

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Testing practices in indie game
development from a software engineering
perspective: an exploratory study

Bachelor of Science Thesis in Software Engineering and Management

Snezhina Racheva

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

The Author grants to University of Gothenburg and Chalmers University of Technology the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work electronically
and make it accessible on the Internet.

Testing practices in indie game development

from a software engineering perspective: an exploratory study

© Snezhina Racheva, June 2019.

Supervisor: Francisco Gomes de Oliveira Neto

Examiner: Richard Berntsson Svensson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Testing practices in indie game development from a
software engineering perspective: an exploratory

study
Snezhina Racheva

Supervised by: Francisco de Oliveira Neto
University of Gothenburg

Gothenburg, Sweden
gusracsn@student.gu.se

Abstract—The games industry produces software with a main
focus of entertainment, as opposed to fulfilling a certain business
need. As a result, technical aspects of the final product are
prioritised only at a base minimum level, keeping them from
getting in the way of the game’s entertainment value. Product
testing is thus separated into these two concerns, with playtesting
covering mostly gameplay design and quality assurance testing
assessing the technical performance. However, literature lacks
empirical evidence regarding the distinction from both types
of testing, particularly, from a software engineering perspective.
Moreover, this limited understanding is a hindrance for effective
testing activities, since practitioners may not be familiar with
known benefits and drawbacks in different software testing
practices. This paper collects data from various sources bridge
this gap in empirical evidence to: i) clarify the outlook of the game
development industry from a software engineering perspective, ii)
note down any particular challenges which might be faced due
to this difference between the fields, and iii) propose solution
from a software engineering practical perspective. Our findings
reveal some insights about QA testing and playtesting, such as: i)
the similarities between paytesting and exploratory testing, and
ii) effects of using test-first approaches to support QA testing.
Moreover, we report on problem and a list of suggested solutions
to further bridge game development and software engineering.

I. INTRODUCTION

While software is a major element in computer games, game
development, in practice, is largely different from software
engineering [1]. Software most often exists to serve a purpose
(such as assist in a business task or stream a source of en-
tertainment), whereas games’ main purpose is predominantly
to entertain. This distinction causes the development cycles of
games and other software (or ”business software”) to also be
vastly different, and, consequently, for game development to
put very little focus on software engineering practices at all.

Viewed this way, game development can be separated into
two separate aspects: i) the gameplay design, which is what
provides the “fun” when playing a game, and ii) the software
development aspect, which regards the implementation of
the gameplay design itself. Seeing as the game development
industry largely focuses on ensuring its products bring the
users entertainment [2], its main goal in testing is to assess,
namely, the fun-factor and gameplay.

This fun-assessing type of testing is also referred to as
playtesting, coming from the method used to perform it, i.e.,
playing through the game either partially or in full, and taking
notes on possible changes needed. It also bears resemblance
to the exploratory approach [3] to testing - playtesting is also
assessed, planned and performed simultaneously.

On the other hand, purely software quality testing (e.g., unit
and integration testing) is referred to as Quality Assurance
(QA) testing and is performed completely separately. For
example, if a company is developing a platform-based game
(e.g., Super Mario1), playtesting would determine whether
the pace or difficulty of the game is well-balanced [4], the
character’s jumps are manageable and the reward at the end
is sufficient. Conversely, QA testing would ensure glitches in
calculations are avoided and the software behaves reliably and
predictably.

Similar to QA testing, playtesting can also be used to spot
technical issues and faults as well. For instance, a miscalcula-
tion in the code of the physics (i.e., a fault) of a platform-based
game causing the player’s jump action to act unpredictably
(i.e., a failure) would be visible during a playthrough, and
thus, easily spotted. This overlap in the results of testing is
another reason for playtesting to take priority over types of
QA testing.

Consequently, prioritising gameplay over software quality in
testing can further increase the gap between game development
and software engineering. Particularly, when considering the
high pressure and demanding deadlines of delivering new
products, any entertainment-centered industry would most
likely be inclined to sacrifice quality over the apparent fun-
factor. In the case of game development, this has led to a lack
of a systematic and uniform approach to QA testing.

Another relevant factor is the availability of resources that
a company can allocate to both QA testing and playtesting.
By dividing companies based on their size (or number of em-
ployees), we can review big, well-established companies (e.g.,

1https://en.wikipedia.org/wiki/Super Mario

Eletronic Arts2 and Nintendo3), and small independent (indie)
teams separately (e.g., Arrowhead Game Studios AB4, Moon
Studios GmbH5), as their budgets also differ significantly. As
noted in “Playtesting for indie studios”[5],

In the interest of minimising expenses, these [big-
budget] teams budget for playtesting and quality
assurance (QA). (...) Smaller game studios often do
not have the budget for arranging expensive playtest-
ing, so there is a need to incorporate playtesting
techniques for smaller teams and accommodate their
budgets.

For instance, in Electronic Arts, a well-established game de-
velopment studio, practitioners highlight the usage of machine
learning algorithms to automate the play-through of the games
being developed [6], as well as manual qualitative assessment
of game performance on a frames-per-second (FPS) level.
Conversely, Indie studios’ budgets commonly depend, not on
their own company funds, but instead are often sourced to
“game incubators” or otherwise external investors [5], and, as
such, the budget allocated for playtesting and QA testing is
smaller. The need for quality assurance in order to ensure an
enjoyable final product is, however, just the same.

