
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Multilingual Abstractions: Abstract Syntax Trees and
Universal Dependencies

PRASANTH KOLACHINA

UNIVERSITY OF GOTHENBURG

Department of Computer Science & Engineering
Chalmers University of Technology and Gothenburg University

Gothenburg, Sweden, 2019

Multilingual Abstractions: Abstract Syntax Trees and Universal Dependencies
PRASANTH KOLACHINA

© Prasanth Kolachina, 2019.

ISBN 978-91-7833-509-1
Technical Report 174D
Department of Computer Science & Engineering

Division of Functional Programming
Department of Computer Science & Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden
Telephone +46 (0)31-772 1000

Printed at Chalmers reproservice
Gothenburg, Sweden 2019.

ii

To my family
Mom, Dad and Sudheer

iv

Abstract
This thesis studies the connections between parsing friendly representations and in-
terlingua grammars developed for multilingual language generation. Parsing friendly
representations refer to dependency tree representations that can be used for robust, ac-
curate and scalable analysis of natural language text. Shared multilingual abstractions
are central to both these representations. Universal Dependencies (UD) is a framework
to develop cross-lingual representations, using dependency trees for multlingual repre-
sentations. Similarly, Grammatical Framework (GF) is a framework for interlingual
grammars, used to derive abstract syntax trees (ASTs) corresponding to sentences. The
first half of this thesis explores the connections between the representations behind
these two multilingual abstractions. The first study presents a conversion method from
abstract syntax trees (ASTs) to dependency trees and present the mapping between
the two abstractions – GF and UD – by applying the conversion from ASTs to UD.
Experiments show that there is a lot of similarity behind these two abstractions and
our method is used to bootstrap parallel UD treebanks for 31 languages. In the second
study, we study the inverse problem i.e. converting UD trees to ASTs. This is moti-
vated with the goal of helping GF-based interlingual translation by using dependency
parsers as a robust front end instead of the parser used in GF.

The second half of this thesis focuses on the topic of data augmentation for
parsing – specifically using grammar-based backends for aiding in dependency parsing.
We propose a generic method to generate synthetic UD treebanks using interlingua
grammars and the methods developed in the first half. Results show that these synthetic
treebanks are an alternative to develop parsing models, especially for under-resourced
languages without much resources. This study is followed up by another study on
out-of-vocabulary words (OOVs) – a more focused problem in parsing. OOVs pose an
interesting problem in parser development and the method we present in this paper is
a generic simplification that can act as a drop-in replacement for any symbolic parser.
Our idea of replacing unknown words with known, similar words results in small
but significant improvements in experiments using two parsers and for a range of 7
languages.

Keywords

Natural Language Processing, Grammatical Framework, Universal Dependencies,
multilinguality, abstract syntax trees, dependency trees, multilingual generation, multi-
lingual parsers

Acknowledgments

In the time spent working on this, I was also trying to narrow down that one domino
that made me pursue this crazy job. I did find it in due time – a stroll on a winter
evening with a colleague on the streets of Hyderabad. I told him the crazy idea I had
in the months prior working as an research intern, to pursue a Ph.D. By the end of the
day, he convinced me I was both necessarily and sufficiently crazy to go for one! This
was followed by a conversation with a mentor from those days, who cautioned me
about a long tunnel, along with what I thought was some sage advice.

That evening and an year later, I was at Chalmers. In all my time at Chalmers –
working with Aarne – I did find myself asking at times if the tale about the tunnel was
true. There were certainly times when it seemed true but the ensuing time was also
filled with learning moments. Aarne gave me the space and time to address each part I
thought I lacked in order to pursue my research interests. For that I will always thank
him, more so because he let me address them on my own terms. Thanks are also due
to Richard Johansson and Krasimir Angelov – my co-supervisors – who have at all
times during this journey supported me. Richard, did at times indulge me listening
patiently to what seemed and still seem like crazy ideas to me, and always helped
me refine those ideas and aspects of my research that are not often overtly realized,
atleast immediately. Krasimir was more hands-on helping me make sense of the
craziness involved by sharing his own experiences. The Grammar Technology group
– Herbert, Peter Ljunglof, Prasad KVS, Inari, John, Normunds, Gregoire, Thomas
Hallgren and Koen Classen (when he consented to being part of the group) and David
– was something I could always count on for insightful conversations and at times,
for procrastination working on interesting problems. Agneta Nilsson, Mary Sheeran
who have been in my committee and Devdatt Dubhashi who acted in the role of my
examiner have also supported me throughout the years.

But the journey is not all about research, and those of us here know the role
teaching plays in the process. I had taught before coming to Chalmers – when asked to
– but never imagined myself liking it, much less, enjoy it. I did discover those aspects
of teaching over the years while working with Dag Wedelin on the problem solving
course. That only got better working with other people involved in the course – Birgit
Grohe, Simon R., Dan R., Victor, Mikael amongst others – and one I think of as a
valuable experience. If the idea of Ph.D. seemed crazy to me those years ago, I admit
the idea of pursuing an academic career seems equally crazy now. That said if I do
pursue one – it will not be due to my problem solving skills – it will surely be due to
my experience in the course on problem solving. Thank you for that Dag and everyone
who worked in the course the last five years including the students.

