
 
 
 

 
 
 
 
 
 

 
 
 
 

Serverless Development Trends in Open Source: 
a Mixed-Research Study 
Bachelor of Science Thesis in Software Engineering and Management 
 

ILJA PAVLOV 
SUSANNE ALI 
TAUHID MAHMUD 
 
 
 
 
 
 

 
Department of Computer Science and Engineering 
UNIVERSITY OF GOTHENBURG 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Gothenburg, Sweden 2019 



 
 
 

 
 
 

 
 
The Author grants to University of Gothenburg and Chalmers University of Technology the 
non-exclusive right to publish the Work electronically and in a non-commercial purpose make 
it accessible on the Internet.  
The Author warrants that he/she is the author to the Work, and warrants that the Work does 
not contain text, pictures or other material that violates copyright law.  
 
The Author shall, when transferring the rights of the Work to a third party (for example a 
publisher or a company), acknowledge the third party about this agreement. If the Author has 
signed a copyright agreement with a third party regarding the Work, the Author warrants 
hereby that he/she has obtained any necessary permission from this third party to let 
University of Gothenburg and Chalmers University of Technology store the Work 
electronically and make it accessible on the Internet. 
 
 
 
 
 
 
 
This research provides developers and readers alike on the current trends in Serverless Software 
Development.  
 
 
© ILJA. PAVLOV, August 2019 . 
© SUSANNE ALI, August 2019. 
© TAUHID MAHMUD, August 2019. 
 
Supervisor: JOEL SCHEUNER 
Examiner: Richard Berntsson Svensson 
 
University of Gothenburg 
Chalmers University of Technology 
Department of Computer Science and Engineering 
SE-412 96 Göteborg 
Sweden 
Telephone + 46 (0)31-772 1000 
 
 
 
 

 
Department of Computer Science and Engineering 
UNIVERSITY OF GOTHENBURG 
CHALMERS UNIVERSITY OF TECHNOLOGY 
Gothenburg, Sweden 2019 



Serverless Development Trends in Open Source: a 
Mixed-Research Study 

 
Ilja Pavlov  

Computer Science and Engineering 
University of Gothenburg 

Gothenburg, Sweden 
guspavloil@student.gu.se 

 
 

Susanne Ali 
Computer Science and Engineering 

University of Gothenburg 
Gothenburg, Sweden 

gussuzal@student.gu.se 
 
 

Tauhid Mahmud 
Computer Science and Engineering 

University of Gothenburg 
Gothenburg, Sweden 

gusmahmuta@student.gu.se 
 

 
 

Abstract— In the age of modern technology, a new         
paradigm, Serverless, emerges in the world of cloud computing         
with which it benefits developers to solely focus on the main           
objective instead of the maintenance of the infrastructure. This         
study helps developers and readers alike to have an insight into           
the current state of serverless software development. For the         
purpose of the research, an abundant amount of open-source         
serverless projects in Github has been analyzed with the help          
of Github bots, crawlers and Code Factor to gather data on           
common use cases, the complexity of the project and         
architectural patterns. Primary programming languages used      
to build serverless components are Javascript, Python, and C#.         
Furthermore, the common use cases identified in serverless        
projects are API, Frameworks, Communication, and data       
processing via Computation. The majority of analyzed projects        
were deemed dependent on the large vendors, primarily        
Amazon (72.03%) and Microsoft (21.21%). Only 3.96% of OSS         
projects were using open source frameworks. However, further        
studies are required as serverless applications will keep        
growing bigger in the near future. 

Keywords— serverless, github, data mining, cloud computing,       
repositories 

I. INTRODUCTION 

Since 2014, a new paradigm has been gaining traction         
within the cloud computing world. Serverless, or serverless        
computing, is an execution model where, similar to previous         
cloud services, the vendor provides and takes care of         
infrastructural needs. The core difference from other models        
lies in the openness of infrastructure components to        
deployed products and, unlike in IaaS, has minimal need to          
maintain abstracted VMs or containers. The terminology       
behind “Serverless” went through a series of debates. The         
study conducted by Fox. et al. [1] pointed out that serverless           
technology often referred to applications dedicated to       
third-party services, while Baldini et al. [2] articulated the         
focus on and concerns with cloud service providers.        
Following AWS Lambda’s successful introduction in 2014,       
Functions-as-a-Service (FaaS) became one of the most       
popular implementations of the serverless model, with other        
providers like Microsoft, IBM and Google releasing       
equivalent services. Amazon’s whitepaper on Serverless      
Architectures [3] defined best practices and solidified FaaS        
serverless as stateless compute technology for event-driven       
solutions. Hence, major implementations of serverless      
technology have taken a form of utility computing        
promoting the simplicity of the code deployment process        
and offering developers an opportunity to focus only (at         
least in theory) on the business logic of their application.  

As reported by Google Trends, the interest in        
“serverless” has been growing over the last five years with          
quarterly currents reports conducted by DigitalOcean for Q2        
2018 [4] showing growing interest in serverless - an         
indication of popularity and attention towards serverless       
services from a broad number of respondents. Yet research         
papers on serverless computing [2, 5] and FaaS [6] illustrate          
multiple challenges inherent to serverless model [7],       
concerns pertaining to vendor lock-in [2, 6], product        
migration [6], tooling issues (especially when it came to         
testing and debugging) [4, 6] and more. 

Concurrently, surveys conducted on the current cloud       
computing trends indicate that in comparison to the        
container-based solutions, “Serverless computing is in a       
much earlier stage of adoption, with nearly half of         
developers failing to clearly understand what it is [...]” [4].          
81% of respondents unfamiliar with “serverless” indicated       
interest in learning more about the technology [4], while         
91% of respondents who deployed applications between       
2017-2018 used three major serverless platforms: AWS       
Lambda (58%) Google Cloud Functions (23%),      
Apache/IBM OpenWhisk (10%) [4].  

The purpose of the study is to provide an insight into the            
current state of serverless software development from the        
perspective of existing open source communities in GitHub.        
The descriptive nature of the research will focus on         
identifying the common use cases, languages, and overall        
dependence of open source projects on the major platform         
vendors. By providing an in-depth analysis of Github        
repositories, the study aims to compare how trends among         
open serverless projects align with the previous academic        
studies, as well as assist those new to the serverless          
paradigm to understand the current trends in serverless        
computing. 

Secondly due to the lack of academic literature that         
covers the trends in this research area, answering this         
question will be able to provide a source for future          
explorations into open-source, public repository-bound     
serverless projects, creating an academic milestone for the        
future works within the domain area. For example, the         
current design properties may be markedly different from        
how the future of serverless computing and the state of          
publicly hosted serverless projects will seem in a year or          
two. 

To aid the realization of the proposed study, the         
candidates broke down the research sequence into objectives        
that are exemplified by three research questions: 

1 



RQ 1: What design properties and practices are prevalent       
among open-source serverless projects? 