However, if one were to turn back towards the field of
software testing for a solution to this issue, it might seem
possible to minimise the time spent on designing test cases,
and thus to decrease technical debt, by making test case
design a vital part of the development process, namely through
test-first development[7]. Similarly, the problems found when
performing playtesting are often associated with exploratory-
type testing (such as the difficulty in assessing test quality
and coverage). Consequently, we argue that game develop-
ment teams can leverage from existing solutions related to
these challenges to achieve effective testing both in QA and
playtesting.

The current state of research regarding game development
as a software engineering discipline (and thus focusing on
software engineering-related problems within it) is lacking -
it is, specifically, in need of more empirical studies[1]. This
thesis aims to assist in filling that gap in knowledge.

Specifically, our problem statement is that verification and
validation (V & V) activities in game development in indie
companies often do not apply known advantages from estab-
lished techniques in software testing state-of-the-art and prac-
tice. Consequently, quality in game development is hindered.
Our hypothesis is that using simple techniques, such as test-
first [7] and exploratory testing [3], to leverage, respectively,
QA testing and playtesting can help practitioners to achieve
better testing cycles and manage technical debt.

If seen as ultimately leading to less technical debt (and
encouraged QA testing), the test-first approach in indie game
development settings has the potential to decrease the rift in

2https://www.ea.com/
3https://www.nintendo.com/
4http://arrowheadgamestudios.com/
5https://www.orithegame.com/

quality between small and big-budget game developers, and to
bring more software engineering practices (and thus - benefits)
into game development as a whole.

At the same time we will be providing the research field
with another empirical study into testing within game devel-
opment, which, according to [1], there is a need for more
of. Additionally, we will be further elaborating on game
testing practices and their software engineering equivalents -
something, which there is also a significant lack of research
in.

A. Purpose of the study

The research aim of this paper is to explore possible ways
for indie game development teams to improve their testing
practises, by employing concepts from software engineering.
Under the risk that QA testing is often neglected in such small-
scope development environments, practitioners can benefit by
finding a way to decrease the time needed for test case
design (or even to introduce automated QA testing) in a
non-disruptive manner, for example, by employing a test-first
development methodology.

Furthermore, viewing playtesting from the perspective of
software engineering (as opposed to gameplay design), can
assist in smoothing out common issues and weaknesses within
the assessment method. For instance, the bias of a player
testing the game, or allowing playtesters to be creative when
testing the games, are issues often seen in exploratory testing
done in the gaming industry. Regarding such issues, the
software testing research field might already be looking for
a solution[3].

We will perform a case study to capture the current practices
and tools used by practitioners (for both QA testing and
playtesting), as well as identifying challenges, and proposing
how these challenges can be addressed by state-of-the-art
research in software testing. Moreover, future studies can focus
on transferring these techniques to game development teams.

Particularly, the purpose of this study is to: i) empirically in-
vestigate how games are tested in production when developed
by a small (max 10 people), independent team, ii) investigate
how a test-first approach would potentially affect the testing
process and the final quality of a game product, and iii)
understand to what extent exploratory testing guidelines can
aid playtesting.

B. Research Questions and/or Hypotheses

Considering that indie games companies understand the
distinction between QA testing and playtesting (as indicated
by literature—Section II), our hypothesis is that indie game
companies can attain the benefits pertaining both activities by
adopting software engineering practices. Particularly, we focus
on two software testing techniques: test-first approaches and
exploratory testing, given their commonalities to, respectively,
QA testing and playtesting. Moreover, we aim to answer the
following research questions:

RQ1: How is indie games’ quality assessed throughout their
production?
RQ2: To what extent can test-first approaches leverage QA
testing in game development?
RQ3: How does playtesting relate to exploratory testing in
terms of challenges met?

C. Summary of Contributions

Our exploratory study comprises data collection at an indie
game company and analysis of artifacts from grey literature.
These two data collection methods were analysed and the
following contributions can be highlighted:

• We have clarified the separation between the different
types of testing - playtesting and QA testing - as well as
the expected results of both.

• We have compared playtesting to the very similar ex-
ploratory testing, and searched for any challenges they
might have in common.

• We have made note of the effects TDD and TDD-like
approaches have on QA practices in game development
teams, as well as questioned the time and resource
investment payoff.

• We have classified different approaches indie developers
might have in order to tackle QA testing - outsourcing,
as well as small-scale automated unit testing.

II. REVIEW OF THE LITERATURE

When reviewing related literature to the problem domain,
we focus on four separate topics: i) the distinction between
game development and software engineering, ii) the distinction
between playtesting and QA testing, and the overlap between
the two, iii) test-first development in a software engineering
setting, and its effects on development quality, and iv) ex-
ploratory testing in a software engineering setting, and the
challenges and profit it brings.

In a systematic review, Ampatzoglou and Stamelos describe
the software engineering-centered research related to games
and game development [1] . The authors report on the lack
of empirical research, specifically, controlled experiments and
case studies, within the area of game development, and the
need for more to be conducted. This research aims to fill that
gap by performing a case study to collect data on the practices
of testing in game development.