I would like to say thanks to Joakim Nivre who shared his insights on my work

vii

viii

and has also graciously agreed to be a part of my defense, in addition to hosting
my research visit at Uppsala. The Computational Linguistics group at Uppsala –
Miryam, Amir, Ali, Yan, Marie, Fabienne, Aaron – are nothing short of fantastic and
an excellent presence to have in close proximity. Thanks also to Filip Ginter who was
the discussion leader for my licentiate and Lilja Øvrelid and Marco Kuhlmann who
have all accepted to be on the committee for my defense. I met Marco while working
on ud2gf and his insights have been very helpful in improving my understanding of
this work.

Just as all work makes Jack a dull boy, my time at Chalmers was enriched abun-
dantly by time spent with amazing people outside the group. Olof and Mikael with
whom I did have conversations on everything that is around – from machine learning
and natural language processing to Sweden, from technical to social and perhaps at
times even religious – and Alirad were the best colleagues one could ask for. These
hangouts were further improved when I spent my time with the larger group of CLT in
Gothenburg – Luis, Ildiko, Mehdi, Nina, Markus – who constantly reminded me that
it was okay to sign-out from work. There are other things I need to acknowledge as
part of this journey – Sweden being the primary one. The who, why and what of that
is impossible to precisely quantify – neither the who or what can be enumerated here
in entirety – and is perhaps best left unspecified while relishing all that did happen. I
also found great company in the online world – Science Twitter – which made me feel
welcome.

Finally, I heard over the years the cliff-climbing-cliche of life and I admit this never
felt like one. Most times, it felt as though I had jumped off one – after all climbing
gives you a choice to stop at any point but jumping never does – only to realize I had
a lot of fantastic support underneath it all. Sudheer – the colleague and brother who
encouraged me to start this journey – and Lilla have always and continue to give me
sage advice when I need it. Behind him was my mother who despite not knowing why
I was doing this, always let me know that things would be okay when I most needed
to hear it. The journey might not have started because of them, but it definitely would
not have come this far if not for them.

The work presented in this thesis has been funded by the Swedish Research Council as
part of the REMU project — Reliable Multilingual Digital Communication: Methods
and Applications (grant number 2012-5746).

List of Publications

Appended publications
This thesis is based on the following publications:

[I] Prasanth Kolachina and Aarne Ranta “From Abstract Syntax to Universal
Dependencies”
Linguistic Issues in Language Technology 13(3), 2016.

[II] Aarne Ranta and Prasanth Kolachina “From Universal Dependencies to Abstract
Syntax”
Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies
(UDW 2017), pp. 107–116.

[III] Prasanth Kolachina and Aarne Ranta “Bootstrapping UD treebanks for Delexi-
calized Parsing”
Under submission.

[IV] Prasanth Kolachina and Martin Riedl and Chris Biemann
“Replacing OOV Words For Dependency Parsing With Distributional Semantics”
Proceedings of the 21st Nordic Conference on Computational Linguistics (NoDaL-
iDa), 2017, pp. 11–19.

ix

x

Other publications
[V] Aarne Ranta and Prasanth Kolachina and Thomas Hallgren “Cross-Lingual Syn-

tax: Relating Grammatical Framework with Universal Dependencies” Proceed-
ings of the 21st Nordic Conference on Computational Linguistics (NoDaLiDa),
System Demos, 2017.

[VI] Prasanth Kolachina and Aarne Ranta “GF Wide-coverage English-Finnish MT
system for WMT 2015”
Proceedings of the Tenth Workshop on Statistical Machine Translation, 2015,
pp. 141–144.

[VII] Ramona Enache and Inari Listenmaa and Prasanth Kolachina “Handling non-
compositionality in multilingual CNLs” Fourth Workshop on Controlled Natural
Language (CNL 2014), 2014, pp. 147–154.

Research Contribution
• In Paper I (Chapter 2), the concrete and extended variant of the configurations

were made by the author. Necessary changes to the translation algorithm were
also made by the author in addition to the complete configuration specification
from GF-RGL to Universal Dependencies. The manuscript was jointly written,
where the authors contribution was around 75% in the manuscript.

• In Paper II (Chapter 3), the authors contribution was to the experiments described
in the manuscript. Subsequent modifications to the implementation include k-
best parsing, probabilistic disambiguation and unlexicalized variant of ud2gf.
Subsequent modifications to the configurations include extensions from UDv1
to UDv2 and extensions to the grammar to improve coverage of the translation
method. These changes were made after the publication.

• In Paper III (Chapter 4), the author designed the experimental setup, made the
experiments and wrote most of the paper.

• In Paper IV (Chapter 5), the author designed the experimental setup, made the
experiments and subsequent data analysis and wrote around 50% of the paper.

xii

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Research Questions . 2
1.2 Multilingual Grammars and Representations 3
1.3 Abstract Syntax trees and Dependency trees 9

1.3.1 ast2dep: From Abstract Syntax to Dependency trees 10
1.3.2 dep2ast: From Dependencies to Abstract Syntax trees 12
1.3.3 Expressivity and Limitations of ast2dep and dep2ast 16

1.4 GF-RGL and Universal Dependencies 16
1.4.1 gf2ud: Extensions to ast2dep 18
1.4.2 ud2gf: Extensions to dep2ast 19
1.4.3 Applications . 23

1.5 Related Work . 24
1.6 Results . 25
1.7 Summary of the studies . 28

1.7.1 Paper I: gf2ud . 28
1.7.2 Paper II: ud2gf . 29
1.7.3 Paper III: Bootstrapping UD treebanks 29
1.7.4 Paper IV: OOV words in Dependency parsing 29