RQ 2: What are the common use cases that open serverless         
projects try to address? 

RQ 3: How dependent are the open serverless applications       
on major platform vendors? 

By evaluating the open-source serverless projects in       
RQ1, the data gathered will be subject to evaluation and          
interpretation. Analyzing data that is based on an existing,         
used codebase will provide a parallel observation on the         
current state of actual serverless applications, their common        
properties, and differences. This will provide an opportunity        
to draw a comparison between other academic studies within         
the domain which elicited information based on the        
experience of practitioners. Furthermore, through the      
analysis of RQ2, we intend to derive some of the common           
challenges that public serverless computing projects are       
currently trying to address. The publishers of these projects         
are unlikely to detail their motive for choosing serverless as          
their architectural and design model of choice without        
performing a separate study. However, it is through analysis         
of the use cases, application domain, language choice, target         
vendor, testing strategies, and other metrics that we can         
reverse engineer the thought process behind OSS serverless        
projects. The key shall be grounded in the comparison         
analysis between the study’s findings and comparative case        
studies and surveys, in order to identify how aligned are the           
‘technical’ and ‘human’ aspects of this paradigm. Lastly, by         
approaching RQ3, we intend to identify the extent to which          
the development of serverless projects is motivated by        
vendor accessibility. This will especially be approached       
from the issue of vendor lock-in and open-source        
deployment platforms in serverless computing. The end       
result is meant to illustrate the relationship between OSS         
serverless projects, their existing codebase, and how it        
reflects the vendor’s ecology which might contribute       
towards this problem. 

The report will discuss the originality of the project         
through a review of current research. The literature review         
will present current technologies in the research area and the          
relevance to the thesis project will be assessed. Current         
commercial products will also be discussed. Finally, the        
aims and objectives of the project and a project plan will be            
presented. The project plan will form the most significant         
part of the report as it will cover the resources required and            
the techniques to be used for the project as well as a time             
scale for project milestones and the expected outcomes of         
the project. 

II. BACKGROUND 

As it was noted in the thesis proposal, the serverless          
infrastructure and services have been in a notable state of          
expansion and modernity. 

A. Github - A key to Serverless 
Serverless, in the 21st century, has become a buzzword         

for the tech industry and has gained unparalleled support         
and attention based on its appeal of greater productivity and          
profitability [8]. Considering the fact that serverless has        
brought some revolutionary changes in the tech industry,        

studies have unveiled that it has continually changed the         
previously existing server infrastructure while encouraging      
businesses to integrate it into their business practices. This         
might be the reason that leading companies like AOL [9],          
Reuters [10], and Telenor [11], etc. have integrated        
serverless computing into their business operations.      
However, serverless projects require specialization and      
expertise in reference to its development, which is why         
GitHub is generally preferred because of its fork and pull          
model, where developers are presented with an opportunity        
to create their own copies of repository [12]. Not just this, it            
creates repositories and changes into the main branch, which         
further creates an environment, where people can conduct        
their code reviews. Since GitHub is an open-source software         
development platform, software developers can rely on the        
issue tracking system on their repositories; hence providing        
support to the developers in terms of reporting and         
discussing the bugs and other related concerns [13]. 

Social features are worth discussing, as they are        
integrated into the GitHub. This particular feature has        
presented the users with an opportunity to watch other         
projects, and follower their developers; henceforth resulting       
in a constant stream of updates – not just about the           
developers, but also about their projects of interest [14].         
This makes GitHub the center of attention for software         
engineering researchers, primarily because of its popularity       
coupled with the fact that it has integrated social features          
and metadata that one can access through the API. In the 21st            
century, there have been a range of studies on GitHub and           
its community; for instance, the studies conducted by        
Dabbish et al. [12] and Gousios and Andy [16] exclusively          
focused on the ways through which the GitHub social         
features were used by developers for forming impressions        
and drawing conclusions, while assessing the success,       
performance, and possible collaboration opportunities. On      
the other hand, there is also a range of quantitative studies;           
for instance, the study by Thung et al. [17] and Tsay et al.             
[18] that shed light on the systematically archiving the         
publically available data on GitHub and its use in         
investigating the development practices, in addition to the        
network structures in the environment.  

B. Repositories and Github 
According to Gousis and Andy [16], it has been         

suggested that repository is not necessarily a project, but a          
relatively new method that helps in collaborating in the         
distributed software development. This can be attributed to        
the typical pull request development model of GitHub, and         
with this particular model; the main repository of the project          
is not writable by potential contributors, instead, they make         
changes within the independent repository or on a clone         
[19]. When the set of changes are submitted by the          
contributor, a pull request is generated that allows the         
merging of the contribution in the main repository.        
However, these changes are not just integrated or merged         
into the main repository but are reviewed and inspected,         
which unveils whether the changes are unsatisfactory or        
satisfactory. In the case of satisfactory changes, the        
repository is merged into the master branch of the project;          
however, in the case of unsatisfactory changes, the project         
can call for further changes. From the latter investigation, it          
can be argued that repositories can be divided into a forked           

2 



repository and base repository. In the case of the forked          
repository, the activities are recorded independently from       
the base repository. This can be further illustrated through         
an example of Ruby on Rails, which had approximately         
8,327 forks and a total of 8,275 forks were made directly           
from the base repository, which means that the remainder is          
the forks of forks [20]. 

The social feature introduction, in the code hosting sites         
like GitHub, has drawn significant attention; for instance,        
the study by Lima et al. [21] suggested that the impressions           
are formed by GitHub users, which helps them in drawing a           
conclusion about their activities, while increasing the       
potential for both projects and their developers. The most         
prominent aspect here is related to the transparency,        
especially in reference to the social features that have helped          
them in maintaining their awareness level, while capitalizing        
upon this transparency to further organize their work. This         
can be critically important in the serverless software        
development, which can be further confirmed with the study         
of Casalnuovo et al. [23] where it has been suggested that           
higher visibility of the actions undertaken by developers can         
further influence their testing behavior. This is important        
since serverless software development requires constant      
testing, unlike non-software development apps that are more        
interested in just testing until a favorable outcome is         
reached. 

In reference to serverless software development, GitHub       
can be influentially importance, since it has moved beyond         
just the social features. In particular, the study by Jurado et           
al. [24] argued that through the GitHub API, research         
projects have become highly accessible, which means that        
the data can be easily monitored and recorded based on their           
occurrence. Not just this, recursive dependency-based      
retrieval can be further capitalized upon in case of errors.          
This has even been reflected in the study Jurado and Pilar           
[24] and Yu et al. [25], where the authors found that even in             
the standalone run, the users were able to retrieve the history           
of individual repositories, and can be pulled from GitHub         
projects.  

