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Abstract

IPCC estimates anthropogenic global warming to have reached 1◦C com-

pared to pre-industrial levels. This study evaluates the relationship of tem-

perature fluctuations and exports, using high-resolution panel data of daily

weather and monthly exports in U.S. states. I find significantly negative

effects of both low and high temperatures, where one additional day with

temperatures below -10◦C and above 25◦C reduces U.S. exports by 0.22%

and 0.24%, respectively. The optimal daily average temperature for exports

is estimated to approximately 10◦C. These new findings contradict previous

research on temperature and exports, which has not found significant effects

in rich countries. Under a ’business as usual’ scenario with a continued rise

in CO2 emissions, I project an average reduction in U.S. exports by 12.7%

at the end of this century. My result implies stronger economic incentives

for rich countries similar to the United States to invest in climate change

mitigation, and to plan for future adaptation against a warming climate.
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1 Introduction

IPCC evaluates the impacts of continued global warming reaching the 2◦C thresh-

old, compared to pre-industrial levels (Masson-Delmotte et al., 2018). The pre-

dicted consequences are more frequent extreme weathers, such as heavier precipi-

tation, heat waves and a sea level rise. According to the report, regions will face

different future climate scenarios, where tropical countries are predicted to expe-

rience the highest increases in the number of hot days. At the same time, extreme

cold nights are expected to become 6◦C warmer in high-latitude countries. The

increased awareness of the magnitude and regional distribution of future climate

change have motivated economists to study the linkages between weather and

socioeconomic outcomes. Reviewing the emerging weather-economy literature,

Carleton and Hsiang (2016) and Dell et al. (2014) conclude that weather fluctu-

ations are responsible for variations in agricultural and industrial output, labor

productivity, health, conflict and political stability. While microeconomic impacts

have been found in a broad range of countries, few studies have estimated signif-

icant effects on aggregated economic outcomes in rich countries. Recent studies

have shown that the temperature-economy relationship exhibits a nonlinear shape,

which can explain the lack of significant results in rich-country studies (Burke et

al., 2015). Given that rich countries tend to be located in moderate climates, the

possibility to capture the effect of extreme temperatures depends heavily on the

econometric specification, since the distribution of adverse temperature outcomes

is sparse.

The empirical studies in this field of economics are closely related to pol-

icy through so-called Integrated Assessment Models (IAMs). IAMs are climate-

economy models that combine physical climate model projections in the distant

future with economic damage functions, and are used to estimate the social cost

of an additional unit of carbon emission (Howard & Sterner, 2017). By comparing

the market and non-market costs of future global warming with the cost of carbon

abatement, IAMs calculate the optimal policy of the price of carbon and the corre-

sponding temperature pathway, based on welfare functions from economic theory

(Nordhaus, 2014). The damage functions of climate impacts used in these mod-

els are thereby central to climate policy decision-making, as they (among other
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factors) determine the optimal price on carbon. The IAMs used by U.S. admin-

istrations (DICE, PAGE and FUND (Interagency Working Group on Social Cost

of Carbon, 2013)) have been criticized for underestimating the total damage of

climate change, where they assume global GDP to be around 1 – 4% less from a

global temperature increase of 4◦C (Revesz et al., 2014). Diaz and Moore (2017)

describe a ’disconnect’ in the policy-targeted cost-benefit analyses and the current

literature on climate impacts, where IAMs fail to incorporate key scientific find-

ings in modern research. In a meta-analysis, Howard and Sterner (2017) control

for apparent biases in earlier meta-analyses that have been the foundation of pre-

vious damage functions (such as Tol (2009)) and re-estimate the damage of a 4◦C

temperature increase to approximately 17 – 19% of global GDP. The substantially

higher climate damage alters the net present value of investing in carbon emission

reduction, making the 2◦C target of future global warming an optimal trajectory

for climate policy. The results are in the direction of Burke et al. (2015), who find

a 23% reduction in global GDP at the end of this century under a ’business as

usual’ scenario, calculating economic damages alone. Non-market impacts are not

included in their study, suggesting an even higher total damage of climate change.

With this paper, I aim to reconcile the contradictory findings from previous

micro and macroeconomic research, using high-resolution panel data of monthly

exports and daily temperatures in the United States. I develop an economet-

ric specification that estimate different marginal effects depending on the level of

temperature, to capture the effect of extreme temperatures not seen in annual

averages. Whether high-income countries are economically affected by tempera-

ture has implications for their incentives to engage in climate change mitigation

and for future adaptation planning against a warming climate. The results are

directly connected to policy and the estimated social cost of carbon, through the

climate damage functions employed by current IAMs. Using exports as a depen-

dent variable also highlights how domestic temperature shocks are transmitted to

the global economy through cross-country supply chains. Studying the effect of

temperature on exports in the United States, a large exporter to the world (Cen-

tral Intelligence Agency, 2017), thus have relevance for international trade in a

future climate scenario.

Several microeconomic studies, such as Graff Zivin and Neidell (2014) and Ca-
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chon et al. (2012), have linked temperature shocks to productivity losses in the

United States. Based on these findings, I develop a theoretical model of temper-

ature and international trade, where firm-productivity is the main determinant of

which firms that choose to export to foreign economies (as in Melitz (2003)). By

assuming productivity to be a function of temperature, I hypothesize temperature

shocks to have an effect on aggregate exports in U.S. states. The high temporal

frequency of daily weather outcomes improves the possibility to find the thresh-

old where temperature becomes detrimental to exports, which is difficult when

only using annual averages (Burke et al., 2015). I thereby hypothesize the higher

temporal resolution of the temperature variables to yield a more kinked estimated

impact function, in comparison with papers applying more aggregate measures.

Following the notion that the effect of temperature on economic outcomes is

nonlinear, I count the number of days the daily average temperature is realized

in different temperature intervals in a given month. The econometric specifica-

tion allows high flexibility in the estimation of different levels of temperature, as

the global structure inherent to polynomial equations is removed. The effect of

temperature in different intervals can thus be estimated as separate variables, in-

dependent of each other. The result suggests that both very low and very high

temperatures are detrimental to U.S. exports, where the optimal 24-h daily aver-

age temperature is estimated to approximately 10◦C. Accordingly, I find that one

additional day below -10◦C and above 25◦C reduces monthly exports by 0.22%

and 0.24%, respectively, compared to days between 5 – 10◦C. Additionally, I find

heterogeneity in the response functions across sectors. Agricultural exports are

negatively associated with high temperatures, while light manufacturing exports

are negatively associated with low temperatures. Exports from heavy industry

seem to be significantly reduced by both extremes. Raw material exports show no

significant relationship with temperature in this study.

In a hypothetical experiment, I measure the impact on exports of current tem-

perature distributions on an average year, compared to an optimal allocation of

temperature days in the 5 – 10◦C interval. I estimate U.S. exports to be on aver-

age 35.1% lower due to the current climate, compared to an optimal temperature

distribution. The states experiencing the most adverse temperatures are located

in the warmer South, indicating that high temperatures are of larger concern to
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U.S. exports than low temperatures. Interpreting the numerical reductions with

caution (since the counterfactual scenario represents a climate outcome unlikely

to be realized) the heterogeneity across states indicates which locations that are

experiencing the most adverse temperature distributions.

Extrapolating my results to a future climate change scenario using the down-

scaling climate model LOCA (Pierce et al., 2014), I project an average reduction in

U.S. exports by 12.7% at the end of this century, under a ’business as usual’ CO2

emission pathway. The projected export reductions range between 1.2 – 30.2%

over states, where the highest reductions are found in the Northwest, a region

which seems to be only moderately affected by its current climate. The variation

across states is driven by differences in future temperature increases in the climate

model projection. The relatively higher rate of future warming in colder states

can thus lead to a convergence in harmful temperature distributions in the United

States, reducing the comparative advantage in climate for Northern states. Al-

though, there is a risk of underestimation in the effect of high temperatures well

beyond the levels in the observed dataset. Due to the nonlinearity in the effect of

temperature found in previous research, there is a probability that small temper-

ature increases in locations with an already warm climate are more harmful than

large increases in cold climates (Hsiang et al., 2017). The projected reductions

in exports in Southern states are hence subject to additional uncertainty. Nev-

ertheless, the projected reductions in exports give support to the critique against

the damage functions incorporated in most IAMs, where e.g. the total damage of

market and non-market costs are estimated to below 10% in the latest version of

DICE (Howard & Sterner, 2017).