1.8 Conclusions and Future work . 30
1.8.1 Open Problems and Future directions 31

2 Paper I: gf2ud 33
2.1 Introduction . 34
2.2 Grammars and trees . 36

2.2.1 Abstract and concrete syntax 36
2.2.2 Trees and their conversions 38
2.2.3 Abstracting from morphological variation 40
2.2.4 Abstracting from syncategorematic words 42

2.3 An overview of GF-RGL and UD 44
2.3.1 Overview of RGL . 44

xiii

xiv CONTENTS

2.3.2 Overview of UD . 47
2.4 Dependency mappings: straightforward cases 49

2.4.1 Clausal predicates: predication and complementation 49
2.4.2 Adverbial modifiers . 51
2.4.3 Questions and relative clauses 51
2.4.4 Noun phrases and modifiers 51
2.4.5 Coordination . 53

2.5 Dependency mappings: Problematic cases 54
2.5.1 Passive voice constructions 56
2.5.2 Copula constructions . 58
2.5.3 Verb phrase complements and prepositional verbs 59
2.5.4 Auxiliary verbs and verbal negation 60
2.5.5 Multi-word expressions . 61
2.5.6 Idiomatic and Semantic (CxG) Constructions 62
2.5.7 Dependency conversion algorithm and specification language 63

2.6 Experiments . 64
2.6.1 UD test treebank . 64
2.6.2 Evaluation . 65
2.6.3 GF Penn Treebank . 69

2.7 Conclusion . 70
2.8 Appendix: GF-RGL and UD Reference 71

2.8.1 GF-RGL categories . 71
2.8.2 UD tags and labels . 73

2.9 Appendix: Dependency conversion algorithm and specification language 74

3 Paper II: ud2gf 77
3.1 Introduction . 78
3.2 From gf2ud to ud2gf . 80
3.3 The ud2gf basic algorithm . 81
3.4 Refinements of the basic algorithm 84
3.5 First results . 86
3.6 Conclusion . 88

4 Paper III: Bootstrapping UD treebanks 91
4.1 Introduction . 92
4.2 Grammatical Framework . 93

4.2.1 gf2ud . 94
4.3 Bootstrapping AST and UD treebanks 95

4.3.1 Differences against UDv2 97
4.4 UD Parsing . 97
4.5 Experiments . 99
4.6 Related Work . 100
4.7 Conclusions . 101

5 Paper IV: OOV words in Dependency Parsing 107
5.1 Introduction . 108
5.2 Related Work . 108
5.3 Methodology . 109

5.3.1 Semantic Similarities . 109

CONTENTS xv

5.3.2 Suffix Source . 109
5.3.3 Replacement Strategies regarding POS 109
5.3.4 Replacement Example . 110

5.4 Experimental Settings . 110
5.4.1 Similarity Computations . 111
5.4.2 Corpora for Similarity Computation 111
5.4.3 Dependency Parser and POS Tagger 112
5.4.4 Treebanks . 112

5.5 Results . 112
5.5.1 Results for POS Tagging . 112
5.5.2 Results for Dependency Parsing 113

5.6 Data Analysis . 115
5.6.1 Analysis of POS Accuracy 115
5.6.2 Analysis of Parsing Accuracy by Relation Label 115

5.7 Discussion . 116
5.7.1 Recommendations for OOV Replacement 116
5.7.2 On Differences between Graph-Based and Dense-Vector Sim-

ilarity . 117
5.8 Conclusion . 118

Bibliography 119

xvi CONTENTS

Chapter 1

Introduction

Structured representations such as parse trees have been central in Natural Language
Processing (NLP) and Computational Linguistics (CL), often used as intermediate
representations in downstream applications like machine translation (MT), question
answering (QA) and document summarization. The underlying abstractions used to
derive these structures have changed radically in the last three decades — expert-
based models have been replaced by models learnt from examples using statistical
and machine learning techniques. This paradigm shift has resulted in corpus creation
efforts becoming akin to a primitive exercise towards creating basic linguistic resources
for a language. In other words, tagged corpora (Francis Nelson and Kučera, 1979) have
replaced expert-based automata (Beesley and Karttunen, 2003) and treebanks (Marcus
et al., 1994, Abeillé et al., 2000, Böhmová et al., 2003) have replaced hand-crafted
grammars (XTAG, 2001, Copestake and Flickinger, 2000, Rayner et al., 2000) – all
developed to induce more accurate and robust abstractions (Charniak, 1996).1

Most of these were independent efforts in the last three decades, each an attempt to
devise optimal representations (Johnson, 1998) suitable for the language and the task
in question. These efforts were successful in creating both robust and scalable models
for understanding text. Central to this success in web-scale parsing are light-weight
representations used to compute shallow meaning in a sentence. These representations
range from simple part-of-speech tagged sentences to tree- or graph- like dependency
structures that mark grammatical functions in a sentence, e.g. the subject and object
in the given sentence. The robustness of these representations and their scalability is
derived from efficient algorithms that assign a plausible representation to the input
devoid of notions like grammaticality and well-formedness of the text. These algo-
rithms coupled with surging interest in multilinguality in NLP highlighted the need for
a harmonious representation suitable for a wide range of languages. A shared inter-
mediate representation that is useful for applications by abstracting language-specific
variations can be seen as a parsimonious representation for the application. This is
what set the stage for Universal Dependencies – a framework for cross-linguistically
consistent syntactic annotation of text in a wide variety of languages. This framework
uses dependency trees and directed acyclic graphs as the primary descriptions in more
than 70 languages. This effort in-turn led to many advances in multilingual parsing –
producing universal parsers and fostering research in cross-lingual parsing even when
examples in that language are not available.