Since there is a large amount of data available at GitHub           
and tools like GitHub Archive, GHTorrent, and Gitminer,        
the developers can capitalise upon these tools for serverless         
software development, while taking advantage of the fact        
that this open-source forum can provide some valuable        
insights into the errors and issue reporting [19],        
programming languages [26] and project success [27]. 

C. Github Data Analysis 
Being a popular platform amongst developers and       

coders, [21] argued that the analysis of social activities on          
the platform is amongst the new trends in software         
engineering. People have constantly been observing and       
reviewing the activities on GitHub repositories, which are        
then analyzed to gain insights into the repository features of          
the GitHub data. In particular, the study by Hauff et al. [22]            
focused on the activities of users on the platform, which          
further helped in conducting a quantitative analysis of the         
skills and interests of the users in reference to their          
observations; whereas Casalnuovo et al. [23] focused       
exclusively on relating the social link between the users and          
their language experience, while connecting with the       
productivity of the developers.  

Since GitHub repositories are amongst the most       
important assets of users on GitHub, studies have unveiled         
that their quality and popularity are amongst the strongest         
indicators of the capabilities of the owner. This is the reason           
that the repository analysis on GitHub has gained        
exceptional importance; for instance, a study was conducted        
by Jurado et al. [24] in reference to the project issues related            
to the repositories on GitHub and found that there were          
some sentimental aspects related to the project issues. Yu et          
al. [25] studied the pull requests, which helped in discussing          
the complicated and complex issues related to the pull         
request evaluation latency, especially on the Git enabled        
social coding platforms. Another important study was       
conducted by Avelino et al. [26] that studied the truck factor           
of the popular repositories on GitHub, where truck factor         
represents the minimal number of developers that must leave         
before a project becomes unsustainable. The openness of the         
GitHub projects was analyzed by Cosentino et al. [27],         
where three important metrics were discussed; 1) the        
distribution of the project community, 2) the external        
contribution’s acceptance rates, and 3) the time required for         
becoming project’s official collaborator.  

D. Data Mining in GitHub 
Data mining in GitHub has remained a central focus in a           

range of studies, which have presented a meta-analysis in         
reference to software development practices and influence       
based on the use of the distributed social coding platform          
[28, 29]. This can be further illustrated through the         
following diagram: 
 

Category of use # of repositories  

Software Development 
Experimental  
Storage 
Academic 
Web 
No longer accessible 
Empty 

275  (63.4%) 
53  (12.2%) 
36  (8.3%) 
31  (7.1%) 
25  (5.8%) 
11 (2.5%) 
3  (0.7%) 

 

Fig. 1.  Mining example by Kalliamvakou et al. [33] 
  

In particular, the study by Kalliamvakou et al. [30]         
presented some valuable information about the relationship       
between mining software repositories, data science, and       
operational data; meanwhile confirming that mining      
software repository is exclusively focused on extracting       
knowledge from the software data. The study further        
notified that Github repositories can be used for software         
development, storage, web and experimental purposes. In       
addition, it has further concluded that the mining software         
repository is actually a data science, as it focuses on the           
extraction of knowledge from data. This implies that the         
data mined from open source platforms are generally        
experimental data that can be analyzed to eliminate bugs and          
errors from codes and to further make the projects more          
reliable. 

The latter has specifically been addressed in the study by          
Bird et al. [31], where the focus was to investigate the           
influence of a biased dataset on the performance of the bug           

3 



prediction technique. In particular, the study indicated that a         
biased dataset is generally considered one, where the links         
between bug trackers and code repositories are missing.        
More importantly, the study confirmed that professional and        
experienced users have a critical role in fixing the bugs          
while establishing a link between bug trackers and code         
repositories. This is somewhat the case in GitHub, where         
data is mined by professional and experienced users, who         
help others by reducing the severity of bugs affecting their          
projects [32]. A wide range of studies has confirmed the          
existence of several possibilities of mining software       
repository. This implies that it allows the users to avoid          
reprocessing the same data several times since they can use          
an issue tracker for the collection and mining of the data.           
The most prominent issue trackers include JIRA, IssueZilla,        
and Bugzilla. 

III. RESEARCH METHODOLOGY 

A. Initial Dataset and GHTorrent 
The creation of the initial dataset was driven by the          

desire to capture an expansive slate of open source         
repositories with serverless projects. GHTorrent was      
selected as the primary source of data given several factors          
associated with the project: 
 

a) Data accumulation. the GHTorrent service monitors      
the Github public event timeline via service API. For         
each announced event, the service retrieves its       
contents and their dependencies, exhaustively, and      
then stores the raw JSON responses to several        
database types: MongoDB and MySQL. GHTorrent      
works in a distributed manner, using a RabbitMQ        
message queue which sits between event capturing       
activities and data dumping phases. This is done to         
orchestrate the monitoring process between clustered      
machines in a distributed manner. Most importantly,       
GHTorrent releases the data collected during the       
period as expansive downloadable archives which      
date back to the project’s establishment. This became        
crucial due to the time-limited nature of queries that         
can be directly executed on the GHTorrent’s database        
cluster. Reconstructing databases out of archived data       
permits us to run long data filtering queries, as well          
as preserving generated datasets for reproduction. 

b) Longevity. The project has been active and       
expanding since 2013, recording 4TB of data as of         
2015, in an attempt to capture both the current and          
future expansion, to peering all the way back to 2011          
into Github’s history to recreate and preserve the        
project data from that time. The thoroughness of the         
data storage process permitted GHTorrent to capture       
the birth and rapid expansion of serverless (FaaS)        
services starting with the AWS Lambda’s debut in        
November 2014. This makes GHTorrent a suitable       
candidate for the study as it provides the majority of          
data and a roadmap to answer RQs. 

c) Metadata. GHTorrent’s database schema is     
composed out of 21 interconnected tables, with each        
one containing Github related metadata. For the       

purposes of the chosen topic, the most important        
tables are considered: projects, project_languages,     
project_members, commits, followers and watchers.     
These tables provide the majority of information       
necessary for a broad filtering of the project        
repositories according to description keywords (the      
project name and/or given description), number of       
commits (the project’s pulse), number of forks,       
followers and watchers (its popularity according to       
different metrics), number of branches, commit      
messages and contributors (similar to previous      
metrics, but in a different dimension) and more. 

d) Prolific status: GHTorrent’s dataset has been used       
by multiple academics as a part of research papers         
and by companies to gather and extrapolate useful        
data. Considering that the topic delves into an area         
that is under-investigated and lacks clear-cut      
academic equivalents, the selection of past papers       
help the current study by providing examples of        
previously used data gathering and analysis      
techniques. 

 

B. Static Code Analysis 
For the purpose of this research, we use two types of           

tools: a) repository crawlers and b) source code analysis         
tools. 