The remainder of this paper is organized as follows. In the following sub-

section, I review the relevant findings in previous research. The second section

provides economic theory and hypotheses related to the results. The third sec-

tion describes the data collection and discusses potential limitations. The fourth

section describes the empirical framework of the estimations. The fifth section

presents the results. The sixth section discusses implications of the results, while

the last section concludes.
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1.1 Literature Review

The previous empirical studies on the effect of weather on the economy vary in their

time span and economic aggregation. A large number of papers have investigated

the impacts on productivity at micro-level, using individual or firm-level data.

Cachon et al. (2012) estimate significant losses in production in U.S. automobile

plants caused by extreme rain, snow, heat and wind. Both Cai et al. (2018) and

Zhang et al. (2018) find reductions in worker productivity in Chinese manufacture

plants, an effect not likely to stem from increases in absenteeism. The latter

study finds similar effects in labor-intensive firms as in capital-intensive firms.

Other papers study the effect on labor supply, where the occurrence of high daily

temperatures has been shown to reduce the number of hours worked in industries

with high exposure to outdoor climate in U.S. counties (Graff Zivin & Neidell,

2014).

At a macro-level, several studies have estimated the impact of weather on GDP

growth. Dell et al. (2012) use panel data on a large number of countries’ growth

in GDP, combined with changes in annual average temperature and precipitation.

They estimate significant, negative impacts of a 1◦C increase in average temper-

ature on growth, but only for poor countries. Rich countries appear unaffected

by changes in temperature, which is suggested to relate to differences in resources

allocated to weather adaptation and institutions. Burke et al. (2015) question

their results, as previous research at micro-level has found substantial negative

effects on economic performance also in rich countries. By adding a squared term

to temperature, they reproduce the paper by Dell et al. (2012) and state that the

effect of annual temperature on economic growth is globally valid for all countries

in the sample, however nonlinear. The larger effect seen in poor countries seem

to come from that poor countries tend to have a warmer baseline climate. Burke

et al. (2015) estimate a growth function of average annual temperature which is

increasing up to 13◦C, after which it declines sharply. In a similar paper to this

study, Colacito et al. (2018) find that growth rates in U.S. states are negatively

affected by increases in average summer temperature. However, they do not dis-

cuss the implications of nonlinearity in the effect of temperature, which is likely to

be the driver of the result. By exploiting changes in seasonal averages, they risk
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underestimating the effect of high temperatures, since the effect of a 1◦C increase

in summer temperature is different depending on the baseline climate of each state.

This is especially apparent by their heterogeneity analysis showing that Southern

states are driving the negative effects of temperature increases. Zhao et al. (2018)

focus on within-country growth, and provide results that are consistent with Burke

et al. (2015) and with a trend in the recent literature where higher parametric pre-

cision and higher spatial resolution seem to decrease measurement errors and yield

estimates of higher magnitudes and significance levels.

A similar innovation in methodology has been, to a large extent, absent in

the literature covering the impacts of weather shocks on international trade. An

early paper by Jones and Olken (2010) finds results in line with Dell et al. (2012),

as they predict a country’s growth rate in exports to drop by 2.0-5.7 percentage

points for each 1◦C increase in annual average temperature, but again finding that

the effect is entirely driven by the impact on poor countries. Dallmann (2019)

investigates in a similar study the linear effect of weather changes on international

trade, by looking at variations in yearly bilateral trade flows. Her results are in

line with early findings on trade and production, although the heterogeneity in her

study comes from a country’s distance from the equator instead of income differen-

tials. However, it is problematic to empirically separate a fixed effect as geography

from income levels due to the potential omitted variables bias, especially as poor

countries tend to be located in tropical climates (Burke et al., 2015). Although

recently published, Dallmann (2019) fails to take into account the nonlinearity in

the effect of weather fluctuations on economic performance that has been found in

previous research. Even so, the results of Jones and Olken (2010) and Dallmann

(2019) indicate that the exporting sectors most sensitive to weather shocks are

agriculture and labor-intensive industries.

An example in the trade literature taking the nonlinearity in weather impacts

into account is Li et al. (2016), who study the effect of extreme heat on exports

using daily weather and firm-level data in China. They count the number of days

of each month with an average temperature above 30◦C, and find a significant

cumulative effect indicating that firms maintain their export levels after one ad-

ditional day above 30◦C for 3 months, after which exported output declines for

14 months, without any signs of recovery. The magnitudes are substantial, as one
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additional hot day reduces annual exports by almost 1.67%.

I contribute to previous research in several aspects. First, by applying an econo-

metric specification which allows high flexibility in the estimation of a nonlinear

relationship of temperature and exports, I increase the precision of the result.

Second, I use high temporal and spatial resolution data, in order to reduce mea-

surement errors and thereby reduce the likelihood of underestimating the effect

of temperature fluctuations. Third, I focus my study on the United States, an

industrialized country where a significant effect of temperature on exports not has

been found. As a large exporter to the world, impacts on U.S. exports are likely

to have substantial consequences for global trade patterns. The result may also

be extrapolated to other industrialized countries, similar to the United States.

2 Theoretical Framework

The theoretical framework of this paper broadly follows Chen and Yang (2017),

who derive a firm’s profit as a function of temperature and productivity, and

Li et al. (2016), who extend the model by Melitz (2003) on firm productivity

and self-selected exporters (where only highly productive firms choose to export).

The difference from Melitz (2003) is the dynamic shock to the model, coming

from temperature fluctuations instead of trade exposure. It is thereby a model

focusing on the supply-side. As mentioned above, the effect on productivity has

been suggested by studies on micro-level as a possible channel in how weather

shocks affect the economy, thus motivating the use of productivity as a principal

argument in the theoretical framework. Consistent with mentioned papers, the

weather variables are represented by temperature in this section. However, the

model is generally valid for other weather outcomes affecting the economy (e.g.

precipitation). The model starts by linking temperature shocks to productivity

and production and ends with the effect on exports.

2.1 A Model of Temperature and International Trade

Chen and Yang (2017) assume a competitive market, where a profit-maximizing

firm produces at constant returns to scale. The production function Y (·) takes N
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inputs x = {x1, x2, . . . , xN}, each having an input-specific productivity represented

by the input productivity vector λx(·). A firm’s output can thereby be described

by:

y = Y (λx(·)× x) (1)

As the purpose of the model is to provide an estimation framework of the to-

tal effect from temperature shocks, the output market price Py(·) and the input

price vector Px(·) are also allowed to be endogenously determined by temperature,

although not empirically estimated specifically. The indirect effect on prices will

instead be subsumed in the total effect of temperature shocks on trade. Impor-

tantly, input productivity is a function of temperature. However, the impact on

productivity might be dampened by firms’ (or local governments’) ability to adapt

in response to adverse temperature shocks, an effort denoted as A(·).
An important contribution of this paper is to allow the estimated marginal

effect to change depending on the level of temperature. In my main specification,

I divide the temperature variable into m number of bins, each representing a given

interval in degrees Celsius. The temperature variable is thereby transformed into

a vector of possible temperature outcomes, denoted T = {T1, T2, . . . , Tm}. This

approach requires few assumptions on the level at which temperature becomes

detrimental, as both extremes of the temperature scale are estimated as separate

variables. In addition, to cover the potentially persistent effects of previous pe-

riods’ temperature outcomes on current periods’ production, each k of m bins is

also a vector through L previous time periods, where Tk = {tk,0, tk,−1, . . . , tk,−L}.
The somewhat modified maximization problem for domestic profits in Chen and

Yang (2017) for a competitive firm can thereby be described as:

πD = max{Py(T)× y − Px(T)× x− A(T)} (2)

s.t. y = Y (λx(T, A(T))× x)
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The adaptation effort intuitively appears as a cost in the profit function, and

as a determinant in the input productivity vector, potentially mitigating the loss

in productivity due to weather shocks. The temporal dimension of the temper-

ature variable has two motivations. First, firms that are located in warmer re-

gions are more experienced to high temperatures. This might affect adaptation

effort, as more experienced firms are better at anticipating frequent temperature

shocks. Second, given the short-term fluctuations in monthly trade flows, detri-

mental effects of temperature shocks might follow a temporal lag distribution. As

mentioned, Li et al. (2016) find that the negative effect of temperature on exports

does not appear until 3 months after the shock, possibly due to the rate of stock

turnover of the firm.

The maximization problem is now extended to a firm’s exporting decision.