1This is now a well-accepted fact. Induced abstractions have been shown to be more machine-friendly.

1

2 CHAPTER 1. INTRODUCTION

But what about generating language? While above efforts have aided in the
understanding phase of NLP i.e. in analyzing text, progress in generation has been
largely driven by enormous advances in language modeling and data-driven techniques.
These techniques have shown excellent results in a wide variety of applications –
reaching “human-parity” in MT, generating human-like text (Radford et al., 2018)
– indirectly contributing to the current focus on monolingual text generation. But
what if one is interested in simultaneous multilingual generation? This is particularly
of interest when generation originates from an abstract representations of meaning
like semantic dependency structures (Abstract Meaning Representations), logical
formulae or other formal structures, that need to be simultaneously translated to text
in many languages – a sub-task in language generation referred in literature as surface
realization. Efforts towards generation using dependency structures have recently
started but however, are focussed on monolingual generation. It is not difficult to
imagine why and how simultaneous multilingual generation is useful. Translations
presented in more than one language serve as explanation aids, question answering
systems that provide answers in multiple languages and multilingual summarization
systems have been of interest to the community.

So, why has multilingual generation not seen much progress in recent years? One
reason is that NLU applications rarely build abstract intermediate representations
useful for generation purposes. Second, multilingual generation has been largely put in
the domain of producer NLP – tasks that require faithful and grammatical rendering of
meaning in languages – leading to efforts in focused domains like instruction manuals,
official documents etc. Grammatical Framework is one such framework, originally
created for generating multilingual documents as its central aim; past efforts have
shown multilingual generation to be one of its core strengths. The primary descriptions
here are abstract syntax trees (ASTs) different from the above described dependency
structures used to parse documents from the web and sometimes, the web itself.

At this point it should not be difficult to foresee where this is headed – universal
models for language understanding and generation. Related ideas have been proposed
by Vauquois in the context of machine translation over 60 years ago. And indeed these
ideas have seen a resurgence in recent years with attempts in MT shifting focus from
translation for language pairs to multilingual MT. And while Vauquois himself may
not have foreseen this, his idea of uniform models for analysis and synthesis have been
shown to be feasible and widely embraced by the field. What has remained elusive in
his architecture is a precise form of the interlingua that is expressive enough for both
analysis and synthesis of general purpose text. But perhaps one single abstraction for
both phases is an impossible task — what if it is replaced with two abstractions? One
abstraction to derive representations amenable to analysis tasks and another abstraction
that derives representations amenable to synthesis tasks.

This is indeed the focus and aim of the current thesis. Ongoing work in UDs
have shown them to be useful representations for the purpose of NLU in a range of
applications from question answering to natural language inference. But what does the
“bridge” between these two abstractions look like? What are the potential applications
of such a “bridge”?

1.1 Research Questions

The following research questions are discussed in this thesis:

1.2. MULTILINGUAL GRAMMARS AND REPRESENTATIONS 3

(1) How can dependency trees be derived from abstract syntax trees (ASTs) defined by
an interlingual grammar? Can this process be reversible, i.e. can ASTs be similarly
derived for an input dependency tree? Once defined, what are the characteristics
of these functions?

(2) The functions are operationalized for two independent multilingual descriptions
of language, namely Universal Dependencies (UD) that use dependency trees
as primary descriptions and the Resource Grammar Library of Grammatical
Framework (GF-RGL / RGL) using ASTs as primary descriptions. The goal here
is to both quantitatively and qualitatively understand and assess the sharedness
in the respective frameworks while leveraging the artifacts of the respective
frameworks in NLP applications.

(3) Finally, we attempt to ask the question about the appropriate role of grammars vs
machine induced abstractions. Human effort involved in grammar engineering to
design or add a grammar for a new language is different from the effort involved in
annotating treebanks – both in terms of the sub-tasks involved in each and the time
involved. Grammars as expert-designed abstractions have long been considered
to be appropriate for restricted domains in NLP – this thesis looks at potential
applications of such abstractions by generating synthetic treebanks used to induce
dependency parsing models.

1.2 Multilingual Grammars and Representations
Interlingual grammars are one of the multilingual abstractions at the core of

this thesis. An interlingual grammar consists of two parts: an abstract syntax that
is shared across languages and a set of concrete syntaxes defined for each language
separately. The abstract syntax defines a set of categories and functions, where
functions correspond to rules that specify what parts are combined together. These
functions abstract away from language-specific details like word order and what the
parts look like: these things are specified in the concrete syntax. Figure 1.1 illustrates
an interlingual grammar, a small fragment of the larger Resource Grammar used in
Grammatical Framework (Ranta, 2009a, 2004b).2

The primary descriptions derived from these abstractions for an input text are ab-
stract syntax trees (ASTs), once again a representation that is shared across the
languages. The AST combined with the concrete syntax is used to derive an auxiliary
representation – concrete syntax trees – that is language-specific and reminiscent of
constituency trees and phrase-structure trees in syntax literature. The algorithm used
to derive concrete syntax trees from an AST is deterministic, a linearization3 into a
bracketed string. Figure 1.2 shows the abstract syntax tree and the concrete syntax
trees for the input sentence the black cat sees us today and its Swedish translation den
svarta katten ser oss idag.