Crawlers, or bots, were designed to traverse the        
repositories in an autonomous or pre-defined manner, and        
extract valuable information about the projects. The primary        
use for crawlers in our study is to verify the validity of            
repositories by checking their status, collecting repository       
metadata and comparing it against the original set. If the          
discrepancy is identified, the former data is overridden to         
provide an updated perspective on the state of the repository.          
The secondary function of the crawlers is to download the          
valid repositories to local storage. 

After cloned repositories are unpacked to local storage,        
static code analysis bots are used to extract the source code           
specific information, identify complexity, lines of code, size,        
flaws and architectural patterns used in the project.  

We have gathered five bots and one GitHub crawler for          
the purposes of this project. The instruments in use are: 

a) cloc: is a command-line program that counts blank        
lines, comment lines, and physical lines of the source         
code of projects in many programming languages. It        
takes files, directory and/or archives names of       
projects as input, and outputs a table of programming         
languages used in this specific project with additional        
information. Cloc is fairly easy to use as it exists as a            
single file that needs minimum effort to install. With         
the help of this tool, we are analyzing top         
programming languages used in serverless projects      
on GitHub, and as well as the total number of files,           
blank, comment, and code. 

b) LocMetrics: LocMetrics counts the total lines of code        
(LOC), blank lines of code (BLOC), comment lines        
of code (CLOC), lines with both code and comments         
(C&SLOC), logical source lines of code (SLOC-L),       

4 



McCabe VG complexity (MVG), and the number of        
comment words (CWORDS). This tool is similar to        
cloc but provides additional details on the projects. 

c) Git-sizer: this bot computes many size-related      
statistics about GitHub repositories. It provides an       
overall repository size of each project including the        
sizes of commits, trees, blobs, annotated tags,       
references, biggest object, history structure, and the       
biggest checkout. The instrument integrates with the       
local git command line and invokes it to analyze the          
target repository. By knowing each size of serverless        
projects, we can deduce the size metrics for different         
serverless projects, averages across repositories,     
according to languages, and more. New developers       
who are planning to deploy their applications into the         
serverless can get a grasp of what to expect. 

d) Github crawler: is a collection of scripts based on         
git-clone.sh that clone the list of repositories to a         
convenient directory in the home folder. This is used         
to clone hundreds of serverless project from GitHub        
to discuss and analyze architectural patterns. We feed        
the bash script with a list of all the URLs of           
serverless projects from the filtered GHTorrent list.       
The crawler also allows us to identify repositories        
that were deleted, renamed, or otherwise became       
invalid, and eliminate them out of the candidate pool. 

e) Code Factor: is a Static Code Analyser for C#, C,          
C++, CoffeeScript, CSS, Groovy, GO, JAVA,      
JavaScript, Less, Python, Ruby, Scala, SCSS,      
TypeScript. This particular tool performs code      
reviews, understands code quality issues, collects      
intelligence about code quality, and also tracks the        
performance of developers. The most important      
aspect of this tool is that it will provide us with the            
complexity of the project, number of methods,       
grading of each project, and the number of issues         
present in the project, which are used to understand         
the details on serverless projects. 

C. Assisted Repository Analysis 
As established in the proposal, the selection of the most          

popular (by following or contributions) serverless projects       
will be taken and manually analyzed to identify the purpose          
of repositories as described in the Table I. This will be used            
to classify projects according to their use-cases, as well as          
identify design details that could have eluded us during the          
previous phases. In addition to manual analysis, static code         
analysis tools like Codacy and/or Code Factor (in        
non-script-assisted mode) will be used to capture flaws,        
problems, complexity and other metrics used by said tools.         
The analysis within this phase will follow a codified         
protocol of actions established by the team.  

 
TABLE I. PROTOCOL: ASSISTED REPOSITORY ANALYSIS 

 
Step # Description 

1 Open the repository’s GitHub page. 

2 
Document Git metrics: (1) number of issues, (2) 

pull requests, (3) # of commits, (4) the date of the 
last commit. 

3 Document social metrics: (1) # of contributors, 
(2) # of subscriptions, (3) # of comments  

4  
Document technical metrics: (1) primary 

programming language, (2) language breakdown 
in % 

5 
Analyze the repository’s README.md to 
determine the purpose of the repository. 

Document the purpose and use case. 

6 

Add repository link into Code Factor and 
document further metrics: (1) complexity, (2) 

duplication, (3) churn, (4) issues, (5) grade, (6) 
method, (7) LOC. 

7 Cross-check inconsistencies between gathered 
metrics, GHTorrent data, and Bot-gathered data. 

 

 
Fig. 2.  Research methodology and methods used in the data 

analysis 
 

D. Data Collection 
Given the aforementioned specifications, the initial      

dataset and a traversal map for repository crawlers was         
created by undertaking archive preparation, data recreation,       
and filtering the data in preparation of the final dataset. 

For the purposes of this study, we have selected a          
GHTorrent archive dated to 2019-03-01 [34]. The archive        
was further expanded into a collection of CSV files worth          
500 GB of data and representing the relational schema used          
by GHTorrent [35] to track Github’s metadata. A local         
MySQL server was deployed to host the data, configured         
using InnoDB storage engine. Each CSV file was imported         
into the server, recreating GHTorrent’s tables, with       
additional indices created for tables ‘project’,      
‘project_languages’, ‘project_members’, ‘watchers’,   

5 



‘followers’, ‘commits’ and ‘pull_requests’ to improve the       
performance of the search functions. 

Further steps included passing the data through several        
filters to narrow down the scope of repositories to serverless          
projects. The filtering steps  

 
a) 1st Filter: the initial filtering used keywords       

associated with serverless projects matching against      
the project titles and descriptions provided by the        
developers. While the team acknowledges that not all        
serverless projects might use said keywords as       
parameters for their repositories, given the numerical       
amount of records to parse through (over 3 billion         
records), this filtering was deemed as a viable        
tradeoff. Keywords that were used are illustrated in        
Figure 3. This step narrowed the set down to 750925          
unique repositories. 

aws, aws lambda, amazon lambda, lambda      
functions, azure, openwhisk, serverless, google     
cloud functions, microsoft azure, azure functions,      
ibm blue mix, bluemix, oracle fn, oracle cloud fn,         
kubernetes, kubeless, spotinst, ibm cloud     
functions, fn project, azure data lake, google       
cloud datastore, faundadb, picloud 

 

Fig. 3.  Keywords used in the initial filtering of GHTorrent data 
 

b) 2nd Filter: this filter focused on narrowing down the         
serverless projects further by defining the timescale       
and origins of serverless projects. With the Amazon’s        
Lambda service considered to be the main influencer        
behind the Function-as-a-Service (FaaS) and modern      
serverless paradigm [6], we limited the scope to        
repositories created after AWS Lambda came online       
- 2014-11-14. Furthermore, we’ve split the resulting       
set into two categories defined by being either an         
original source of code, or derivative projects based        
on original repositories known in GitHub ecosystem       
as ‘forks’. This resulted in a set of 251823 original          
repositories and 465900 forks. The main reason       
behind this separation was to limit the scope to the          
timescale relevant to serverless projects as well as        
permit better tracking of derivative projects in the        
next filters.  