“Identifying usability and fun problems in a computer game
during first use and after some practice”[2] explores usability-
and fun-related fault detection during a first play-test of a game
vs. when testing after getting accustomed to the gameplay.
Its conclusion reports that the problems identified when first
play-testing largely differ from the ones noted at a later time.
This paper focuses mainly on usability and entertainment,
which makes it largely irrelevant when it comes to QA testing
research - something this thesis aims to focus on as well.

“Game Design Workshop(...)”[4], walks the readers through
the authors’ own definition of playtesting and its role within a

game development environment, followed by detailed instruc-
tions on how to recruit and instruct playtesters, and collect and
evaluate playtesting data. It’s valuable that there is a clear dis-
tinction made between playtesting and QA testing here - even
if it is sometimes contradicted by other sources. This book
serves as a good source of context for someone looking into
the game development industry and its practices, but it largely
focuses on the gameplay design aspects, and less on software
development (and furthermore, software engineering).

“Design for Research Results: Experimental Prototyping
and Play Testing”[8] focuses on game design in a research
context, and provides navigation through different types of
prototyping and examples of playtesting. Its definition of QA
testing as just another type of playtesting contradicts other
sources, but also provides context on how vaguely-defined the
terms really are. The article greatly differs from what this
thesis aims to do, but provides assistance in understanding
how to treat games in a research environment.

“Does Test-Driven Development Really Improve Software
Design Quality?”[9] reviews whether the positive effect of
test-driven development (or test-first approaches) is sufficient
reason for their use. Our study will be looking at the positives
brought by a change towards test-first development as well, so
this paper provides additional insight into the methodology.
At the same time, it does not involve itself with the game
development field.

Regarding both types of testing we are investigating, [3]
compares exploratory to scripted testing, highlighting their
differences, strengths and weaknesses. While we can use this
to compare playtesting to exploratory testing in software engi-
neering, this also brings up the comparison between scripted
and automated QA testing.

On the QA testing through test-first development side,
“Specification by example”[7] theorises about technical debt
being minimised as a result of test-first development. This is
one of the possible outcomes to test-first game development
we will be on the look out for.

III. RESEARCH METHODOLOGY

In order to answer the research questions, we performed
an exploratory study (Table I). Through empirically studying
the current testing practices in an indie game development
company (or team), we aimed to compile a satisfactory source
of data and reference for identifying challenges, and to propose
improvements in software testing.

The subject of this case study is a game development team,
unaffiliated with a large game development company (i.e.
independent, or indie), which had, at the time of the interview,
already established itself in the industry. The team had, as of
April 16th, published two games across several platforms, and
was, at the time, working on their third game. In addition to
their experience in the industry, they are also alumni of one of
the best-known game development university programmes in
Sweden, and thus could testify for the prioritisation of testing
and software quality in the programme’s syllabus. In this paper

they will be referred to as GameDevCo, in order to protect
their anonymity.

Due to the limited research on common testing practices
among indie development companies, the main goal of this
interview was to establish the field under research: to clarify
the current testing practices employed by the interviewed
company and to generate suggestions for possible outcomes
of the final case study.

In order to collect data for this base level of understanding,
the interview questions needed to include a variety of aspects
regarding testing in game development (e.g., unit testing, test
frameworks, debugging of failures). Once the transcripts of
the interviews were collected, we followed guidelines from
qualitative in software engineering to analyze the data. This
aimed to provide us with insight into testing-related prob-
lems the subjects of our study face, which we would then
propose solutions to, using established software engineering
approaches.

Once the proposal was prepared, we met a team representa-
tive once more, to introduce them to the possible solutions
and receive further feedback. The thematic analysis of the
first interview provided a base for the follow-up interview,
where we were able to target the specific points of interest
(as opposed to asking general questions), and were able to
propose relevant solutions to problems GameDevCo is faced
with.

The interview instrument is present in Appendix I.
The interview is spread out between the different plots of

interest our research effort has - i) it begins with general
assessment of the approach to testing at the company (RQ1), ii)
it inquires about playtesting and the methods used to conduct
it(RQ1, RQ3), iii) it covers QA testing practices in a question
set, which is comparable to that of playtesting (RQ1, RQ2),
and iv) it allows for developers to point out any additional
testing practices we might have not mentioned before (RQ1).

This resulted in a clear picture of the developer team’s
approach to testing, which we then used in order to formulate
relevant themes and areas in need of improvement.

After the first iteration of this paper was wrapped up,
a second interview with GameDevCo was organized, where
our findings were presented and discussed. This provided
further insight into some areas of interest, as GameDevCo
had made changes to their workflow, which coincided with
changes proposed by the thesis, and could thus comment on
the efficiency of the proposal.

However, a case study of this scope is insufficient to
draw conclusions upon. As a way to provide further context
into the area of testing in the game development field, we
analyzed relevant posts from ”gray literature” sources, such
as Gamasutra6. To provide even further (albeit non-scientific
and purely anecdotal) context, we looked into game developer
communities on Reddit7. As current scientific research within
our subject field is largely limited, such sources could be useful

6http://www.gamasutra.com/
7https://www.reddit.com/ (ex. https://www.reddit.com/r/gamedev/

TABLE I
OUR EXPLORATORY STUDY PLANNING. WE FOLLOWED THE EMPIRICAL

GUIDELINES SUGGESTED BY [10].