One of the central areas in computer science where these representations have have
been studied and applied is compiler development. Programming language compilers
use ASTs as an intermediate representation, sharing the representation across several

2 Any function with a definition written as f : C1→ C2→ ...Cn→ C; can be rewritten as a context-free
rule f. C ::= C1C2...Cn. The former is a notation used across this thesis.

3 Linearization is the reverse process of parsing i.e. to generate or recover the input sentence from an
abstract syntax tree.

4 CHAPTER 1. INTRODUCTION

cat
S ; -- sentence
NP ; -- noun phrase
VP ; -- verb phrase
AP ; -- adjectival phrase
CN ; -- common noun
Det ; -- determiner
V2 ; -- transitive verb
Pron ; -- pronoun
Adv ; -- adverbial modifier

fun
PresCl : NP -> VP -> S ; -- predication: (the cat)(sees us)
CompAP : AP -> VP ; -- copula:
ComplV2 : V2 -> NP -> VP ; -- complementation: (sees)(a cat)
DetCN : Det -> CN -> NP ; -- determination: (the)(cat)
AdvVP : VP -> Adv -> VP ; -- modification: (see)(today)
AdjCN : AP -> CN -> CN ; -- adjectival modification: (black)(cat)
UsePron : Pron -> NP ; -- use pronoun as noun phrase: (us)

see_V2 : V2 ; -- see/sees
the_Det : Det ; -- the
black_AP : AP ; -- black
cat_CN : CN ; -- cat/cats
we_Pron : Pron ; -- we/us
today_Adv : Adv ; -- today

Figure 1.1: An abstract syntax for a fragment of GF-RGL.

1.2. MULTILINGUAL GRAMMARS AND REPRESENTATIONS 5

(a) Example of an abstract syntax tree

(b) Example of concrete syntax trees in English and Swedish

(S (NP (Det the)(CN (AP black)(CN cat)))(VP (VP (V2 sees)(NP (Pron us)))(Adv today)))
(S (NP (Det den)(CN (AP svarta)(CN katten)))(VP (VP (V2 ser)(NP (Pron oss)))(Adv idag)))

(c) Concrete syntax trees as bracketed linearization

Figure 1.2: Primary and auxiliary descriptions derived from an interlingual grammar

6 CHAPTER 1. INTRODUCTION

source and target languages4 , only changing the first step of parsing and the last step
of code generation. This intermediate representation is used in semantic analysis, for
example to type-check programs and make sure that the code is not erroneous. But
these abstractions can be described as a combination of two well-studied aspects in
linguistic and computational grammars that have been discussed in CL literature –
multi-stratal abstractions and synchronous grammars.

The first of these characterizations referred to here as multi-stratal abstractions
can be understood by following the contributions of Curry (1961). Curry himself
never uses the words “multi-stratal” or “abstractions”, he only proposes that a logic
system describing language has two distinct aspects – a phenogrammatical and
tectogrammatical aspect.5 The phenogrammatical aspect describes how a linguistic
phenomenon is realized in the sentence, while the tectogrammatical description refers
to a higher level of abstraction – the underlying structure (Muskens, 2010). The idea
of abstraction above language-specific details like word order in grammars 6 has long
been appealing in computational grammar formalisms like Head-Phrase Structure
Grammar (HPSG), Lexical Functional Grammar (LFG) and Tree Adjoining Grammars
(TAGs). For example, Vijay-Shanker and Weir (1995) describe a variant of Tree
Adjoining Grammars, TAG(ID/LP) that factorizes word order (referred to as linear
order) information away from tree information (also called immediate domination
relations). Similar distinction to tectogrammatical and phenogrammatical in CL/NLP
literature is made using the terms deep and surface syntax.

Now the above discussion is too abstract for developing multilingual NLP appli-
cations. In NLP, crosslingual or multilingual equivalence is characterized using an
corpus of translations, aligned at sentence level and referred to as parallel corpora
and multilingual corpora.7 In other words, multilingual corpora are assumed to be
implicitly equivalent – irrespective of whether they are lexically or semantically or
pragmatically equivalent. The corpora are used to induce parallel abstractions (with-
out an abstract syntax) in the form of synchronous context-free grammars (or syntax
directed transducers (Lewis and Stearns, 1968, Aho and Ullman, 1969a) as they
were originally called), used widely in MT. Algorithms to induce basic alignment
units in parallel corpora (Vaswani et al., 2012) and different variants of synchronous
grammars, for example, Inversion Transduction grammars (Wu, 1997), Hierarchical
grammars (Chiang, 2005, 2007), synchronous TAGs (Shieber, 2014) and other abstrac-
tions (Nederhof and Vogler, 2012) have been proposed and shown to scale to large
parallel corpora (Zhang et al., 2008, Pauls et al., 2010). It is trivial to see how the
concrete syntax trees in Figure 1.2 can be modeled using a synchronous CFG, without
defining an explicit abstract syntax.8

But these abstractions mostly work with two languages, there has been very limited

4 In Compiler theory, the source language refers to a high-level programming language and the target
language refers to a low-level system code. Unlike in NLP, the set of source languages do not overlap with
the set of target languages.

5 The reader is cautioned against drawing similarities between the proposal of Curry (1961) and that of
Sgall et al. (1986) referred to as “multi-stratal” in literature on dependency grammars (de Marneffe and
Nivre, 2019).