c) 3rd Filter: this filtering step focused on filtering the         
repositories further by multiple criterias: the projects       
had to have a) more than just 1 commit, as well as b)             
more than a single contributor unless c) the single         
owner made more than 1 change in the repository; d)          
the projects had to have watchers who weren’t        
participating contributors; and e) weren’t forks made       
by the original project’s contributors. This step       
resulted in a set of 2595 original and 1094 forked          
repositories, with a total of 3689 projects identified in         
the set. 
 

d) 4th Filter: the final filtering step was concerned with         
removing projects unrelated to the serverless      
paradigm as well as repositories which could not be         
considered as applications. Projects containing only      
text, images, or other assets without deployable       
serverless code, as well as software projects which        
matched the keywords defined in the 1st filter, but         
had no relation to the serverless applications were        
removed. Lastly, repositories that were either deleted       
from Github or were orphaned (forks which had their         
parent projects deleted) were filtered out. 

The final set contains 2194 repositories which were used         
in the static and assisted analysis as defined in the research           
methodology to produce results. 

IV. RESULTS 

In this section, we present the results of our analysis          
within the three established dimensions, namely: (1), the        
common properties derived from the mined repositories, (2)        
the breakdown of use cases identified among analyzed        
projects, and (3) the analysis of dependencies on the major          
vendor. 

A. RQ1 Prevalent characteristics of Serverless Projects 
While performing the study, 3 properties were identified        

as the primary metrics pointers while analyzing the        
repositories. The data derived from said identifiers were        
used to classify the prevalent characteristics between       
serverless applications. The identified properties are (1)       
Structure of the repository, (2) Software Languages used in         
the project, and (3) the size of the project. The          
characteristics are further described in the following       
subsections. 

 
a) Structure 

One of the key factors that define the footprint of          
software applications are the components that constitute       
them. With the total of 2194 repositories examined, we were          
able to identify 152 distinct software artifacts which were         
classified into two categories: (1) primary and (2) secondary         
software artifacts. This distinction was made to separate the         
parts of the projects which contained the actual executable         
source code from the configuration files, miscellaneous       
scripts, documentation, graphical and other assets. The data        
breakdown is illustrated in Figure 4.  

 
Fig. 4.  Distribution of the primary and secondary artifacts 

  

6 



 

 
Fig. 5.  Distribution of repositories by the artifact exclusivity 

 
The core of source code type artifacts constitutes only a          
minority (16.4%) of all types. However, this can be offset by           
the fact that 104 (81.89%) out of 127 secondary artifacts          
have a lower than 1.00% occurrence across the entire set,          
relegating the majority of secondary software artifacts to        
isolated projects. 

Further structural differences were derived by analyzing       
the overall set of serverless repositories against said groups.         
This yielded three categories of projects, defined by the         
exclusivity of use of the primary, secondary or a mix of both            
artifact types. The distribution is listed in Figure 5. The          
breakdown indicates that the overwhelming majority of the        
serverless projects (87.51%) contain a mix of primary and         
secondary types, while projects created using only the        
secondary artifact types (12.35%) or only source code        
languages (0.14%) are in the minority. 

However, this can be attributed to the near-universal use         
of ‘Markdown’ files by GitHub’s environment as the default         
format for documentation as well as ‘Text’ files for the          
development documentation. Filtering both out of the set        
produces a more accurate breakdown as shown in Figure 6.          
The mixed project still constitute the majority of projects         
(84.50%), the secondary only projects stay the same        
(12.35%), but the real number of pure source code based          
projects increases to (3.15%). The overall distribution of the         
projects  

 
 

Fig. 7.  Number of all unique software artifacts by repository 
 
Lastly, the comparison of serverless projects by the        

quantity of unique artifacts provides a different indication        
across the established categories, illustrated in Table II and         
Figure 8. The data shows that more than half (59.34%) of           
existing OSS projects within the set use a single primary 

 
 

Fig. 6.  Distribution of repositories by the artifact exclusivity, 
excluding secondary text-only artifacts 

 
language, or at least one or two primary languages in          
80.85% of projects. Concurrently, the secondary artifacts       
have a more gradual distribution with the majority (80.86%)         
of the projects using 2 or more unique types. This indicates           
that OSS projects favor developing serverless applications       
using one or two primary programming languages, but often         
expand the software’s structure using secondary assets. 

 
TABLE II. NUMBER OF ARTIFACTS PER PROJECT 

 

# Primary Secondary Total 
Qty. % Qty. % Qty. % 

1 1302 59.34 351 15.99 132 6.02 
2 472 21.51 446 20.33 358 16.32 
3 112 5.1 335 15.27 390 17.78 
4 23 1.05 278 12.67 292 13.31 
5 12 0.55 252 11.49 230 10.48 
6 1 0.05 274 12.48 171 7.79 
7 0 0 154 7.02 129 5.88 
8 1 0.05 32 1.46 336 15.31 
9 0 0 3 0.14 140 6.38 
10 0 0 0 0 16 0.73 

 
 

 
 

7 



 
Fig. 8.  Serverless repositories grouped by the number of unique 

software artifacts 
 

TABLE III. PRIMARY LANGUAGES BY OCCURRENCE 
 

Artifact Occurrence % # of Files 
JavaScript 43.76 193730 

Python 23.29 68452 
C# 12.03 14064 

Java 11.3 8930 
Go 8.16 248026 

Ruby 7.11 4507 
TypeScript 4.24 11225 

PHP 3.46 19675 
C 3.14 4788 

C++ 3.1 19280 
Perl 1.09 471 

Objective-C 1.05 2776 
Scala 1.05 502 

b) Software Languages 

The analysis of 25 Primary artifacts against the        
repositories yielded 13 programming languages that are used        
above the 1% threshold of occurrences in the examined         
projects. The data is showcased in Table III, with JavaScript,          
Python, and C# being the preferred development languages.        
The discrepancy between the occurrence and number of files         
was noted for languages like Go, Typescript, PHP and C++.          
This irregularity was introduced by the outlier repositories        
with the numerous quantity of files, such as large projects          
with the source code written using one language type. 

A similar breakdown was performed across the       
Secondary artifacts, with 19 out of 127 types used above 1%           
usage threshold and illustrated in Table VI. The analysis         
identifies Markdown, Text, JSON, and YAML as the        
secondary data types prevalent in the set. 
 