Objective Explore
The context QA testing in indie game development
The cases An indie game development team
Theory Software testing techniques

Test-first approaches
Exploratory testing

Research questions RQ1, RQ2, RQ3 and RQ4
Methods Qualitative data analysis
Selection strategy Participants are game developers working with

the Gothenburg Game Incubator
Unit of Analysis 1: Focus on QA testing

Test coverage, effort and costs.
Unit of Analysis 2: Focus on playtesting

Number of challenges, and suggested practices

as a point of reference when it comes to issues being faced in
the industry, or research being needed in a certain topic.

This gives us two general sources of information on indie
game development - the case study, and the gray literature
analysis.

IV. RESULTS

In this section we will detail the obtained data and the work
performed on it, as well as the results extracted.

A. Interview and thematic analysis

The interview with GameDevCo was transcribed and anal-
ysed through the thematic analysis methods detailed in [11].
Initially it was loosely coded as a way to sketch out prelim-
inary themes and patterns, which resulted in a list of codes
referring to i) types of testing performed in GameDevCo, ii)
contexts of discussion - present, past or future practice, and
iii) highlights of problems faced.

After scanning through these codes, 29 sub-themes were
noted down, then spread out into a mindmap, stemming from
their logical relationships to each other, and naturally forming
clusters of similar subjects. These clusters were then used to
formulate the four final themes, which i) summarised the sub-
themes, identified as belonging to each cluster, and ii) could
together serve as a condensed summary of the entire interview.
However, as expected by the thematic analysis guidelines, not
all sub-themes could relate to large, final themes. Instead, they
were kept in mind as context for the results.

The final themes were as follows:
T1: A game’s final success depends on the ”fun-factor”. In
the case of indie games, a game’s marketing opportunities are
closely related to online streamers’ coverage [12], and thus
the game’s ability to entertain stream viewers8.
T2: As game success is influenced primarily by its quality-in-
use (fun-factor), the development process prioritises gameplay
design quality over the technical execution - a fundamental
difference in the approach to testing, in comparison to

8From the interview with GameDevCo: “We need to playtest to make sure
that it’s fun for them to both play the game, and make a video of the game
in a way that makes the game seem fun for others to play as well. “

TABLE II
LIST OF PROBLEMS AND OTHER HIGHLIGHTS, RESULTING FROM THE

THEMATIC ANALYSIS OF THE INTERVIEW WITH GAMEDEVCO.

ID Theme Content
P1 T2 Performance reporting/crash reports are cryptic and hard

to trace back.
P2 T4 Non-point-and-click games deal with floating point num-

bers, hard to predict with accuracy for automated testing.
P3 T4 Dependencies between development platforms (Unity) get

in the way of de-coupling with the purpose of testing.
P4 T4 Need to detect logical errors/soft-locks via automated

testing.
P5 T2 Testing is not seamlessly integrated in the workflow - takes

up too much time to set up and write tests.
P6 T3 Playtesting feedback is often contradictory - there is no

universal language and every player’s experience differs.
P7 T3 Player feedback is unreliable as a single source to point

out gameplay design faults.
P8 T3 Players tend to be timid with playtesting feedback.

software engineering practices.
T3: Playtesting is an exploratory way to assess the fun-factor
(gameplay design) of a game, but is so far largely human-
dependent.
T4: QA is quantitative and objective, but cannot be relied on
for fun-factor assessment. Dedicated QA staff is impossible
for companies of a small size and automation is difficult to
implement.

In addition to the final themes, a valuable extract of the
initial interview are the highlights of problems GameDevCo
face, as well as their ideas for an ideal hypothetical testing
set-up. These highlights were also fitted into clusters, based
on their relevant aspects of testing, and were taken into
consideration when formulating the final themes. The details
of subthemes pertaining each theme is presented in table III.
Moreover, A list of problems identified at the case company
is presented in Table II. Each problem is connected to one of
the themes resulted from our thematic analysis.

In the second interview with GameDevCo it became appar-
ent, that after the first interview they had attempted employing
some test-first development as a part of their workflow, and
seen some positive results. In their words, despite not having
worked with TDD-like practices for very long, they felt TDD
had already brought them a level of regression testing coverage
they initially lacked. GameDevCo made sure to highlight they
would not be aiming for 100% test coverage, however - but
that TDD gave them more coverage than they initially had
either way.

B. Gray literature review

In an effort to provide a clearer, more objective answer
to research questions regarding the industry as a whole, the
analysis was designed to include data scraped from the web.
This started with an analysis of the 100 most relevant posts
on reddit.com/r/gamedev when one searches for the keyword
”test”. Each post was manually read and sorted into a category,
based on the context the word ”test” was mentioned in, or the
contextual meaning of the word itself.

TABLE III
LIST OF SUB-THEMES, RESULTING FROM THE THEMATIC ANALYSIS OF

THE INTERVIEW WITH GAMEDEVCO.