The theoretical motivation comes from Melitz (2003), who builds a model based

on empirical findings suggesting that it is the most productive firms in each sector

that choose to export, as low-productivity firms are not sufficiently profitable to

pay the additional cost of exporting. Within-country heterogeneity in productivity

across firms leads to some (efficient) firms being exporters, while other (inefficient)

firms choose to only serve the domestic market. The derived production function

is applied to the framework by Li et al. (2016), who let the profit-maximizing firm

choose the quantity q of goods to export, which is a function of total production y

and its exports in previous periods, q−1. The firm’s additional profit from exported

goods is

πE = PE(T,Z)× q(y, q−1)− c(T,X,Z|q > 0) (3)

where PE(T,Z) is the market price of the exported good and y = Y (λx(T, A(T))×
x) is defined above. Including the production function is intuitive, as firms must

produce to be able to export. Also previous exporting experience might affect

propensity to export in current periods, as goods already have been tested on con-

sumers in foreign markets. The total cost of exporting is represented by c(T,X,Z),

given that the firm is exporting. The cost function is dependent on T, as infras-

tructure and storage cost are possibly affected by temperature shocks. Also, the
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cost of exporting is affected by region-specific characteristics X (e.g. distance to

ports, size and other weather types potentially correlated with temperature and

trade costs) and exogenous effects Z (e.g. demand shocks and agricultural season-

ality). As previously, the market price of the exported good is potentially affected

by domestic temperature shocks T, but also by cyclical patterns on the global

market Z.

Following Li et al. (2016), firms will choose to export (represented by export

status E = 1) as long as profits from exports are positive:

E =

1, if πE ≥ 0

0, otherwise
(4)

2.2 Hypotheses

In this setting, the effect of temperature shocks on exports has two main chan-

nels. First, detrimental temperature outcomes might decrease firm productivity.

As firms produce less efficiently, more inputs are needed in production and prof-

its from exports are reduced. The impact on productivity is potentially valid for

both labor and capital, although the effect might be heterogenous across inputs.

Second, temperature shocks might affect the total cost of exporting, which alters

the profits from exports. The cost of exporting might covary with temperature if

the performance of the transportation of the exported good (through intermedi-

aries) is also affected by temperature. As seen above, a reduction in firms’ export

profits decreases the likelihood of firms serving foreign markets. The impact of

temperature on an aggregated regional level can thus be analyzed accordingly.

When affected by a regional adverse temperature shock, productivity in all firms

declines, which can make some exporting firms stop serving foreign markets, as

the threshold for being a profitable exporter has been raised. The result is a re-

duced number of exporting firms in the region, reducing the exported output to

the world. This leads to the first hypothesis:

Hypothesis 1: Temperature shocks have an effect on aggregate export levels.
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Furthermore, the temporal frequency of the data has implications for the shape

of the predicted export-temperature curve. Figure 1 by Burke et al. (2015) pro-

vides a stylized theoretical description of how daily impacts of different tempera-

ture levels are captured in annual averages. The threshold after which temperature

is assumed to be detrimental to economic activity is apparent in Figure 1d, where

the slope of the impact curve becomes negative. A shift in the distribution of daily

temperatures towards higher values (as in Figure 1e) leads to a larger proportion

of daily temperatures that are realized above the detrimental level. When aggre-

gated to annual average temperature, this shift results in a smooth move along a

continuous curve (which is shown in Figure 1f), whose slope is a function of the

slopes before and after the kink in the daily impact curve. A change in annual (or

monthly) average temperature thereby captures a shift in the distribution of daily

temperatures. This leads to the second hypothesis:

Hypothesis 2: The higher temporal resolution of the temperature variables, the

more kinked is the estimated impact function.
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Note: Graph retrieved from Burke et al. (2015) (Figure 1 (d-f), p. 235).

Figure 1: A Model of Daily Temperatures and Annual Averages
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3 Data

3.1 Export Data

Merchandise export data for the United States is collected at state level with

monthly frequency from the U.S. Import and Export Merchandise trade statistics

database (United States Census Bureau, 2018). The time range of the data covers

January 2002 – October 2018, and to ensure geographic compatibility with the

weather data, 50 states are included. For each state, the data is disaggregated ac-

cording to the Harmonized System 2-digit commodity classification (HS2), which

groups trade flows into 98 product categories. Two of these categories are excluded

from the sample, as they represent special cases not related to this study1. I exclude

commodities in states which are not typically exported during the time period, as

in Jones and Olken (2010). Consequently, the data only includes state-commodity

pairs with a positive value of exports for all time periods. To investigate the het-

erogeneity in the effect of temperature on exports, I group the commodities into

sector categories. I follow Jones and Olken (2010) to maintain comparability with

previous research, and thereby cluster exports into agriculture, light manufactur-

ing, heavy industry and raw materials.

I use the monthly CPI Research Series from the Bureau of Labor Statistics

(2018) to convert nominal values into inflation-adjusted exports in 2002 $US. The

CPI-All Urban Consumer series (Bureau of Labor Statistics, 2019) completes the

inflation indices for the relevant months of 2018 which the previous series does not

cover (adjusted to the same base period). The following analyses on exports are

thereby based on real changes, if not otherwise specified.

3.2 Weather Data

The weather data comes from the Global Historical Climatology Network – Daily

Summaries (Menne et al., 2012), which during the time of retrieval contained

46,663 available stations for the U.S.. The variables collected from the weather

stations include daily maximum and minimum temperature (◦C), average temper-

1These product categories are ’Special Classification Provisions, nesoi’ and ’Special Import
Provisions’.
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ature (◦C), precipitation (mm), wind speed (m/s) and snow depth (mm). Average

temperature is the main variable used for the 24-h daily average temperature mea-

sure. When missing, I use the mean value of the daily maximum and minimum

temperature in order to have observations for all states and dates. To exclude

outliers within these variables that are likely errors by the stations’ measuring

equipment, I omit values that exceed the minimum and maximum historical daily

record, which can be found in the Archive of Weather and Climate Extremes

(Cerveny, 2018).

In order to create representative averages of daily weather outcomes, I use

population-weighted averages for each state, following the methodology of Dell et

al. (2012). Population data is collected from the U.S. Census Grids (Summary File

1), 2010 (Center for International Earth Science Information Network - CIESIN

- Columbia University, 2017), which contains estimated population data assigned

to grids over the U.S. area. The spatial resolution of the grids corresponds to

approximately 1 square km. The population counts are time-invariant and based

on the year 2010, which means that the population counts are likely to be different

years before and years after. Choosing a year in the middle of the time range

(2002 – 2018) is thereby preferred, as this is likely to be the best approximation of

within-state population distribution for the entire time period. To assign weights

to specific weather stations, the coordinates of each station are used to extract

population values from the gridded dataset. For each state, the values of the

stations are summarized to create state totals. Consequently, the weight of a

station is calculated by dividing its assigned population value by the calculated

total for the corresponding state. The weighted daily averages of the weather

outcomes thereby reflect the daily weather of the more populated areas within

states, with the intention to lower the importance of stations which are remotely

located. For 173 stations, the received population counts are missing. These

stations are given the population count of the station with the minimum non-

missing value in the state, so that weather stations with missing population data

are not assigned a higher weight than the stations with the lowest weight within

states. This precautionary approach is chosen since the reason for missing values

in the population data is unknown. If the stations with missing population values

instead are located in highly populated areas which are good representations of
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the state economies, this can lead to increased measurement errors, as the weather

averages are weighted differently. However, in relation to the total number of

46,663 weather stations in the data, this is unlikely to have a substantial effect on

the result.

Due to the time variation in the number of stations with non-missing values,

the process of creating population-based weights has to be repeated for each date

and weather variable, to ensure that the sum of weights equals 1 for stations

within a state. This is accomplished by re-calculating the state totals each date,

taking into account the number of stations with non-missing values for the specific

weather variable, since these are the stations that will be used to create the daily

state averages. This means that each weather variable has a corresponding state

population total, that varies over time. The procedure described above is showed

by the following three equations:

State PopulationR,w,t =

IR,w,t∑
s=1

Populations (5)

Station Weights,w,t =
Populations

State PopulationR,w,t

(6)

State AverageR,w,t =

IR,w,t∑
s=1

[Weather Outcomes,w,t × Station Weights,w,t] (7)

Here, s refers to a specific station, w to one of the weather variables, R to a specific

state and t refers to a date. I is the list of stations that have non-missing values

for the corresponding weather variable within the state, and varies over time. The

aggregation of daily weather data into monthly frequency is described in Section

4.

