the prior revisions of
these items as they are modified.

Figure 12: The Change History Record of the Use Case
Requirement “Överföra Pengar”

In the History record the following is stored:

• Revision #: Contains the Revision number of the project, document, or
requirement.

• Version Label: User-defined text that describes the revision.
• Date: Contains the date created or last modified.
• Time: Contains the time created or last modified.
• User: Lists the person who last changed any of the project

components.
• Change description: Contains the Change Description of the selected

revision.

The History record was found to be useful when reviewing the evolution of
requirements. A desired extension of this function would be the possibility to
automatically revert to an older version of a requirement. Although, it should
be mentioned that RequisitePro has a function for archiving the complete
project, and is also integrated with tools that manage version control.
However, neither the RequisitePro function, nor any function of the other
tools, can manage the task of reverting an individual requirement.

Results

Managing Changing Requirements with Tools Supporting the Unified Process 26 (38)

Attributes

Requirements are given attributes to help keep track of their general status.
Understanding attributes of the requirements help in managing the scope of
the project and the application. Each project may come up with their specific
set of attributes, and attributes may differ depending on the type of element to
track. In the current study it was found that the RequisitePro ability to handle
requirements attributes could be very purposeful. Subset of the requirements
can be extracted by using queries on the attributes. The queries can be
customized from simple queries to provide requirements that fulfill a certain
attribute value, to more complex queries that provides requirements that fulfill
several attributes values. Examples of different queries that were used:

• Find all high risk requirements
• Find all high risk requirements, that are assigned to a certain person
• Find all high-risk requirements that are assigned to a certain person,

and were modified in a certain time interval.
• Etc. …

The results of the queries are displayed in attribute matrices in the Views
Workplace, and can also be saved in RequisitePro. See figure below.

Figure 13: The Attribute Matrix Showing Some Attribute Values of Use
Cases

The Unified Process contains directions about how to construct attribute
matrices without tool support. However, if a requirements management tool
such as Requisite Pro is used, as in this case, it is suggested that the matrices
are maintained directly in the requirements management tool.

5.2 Rose
The Unified Process recommends that requirements should not only be
described in textual descriptions, but they should also be depicted as visual
models. For this purpose a visual modeling tool, like Rose, is desirable. The
core artifacts of visual modeling according to the Unified Process, are use
cases and a use-case model.

In the case study, as was described in Methods, on page 18, use cases were
first documented in RequisitePro, and then synchronized with Rose. It is also
possible to work the other way around, i.e., first create the use cases in Rose

Results

Managing Changing Requirements with Tools Supporting the Unified Process 27 (38)

and then synchronize with RequisitePro, this is described further in section
5.3, on page 27. When the use cases were elaborated into classes and objects
in different diagrams, it was made possible to indirectly trace product
requirements to classes via use cases. This was accomplished due to
traceability links between product requirements and use cases, and a function
in Rose that allows the user to generate a list of all classes connected to a
selected use case.

Changes to requirements naturally impact the models produced in the analysis
and design models in Rose, as well as the resulting code. Traceability
relationships between requirements and other development artifacts are the
key to understanding these impacts.

5.3 Synchronization Between RequisitePro and Rose
Information can be exchanged between RequisitePro and Rose. A
synchronization wizard (shown in Figure 14) executes this. The wizard can be
started either from RequisitePro or Rose. The direction of the information
exchange, i.e. from RequisitePro to Rose or the opposite, is independent of
where the wizard was started. A RequisitePro project can only be
synchronized with one Rose model at a time. The synchronization is based on
the coupling between requirement types, and the Rose items Use Cases,
Actors, Classes, and Packages.

Figure 14: The RequisitePro-Rose Synchronization Wizard

The testing of the synchronization capabilities showed that the wizard’s
instructions could be followed without problems. The remaining results were
more disappointing. They revealed that the issue about the synchronization is
not user friendliness, but the haphazard results it produces. The following
descriptions concludes the observed results:

Initial Synchronization

In the initial synchronization use Cases, actors, and classes were successfully
exported, either from the RequisitePro project to the Rose model, or the
opposite direction. No relationships, such as hierarchies, traceability links, and
associations were possible to interchange.