TABLE VI. SECONDARY LANGUAGES BY OCCURRENCE 
 

Artifact Occurrence % # of Files 
Markdown 88.15 45477 

Text 61.39 24032 
JSON 57.20 66216 

YAML 49.73 29846 
Shell 32.68 10216 

HTML 24.93 12733 
XML 24.29 28382 
CSS 19.74 9056 
INI 18.96 1199 

Dockerfile 12.90 1595 
Makefile 10.26 3064 

SVG 9.43 5035 
Batch File 7.70 519 

Maven_POM 6.61 474 
PowerShell 6.06 1506 

HCL 4.10 1686 
SCSS 3.92 2819 
ASP 3.69 273 

Ignore_List 3.65 237 
 

c) Size 

The total number of files per project was used to assess           
the general size and complexity of examined projects as well          
as establish the prevalence of size categories within the set.          
The data is presented in Figure 9 and Table V. According to            
the presented data, the majority of serverless are distributed         
in sizes between 6 to 50 files (57.50%). 

 
Fig. 9.  Distribution of the repositories by the number of files 

8 



TABLE V. SERVERLESS PROJECTS BY THE NUMBER OF FILES 
 

Number of Files Repositories Occurrence % 
10001+ 21 0.96 

5001-10000 20 0.91 
2001-5000 41 1.87 
1001-2000 38 1.73 
501-1000 63 2.87 

201-500 110 5.01 
101-200 155 7.07 

51-100 252 11.49 
26-50 500 22.79 
11-20 426 19.42 

6-10 336 15.31 
1-5 232 10.57 

 

B. RQ2 Serverless Use Cases 
In total, we have manually analyzed 429 repositories to         

identify common use cases in serverless projects. In the end,          
13 common use cases were derived from 267 repositories,         
with the occurrence within the subset presented in Figure 10          
and Table VI. The remaining 162 repositories either fell into          
categories with less than 6 occurrences or had unique use          
cases that were difficult to generalize. 

The following subsections contain key observations      
made by us about the major categories. 

API: The largest number of repositories within the set         
contain APIs, which includes projects such as Key Vault         
Connector for Logic Apps, Source for the demo app API in           
Serverless-Stack.com. These API are set of tools that are         
used to communicate among and link various serverless        
components.  

Framework: The framework is the next most common        
use case in serverless projects. These serverless frameworks        
are most used building application on AWS Lambda. An         
example of such a framework is the Real-time data analysis          
Framework. 

Communication: this third most prevalent category was       
classified as libraries, extensions, and tools used for        
networking, communication and transmission of data. Most       
repositories within this category play a major role in the          
serverless projects as a number of repositories classified as         
such used moduled to transfer text, images and other kinds          
of information from one place to another, eg. a serverless          
app that posts messages to Slack. 

Website: several Websites and web hosting platforms       
were identified within the set Websites are commonly        
hosted in the platform as well.  

Database: serverless applications within this category      
fell into the data storage category via databases. However,         
most often the projects managed or linked components with         
the database services, such as DynamoDB, MongoDB, or        
relational databases. 

Image Processing: this category relates to repositories       
that perform tasks related to image processing. For instance,         
Finpics use AWS Recognition to provide a faces search of          
finpics.com. 

Alexa Skills: “Alexa Skills” is a feature of the Amazon          
platform used to expand the functionality of an Alexa bot. 

 
Fig. 10. Distribution of the identified use cases in the repositories 

 
TABLE VI. IDENTIFIED SERVERLESS USE-CASES 

 

Use-Cases Repositories Occurrence % 
API 45 10.49 

Framework 43 10.02 
Communication 28 6.53 

Website 21 4.9 
Database 17 3.96 

Image Processing 15 3.5 
Alexa Skills 14 3.26 

App 13 3.03 
Bot 12 2.8 

Data Mining 11 2.56 
Storage 11 2.56 

Automation 10 2.33 
Monitoring 9 2.1 

Cognitive Services 6 1.4 
Library 6 1.4 
Plugin 6 1.4 
Total  267 62.24 

Between 5 and 2 83 19.35 
Unique cases 79 18.41 

 
Most serverless projects within this category were created to         
demonstrate the commonly used hooks and expandability       
features of Alexa’s platform. 

App: this category primarily contains the small scale        
programs made to perform user-friendly functions as well as 
containing educational ‘toy project’ applications. Most of       
them were adapted to use AWS Lambda. 

Bot: bots are used to do a specific task, and a number of             
repositories that were analyzed contain bot. An example of a          
Bot is Azure Bot to get information on an Azure          
Subscription.  

Data Mining: all repositories within this category       
involve serverless tools for collecting and processing data in         
a semi-autonomous way. 

Storage: storage services were noted to be responsible        
for managing the data preservation between serverless       
applications which weren’t necessarily based on databases. 

Automation: repositories within the Automation     
use-case involved minimizing the user and power-user level        
input for tasks via serverless schedulers, scripts, and other         
techniques. For example, a serverless function that       

9 



automates the enforcement of Multi-Factor Authentication      
to all AWS IAM users. 

Monitoring: repositories within this category are      
serverless applications that are designed to monitor various        
serverless components. An example of such application will        
be stack overflow monitor monitors stack overflow       
questions and post them in a slack channel. 

Cognitive Services: repositories within this category are       
APIs, SDK and services that help developers to build         
intelligent applications. For instance, computer vision API       
where one can test their own image.  

Library: repositories within this category represent the       
collection of useful utilities for serverless applications. An        
example of such a tool will be JavaScript-based pipelines         
and utility hooks for NodeJS. 

Plugin: software component which add extra features to        
already existing serverless application and platforms were       
categorized as plugins, eg. serverless functions which       
expand the container orchestration modules of Kubernetes. 

C. RQ3 Serverless Vendor Dependency 
In total, the authors have manually analysed 429         

repositories to identify the most popular cloud service        
provider to deploy serverless applications in. The reason for         
manually analysing all these repositories is for reliability        
and accuracy.  

 
Fig. 11. Distribution of vendor dependencies among the 

serverless projects 
 

TABLE VII. SERVERLESS VENDOR DEPENDENCIES 
 

Vendor Repositories % 
Amazon 309 72.03 
Microsoft 91 21.21 

IBM 6 1.40 
Google 4 0.93 

Open Source 17 3.96 
Mixed Vendors 2 0.47 

Total 429 100.00 

V. DISCUSSION 

A. RQ1 Prevalent characteristics of Serverless Projects 
The analysis of the large serverless dataset has brought         

several common traits among the examined projects to the         
authors’ attention. The majority of the serverless repositories        
seem to be based around one or two core programming          
while using scripts, markdown, configuration files and other        
assets to expand their functionality. The primary       
programming languages used to build serverless components       

are JavaScript, Python and C#. This data correlates with the          
data gathered in the related literature [6]. The complexity         
which secondary artifacts introduce varies greatly across the        
repositories, as unique secondary data types between 2 to 6          
per repository are nearly equally represented across the        
dataset. More so, similar distribution can be noted in regards          
to the size of serverless projects, as 67.95% of examined          
projects are no bigger than 50 files, while tiny projects up to            
20 files encapsulate nearly 46% of the entire set, thus          
indicating that serverless OSS application lean towards       
smaller-scale deployments. 