6 Curry himself outlines this for Categorial Grammars of Lambek (1968).
7 The reader should be aware of the terms “bitext” and “multi-texts” used as synonyms for parallel and

multilingual corpora following Melamed and Wang (2004).
8 The difference between a parallel and an interlingual abstraction as defined here, is the explicit

definition of an abstract syntax corresponding to the multilingual abstraction. Designing an abstract syntax
for a given synchronous grammar is not always straight-forward, especially when the grammars of the
source and the target languages follow different annotation schemes.

1.2. MULTILINGUAL GRAMMARS AND REPRESENTATIONS 7

work on multilingual abstractions that work with more than two languages, notably the
formalism of multi-text grammars proposed in Melamed and Wang (2004), Melamed
et al. (2004) is an generalization of synchronous CFGs to work for arbitrary number
of languages. More recently, Neubig et al. (2015) propose an analogous framework to
Hierarchical grammars that work for more than one target languages. A shortcoming
of using these formalisms as multilingual abstractions is they do not scale well with
increasing number of target languages.

Grammatical Framework (GF) is a framework to implement interlingual gram-
mars (Ranta, 2004b). The abstract syntax corresponds to the tectogrammatical and
the concrete syntax to the phenogrammatical description in Curry’s terminology. The
concrete syntax of a language in GF has the same expressivity as Parallel Multiple
Context-Free Grammars (PMCFG) as shown in Ljunglöf (2004). Parsing in GF is
polynomial in sentence length as shown in Angelov (2011). Angelov (2011) also
defines a probabilistic variant of GF grammars by defining a distribution on the abstract
syntax – this makes the probability information usable for disambiguation across as
many languages as there are concrete syntaxes defined. An additional property of GF
grammars relevant to the current discussion is that they are reversible, i.e. the same
grammars can be used for both parsing and generation of text. Also worth mentioning
is that the abstract syntax in GF as a stand-alone description is similar to a context-free
grammar.9

An orthogonal representation to the ones discussed above is a dependency struc-
ture, that has its origins in descriptive linguistics. One common feature of these
representations is that the structure is comprised of asymmetric relations between
words in a sentence. But before these representations are defined, the notion of
abstraction for these representations should be clarified.
Computational frameworks and linguistic theories have been studied for dependency
analysis in linguistics, with varying inherent assumptions about the adequacy of
dependency analysis for languages (Sgall et al., 1986, Debusmann, 2000). Parsing
algorithms for these representations using grammars have also been developed by
encoding dependency grammars as variants of context-free grammars and using the
CYK or Earley parsing algorithms either in their original or in a modified form.
However, it was the development of efficient data-driven methods for parsing into
these representations combined with increased emphasis on robustness that made these
representations mainstream in NLP/CL. The statistical models used in these data-
driven methods do not induce an explicit grammar – instead the linguistic regularities
learnt from annotated corpora are implicit in the model behavior. Hence, abstraction
in the context of dependency syntax can be any one of the following: (a) a coherent
description of how all linguistic phenomena are analyzed in the language(s). (b) an
encoding in the form of a formal grammar, induced using the linguistic examples in the
annotated corpora. (c) a statistical model without an explicit grammar, induced only for
parsing new text. In the remainder of the discussion here descriptions of how languages
are analyzed, otherwise called annotation guidelines, will be used as the underlying
abstraction behind these representations. The guidelines are designed by linguistic and
computational experts and in turn are used by human annotators to create treebanks. A
full discussion about the landscape of dependency syntax and parsing is well beyond
the scope of this thesis, the reader is recommended to Tesnière (2015), Kübler et al.
(2009) for an interesting discussion. The rest of the discussion is also limited to the

9 The set of categories in the abstract syntax can be partitioned into set of terminals and non-terminals
by introducing variants for ambiguous categories Cterm and Cnonterm.

8 CHAPTER 1. INTRODUCTION

We have a cat named Noir
PRON VERB DET NOUN VERB PROPN

nsubj

root

det

obj

acl obj

Figure 1.3: Example dependency tree following the UDv2 annotation

extent of design choices made in the Universal Dependencies (UD) framework. The
framework has its roots in multiple independent efforts towards developing a consistent
multilingual annotation scheme (McDonald et al., 2013, de Marneffe et al., 2014, Rosa
et al., 2014) and has undergone a revision to the original scheme – UDv1 and UDv2.

The primary descriptions used in UD are a class of dependency graphs that can
always be separated into a basic dependency tree and set of edges grouped together
as enhanced dependencies. The edges are directed from a head to a dependent (also
referred as modifier in some literature). The nodes in these graphs correspond to
words in the sentence and the edges are labelled using grammatical relations. This set
of relations (called the core label set) used contains 41 labels – ranging from labels
marking the subject, object and predicate of a basic clause to loosely defined relations
like list, goeswith used to analyze ungrammatical text. These were revised to 37
relations in UDv2. At the node level, words are tagged with part-of-speech tags and
morphological features in the form of an attribute value vector. Figure 1.3 illustrates a
prototypical UD structure.