The initial synchronization resulted in that new attributes were added
automatically to the requirements type associated to the Rose items added.
When a Rose item is associated with a requirement type, the wizard adds six
attributes to each type: Rose Model, Rose ID, RoseItem Type, Rose

Results

Managing Changing Requirements with Tools Supporting the Unified Process 28 (38)

Documentation, Rose Ext Document, and Rose Sync. The new attributes of
special interest were:

• Rose Documentation which represents the brief description.
• Rose External Document which contains external documents linked

to the item.

Brief descriptions could not be exported in the initial synchronization from
RequisitePro to Rose, but had to be transferred by the copy/paste function.
However, if the initial synchronization had the direction Rose to RequisitePro,
the brief descriptions were transferred.

Updating RequisitePro projects and Rose Models by Synchronization

When use cases, actors, and classes were first added or modified in either the
RequisitePro project, or the Rose model, and then synchronized, the following
was observed:

• Both the RequisitePro project, and the Rose model were correctly
updated with any new use cases, actors, or classes.

• The values given to the attribute Rose Documentation in RequisitePro
were conveyed as specifications in Rose.

• If any elements had been removed from either of the tools, they still
remained in the other after the synchronization. Further there was no
possibility to reintroduce the removed element.

Discussion

Managing Changing Requirements with Tools Supporting the Unified Process 29 (38)

6 DISCUSSION
The software crisis is a topic that has been debated for some years now. There
is no possible way to deny the obvious facts, which have been reported by
many different organizations, e.g., US Government Data from 1995 shows that
less than 5 % of all software systems developed could be used without
changes. The remaining 95 % either required changes or were unusable. Two
major reasons given for this state are bad requirements management practices,
and lack of a well defined process or method [6, 8, 12, 13, 16]. This is why
requirements management is so important. But requirements management is
not an easy task. It requires guidelines for extensive, structured analyses, and
is almost impossible without the support of appropriate tools. What then is an
appropriate tool? It is a tool that can enhance a process by unloading the
burden of tedious and repetitious work that follow in the wake of requirements
management.

6.1 Can Benefits of the Tool Justify the Investment?
Tools that are claimed to render more effective requirements management are
emerging on the market. These tools supposedly assist in organizing,
documenting, tracing and in other ways managing changing requirements. A
tool that fulfills these capabilities can be invaluable. Never the less, managers
need to know if the costs associated with incorporating the tool(s) can be
justified by the resulting benefits.

An obvious property that all requirements management tools must have is that
they should be easy to use. This is certainly a property of RequisitePro with its
adaptation to Microsoft standards, which seem to dominate the software world
of today. RequisitePro is also excellent to manipulate requirements: With only
a couple of simple keystrokes it is possible to track requirements with
specified properties and/or requirements affected by a change. However, in
order to make use of those excellent capabilities thorough preparations must
be done. First requirements analyses must be conducted to decide what
requirement types to use, what requirements attributes are needed, what
requirement hierarchies should be set up, and what traceability paths/links
should be established? This activity can be supported by a tool, but it can not
be solved by a tool. It calls for the knowledge of an experienced requirements
engineer.

The second part of the preparations is that the analyzing work has to be
realized by the tool by introducing the requirements, assigning them attributes,
and creating requirements relationships, in the form of hierarchies and
traceability links. As already reported in the Results, this work was both time
consuming and monotonous. Therefore it is highly recommended that the
Block Create function for creating requirements (see section 5.1.3 The Block
Create Function, on page 23), be considered during analysis. This will not
only save a lot of time, but it also relieves people from a very dull task. Still
there are no similar possibilities to facilitate creation of hierarchies and
traceability links.

Discussion

Managing Changing Requirements with Tools Supporting the Unified Process 30 (38)

Now, the question that follows is: Can the expenses and efforts be justified by
the benefits of the tool? The answer is, it depends. It mainly depends on the
size of the system. Or as Sommerville and Sawyer [15] expresses it:

System size makes a tremendous difference. The problems of
requirements engineering increase exponentially with the size of
the system.