3.3 Limitations

A common problem when using ground weather stations for time series analysis is

that stations sometimes are de-activated and replaced. This creates discontinuities
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in the time series of each station. For this reason, stations usually contain large

shares of missing values for the chosen weather variable. When weather stations

are used in panel data estimations with fixed effects, variation caused by stations

being activated or disconnected might constitute a large part of the total variation

in a continuous weather outcome (Auffhammer et al., 2013). When a large part of

the variation in the regressors is the result of fluctuations in the number of active

weather stations, the measurement errors are higher, which leads to a classical

attenuation bias and a possible underestimation of the effect of temperature on

exports (Wooldridge, 2015). However, the data coverage over the United States is

high in comparison with other regions (NCEI/NOAA, 2019).

Also mentioned by Auffhammer et al. (2013), there are several weather out-

comes that are correlated with temperature. Since there is a limitation in the

number of variables available from the weather stations, I cannot rule out pos-

sible biases in the estimated effect of temperature from other weather outcomes.

For example, variables not included in the regressions that are likely covariates

to temperature are humidity and sunshine, whose effect on exports is uncertain.

Still, I believe the included control variables (precipitation, wind speed and snow

depth) to be sufficient to be able to obtain interpretable results when estimating

the separate effect of temperature.

Since climate is not constant across the United States, the weather data ex-

hibits a large variation that is not equally distributed across the country. Figure

10 in Appendix A displays the spatial distribution of four end-scale temperature

variables used in the main estimation of this paper. Figure 10a and 10b show that

extreme daily averages (below -10◦C and above 25◦C) are rare occurrences, ap-

pearing only in very few states. Moderate intervals at the end of the temperature

scale (Figure 10c and 10d) are more evenly distributed across states, although daily

averages below 0◦C seem to characterize only northern states. Extrapolating the

estimated effects to the United States as a country, thus requires the assumption

that states respond similarly to temperatures changes, even though the majority

of states have not experienced the temperature outcomes in question during the

studied time period. This issue relates to the role of adaption to climate (see Sec-

tion 2), since states have had the time to integrate their long-run climate into the

economy, and thereby into their individual response functions. This means that
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states with an experience of the tails of the temperature distributions are likely to

be better prepared for these outcomes. Consequently, states that do not experience

frequent temperature extremes are likely less prepared, and thereby more sensitive

to these levels. In terms of estimating a country average of the effect on exports

(controlling for state fixed effects), the results are possibly an underestimation of

the effect, if the drivers of the results are better adapted to temperature extremes

than the average state. However, the opposite holds if the sensitivity to temper-

ature changes depends on income levels, rather than past adaptation. If states

with a moderate climate are on average richer, they might have more resources to

counteract negative effects on exports, which would lead to an overestimation of

the national effect of temperature. Figure 8 in Appendix A shows that there is

a negative relationship between high annual average temperature and state GDP

per capita, although the majority of states are located in the 7 – 15◦C range where

variation in income level is large. Nevertheless, this does not affect the causality

nor the unbiasedness of the results, but rather the generalizability of the effect of

temperature to a U.S. average.

4 Empirical Framework

As previous studies have used different econometric specifications, yielding differ-

ent results, I apply various specifications to estimate a nonlinear effect of temper-

ature on U.S. exports. I start by estimating an Ordinary Least Square regression

that fits a 2-degree polynomial function of temperature, for comparison with pre-

vious studies (such as Burke et al. (2015)).

ln(Yi,R,t) = αR + β1TempR,t + β2Temp
2
R,t + XR,t (8)

+ τt + θt + εi,R,t

The dependent variable is the natural logarithm of exports of HS2 commodity i

in state R in month t. The variables of interest are monthly average tempera-

ture TempR,t and its squared term. I control for state-level fixed effects αR and

17



additional weather outcomes XR,t, which are likely correlated with temperature.

I also include a linear time trend τt and month fixed effects θt to account for

cyclical effects during a year. By including month-specific dummy variables, I

can remove the potential bias in the effect of temperature on exports that stems

from season-specific circumstances, such as growing season for crops. Figure 9 in

Appendix A graphs the subannual pattern of U.S. exports for an average year,

showing that there is seasonality in the dependent variable. εi,R,t is the error term

specific to each observation. The log-linear relationship of the dependent variable

and the regressors takes into account the variation in size of the economy across

states, and transforms the estimated coefficients into relative changes in exports

due to temperature fluctuations. Alternative estimations are also tested to further

investigate the nonlinear relationship of exports and temperature.

Following the previous estimations, I estimate what is the main specification

of this paper:

ln(Yi,R,t) = αR +
L∑
l=0

m−1∑
k=1

[βk,lTbinR,k,t−l] +
L∑
l=0

[XR,t−l] (9)

+ τt + θt + εi,R,t

In this equation, the continuous temperature variables are replaced by m − 1

temperature bins. The temperature variables measure the number of days for

a given month t the daily average temperature is realized within the respective

bin. I divide the temperature scale into 8 bins (m = 8), of which 7 are included

in the estimation to avoid perfect multicollinearity. The excluded bin captures

temperature days within 5 – 10◦C, and is thereby the benchmark the other bins

are compared to. Each k temperature bin is also lagged through 11 previous time

periods (L = 11), to allow the effect of temperature to follow a temporal lag

distribution. I choose to include 11 lags to be able to evaluate the effect for an

entire year. Lags of the covarying weather controls are also added to maintain the

specification in all time periods. This specification enables the highest flexibility

in the estimation of a nonlinear effect of temperature on exports, since the effect
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of different levels of temperature is estimated as separate variables, which removes

the global structure inherent to polynomial equations. Measuring temperature in

daily averages instead of monthly averages also increases the temporal resolution

of the data. The implications are discussed in Section 2.2.

The estimation models reflect the theoretical framework of firms’ exporting

decisions described in Section 2.1, where the region-specific characteristics X are

controlled for by state-level fixed effects αR and time-variant weather variables

XR,t. Cyclical patterns Z are mainly captured by month fixed effects θt. The

temperature vector T is best captured by the 8 temperature bins in Equation (9).

Adaptation A is not controlled for, which has implications for the interpretation of

the estimated effect. U.S. states that have experienced a given climate for a long

time period have had the chance to specialize in industries that are suitable for

that climate. This self-selection by states is integrated in the U.S. economy, which

makes adaptation a part of the average effect of temperature on U.S. exports. The

estimated effect might thereby be driven by states that are adapted to certain

climates. However, as long-run average temperature is a fixed effect, an analysis

investigating the heterogeneity in adaption across states will be endogenous, since

biases due to e.g. institutions cannot be ruled out.

The standard errors are clustered at commodity-level, to allow for correlation

in the error terms within each HS2 classification (Wooldridge, 2015). As the states

vary in the number of HS2 categories they export to foreign economies, the number

of clusters will be different in estimations with a sectoral disaggregation. I clus-

ter at commodity-level since firms within these are subject to the same national

regulation, and might respond similarly to economic cycles.

Table 1 provides descriptive statistics over the weather variables included in

the estimations, and exports disaggregated by sector. Heavy industry is the sector

with most observations in the dataset, and raw materials account for the fewest

observations. Among the exporting sectors, heavy industry was also, on average,

the largest contributor to state GDP in 2017. The minimum and maximum of

average temperature show that a large range of the temperature scale is captured

in the data. As mentioned, the geographic distribution of low and high daily

temperatures is presented in Figure 10 in Appendix A.
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Table 1: Descriptive Statistics

Average Share of
Mean SD Min Max Obs 2017 State GDP (%)

Weather Variables

Average Temperature (◦C) 12.73 9.55 -18.19 32.09 597,516 –

Average Precipitation (mm) 2.91 1.87 0.00 17.16 597,516 –

Average Snow Depth (mm) 14.15 46.52 0.00 855.16 597,516 –

Average Wind Speed (m/s) 3.02 0.92 0.04 6.95 597,516 –

Exports

Agriculture 10,401.82 41,875.97 1.79 1768,333 142,814 0.9

Light Manufacturing 14,668.86 56,403.08 1.88 1386,760 196,748 1.2

Heavy Industry 43,233.71 171,915.6 2.06 3735,792 236,946 4.3

Raw Materials 53,899.24 330,564 2.10 7911,475 21,008 0.7

All Industries 26,355.72 131,430.10 1.79 7911,475 597,516 7.1

Note: Exports in 1000’s $US. State GDP is collected from Bureau of Economic Analysis (2019). Since only state-industry pairs with positive

exports for the entire period are included in the sample, the average share of 2017 GDP is an underestimation of the correct value.