With this, the question of what is language-independent (i.e. abstract) and what is
language-dependent (i.e. concrete) in this abstraction can already be answered at least
partially. The abstract description includes the part-of-speech tags and grammatical
labels from the core label set in addition to the choice of direction for different edges10

The labels and the morphological feature descriptions can be extended for marking
language-specific details, for example, the label obl:tmod is used to optionally mark
temporal expressions in the sentence.
It is worth noting that the fuzziness about the boundary between abstract and concrete
is a feature of the framework – UD classifies all information into core and optional
– universal relations and feature value descriptions are defined and all languages are
encouraged to use them. However, if the realization of a construction in a particular
language is different, subtypes of the universal relations can be used to label the
distinct realization in that language. This indirectly introduces the possibility that
label subtypes can be exploited to selectedly label abstract information in only a few
languages.11 Another distinct feature of the UD scheme is to select semantic words as
heads (content-head choice) as opposed to syntactic words (functional head choice).
This is motivated by cross-lingual reasons, this choice allows minimal changes to
the tree structure across a wide range of languages. For example, not all languages
realize determiners using a word – like Swedish where the distinction between definite
and indefinite nouns is realized using different word forms of the noun – as such,

10 Direction here is implied in the vertical sense i.e. in terms of the tree structure, and not in the horizontal
sense i.e. in terms of word order in the sentence.

11 There are 240 subtypes to the 37 labels defined in the UDv2 scheme, 158 of which are only found in
one language.

1.3. ABSTRACT SYNTAX TREES AND DEPENDENCY TREES 9

marking the determiner as the dependent of the noun when present is more consistent
cross-linguistically. A similar reasoning can also be applied for copula verbs (the cat
is black), Russian for example does not always use a copula verb.

1.3 Abstract Syntax trees and Dependency trees

As already mentioned, the first research question addressed in this thesis is to derive
dependency structures from interlingua grammars. A dependency configuration
corresponding to the grammar is defined as a specification that defines for each
function an anchor, using the keyword head. In the case of syntactic interlingua, the
anchor corresponds to the syntactic head and the relations correspond to grammatical
roles and in the case of semantic interlingua, the relations correspond to thematic
relations for a semantic head. Example of configurations for the grammar in Figure 1.1
is shown in Figure 1.4. Each line in the configuration starts with the name of the
function in the grammar, followed by an assignment of labels to each argument of the
function. The labels correspond either to the anchor or to one of the labels defined in
the annotation scheme. The anchor for unary functions (e.g. CompAP, UsePron) is the
degenerate case and may be omitted.

PresCl nsubj head -- NP -> VP -> S
ComplV2 head obj -- V2 -> NP -> VP
DetCN det head -- Det -> CN -> NP
AdvVP head advmod -- VP -> Adv -> VP
AdjCN amod head -- AP -> CN -> CN

Figure 1.4: Dependency configurations for the grammar fragment from RGL. Also
shown as comments are the rules in the grammar.

The configuration specifies one anchor among the arguments of each function in
the grammar. The rest of the arguments can be assigned a default label dep. The
resulting dependency trees obtained using this configuration are unlabelled i.e. trees
with directed edges always labelled using dep from the anchor to the head of the
arguments. The configuration shown specifies grammatical roles for the arguments
with respect to the anchor and the arguments of a function. In this example, the subject
and the object of a clause are marked using the labels nsubj and obj. Similarly,
determiners in noun phrases like “the”, “some” are marked using the label det and
adjectives when used are marked using amod. Adverbial modifiers that work with
verb phrases are assigned the label advmod.12 The use of an external configuration
provides flexibility in the choice of heads and the specific labels used in the target
annotation scheme, which can either be subject to revisions or multiple target schemes.
We use this configuration as a starting point for deriving dependency trees from ASTs
(ast2dep) and to build ASTs corresponding to a dependency tree (dep2ast).
It is worth mentioning that defining the dependency configuration classifies the func-
tions in the grammar into two classes: exo-centric and endo-centric. Endo-centric
functions are recursive rules where the category of the anchor marked head is the same
as the value category. Exo-centric functions are all functions that are not endo-centric.

12 This is revisited later in Section 1.4.1.

10 CHAPTER 1. INTRODUCTION

In the grammar shown in Figure 1.1, the functions AdvVP and AdjCN are endo-centric
and all other functions are exo-centric.

1.3.1 ast2dep: From Abstract Syntax to Dependency trees
Algorithm

The algorithm to derive a dependency tree for a given abstract syntax tree (ast2dep) is
a deterministic many-to-one mapping by design, hence the dependency tree is a lossy
representation of the AST. The algorithm works in two steps: a recursive labelling
step that is a breadth-first traversal over the AST followed by tree derivation step. The
labelling procedure marks each argument of a function in the AST according to the
configuration. Given this annotated abstract syntax tree T for the word sequence S, the
dependency tree is derived as follows:

1) For each word w in the sentence, find the function fw forming its smallest spanning
subtree in the AST. The smallest spanning subtree of a word is the subtree whose
top node is the function whose linearization generates that word.

2) Trace the path up from fw towards the root until a label l is annotated. From the
node immediately above l, follow the spine – the unlabelled path of edges – down
to another leaf y. y is the head of w with label l.

Figure 1.5 shows the parse tree for the English sentence the black cat sees us today
and its Swedish translation den svarta katten ser oss idag. The nodes in the parse tree
are decorated with the abstract functions and the edges with the dependency labels.
Arrows are added to the edges, to indicate the direction of the edges in the resulting
dependency tree. Each path in this representation – when collapsed into a single edge –
matches the edge in the resulting dependency tree. Part-of-speech tags corresponding
to the words are obtained using a category configuration, a lookup table mapping the
lexical categories to their respective tags (shown in Figure 1.6).