B. RQ2 Serverless Use Cases 
The purpose of the study for RQ2 is to provide the           

common use cases in open-source serverless projects. The        
significance of the findings for the RQ2 in light of the case            
study among the developers within the field [6] , indicates          
that use-cases are similar to an extent in both papers.          
Database and API are most used in serverless in the          
published paper, whereas in this research paper API and         
serverless frameworks leading the chart. A significant       
amount of open-source serverless projects are analysed to        
justify the answer. In this study, we have used more          
categories to distinguish each repository compared to the        
related literature [6], as a reader can have a wider          
perspective on what other use cases are present in the          
serverless projects.  

C. RQ3 Serverless Vendor Dependency 
The majority of the analyzed repositories were deemed        

to be dependent on the large vendors, primarily Amazon         
(72.03%) and Microsoft (21.21%) as shown in Table VII.         
Only 3.96% of OSS projects were using open source         
frameworks that were openly available to be instantiated by         
both commercial vendors and end-users. 

D. Threats to validity 
Throughout the study we have identified 3 major threats         

to validity which might affect the results of this study. 
Internal: Drawing conclusions between different types      

of serverless applications or different target platforms can        
introduce selection bias. To mitigate the bias, the major         
dataset was selected randomly according to specifications       
established in the Research Methodology. 

External: The filtering methods that were used during        
the first stages to create the initial dataset can affect the           
generalizability of outcomes, especially due to the lack of         
reliability in the unfiltered data from Github repositories. To         
mitigate this threat, the authors tried to remove unreliable,         
irrelevant, and empty data, forming the set out of         
repositories which referenced different serverless platforms. 

Reliability: The choice of analysis tools, dataset       
curation, the state of repositories when GHTorrent captured        
the snapshot or automated tools analyzed the data can have a           
decisive effect on the accuracy of the study. The lack of           
related literature and the previously devised data evaluation        
protocol that could be applied to our study affects the          
reliability of data. To promote the replicability we published         
the set and data breakdown used in the analysis which are           
accessible online [36]. 

10 



VI. CONCLUSION 

This research aims to provide readers an insight into the          
serverless development trends in open source Github       
projects. Based on the comprehensive qualitative and       
quantitative analysis of the serverless projects in Github, the         
study indicates that serverless is gaining popularity within        
GitHub communities. The existing projects cover a myriad        
of use cases: from APIs and Backend services to Storage,          
Automation and Data processing. The numbers indicate that        
technical alternatives exist to traditional architectural      
patterns with multiple application fields already explored by        
the OSS projects. With serverless paradigm slashing the cost         
of infrastructure maintenance, the developers can solely       
focus on the main objective, which is creating the product.          
Moreover, the most common programming languages used       
to build the components are JavaScript, Python, and C#. 

However, while serverless brings benefits to the       
developers, the data indicates that the majority of the OSS          
projects are created to fit specific cloud service providers,         
with the Amazon Web Services and Microsoft Azure’s        
ecosystems dominating the examined applications. While      
fully independent serverless platforms exist, only a fraction        
of the projects used them. This might carry both positive and           
negative consequences as the dominance of AWS and Azure         
can be linked to the affordable price models, service         
stability, brand exposure as much as the vendor lock-in,         
service dependencies, and dealing with inflated costs if        
applications aren’t tailored well to the vendor’s ecosystem.        
Further research can be done to derive changes in the growth           
and emergence trends between proprietary ecosystems and       
independent platforms as well as use cases and software         
artifacts, using the social, timestamps, and code quality        
metrics accumulated in the study’s dataset. 

ACKNOWLEDGMENTS 

The authors of this research would like to thank the          
supervisor Joel Scheuner for guidance. The help of his         
supervision sessions allowed authors to achieve the       
objectives of this study. 

REFERENCES 
[1] G. C. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, “Status           

of serverless computing and function-as-a-service (FaaS) in       
industry and research,” in 1st Int. Workshop on Serverless         
Computing (WoSC), Atlanta, GA, USA, Jun. 2017.  

[2] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, et             
al., “Serverless Computing: Current Trends and Open Problems,”        
in Research Advances in Cloud Computing, S. Chaudhary, G.         
Somani, and R. Buyya, Eds., Singapore: Springer, 2017, pp. 1–20. 

[3] A. Baird, G. Huang, C. Munns, and O. Weinstein, “Serverless 
Architectures with AWS Lambda: Overview and Best Practices”, 
Amazon, p. 44, Nov. 2017. [Online]. Available: 
https://d1.awsstatic.com/whitepapers/serverless-architectures-with-
aws-lambda.pdf [Accessed: 30-Mar-2019] 

[4] DigitalOcean, “Currents: A Quarterly Report on Development 
Trends in the Cloud,” p. 22, Jun. 2018. [Online]. Available: 
https://www.digitalocean.com/assets/media/currents-research/pdf/
DigitalOcean-Currents-Q2-2018.pdf [Accessed: 30-Mar-2019] 

[5] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith, V.           
Sreekanti, A. Tumanov, et al., “Serverless Computing: One Step         
Forward, Two Steps Back”, in 9th Conf. on Innovative Data          
Systems Research (CIDR’19), Pacific Grove, CA, USA, Jan. 13 -          
Jan. 16, 2019. 

[6] P. Leitner, E. Wittern, J. Spillner, and W. Hummer, “A          
Mixed-method Empirical Study of Function-as-a-Service Software      
Development in Industrial Practice” in Journal of Systems and         
Software, Vol. 149, pp. 340–359, 2019. 

[7] AWS Serverless Application Repository. [Online]. Available: 
https://aws.amazon.com/serverless/serverlessrepo/  
[Accessed: 30-Mar-2019] 

[8] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N.             
Mitchell et al., "Serverless computing: Current trends and open         
problems." Research Advances in Cloud Computing, pp. 1-20.        
Springer, Singapore, 2017. 

[9] A.D. Urso, "A Serverless Instant Messaging Protocol for Mobile         
Ad Hoc Networks." in 8th Int. Conf. on Creating, Connecting and           
Collaborating through Computing, pp. 71-75. IEEE, 2010. 

[10] M. Moula and V. Mancuso, "Experimental performance evaluation        
of WebRTC video services over mobile networks." in IEEE         
Conference on Computer Communications Workshops     
(INFOCOM WKSHPS), pp. 541-546. IEEE, 2018. 