The Central Intelligence Agency (2017) provides an approximate estimate of 8% as the share of total exports of GDP in 2017. The remaining

average values are based on monthly frequencies, without grouping. The mean of e.g. ’Average Temperature (◦C)’ is thereby affected by the

number of commodities that are exported by each state, since a higher number of commodities that a state exports increases the weight of

that state’s temperature when constructing the average. Likewise, the mean of e.g. agricultural exports represents the ungrouped average of

rows with commodities in the agriculture sector.
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5 Result

5.1 Main Results

The first estimation, following Equation (8), is presented in Table 2 and shows

how the estimated effect of temperature on exports changes when adding control

variables to the regression. The result indicates that average temperature has a

significantly positive but marginally decreasing effect on exports, with positive co-

efficients for the linear term and negative coefficients for the squared term. The

null hypothesis of no effect of temperature on exports is rejected at the 1% sig-

nificance level for almost all specifications. When including additional weather

controls, as recommended by Auffhammer et al. (2013), the effect of temperature

decreases and leaves the quadratic term insignificant. When including a linear

time trend and state fixed effects, the positive linear temperature term decreases

in magnitude, while the squared term becomes more negative and highly signifi-

cant, suggesting a change in the concavity of the export-temperature relationship.

In the full specification (6), which also controls for month fixed effects, the linear

term drops sharply in magnitude. Figure 2 visualizes the estimated marginal effect

over different temperature levels, using the complete set of control variables. Both

very low and very high temperature outcomes seem to be significantly harmful to

U.S. exports. When controlling for month fixed effects, the threshold where the

effect of an increase in monthly average temperature becomes negative is lowered

from 14.3◦C to 7.8◦C. The latter value is low in comparison with previous findings,

as Burke et al. (2015) derive a global economic growth function that maximizes

at an annual average temperature of 13◦C. In terms of magnitude, an increase in

monthly temperature from 20◦C to 21◦C is associated with a reduction in exports

by 0.42%, with month fixed effects included. On the opposite extreme, an increase

in monthly temperature from -15◦C to -14◦C is associated with an increase in

exports by 0.31%

Figure 3 shows the effect of temperature on exports when controlling for month

fixed effects, disaggregated by sector. Sectors exporting agricultural and light man-

ufacturing goods are most sensitive to temperature fluctuations. Heavy industries

do not seem to respond largely to changes in temperature. The large standard
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Table 2: Polynomial Regression

Outcome: Exports (in logs) (1) (2) (3) (4) (5) (6)

Average Temperature 0.0160*** 0.0250*** 0.0136*** 0.0099*** 0.0094*** 0.0016**
(0.0015) (0.0024) (0.0022) (0.0006) (0.0006) (0.0007)

Average Temperature2 -0.0004*** -0.0001 -0.0003*** -0.0003*** -0.0001***
(0.0001) (0.0001) (0.0000) (0.0000) (0.0000)

Weather Controls

Average Precipitation 0.0134 0.0040*** -0.0018** -0.0019***
(0.0095) (0.0009) (0.0007) (0.0007)

Average Snow Depth -0.0012*** 0.0004*** 0.0003*** 0.0001***
(0.0003) (0.0000) (0.0000) (0.0000)

Average Wind Speed -0.0394 -0.0390*** -0.0183*** -0.0334***
(0.0238) (0.0062) (0.0055) (0.0062)

Observations 597,516 597,516 597,516 597,516 597,516 597,516

R-squared 0.0054 0.0058 0.0065 0.1322 0.1390 0.1393

Weather Controls NO NO YES YES YES YES

Time Trend NO NO NO NO YES YES

Month FE NO NO NO NO NO YES

State FE NO NO NO YES YES YES

Clustered standard errors by commodity in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Figure 2: The Marginal Effect of Temperature on Exports

errors for raw material goods limit the analysis of the export-temperature relation-

ship, which is likely to come from fewer observations. The heterogenous results are

in line with previous studies, where agricultural and labor-intensive exporters have

shown to be affected by temperature (Dallmann, 2019; Jones & Olken, 2010). For

agricultural exports, which is the most temperature-sensitive sector, an increase

from 20◦C to 21◦C in monthly temperature is associated with an average decrease

by 0.91%. A similar increase from -15◦C to -14◦C is associated with an average

increase in agricultural exports by 0.68%.

When fitting a 2-degree polynomial function of temperature on exports, the

estimation forces a global structure to the data points, where the slope for indi-

vidual regressor levels is fitted by minimizing the sum of squared residuals for all

levels. If the export-maximizing temperature appears as a kink at a specific level
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Figure 3: The Marginal Effect of Temperature by Sector
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(as in Figure 1d), the smooth regression line will be a poor representation of the

export-temperature relationship. The intersection of the derivative function on

the temperature axis will thereby depend partly on the slope before the kink in

the export function, and partly on the slope after the kink. If the slope after the

kink is strongly negative, the marginal effect is likely to intersect the temperature

axis at a lower level, to better fit the larger negative effect of high temperatures.

The derived optimal temperature with respect to export might thereby not be

correct, but rather reflect a more or less sharp decline where temperature becomes

detrimental.

In order to reduce the global structure of a polynomial function, I apply a re-

stricted cubic spline (RCS) regression, using the full set of control variables. RCSs

allow the estimated marginal effect to change flexibly between different intervals

of the regressor (Desquilbet & Mariotti, 2010). The marginal effect is restricted

in two ways. First, it is set to be constant at the extreme values of the regressor,

where observations are few and inference less certain. This makes the regression

less sensitive to noisy data at the tails of the distribution. Second, the slope of

the marginal effect is constant over the end of an interval to the beginning of the

next interval. This leads to a smooth function, continuous for all levels of tem-

perature. A cubic polynomial function of temperature is estimated within each

interval, which allows the function to assume a concave or convex shape, indepen-

dent of the curvature of the previous interval. The result is a flexible estimation

of a nonlinear relationship of export and temperature, presented in Figure 4. The

knots are the levels of temperature that limit the intervals, in which the separate

slopes are estimated. The location of the knots are determined by the distribu-

tion of the temperature variable, to increase the flexibility in the estimation where

variation in the data is large (Harrell, 2015). Consequently, the knots correspond

to equally spaced percentiles of temperature. As seen in Figure 4, the estimated

effect of temperature on exports is increasingly nonlinear as the number of knots

increases. Using six knots, which give five temperature intervals, the estimated

marginal effect resembles a derivation of the theoretical impact function in Figure

1d, suggesting a sharp decline in exports around 10◦C. The shape of the marginal

effect at this point might explain the relatively low optimal temperature of 7.8◦C

derived above.

25



-.006

-.004

-.002

0

.002

.004

R
el

at
iv

e 
C

ha
ng

e 
in

 E
xp

or
ts

-20 -10 0 10 20 30
 

 
#Knots: 3

-.006

-.004

-.002

0

.002

.004

 

-20 -10 0 10 20 30
 

 
#Knots: 4

-.006

-.004

-.002

0

.002

.004

R
el

at
iv

e 
C

ha
ng

e 
in

 E
xp

or
ts

-20 -10 0 10 20 30

Average Temperature °C

 
#Knots: 5

-.006

-.004

-.002

0

.002

.004

 

-20 -10 0 10 20 30

Average Temperature °C

 
#Knots: 6

Note: 95% Confidence Intervals. Knots are represented by vertical lines.

Figure 4: Restricted Cubic Spline Regression
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A different approach to investigate the nonlinearity in the result, is to estimate

the effect piecewise for different temperatures. I construct five temperature inter-

vals ranging over 10◦C, and estimate a linear effect of temperature separately for

each. The estimations are presented in Table 4 in Appendix A. The result indicates

a significantly negative effect of temperatures below -10◦C, where an increase by

1◦C is associated with an increase in exports by 4.34%. The insignificant estimates

of the regressions for temperatures between -10 – 0◦C and 0 – 10◦C, respectively,

suggest that temperature changes have no effect within this range. In the 10 –

20◦C interval, an increase by 1◦C in monthly temperature has a significantly neg-

ative effect on exports by 0.43%. The coefficient is insignificant for temperature

increases above 20◦C. However, whether temperatures above 20◦C are detrimen-

tal to U.S. exports, compared to the entire temperature scale, cannot be tested

with this approach. The result from the piecewise linear regressions highlights the

negative effect of very low temperatures, and give support to the RCS regressions

indicating a change in the marginal effect around 10◦C.