This means that the larger the system the greater the need for tool support to
assist in requirements management. If the intended system is of as slight
proportions that an iterative approach will not be needed, it is probably not
very purposeful to use RequisitePro, or any other requirements management
tool. Never the less, a small system may one day be further developed into
something more extensive. If the system has already been prepared in
RequisitePro this will make the evolution much smoother.

6.2 Combining a Process with Tool Support
Most faults found during testing and operations results from poor
understanding or misinterpretation of requirements. The later the faults are
discovered the more expensive they are to correct. It costs 100 times more to
correct faults found after delivery than in analysis [13, 14, 15, 16]. This is one
of the reasons to use an iterative approach, which provides for early
elimination of high risks associated with requirements. As already been
reflected upon, the fundamental problems of requirements management can
not be solved by a tool, but by experience and analysis. These problems call
for the assistance of a process that provides “best practices” guidelines.

Before starting developing the system it is necessary to decide which process
to use: should it be a process like the Unified Process that deals with
requirements as use cases, or a process that deals with requirements in a more
traditional manner? It must further be taken into consideration which tools can
support the process: Are there any tools that are already available in the
organization that can be used, or must new tools be purchased, and if so can
the new tools be combined with existing tools?

The combination of the Unified Process with RequisitePro has many
advantages. The process deals with requirements as dynamic entities that
change over time, which is handled in RequisitePro by such capabilities as
traceability and change history. Never the less, there are some difficulties that
are important to be aware of, which are discrepancies between the process and
RequisitePro concerning use cases. These problems are delivered in detail in
section 5.1.2, on page 21. The origin of the problems is that the Unified
Process does not give any useful guidelines for documenting use cases with
RequisitePro. Some of the questions brought forward by this are: What should
be requirements in use cases? The name, the flow of events, details in the flow
of events… ? How can use cases be stored as comprehensive requirements in
RequisitePro? A reason for this lack of instructions on use case documentation
may be that RequisitePro was originally developed to work with traditionally
managed requirements. Further, RequisitePro has only relatively recently
(April 1997) been incorporated with the Rational products, and hopefully the
use case documentation problem will be dealt with in future revisions of both
the process and the tool.

Discussion

Managing Changing Requirements with Tools Supporting the Unified Process 31 (38)

6.3 Benefits and Drawbacks with Synchronization
In the process of developing a software system several tools are used to
support the different activities performed. This places a demand on the
possibility to transfer data from one tool to another. RequisitePro can
exchange data with several tools, but the topic discussed here only concerns
the synchronization with Rose.

Use cases, classes and actors can be transferred between the tools RequisitePro
and Rose, but how useful is it really? The time saved by synchronization was
almost insignificant. The possibilities to update inconsistencies between the
Rose model and RequisitePro project, were diminished by the fact that once an
item in Rose or a requirement in RequisitePro had been deleted it could not be
reintroduced through a synchronization (see section 5.3 Synchronization
Between RequisitePro and Rose, on page 27). The problem here is that
elements of the Rose model and elements of the RequisitePro project are
stored in different places. If corresponding elements could be stored in one
place only, many problems could be solved as, e.g., inconsistencies between
project and model.

However, there was one thing that was found to be of particular interest. This
was the property that supplied indirect traceability down to classes (section
5.2, on page 26). This property can be an important substitute to creating
traceability links to classes in RequisitePro. It will not provide a link from a
higher requirement to one individual class, but a link to all classes
implementing a use case connected to a specified higher requirement.

Finally, a recommendation that should be brought forward is that use cases
first be modeled in Rose, and then synchronized with RequisitePro. This is a
more natural workflow when developing according to the Unified Process.
Besides this, it enables the brief descriptions of the use cases to be transferred
from the beginning (see section 5.3 Synchronization Between RequisitePro
and Rose, on page 27).

6.4 Conclusions
The results of this study confirmed that if a specific process is combined with
the appropriate tool it is possible to facilitate requirements management, i.e.:
the combination of the Unified Process with RequisitePro provides a means to
facilitate requirements management. This study showed that the requirements
management tool RequisitePro can be very useful to gain active control of
requirements, but also that there are activities that could be performed
smoother, and that knowledge of specific behavior and properties of the tool is
needed to obtain full benefits of the tool. However, in order to draw any
general conclusions about requirements management tools, further research
with other tools and processes need to be done. A comparative evaluation of
different tools would be highly interesting.