[11] O. Alqaryouti and N. Siyam, "Serverless Computing and        
Scheduling Tasks on Cloud: A Review." in American Scientific         
Research Journal for Engineering, Technology, and Sciences       
(ASRJETS) 40, no. 1, pp 235-247, 2018. 

[12] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, "Social Coding in            
GitHub: transparency and collaboration in an open software        
repository." in Proc. of the ACM 2012 conference on computer          
supported cooperative work, pp. 1277-1286. ACM, 2012. 

[13] E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer, and D. M.           
German, "Open source-style collaborative development practices      
in commercial projects using GitHub," in 37th International        
Conference on Software Engineering, vol 1, pp. 574-585. IEEE         
Press, 2015. 

[14] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.          
German, and D. Damian, "The promises and perils of mining          
GitHub," in Proc. of the 11th working conference on mining          
software repositories, pp. 92-101. ACM, 2014. 

[15] I. Keivanloo, C. Forbes, A. Hmood, M. Erfani, C. Neal, G.           
Peristerakis, and J. Rilling, "A linked data platform for mining          
software repositories." in Proc. of the 9th IEEE Working         
Conference on Mining Software Repositories, pp. 32-35. IEEE        
Press, 2012.  

[16] G. Gousios and A. Zaidman, "A dataset for pull-based         
development research," in Proc. of the 11th Working Conference         
on Mining Software Repositories, pp. 368-371. ACM, 2014. 

[17] F. Thung, T. F. Bissyande, D. Lo, and L. Jiang, "Network structure            
of social coding in GitHub," in 17th European Conf. on Software           
Maintenance and Reengineering, pp. 323-326. IEEE, 2013. 

[18] J. Tsay, L. Dabbish, and J. Herbsleb, "Social media and success in            
open source projects," in Proc. of the ACM 2012 conference on           
computer supported cooperative work companion, pp. 223-226.       
ACM, 2012. 

[19] J. Perkel, "Democratic databases: science on GitHub," in Nature         
News 538, no. 7623, p. 127, 2016. 

[20] P. Wagstrom, C. Jergensen, and A. Sarma, "A network of rails: a            
graph dataset of ruby on rails and associated projects," in Proc. of            
the 10th Working Conference on Mining Software Repositories,        
pp. 229-232. IEEE Press, 2013. 

[21] A. Lima, L. Rossi, and M. Musolesi, "Coding together at scale:           
GitHub as a collaborative social network," in 8th Int. AAAI          
Conference on Weblogs and Social Media, 2014. 

[22] C. Hauff and G. Gousios, "Matching GitHub developer profiles to          
job advertisements," in Proc. of the 12th Working Conference on          
Mining Software Repositories, pp. 362-366. IEEE Press, 2015. 

[23] C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov,         
"Developer onboarding in GitHub: the role of prior social links          
and language experience," in Proc. of the 2015 10th Joint Meeting           
on Foundations of Software Engineering, pp. 817-828. ACM,        
2015. 

[24] F. Jurado and R. Pilar, "Sentiment Analysis in monitoring software          
development processes: An exploratory case study on GitHub's        
project issues," in Journal of Systems and Software, pp. 82-89,          

11 

https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf
https://d1.awsstatic.com/whitepapers/serverless-architectures-with-aws-lambda.pdf
https://www.digitalocean.com/assets/media/currents-research/pdf/DigitalOcean-Currents-Q2-2018.pdf
https://www.digitalocean.com/assets/media/currents-research/pdf/DigitalOcean-Currents-Q2-2018.pdf
https://aws.amazon.com/serverless/serverlessrepo/


2015. 
[25] Y. Yu, W. Huaimin, V. Filkov, P. Devanbu, and B. Vasilescu,           

"Wait for it: determinants of pull request evaluation latency on          
GitHub," in 12th Working Conf. on Mining Software Repositories,         
pp. 367-371. IEEE, 2015. 

[26] G. Avelino, M. T. Valente, and A. Hora, “What is the Truck Factor             
of popular GitHub applications? A first assessment,” No. e1683.         
PeerJ, 2015. 

[27] V. Cosentino, J. L. Cánovas Izquierdo, and J. Cabot, "Three          
metrics to explore the openness of GitHub projects," in arXiv          
preprint,1409.4253, 2014. 

[28] G. Gousios and D. Spinellis, "Mining software engineering data         
from GitHub," in 39th Int. Conf. on Software Engineering         
Companion, pp. 501-502. IEEE, 2017. 

[29] J. Fowkes and C. Sutton, "Parameter-free probabilistic API mining         
across GitHub," in Proc. of the 24th Int. Symposium on          
Foundations of Software Engineering, pp. 254-265. ACM, 2016. 

[30] A. Mockus, "Is mining software repositories data science," in         
Proc. of the 11th Working Conference on Mining Software         
Repositories, pp. 1-1, ACM, 2014. 

[31] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov,            
and P. Devanbu, "Fair and balanced?: bias in bug-fix datasets," in           
Proc. of the 7th joint meeting of the European software          
engineering conference and the ACM SIGSOFT Symposium on        
The foundations of software engineering, pp. 121-130. ACM,        
2009. 

[32] R. Hebig, T. Ho Quang, M. Chaudron, G. Robles, and M. A.            
Fernandez, "The quest for open source projects that use UML:          
mining GitHub," in Proc of the 19th International Conference on          
Model Driven Engineering Languages and Systems, pp. 173-183.        
ACM, 2016.  

[33] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.          
German, and D. Damian, "The promises and perils of mining          
GitHub," in Proc. of the 11th working conference on mining          
software repositories, pp. 92-101. ACM, 2014. 

[34] G. Gousious, GitHub metadata MySQL datadump, [Online]       
http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2019-03-01
.tar.gz [Accessed: 31-Mar-2019] 

[35] Gousios, Georgios, "The GHTorrent dataset and tool suite," In         
Proceedings of the 10th Working Conference on Mining Software         
Repositories, pp. 233-236. IEEE Press, 2013. 

[36] I. Pavlov, S. Ali, T. Mahmud, Final dataset and analysis data from 
“Serverless Development trends in Open Source: a mixed-research 
study”, 2019. [Available]: 
https://docs.google.com/spreadsheets/d/10FKwBFA4zmROXGU3
rTdIgf4BcNj5fIQWkGF5xQuyC-s [Accessed: 10-Sep-2019] 

12 

http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2019-03-01.tar.gz
http://ghtorrent-downloads.ewi.tudelft.nl/mysql/mysql-2019-03-01.tar.gz
https://docs.google.com/spreadsheets/d/10FKwBFA4zmROXGU3rTdIgf4BcNj5fIQWkGF5xQuyC-s
https://docs.google.com/spreadsheets/d/10FKwBFA4zmROXGU3rTdIgf4BcNj5fIQWkGF5xQuyC-s