The estimations above indicate that temperatures below -10◦C and above 10◦C

are detrimental to U.S. exports. Following this result, I estimate the main spec-

ification of this paper (see Equation (9)). I divide the temperature variable into

8 bins, each containing the number of days the daily average temperature is re-

alized within an interval for a given month. Estimating the effect using separate

variables for different levels of temperature enables high flexibility and increases

the temporal resolution of the regressors of interest. The result is presented in

Table 3. The variable measuring the number of days within 5 - 10◦C is omitted to

avoid perfect multicollinearity, and is thereby the variable the other temperature

bins are compared to. The specification with all industries included estimates sig-

nificant negative effects of one additional day below -10◦C and above 25◦C at the

1% significance level, reducing exports by 0.22% and 0.24%, respectively, holding

all other factors constant. The negative effect seems to increase in magnitude and

significance the further away from 5 - 10◦C the daily temperature is, with the

only insignificant exception of temperatures in the -10 – 0◦C range. The effect

is, however, heterogenous across sectors. Agricultural exports are (once again)

the most sensitive sector to days with high temperatures, as one additional day

above 25◦C is associated with a 0.48% reduction in exported goods. On the other
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hand, days with low temperatures have no significant effect on agricultural ex-

ports. The opposite holds for light manufacturing goods, where only days with

low temperatures are associated with an economically significant reduction in ex-

ports. Exported goods in heavy industries seem to be negatively affected by days

in both ends of the temperature scale, with significant coefficients similar to the

estimation with all industries. Raw material goods are not significantly affected

by different temperatures.

To see whether severe temperature days have a persistent effect on U.S. ex-

ports, I include 11 lags of the temperature variables, which captures the cyclical

effect of a temperature day during one year. I also add lagged variables of the

additional weather controls, in order to keep the full set of control variables in

all the time dimensions. Figure 5 shows the result for the number of days below

-10◦C and above 25◦C. Despite larger standard errors from autocorrelation in the

temperature variables (Wooldridge, 2015), the effect of days with both low and

high temperatures remains significant for at least one month after the contem-

poraneous shock. For days below -10◦C, the magnitude of the estimate does not

seem to reach its maximum until two months after the shock, where exports are

associated with a lagged reduction by 0.46%. The results give some support of a

temporal lag distribution of the effect of extreme temperature days, possibly due

to the stock turnover rate of exporters. The estimated effects are, however, not as

persistent as in Li et al. (2016), who find reductions in Chinese exports up to 14

months after one additional day above 30◦C.

In order to understand the geographic dimension of the estimated coefficients,

I apply the counterfactual scenario where each state’s daily temperature distribu-

tion can be allocated to the optimal temperature bin, as in Deryugina and Hsiang

(2014). I multiply the average value of each temperature bin for each state with

the corresponding coefficient from column (1) in Table 3. The coefficient for the

optimal interval (5 – 10◦C) is set to zero, as this is the omitted benchmark vari-

able in the estimations. The outcome is thereby the change in exports due to

current temperature distributions, compared to the counterfactual scenario where

all temperature days are located in the optimal 5 – 10◦C interval. I choose to

include the coefficient for the -10 – 0◦C interval, although its p-value of 0.127 is

higher than any conventional significance level. However, the variable is significant
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Table 3: Main Estimation

(1) (2) (3) (4) (5)

Outcome: Exports (in logs) All Industries Agriculture Light Manufacturing Heavy Industry Raw Materials

Days < -10◦C -0.0022*** -0.0022 -0.0020* -0.0023** -0.0038
(0.0007) (0.0019) (0.0010) (0.0009) (0.0015)

Days in -10 – 0◦C -0.0007 -0.0014 -0.0023*** 0.0010** 0.0006
(0.0004) (0.0012) (0.0007) (0.0005) (0.0014)

Days in 0 – 5◦C -0.0009** -0.0004 -0.0020*** -0.0006 0.0029
(0.0004) (0.0007) (0.0006) (0.0006) (0.0032)

Days in 10 – 15◦C -0.0007** -0.0009 -0.0009** -0.0005 0.0013
(0.0003) (0.0009) (0.0004) (0.0005) (0.0025)

Days in 15 – 20◦C -0.0007* -0.0016 -0.0005 -0.0005 0.0021
(0.0004) (0.0011) (0.0004) (0.0005) (0.0014)

Days in 20 – 25◦C -0.0017*** -0.0025** -0.0009 -0.0022*** -0.0012
(0.0005) (0.0012) (0.0006) (0.0008) (0.0029)

Days > 25◦C -0.0024*** -0.0048*** -0.0015 -0.0020** -0.0020
(0.0006) (0.0015) (0.0009) (0.0010) (0.0034)

Observations 597,516 142,814 196,748 236,946 21,008

R-squared 0.1393 0.2374 0.1499 0.2266 0.4005

Weather Controls YES YES YES YES YES

Time Trend YES YES YES YES YES

Month FE YES YES YES YES YES

State FE YES YES YES YES YES

Clustered standard errors by commodity in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Figure 5: Monthly Lags of Temperature Days
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for two of the sectors when disaggregated. I sum over the new temperature bin

products, to obtain the total effect of the temperature distribution difference. The

resulting reductions in exports are shown in Figure 6. The result suggests large

negative impacts from current temperature distributions, as exports are on average

35.1% lower, compared to an optimal allocation of temperature days. Evidently,

the states experiencing the most adverse temperatures are located in the warmer

South, indicating that high temperatures are of larger concern to U.S. exports than

low temperatures. Florida for example, is calculated to experience reductions in

exports by 63.8% due to the current temperature distribution. The exact numbers

cannot, however, be interpreted as reliable estimations, as this approach does not

take into account the different response functions and adaptation efforts taken by

states facing a new climate. Also, the counterfactual scenario represents a climate

outcome which is unlikely to be realized, where all days in a given year have daily

average temperatures in the 5 – 10◦C interval. Between 2002 – 2018, the highest

annual number of days within the optimal interval was 121. As a reference, I re-

calculate the effect on exports by multiplying the coefficients with the difference in

each temperature bin between the coldest and warmest year in the observed data

for which all months are included, based on the U.S. annual average temperature.

The state average change in exports going from the coldest to the warmest year

is estimated to -0.43%, with a minimum and maximum of -10.02% and 6.82%.

As there is a large difference between the calculated export reductions from the

observed data and from the counterfactual scenario, the conclusion from these

results regards which states that currently are the subjects of the most adverse

temperature distributions, in relation to other states in the U.S..
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Optimal Temperature Allocation (%)
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Note: Coloring towards red represents a larger reduction in current export levels (in %). The
calculated changes in exports due to current temperature distributions are relative to the coun-
terfactual scenario where all temperature days are located in the 5 – 10◦C interval. The states
of Alaska and Hawaii are relocated to reduce space.

Figure 6: The Effect of Current Temperatures on Exports
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5.2 Climate Projections

I use the estimated coefficients of each temperature bin in Table 3 to extrapolate

my result to a future climate change scenario. I obtain data from the downscaling

climate model LOCA, which contains high-resolution future climate projections

over the North American continent (Pierce et al., 2014)2. The projected tempera-

ture changes can be calculated under different scenarios of future human emissions

of greenhouse gases (GHG) and economic development. Figure 11 in Appendix

A shows the projected climate change at the end of this century, under the Rep-

resentative Concentration Pathway (RCP) 8.5 scenario, which is a high-emission

’business as usual’ scenario without climate mitigation policy targets (Riahi et al.,

2011). In addition to a continued rise in GHG emissions, the RCP8.5 assumes

high population growth and slow technological change. It is important to point

out that climate models in combination with carbon emission pathways are not

to be interpreted as forecasts of future climates, but rather as plausible scenarios

relying on socioeconomic assumptions, without assigned probability weights. Us-

ing the Climate Data API service (Azavea, 2019), I extract monthly temperature

data for the most populated city in each state for the period 2070-20993. The time

range of 30 years enables the future distribution of temperature to be interpreted

as a changing climate, since individual abnormal years will have a small impact

on the long-term distribution. For both observed and projected temperatures, I

construct 30-year temperature averages by month and state. Following Schlenker

and Roberts (2009), I add the projected month and state specific temperature

increases to the daily temperatures in the observed dataset. This leads to a shift

in the daily temperature distribution towards higher values, from which future

temperature bin variables can be created. Finally, I sum over months and obtain

the number of days the daily average temperature is realized in a given bin during

an average year, for current and future climates.