Today there is a demand for a much higher degree of automation and
information interchange between tools, than currently exist. Are there any
possibilities to improve the existing tools and the integration between them?

Discussion

Managing Changing Requirements with Tools Supporting the Unified Process 32 (38)

Developers of software systems must be able to integrate requirements
management tools with both the chosen process, and tools used for other
development activities.

Finally, to conclude this discussion: The tool is not the solution to
requirements management, it is only an assistant to the developers. The
solution to requirements management is found in the guidelines of a process,
and the professional experience and knowledge of a skilled requirements
engineer.

Acknowledgments

Managing Changing Requirements with Tools Supporting the Unified Process 33 (38)

7 ACKNOWLEDGMENTS
I would like to thank Claes Lundquist and Marcus Olofsson, at Frontec in
Gothenburg, for helping me review requirements documentation, and
supplying useful advice. Claes has also been very helpful explaining the
details of the system to which the original requirements documentation
referred.

I also appreciated the help and advice that I got from my supervisor, Bengt
Hagebratt, at the Institute of Informatics, University of Gothenburg.

THANK YOU!

Glossary

Managing Changing Requirements with Tools Supporting the Unified Process 34 (38)

8 GLOSSARY

Actor
An actor is someone or something, outside the system that interacts with the system.
An actor is anything that exchanges data with the system. An actor can be a user,
external hardware, or another system. The difference between an actor and an
individual system user is that an actor represents a particular class of user rather than
an actual user. Several users can play the same role, which means they can be one and
the same actor. In that case, each user constitutes an instance of the actor.

Artifact
Artifacts are the work products of the process, the things that are produced or used,
etc. during a project. An artifact can be any of the following: a document, a model, a
model element. 'Artifact' is the term used in the Unified Process. Other processes use
terms such as 'work product', 'work unit', etc., meaning the same thing.

Brief Description
The brief description of the use case should reflect its role and purpose, and the actors
involved in the use case are referred to.

Collaboration Diagram
A collaboration diagram describes a pattern of interaction among objects; it shows the
objects participating in the interaction by their links to each other and the messages
they send to each other. Collaboration diagrams are used to show how objects interact
to perform the behavior of a particular use case, or a part of a use case.

Component
A non-trivial, nearly independent, and replaceable part of a system that fulfills a clear
function in the context of a well-defined architecture. A component conforms to and
provides the physical realization of a set of interfaces.

Flow of Events
The Flow of Events of a use case contains the most important information derived
from use-case modeling work. It should describe the use case's flow of events clearly
enough for an outsider to easily understand it. The flow of events should present what
the system does, not how the system is designed to perform the required behavior.

Iteration
A distinct sequence of activities with a base-lined plan and valuation criteria resulting
in a release (internal or external).

Notation
A notation is defined by symbols that represents all the entities used to model a
system, such as classes, objects and their relations. It is used to document the models
that are the deliverables of analysis and design. A notation should be able to convey
the thoughts of the model builder to a simple and consistent picture, that can be used
as a communications means between the developers, customers and other involved
parties.

Glossary

Managing Changing Requirements with Tools Supporting the Unified Process 35 (38)

Package
A grouping of modeling elements.

Sequence Diagram
A sequence diagram describes a pattern of interaction among objects, arranged in a
chronological order; it shows the objects participating in the interaction by their
"lifelines" and the messages that they send to each other.

Software Architecture
Software architecture encompasses:
• the significant decisions about the organization of a software system,
• the selection of the structural elements and their interfaces by which the system is

composed together with their behavior as specified in the collaboration among
those elements,

• the composition of the structural and behavioral elements into progressively larger
subsystems,

• the architectural style that guides this organization, these elements and their
interfaces, their collaborations, and their composition.

Stakeholder
An individual who is materially affected by the outcome of the system.