ID Theme Content
ST01 T1, T4 Testing prioritisation in university - little playtesting, no

QA.
ST02 T1, T4 Priority of failure fixes: number of users affected (hard-

ware specification-wise).
ST03 T3 Testing as a means to evaluate game design and the

original vision for the game.
ST04 - Testing is spread unevenly in the development process -

different types at different times.
ST05 T2 Features are implemented several times (as proofs of

concepts), but flexibility isn’t a priority.
ST06 T4 QA testing is outsourced - QA is not needed all year round

(ST4) so commissions make sense.
ST07 T4 QA testing affects all (mentioned) areas of feedback pos-

itively.
ST08 T4 QA-found fixes and game patches are released on an as-

necessary basis - depending on the platform and how
finished a game is.

ST09 T4 QA reports performance issues, graphical errors.
ST10 T4 QA plays a role in releasing a more stable game (ST8)
ST11 T4 Fixing bugs is a positive thing - shows activity and

engagement.
ST12 T4 QA staff positions are seen as temporary - a gateway into

”real” game development.
ST13 T3 Playtesters sometimes find bugs, but it is not their main

task.
ST14 T2 Lack of systematic regression testing, feature failures are

fixed as they come up/are noticed.
ST15 T4 This company prioritises product quality over product

size/quantity.
ST16 T2 Bugs or faults are only treated as important if they are

noticeable/there are no searches for faults which have yet
to make themselves known.

ST17 T3 Playthroughs are natural - no script generated.
ST18 T3 There is structured playtesting, but developers play

through the game naturally too.
ST19 T1 Game value/success/marketing is reliant on the ”fun-

factor”, as well as the ”streamability”.
ST20 T1 Time spent playing is a metric for fun-factor.
ST21 T1 Only ”fun-factor”-passing games make it past the proto-

type stage.
ST22 T1 ”Quick” indie titles have small development brackets - and

no time to spend on testing extensively.
ST23 - Tasks are defined beforehand - every week new implemen-

tations are evaluated by the team.
ST24 T4 QA tests are performed after A-testing, as a final touch-up.
ST25 T4 Outsourced QA testing evaluates performance on different

hardware.
ST26 - Weekly reviews of code are viewed as a part of the testing

process.
ST27 - Iteration meetings keep developers up to date.
ST28 T4 Future plans for unit testing of back-end.
ST29 - The role of performance testing is to prevent bad financial

situations when it comes to e.g. renting servers.

The initial purpose of this scraping was to create a list
of posts for further reference, but it also provided us with a
visualisation of the r/gamedev community’s associations with
the word. You can see this in the graph in fig. 1 - the primary
associations are with QA testing and Playtesting, but other
contexts make appearances as well.

This is especially interesting in comparison to the graph
from the same analysis performed upon a set of Gamasutra
posts. Blog posts on the platform were filtered in search for
postmortems of indie game development projects, containing

Fig. 1. Mentions of the keyword “test” in different contexts in r/gamedev. A
total of 101 posts were identified, such that 33 of them did not use testing in
a context relevant to our research. The remaining 68 posts discuss different
aspects (i.e., categories) of testing.

Fig. 2. Mentions of the keyword “test” in different contexts on Gamasutra.
A total of 100 posts were identified, such that 47 of them did not use testing
in a context relevant to our research. The remaining 53 posts discuss different
aspects (i.e., categories) of testing.

the keyword ”indie” and at least one mention of the keyword
”test”. Once scraped, the first (most recent) 100 were similarly
analyzed. Unlike in the reddit collection of data, playtesting
has a clear prevalence here, as one can see in fig. 2.

While providing interesting insight into the present state of
online discussion surrounding indie game development, both
of these sources primarily served as a pivoting point when ini-
tially formulating the interview questions, while also assisting
in finding solutions to some of the problems GameDevCo was
facing at the time of the first interview, and providing guidance
when interpreting the game development field.

The primary source of new information, however, was
GameDevCo itself.

V. DISCUSSION

While the findings of the previous section largely confirm
the information found in the preparation stages of this research
effort, they have provided additional insight into the testing
practices used in indie game development, particularly the

practices in GameDevCo. The extracted themes highlight the
difference in testing approaches, and its cause - the importance
of the fun-factor - which then leads to the separation of testing
into two main categories.

Understandably, considering importance of the fun-factor,
playtesting takes greater priority in game development. How-
ever, the goals of that type of testing are seldom software-
related. In the interview with GameDevCo, the purpose of
playtesting was stated primarily as assessment of gameplay
design decisions - from balance and challenge, to UX design.
After explicitly asking about technical/software issues being
noted via playtesting, we received an answer, which resulted
in ST13 - ”Playtesters sometimes find bugs, but it is not their
main task”.

Challenges faced in the domain of playtesting were thus
centred around gameplay design assessment, and could be
summarised as communication problems, stemming from the
unreliability and vagueness of natural language, as well as
playtesters not always being able to reliably explain what their
complaints with the game are (or even not speaking up at all).
In other words, the challenges within playtesting all relate to
human psychology, or human interaction.