Comparing Figure 11a and 11b, one can see that a majority of states are ex-

2Data for the states of Alaska and Hawaii are missing for the climate projections. The
following analysis is thereby based on the 48 remaining states.

3For North Dakota, West Virginia and Wyoming, the most populated cities were not available.
Instead, data for these states are based on the cities Grand Forks, Buckhannon and Jackson,
respectively.
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periencing a substantially warmer climate under the chosen scenario at the end of

this century. The temperature increases range from 1.2 – 12.9◦C (with an average

of 5.8◦C), where states in the Northwest are subject to the highest increases. In

order to compute the projected change in exports under the future climate sce-

nario, I multiply the difference in observed and future value of each temperature

bin, with the corresponding coefficient from column (1) in Table 3. The coeffi-

cient of the benchmark interval (5 – 10◦C) is set to zero. As in the counterfactual

simulation of an optimal allocation of the temperature distribution, I include the

insignificant coefficient for the -10 – 0◦C interval. Lastly, I sum the products

of each temperature bin effect. This approach assumes that the economy does

not adapt to future climate change, and that technology to reduce the impact of

temperature is constant throughout the decades. These are strong assumptions,

although, as the projected climate scenario in LOCA (RCP8.5) is not a forecast of

future climate change, the projected export changes are not a prediction of future

export levels. They rather serve as an alternative scenario, showing how future

climate change might amplify the estimated effects of temperature experienced

today. The result of the calculations is presented in Figure 7, and projects an

average decrease in exports by 12.7%, compared to the current climate. However,

as the climate model does not project a uniform warming over the United States,

there is substantial heterogeneity across states. Florida, a state which today ex-

periences a warm climate, faces the smallest reduction in exports (1.2%), whereas

California and Nevada suffer the largest reductions in exports (30.2% and 29.2%,

respectively). The estimated changes in exports follow the pattern in temperature

changes only to some extent, since the projections in Figure 7 also take into ac-

count the varying effect of temperature across bins. Two states that have similar

projected temperature changes might thereby differ in projected export change, if

the different underlying baseline climate causes the shift in distribution of temper-

ature days to spread over more detrimental temperature bins for one of the states,

compared to the other.

To investigate the validity of using the average effect of temperature, estimated

on all industries, I calculate each sector’s average share of total exports, which is

shown in Figure 12 in Appendix A. There seem to be relatively low specialization

across states, which means that the average effect is more likely to be generalizable
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to the majority of states. Some states seem, however, to stand out in their sector

ratio of total exports. These states might have a different exposure to future

climate change, as the previous results indicate that the effect of temperature is

heterogenous across sectors.

Change in Exports (%)

2002-2018 – 2070-2099

−30 −15 0

Note: Coloring towards red represents a larger reduction in future export levels (in %). The
underlying temperatures are projections from the downscaling climate model LOCA using the
RCP8.5 carbon scenario (Pierce et al., 2014). State values are extrapolated from the largest
city in each state from the Climate Data API service (Azavea, 2019), taking the average of
’Average High Temperature’ and ’Average Low Temperature’. The states of Alaska and Hawaii
are relocated to reduce space, and do not have future climate projections (shown by grey colors).

Figure 7: Projection of Future Exports Under LOCA (RCP8.5)
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5.3 Sensitivity Analysis

I evaluate the sensitivity of the results by estimating different combinations of

fixed effects and standard errors. The alternative specifications are versions of

column (1) in Table 3, which is the main estimation of this study. When clustering

standard errors by state instead of commodity, the variables containing days with

temperatures below -10◦C, in 20 – 25◦C and above 25◦C remain significant at the

5% significance level. Controlling for state-commodity fixed effects yields the same

magnitudes and significance levels for all temperature variables as controlling for

state fixed effects.

To analyze the importance of major economic shocks in the United States to

the result of temperature on exports, I add year fixed effects specific to periods of

economic downturns. The time series of U.S. exports reveals a sharp drop during

the financial crisis of 2008 – 2009, and a moderate decline in the years of 2015

– 2016. I estimate the main specification with four additional dummy variables,

capturing the respective years of export decline. The results are small changes

in significance levels over the temperature variables. The estimates are higher for

very cold days and lower for very warm days, where one additional day with an

average temperature below -10◦C and above 25◦C is associated with a reduction in

exports by 0.32% and 0.13%, respectively. I also estimate the main specification

adding year fixed effects, covering all years in the dataset. This leads to smaller

magnitudes and significance levels, especially for days with high temperatures.

The outer temperature bins are, however, still significant at the 5% and 10%

significance levels.

Allowing the month fixed effects to be state-specific (by adding month and

state dummy interaction terms to the main specification), does not change the

significance levels and yields larger estimates for high temperatures. Interacting

the month fixed effects with the four sectors instead of states, controlling for

different seasonal patterns for each sector, leads to the same significance levels

and magnitudes as in the main result. Adding sector-specific year fixed effects

leads to the same result as with total year fixed effects. I do not allow the year

fixed effects to be state-specific due to the large matrix size requirements for such

an estimation.
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I find no significant results from estimating the main specification on all obser-

vations, including state-commodity pairs without positive values of exports for all

time periods. The number of observations increases from 597,516 to 969,600 (2,958

to 4,800 state-commodity pairs). Among the panels, 20.3%, 14.1% and 8.5% have

a share of missing values in exports of more than 25%, 50% and 75%, respectively,

of all observations in the dataset. This indicates that the original data suffers from

a high level of noise, where untypical export commodities (commodities in states

without positive values for all time periods) might respond less systematically to

temperature changes and more to external factors causing them to stop exporting.

The reason for missing values is however unknown, making a certain interpretation

of the lack of result difficult.

I conclude that overall, the result is robust to econometric specifications in

terms of fixed effects and standard error clustering. Higher temperatures seem

to be more sensitive than low temperatures, although the temperature bin cap-

turing days with average temperatures above 25◦C remains significant at a lower

significance level.

6 Discussion

The result of this study provides new evidence on the economic cost of temperature.

Contrary to previous studies, I find significant, negative effects of high tempera-

tures on exports in the United States, which previously only have been found in

low-income countries (Dallmann, 2019; Jones & Olken, 2010). In addition, I find

that low temperatures are equally harmful to U.S. exports as high temperatures,

an effect which has not been emphasized in earlier research. However, in the cur-

rent climate, high temperatures seem to be causing larger export reductions than

low temperatures (see Figure 6). My result also supports the nonlinear economy-

temperature relationship found by Burke et al. (2015) at the global level. The

restricted cubic spline regressions in combination with the temperature bin esti-

mations confirm the hypothesis that a higher temporal resolution leads to a more

kinked impact function, where temperature thresholds determine the marginal ef-

fect of an additional temperature increase. The heterogeneity across sectors is

also in line with previous findings, where agriculture and light manufacturing ex-
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ports are associated with significant reductions from extreme temperatures. The

significantly negative estimates for the heavy industry sector correspond to the

result in Zhang et al. (2018), who find a significant relationship of productivity

and temperature in capital-intensive firms. Raw materials is the only sector that

is unaffected by temperature changes throughout the estimations.

Interestingly, agriculture and light manufacturing seem to be sectors with op-

posite response functions to outcomes in the end of the temperature scale. Agri-

cultural exports are only significantly affected by days with high temperatures,

whereas light manufacturing exports show a negative relationship only for days

with low temperatures. Schlenker and Roberts (2009) show that corn and soy-

beans (which the United States is a large producer of) have yields responding

positively to subdaily temperature increases up to 29◦C and 30◦C, respectively,

and sharply negative to temperature increases beyond these levels. As the tem-

perature variables in this study measure the 24-h daily averages, the temperature

bins counting the days within 20 – 25◦C and above 25◦C might capture the higher

thresholds of 29◦C and 30◦C experienced during a few hours of the day. The lack

of significance of very low temperatures could result from the relative importance

of weather in specific months, when e.g. yield levels of crops are affected the most.