Stakeholder need
The business or operational problem (opportunity) that must be fulfilled in order to
justify purchase or use.

UML (The Unified Modeling Language)
The UML is a graphical language for visualizing, specifying, constructing, and
documenting the artifacts of a software intensive system. The UML provides a
standard way to write a system’s blueprints, covering conceptual things, such as
business processes and system functions, as well as concrete things, such as classes
written in a specific programming language, database schemas, and reusable software
components.

Use Case
A use case defines a set of use-case instances, where each instance is a sequence of
actions a system performs that yields an observable result of value to a particular
actor. A use-case class contains all main, alternate flows of events related to
producing the 'observable result of value'. Technically, a use-case is a class whose
instances are scenarios.

Use-case Diagram
A use-case diagram shows actors, use cases, use-case packages, and their
relationships.

Use-case Model
A model of what the system is supposed to do and the system environment.

Glossary

Managing Changing Requirements with Tools Supporting the Unified Process 36 (38)

Use-case Package
A use-case package is a collection of use cases, actors, relationships, diagrams, and
other packages; it is used to structure the use-case model by dividing it into smaller
parts.

Worker
A worker defines the behavior (i.e. activities) and responsibilities (for artifacts) of an
individual, or a set of individuals working together as a team. Each worker has a set of
cohesive activities associated with it. "Cohesive" in this sense means those activities
best performed by one individual. The responsibilities of each worker are usually
defined relative to certain artifacts.

References

Managing Changing Requirements with Tools Supporting the Unified Process 37 (38)

9 REFERENCES

Internet

[1] Kar, Pradip and Bailey, Michelle. Characteristics of Good Requirements.
Requirements Working Group Information Paper. 1996.
http://www.incose.org/workgrps/rwg/goodreqs.html

[2] Requirements Management Technology Overview. Excerpt from a report dated 24-
June-1994, titled: Analysis of Automated Requirements Management
Capabilities. INCOSE (International Council On Systems Engineering). 1994.
http://www.incose.org/workgrps/tools/reqsmgmt.html

[3] Integrated Requirements Traceability (IRT)
http://www.iconixsw.com/Spec_Sheets/IntReqtsTrace.html

[4] Ramesh, Bala, Stubbs, Curtis Lt., Powers, Timothy, and Edwards, Michael.
Lessons Learned from Implementing Requirements Traceability. 1995.
http://www.stsc.hill.af.mil/crosstalk/1995/apr/lessons.html

[5] Morris, Philip., Masera, Marcelo., and Wilikens, Marc. Industrial Workshop on
requirements Engineering. November 1995.
http://www.docaware.it/sta/dsa/report.htm

[6] Chaos. The Standish Group International, Incorporated.
http://www.standishgroup.com

[7] Ericsson, Maria., Oberg, Roger., and Probasco, Leslee. Applying Requimrents
Management with UseCases. Technical Paper TP505. Rational Software
Corporation. 1998. http://www.rational.com

[8] Al-Sadoon, Omar. Introduction to AURA – Automated User Requirements
Acquisition. http://www-users.cs.umn.edu/~fzhu/research/aura-intro.html

Manuals and User Guides

[9] RequisitePro User’s Guide. Rational Software Corporation. December 1997.

[10] Rational Unified Process. Rational Software Corporation. November 1998.

[11] GREP Handbook – Generic Requirements Engineering Process. TSE. Ericsson.
1998

Books

[12] Quatrani, Terry. Visual Modeling with Rational Rose and UML. Addison-
Wesley. 1997.

[13] Royce, Walker. Software Project Management – A Unified Framework.
Addison-Wesley. 1998.

[14] Philippe Kruchten. The Rational Unified Process: An Introduction. 1998.

[15] Sommerville, Ian and Sawyer, Pete. Requirements Engineering – A Good
Practice Guide. 1997.

[16] Pohl, Klaus. Process Centered Requirements Engineering. 1996.

References

Managing Changing Requirements with Tools Supporting the Unified Process 38 (38)

[17] Eriksson, Hans-Erik., and Penker, Magnus. Objektorientering – handbok och
lexikon. Studentlitteratur. 1996.