On the other hand, QA testing is primarily computer-
driven and as such returns reliable feedback, which is easy
to interpret. Despite this, however, it’s not a priority for
companies with limited resources, due to QA’s disconnect from
the fun-factor, the expenses of having dedicated QA staff (or
having non-QA staff perform QA duties), and the difficulty
in integrating automated QA testing in the game development
workflow.

When questioned on the benefits of QA, GameDevCo’s
representative expressed it positively affects all mentioned
aspects of development (Customer satisfaction, release cycle
efficiency, feedback cycle speed, fewer bugs). It was also noted
that minimising technical errors leads to smaller post-release
patches, which keeps the developers interested (and not burnt
out) in developing the game. Even with these positive effects
in consideration however, QA testing is underrepresented in
university syllabi on game development, and is later not
prioritised as much as playtesting.

By their own definition, GameDevCo have the quality of
their games as a main goal (ST15), so their solution to the
common problems, which keep other companies away from
systematic QA testing, was to outsource it to an external
company, devoted entirely to QA testing. A scroll through
the company’s website shows the different services they offer
- not only QA testing, but also UX and Playability testing.
The company takes on games on a case-by-case basis, with
individual testing packages each time, meaning there is still
no permanent staff hired out.

Outsourcing QA certainly gives GameDevCo an advantage
when it comes to the final technical quality, but it also creates
a black box around this area of game development practices.
As an example, it leads to a concentration of QA testing
done all at once, once or a few times in a project’s life-
time - which goes against the otherwise iterative-incremental

workflow GameDevCo employs. However, since the company
performs QA testing primarily as a way to smooth out the
gameplay (and does not aim to achieve 100% freedom from
faults), this did not seem to be a problem they needed to fix
in the foreseeable future.

As it can be noted in table II in Appendix II, the self-
identified problems the company faces primarily, instead had
to do with their difficulties with not outsourcing QA, i.e.
the difficulties faced when one attempts to set up their own
automated testing environment.

That being said, there is no data on how many indie game
development companies are in this same situation and end up
leaving QA to an external company, and how many are forced
to handle QA alone. Viewing other cases would make a great
point for further research.

This understanding of the roles of playtesting and QA
testing in game development gives us enough context to be
able to review the research questions stated previously.

A. Indie games’ quality assessment

Throughout the interview with GameDevCo, a primary goal
was to gain as much insight into their quality assessment
practices as possible. Testing in GameDevCo differs, based
on the phase of development. Unlike in agile software de-
velopment, QA testing is performed most commonly just
once, right before the release of the game. Playtesting is
performed throughout the development process, both officially
- in organised sessions with external testers - and as casual
playthroughs by the developers as they develop features.

However, the singular point of QA testing could be a factor
due solely to the use of outsourcing - especially considering
examples of other indie developers demonstrating at least par-
tially automated testing suites[13]. Additionally, some months
after the interview, GameDevCo reported they had begun
implementing their own automated unit testing, covering a
part of the game back-end. This serves to show the flexibility
of an indie company’s development process, and the relative
ease with which a workflow can change - but also the vast
difference from company to company.

While GameDevCo settled for making use of the integrated
unit testing plug-in of the engine they work with, in addition
to outsourcing its final QA tests, other smaller developers
can use external tools, such as NetEase’s Airtest Project9 to
perform a larger part of the automation alone. The extent and
depth of testing, once again, depends on the team’s budget and
time pressure. Especially when taking into consideration the
importance of the fun-factor for small producers.

When it comes to playtesting, most companies seem to have
similar practices to that of GameDevCo - occasional scheduled
playtesting sessions of an exploratory nature, with the goal of
receiving feedback from the playtester on how fun the game
was to play - and what could use improvements and balancing.
While a decrease in effort put into QA testing would logically
lead to more bugs slipping through into test versions of a game,

9http://airtest.netease.com/

there were no signs of playtesting being a valid, reliable and
long-term substitute for QA.

In conclusion: indie games’ quality assessment varies from
company to company, depending on the size and experience of
the teams, the development background, the financial success
of the company, and the time restrictions the teams have
set for their final delivery. This being said, testing follows
similar patterns. Game quality is represented by i) the quality
of gameplay design - the quality-in-use or the fun-factor -
which is assessed through playtesting throughout the entire
development process, and ii) the technical quality, assessed
by QA testing .

B. Test-first in game development

While mentions of TDD (and test-first) implementations
both on Reddit and on Gamasutra were notably few, there
were several projects, which stood out as having not only
successfully employed a TDD (or TDD-like) workflow, but
also noted the benefits of it.

In a demonstration of their implementation of a TDD-like
process in their recent game’s development[14], a developer
from Freeform Labs10 describes one of the benefits being
the easy regression testing. At the same time, no specific
difference can be noticed between their development process
and that of a software engineer working on a ”business”
application - so no claims on heightened productivity can be
made from TDD alone. What TDD has helped with, has been
the coverage of edge cases, which a manual tester might have
difficulties replicating (or perhaps not even prioritise).

It is, however, explicitly stated, that TDD does not replace
the need for qualified QA staff, partially because of the
false positives it would find, due to the nature of processing
3D graphics - as mentioned in P2 of the interview (table
II in Appendix II). Another reason is the more subjective
quality criteria, such as the ”smoothness”, presence of glitches,
clipping, etc.