If the winter months are irrelevant for the growth of crops in season, the low tem-

peratures of these months are unlikely to affect aggregate agriculture exports. In

an empirical assessment of the effect of climate change on crop yields in Califor-

nia, Adams et al. (2003) implicitly assume winter temperatures to have no effect,

as they base their temperature measure on the months corresponding to growing

season. The light manufacturing sector, on the other hand, is characterized by

labor-intensive industries, such as knitted products and the production of musical

instruments. Oksa and Rintamäki (1995) find that cooling decreases performance

in exercises which are ’very short lasting and dynamic, utilising fast movement ve-

locities and/or elastic properties of the working muscles’. They also find negative

effects of low temperatures on the co-ordination ability among the subjects of the

experiment. These micro effects on the human body could explain the detrimental

effects of days with temperatures below moderate levels, as the exercises described

could be frequently occurring for workers in the light manufacturing sector. The

insignificant result of high temperatures indicates that firms are better prepared
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to protect workers from outside heat, possibly through indoor climate control,

than from outside cold. However, the aggregate export data does not enable any

firm-level analysis to conclude the true mechanism of the varying effects.

When analyzing the estimated effects of temperature in the context of future

climate change, the heterogenous projections of export reductions raise questions

related to the trend in state export differentials. The climate projections in Figure

7 indicate that overall, the states facing the largest reductions in exports compared

to current levels, are those who today experience the least harmful temperature

distributions. This implies that although all states are projected to have reductions

in exports due to future temperatures, there is a possible convergence in the impact

from temperature among states. The comparative advantage of a beneficial climate

might therefore be smaller in the future. There is, however, a substantial risk of

underestimation of the negative impacts of very high temperatures in Southern

states, since the marginal effects used in the projection are limited by the observed

temperatures in the estimations. As I only observe days with average temperatures

up to 32◦C during the studied time period, temperatures well beyond this level

at the end of this century are restricted to the marginal effect of an additional

day above 25◦C. Due to the nonlinearity in the effect of temperature, there is a

probability that small temperature increases in locations with an already warm

climate are more harmful than large increases in cold climates. In an economic

assessment model of climate damage in the U.S., Hsiang et al. (2017) find larger

effects in Southern areas when evaluating the impacts on agriculture, crime, coastal

storms, energy, human mortality, and labor, although future warming in this region

is smaller in absolute terms. They mention a more frequent distribution of extreme

heat waves in currently warm counties (becoming slightly warmer) as a mechanism

of the projected regional differences.

In terms of IAMs, the result of the climate projection gives support to the cur-

rent research advocating damage functions with larger climate impacts than what

have been applied in previous assessments (Diaz & Moore, 2017). The projected

average reduction in exports by 12.7% at the end of this century (potentially both

an under- and overestimation) represents an economic cost of a warming climate

in a developed country. The updated version of the commonly used DICE model

(DICE-2013R) expects total climate damages for a similar increase in temperature
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(around 6◦C) to be below 10% of global GDP (Howard & Sterner, 2017). This

includes both market and non-market costs. As climate damage is generally be-

lieved to be higher in developing countries (Dell et al., 2012), the result of this

paper indicates that the damage functions used in the influential IAMs (such as

DICE-2013R) are an underestimation. This, of course, assumes that exports in

the United States can be used as a measure for the economy as a whole. Although

some mechanisms might be specific to the exporting sector (such as the additional

cost of exporting discussed above) leading to different sensitivities in outcome, it

is not unlikely that overall economic activity has a similar response function to

temperature as estimated in this paper. The effect on productivity for example, as

theorized in this paper, is one channel which is likely to be valid for domestic sec-

tors, as shown by micro-level research (Cachon et al., 2012; Graff Zivin & Neidell,

2014).

In summary, the policy implications of this paper are mainly related to the

cost-benefit analyses of reducing future global warming. With a higher economic

cost of climate change than previously estimated, the United States as a coun-

try should face larger benefits from investing in climate change mitigation. Such

an investment can have large implications for future global warming, since the

United States is a big country both in terms of economic size and CO2 emission

(Boden et al., 2017). The climate-export projection also indicates stronger in-

centives for states which are only moderately affected by their current climate to

engage in mitigation and adaptation, as they risk being relatively more affected

in the future. In addition, the estimated effect on exports shows how national

temperature shocks can be transferred to foreign economies through international

trade. If economies are heavily dependent on imports from other countries, they

face an increased exposure to production shocks if the supplying countries follow

the projected pattern as the United States in Figure 7. Countries that are highly

integrated in the global economy thus have reasons to evaluate the possibilities of

being supplied by their current trading partners in the future.
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7 Conclusion

This paper studies the effect of temperature on exports in U.S. states, using panel

data on monthly exports and daily temperature. Counting the number of days the

daily average temperature is realized in different temperature intervals in a given

month, I find that one additional day below -10◦C and above 25◦C (compared to

days between 5 – 10◦C) reduces monthly exports by 0.22% and 0.24%, respectively.

The optimal 24-h daily average temperature for exports is estimated to approxi-

mately 10◦C. The new evidence contradicts previous studies on temperature and

exports, which have not found significant effects in rich countries. The heterogene-

ity analysis across sectors indicates different responses to temperature fluctuations.

Agricultural exports are negatively associated with high temperatures, while light

manufacturing exports are negatively associated with low temperatures. Exports

from heavy industry are significantly reduced by both extremes. Raw material

exports show no significant relationship with temperature in this study.

In the United States, the Southern states seem to be experiencing the most

export-reducing temperature distributions, having a climate which is warmer than

average. Assuming no further adaptation to temperature shocks, climate change

is projected to reduce U.S. exports by 12.7% on average at the end of this century,

under a ’business as usual’ scenario with a continued rise in greenhouse gas emis-

sions. The relatively higher rate of warming in states with a colder climate can

lead to a convergence in harmful temperature distributions across states, reducing

the comparative advantage in climate for Northern states. The risk of underesti-

mating the impacts of high temperatures well beyond observed levels in current

climates leaves, however, the projected reductions in exports in Southern states

uncertain.

My result implies stronger economic incentives for the United States to invest

in climate change mitigation, as the cost of especially high temperatures (and

thereby future global warming) is seemingly higher than previously estimated. I

thereby find additional evidence of underestimation in the climate damage func-

tions in the Integrated Assessment Models used by U.S. administrations to eval-

uate the optimal mitigation policy. The variety of temperature impacts across

the United States highlights the importance of a fair distribution of resources as-
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signed to counter economic reductions today and in a future scenario. Future

research should be directed towards efficient adaptation implementation and cli-

mate change mitigation investments, in order to reduce the economic damages of

current climates and global warming.
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A Appendix

Table 4: Piecewise Linear Regression

(1) (2) (3) (4) (5)

Outcome: Exports (in logs) Below -10◦C -10 – 0◦C 0 – 10◦C 10 – 20◦C Above 20◦C

Average Temperature 0.0434*** -0.0026 0.0002 -0.0043*** -0.0006

(0.0105) (0.0016) (0.0014) (0.0014) (0.0018)

Observations 3,890 65,172 161,922 195,650 170,882

R-squared 0.1069 0.1213 0.1140 0.1430 0.1503

Weather Controls YES YES YES YES YES

Time Trend YES YES YES YES YES

Month FE YES YES YES YES YES

State FE YES YES YES YES YES

Clustered standard errors by commodity in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Note: The graph shows the relationship between State GDP per capita and annual average
temperature in 2017. GDP per capita is measured in $US (2017 year’s value) and collected
from Bureau of Economic Analysis (2019). States in the ends of the regression line (dashed) are
labeled with their corresponding state abbreviation.

Figure 8: State GDP per Capita and Temperature
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Note: Exports are presented in million $US (2002 year’s value), and calculated by summarizing
exports for an average month over states and commodities.

Figure 9: Subannual Patterns of U.S. Exports
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Note: Higher color intensity represents a higher number of days in the respective interval for an
average year. The states of Alaska and Hawaii are relocated to reduce space.

Figure 10: Annual Geographic Distribution of Temperature Days
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(b) 2070-2099 (RCP8.5)
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Note: Coloring towards orange represents a higher average temperature (◦C). Temperatures in
(b) are projections from the downscaling climate model LOCA using the RCP8.5 carbon scenario
(Pierce et al., 2014). State values are extrapolated from the largest city in each state from the
Climate Data API service (Azavea, 2019), taking the average of ’Average High Temperature’
and ’Average Low Temperature’. The states of Alaska and Hawaii are relocated to reduce space,
and do not have future climate projections (shown by grey colors).

Figure 11: Current Temperature and Future Climate Projection
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Note: Higher color intensity represents a higher average export share of respective sector. The
states of Alaska and Hawaii are relocated to reduce space.

Figure 12: Average Sector Share of Total Exports
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