GameDevCo did already have a functioning workflow at
the time of the first interview, so none of the aforementioned
downsides posed a relevant threat in their situation. Instead,
their implementation of TDD-like practices provided them
with the extra security in a minimal threshold of test coverage
for their projects, as well as the assurance of some regression
testing.

TDD approaches can thus be concluded to greatly help
assure QA staff in their testing coverage, and assist in covering
less likely scenarios - but they cannot completely render staff
redundant.

C. Playtesting vs Exploratory testing

From the data gathered in the interview with GameDevCo,
in addition to the contextual mentions of playtesting in the gray
literature sources, one can define playtesting as related to - if
not a type of - exploratory testing. As far as it concerns to
noting down technical failures through playtesting, one could

10https://www.freeformlabs.xyz/

even say they are the same - in templates for playtesters to fill
out, descriptions of failures closely relate to those on feedback
forms exploratory testers might submit.

However, with the main purpose of playtesting being the
fun-factor assessment, the main problem becomes the subjec-
tivity of the testers - the feedback becomes more qualitative
than quantitative in nature. The main problem to tackle here,
is human reliability.

This fundamental difference sets playtesting apart from
exploratory testing, and makes it difficult to reliably compare
the two. While superficially the feedback might appear similar,
the challenges faced by exploratory testing [15] assume a
different situation - one where knowledge of the software is
an asset (unlike in playtesting), and where personal bias plays
no significant role.

This puts the case of exploratory vs playtesting in a very
particular position: while the methods of executing both types
of testing are nearly- or completely identical, the results being
sought out are significantly different, and so are the challenges
met.

VI. THREATS TO VALIDITY

Threats to validity are commonly grouped into seven
groups[16]: conclusion, internal, construct, external, credibil-
ity, dependability and confirmability. Out of these seven, the
following have posed as threats for this case study:

Internal validity - due to time constrains, we likely will not
have the ability to empirically test the proposed solutions to
test-related issues our subjects might be facing. As a result,
there is always the risk that they will not lead to sufficient
improvements. This can be counteracted through our second
(and last) interview, after we have proposed them, when
we will collect feedback from the company (or companies),
based on their experience within game development. Empirical
evaluation of our proposed guidelines can then be performed
in future work.

Construct validity - the interviews involved in conducting
this case study pose a big risk as the sole sources of data - a
strange wording could lead to different interpretations of the
questions and thus completely invalid results. To counteract
that, we will be taking care in putting together the interview
questions as clearly as possible. We will also always be reading
them from the list (to avoid in-the-moment improvisation).

Additionally, we will be recording the interviews, in order
to have the answers stated as clearly as possible.

External validity - as with all case studies, we cannot
use our results to generalise for the field entirely. Any data
gathered would be relevant only for the development team we
have worked with. Despite this posing as a threat to validity,
if caution is exercised when drawing final conclusions, and
generalisation is avoided, there is no threat to the thesis
validity itself.

VII. CONCLUSION

The games industry produces software which is written to
serve, first and foremost, as entertainment. This poses its own

challenges, as technical aspects of the final product become
less of a priority for developers, and testing is divided into
gameplay-centered testing (or playtesting) and QA testing. The
difference is particularly noticeable in smaller, independent
studios, whose budget does not allow for dedicated testing
staff, like that of bigger companies does.

In this research paper, we interviewed an indie game de-
velopment company, GameDevCo, asking about their testing
practices and collecting data on any challenges they were
facing. The final goal was to attempt to tackle these challenges,
using tried and trusted solutions for equivalent problems,
occurring in software engineering.

With the interview analyzed, we collected data from addi-
tional sources online, in order to create a better understanding
of the industry environment indie games are developed in.
We then answered the research questions stated earlier in this
paper. According to our findings, test-first approaches did have
a positive impact on the QA testing experience, but did not
warrant it unneeded, and while playtesting certainly resem-
bles exploratory testing, the two ultimately face completely
different challenges.

However, these conclusions are reached under the limita-
tions posed by the scope of this study. As research is limited
in the subject of testing in game development, especially QA
testing, gray literature sources were a vital source of data,
which poses a threat to the final results’ validity. Addition-
ally, the interview, while sufficient as a base for exploratory
research, could not be considered an entire case study on its
own, and represented only one company at a single point in
time.

Further research could offset this by interviewing more com-
panies, over longer periods of time. Alternatively, one could
apply a software engineering solution to a game development
problem (such as a TDD-like approach to limited QA testing
resources), and study its effects in an experiment, or apply
ISO standards to the separate studied types of testing.

REFERENCES

[1] A. Ampatzoglou and I. Stamelos, “Software engineering research for
computer games : A systematic review,” Information and Software
Technology, vol. 52, no. 9, pp. 888–901, 2010.

[2] W. Barendregt, M. M. Bekker, D. G. Bouwhuis, and E. Baauw, “Identi-
fying usability and fun problems in a computer game during first use and
after some practice,” International Journal of Human Computer Studies,
vol. 64, no. 9, pp. 830–846, 2006.

[3] S. Muhammad, A. Shah, C. Gencel, U. S. Alvi, K. Petersen, U. Sattar,
and A. ++, “Towards a Hybrid Testing Process Unifying Exploratory
Testing and Scripted Testing,” J. Softw. Evol. and Proc, vol. 00, pp.
1–29, 2012. [Online]. Available: http://www.bth.se/fou/

[4] T. Fullerton, C. Swain, and S. Hoffman, Game Design Workshop: A
playcentric approach to creating innovative games, 2nd ed. Morgan
Kaufmann Publishers, 2008.

[5] P. Mirza-Babaei, N. Moosajee, and B. Drenikow, “Playtesting for
indie studios,” in Proceedings of the 20th International Academic
Mindtrek Conference, ser. AcademicMindtrek ’16. New York,
NY, USA: ACM, 2016, pp. 366–374. [Online]. Available: http:
//doi.acm.org/10.1145/2994310.2994364

[6] “Keynotes,” in 2018 IEEE 11th International Conference on Software
Testing, Verification and Validation (ICST), April 2018, pp. 23–25.

[7] W. Trumler and F. Paulisch, “How “specification by example” and test-
driven development help to avoid technial debt,” in 2016 IEEE 8th
International Workshop on Managing Technical Debt (MTD). IEEE,
2016, pp. 1–8.

[8] M. P. Eladhari and E. M. I. Ollila, “Design for Research
Results: Experimental Prototyping and Play Testing,” Simulation &
Gaming, vol. 43, no. 3, pp. 391–412, 2012. [Online]. Available:
http://sag.sagepub.com

[9] D. S. Janzen and H. Saiedian, “Does Test-Driven Development Really
Improve Software Design Quality?” Tech. Rep. [Online]. Available:
https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?referer=https:
//scholar.google.se/{\&}httpsredir=1{\&}article=1027{\&}context=
csse{\ }fac

[10] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering.” [Online]. Available:
https://portal.research.lu.se/portal/files/2838283/1276782.pdf

[11] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77–101, 2006.

[12] M. Johnson and J. Woodcock, “The impacts of live streaming and
twitch.tv on the video game industry,” Media Culture & Society, 12
2018.

[13] J. Blowl. Highlight: Game engine programming: Fixing the fallout
from a core movement code change. Youtube. [Online]. Available:
https://www.youtube.com/watch?v=-wcCuOLtWmM&t=22m48s

[14] B. LoBuglio, “Welcome to rabbit hell! reliable ai
locomotion with tdd,” May 2019. [Online]. Available:
https://www.gamasutra.com/blogs/BrendanLoBuglio/20190523/343175/
Welcome to rabbit hell Reliable AI locomotion with TDD.php

[15] W. Afzal, A. N. Ghazi, J. Itkonen, R. Torkar, A. Andrews, and K. Bhatti,
“An experiment on the effectiveness and efficiency of exploratory
testing,” Empirical Software Engineering, vol. 20, no. 3, pp. 844–878,
2015.

[16] A. Magazinius and R. Feldt, “Validity Threats in Empirical Software
Engineering Research-An Initial Survey. Validity Threats in Empirical
Software Engineering Research-An Initial Survey,” Tech. Rep.,
2010. [Online]. Available: https://www.researchgate.net/publication/
221390199

APPENDIX

In otder to collect data, we design an interview instrument
based on our research goal. The instrument includes an in-
troduction section explaining the context of the research, as
well as information to the participants about confidentiality
and consent about their data. No personal information was
collected. Below, we present a list our list of questions.

• How do you regard testing in your team, in terms of
priority in your development process?

• How regularly do you test your system for faults, on
average?

• Does your team “playtest”? How does your team do that?
– Do you use any external tools for playthrough gen-

eration, do you play through the game naturally?
– How often do you playtest?
– What specific value (eg. Customer satisfaction, more

effective release cycles, faster feedback cycles, fewer
bugs after releasing patches, etc) does playtesting
bring?

– What issues have you noticed arise from playtesting?
– Is playtesting a reliable time- and effort investment?

Why?
– How would you describe a failure during playtesting?
– What does your team do when a failure is found

during playtesting?
• Does your team conduct separate (i.e. non-playtest) QA

testing?

– What external tools do you use for QA testing?
– How often do you run QA tests?
– What specific value (eg. Customer satisfaction, more

effective release cycles, faster feedback cycles, fewer
bugs after releasing patches, etc) does QA testing
bring?

– Is QA testing a reliable time- and effort investment?
Why?

– Do you write test scripts for your game?
– What issues have you noticed arise from QA testing?

(i.e. in an ideal world, how would you have QA
testing be different, if at all?)

– What does your team do when a failure is found
during a QA testing run?

• Do you perform any type of testing we have yet to
mention?

– Do you use any external tools for it?
– How often do you perform this type of testing?
– What specific value (. . .) does this testing type bring?
– What issues have you noticed arise from it?
– Is it a reliable time- and effort investment? Why?
– What does a failure, found through this type of

testing, look like?
– What does your team do when a failure is found?

• Is there a type of testing you have heard of, that your
team does not perform?

– What is preventing you from performing this type of
testing?

– Are there any issues you are currently facing, which
you think might be avoided (or fixed) through this
type of testing?

– Do you plan on implementing this type of testing in
the future? If yes, when?