An intermediate representation abstract dependency tree (ADT) is defined as
a directed unordered dependency tree defined on the lexical functions (0-argument
functions in a grammar) in the AST with labels on the edges, shown in Figure 1.7.
Note that the order of the nodes in this dependency tree does not reflect the surface
order of the words in the sentence, nodes are shown here in pre-order traversal. The
ADT is not explicitly constructed by the algorithm – it is however a useful multilingual
abstraction over the dependency trees defined by an interlingual grammar.

Completeness of configurations

The labelling step using the configurations defined above would be sufficient if each
word in the tree had a corresponding lexical function in the grammar. This is not
always the case since words can be introduced only in the concrete syntax specific to
a language – these words are called syncategorematic – in which case, the labelling
step assigns a default label dep to each of them. For example, the copula verb “is” in
the sentence the cat is black is a syncategorematic word, introduced only in the con-
crete syntax of English corresponding to the function CompAP without a corresponding
category in the abstract syntax. Similarly, the concrete syntax of Swedish introduces
the translation equivalent of the copula “är”. In order to label these syncategorematic

1.3. ABSTRACT SYNTAX TREES AND DEPENDENCY TREES 11

Figure 1.5: Parse tree decorated with abstract syntax functions and dependency labels

Det DET
AP ADJ
CN NOUN
V2 VERB
Pron PRON
Adv ADV

Figure 1.6: Category configuration mapping the categories to part-of-speech tags

see_V2 cat_CN the_Det black_AP we_Pron today_Adv
VERB NOUN DET ADJ PRON ADV

root

nsubj det

amod

obj

mod

Figure 1.7: An example of a abstract dependency tree

12 CHAPTER 1. INTRODUCTION

Figure 1.8: Setup of ast2dep and intermediate abstractions defined

words, the configurations are extended with concrete configurations, defined sepa-
rately for each language. Shown below are the concrete configurations corresponding
to the copula verb in both English and Swedish.

CompAP head {"is"} cop head -- English
CompAP head {"är"} cop head -- Swedish

Each rule in the concrete configuration specifies a relabelling operation. The relabelling
operation in this instance, renames the label on the edge from the head (black in this
example) to the copula verb “is” as cop.
The configurations defined previously (shown in Figure 1.4) are hereafter referred
to as abstract configurations. Configurations refer to the union of both abstract
configurations and concrete configurations when available for a language. The combi-
nation of abstract and concrete configurations are sufficient to derive a fully labelled
dependency tree corresponding to an AST. The domain of dependency trees at this
point is restricted by the set of ASTs defined by the grammar.13 The setup of ast2dep
is summarized in Figure 1.8 – in order to derive dependency trees for a new language,
both the concrete syntax and the concrete configurations defined for that language are
necessary.

1.3.2 dep2ast: From Dependencies to Abstract Syntax trees

The derivation from ASTs to dependency trees in ast2dep is deterministic, because it
is the linearization of an AST to an annotated string representing the dependency tree.
On the other hand, dep2ast is a non-deterministic search with a one-to-many relation.
By definition, dep2ast accepts a dependency tree, builds an abstract dependency tree
and returns the set of ASTs that can be translated back to the original dependency tree
using ast2dep.

13 A different formulation of this is the tree language of dependency trees generated using ast2dep
depends on the tree language of the interlingual grammar.

1.3. ABSTRACT SYNTAX TREES AND DEPENDENCY TREES 13

Algorithm

The algorithm works in two steps: lexical annotation (dep2adt) followed by syntactic
annotation (adt2ast).
The lexical annotation step builds an unordered dependency tree from an input
dependency structure14 where each node is labelled by a label, lemma, POS tag and
morphological features. After the tree is built, each lemma is replaced with a lexical
function of category C using a lexicon and the category configuration. The resulting
data structure is an abstract dependency tree.
The syntactic annotation step annotates the ADT recursively with applications of
syntactic combination functions. At each step, endo-centric functions are applied
(when available) before exo-centric functions are applied using the ASTs correspond-
ing to the sub-trees in the ADT. The algorithm is a depth-first postorder traversal,
completed when all nodes in the ADT are covered, with the final result being the ASTs
built in the root node of the ADT.

Restrictions of dep2ast

The algorithm described above works only when an ADT can be built for every
input dependency tree using abstract configurations (such as shown in Figure 1.4).
From the discussion on ast2dep, we already know that this is not always possible:
frequently due to the presence of syncategorematic words. In order to address this, we
extend the configuration with what are called helper categories and helper functions.
These helper categories are used to postulate an abstract syntax category for each
syncategorematic word and the helper function uses these helper categories. Table 1.1
shows these extensions required to handle the CompAP function which introduces the
copula. In this instance, only the definition of the helper category Cop- is language-
specific. The helper function that uses this category is shared across the three languages,
but is only applied if the definition of the helper category is available for the language
in the first place. Figure 1.9 shows the abstract dependency tree (ADT) that is the
output of the lexical annotation phase in dep2ast. These are different from the ADTs
in ast2dep – henceforth called quasi-abstract dependency tree – ADTs that use
helper categories not defined in the grammar.

helper category
Cop- AUX lemma=be English
Cop- AUX lemma=vara Swedish
Cop- AUX lemma=olla Finnish

helper function CompAP- Cop-→ AP→ VP cop head quasi-interlingua
function definition CompAP- λ cop,ap→ CompAP ap quasi-interlingua

Table 1.1: Configurations added for handling copulas in 3 languages. Function
definitions shown are syntactic sugar to the syntax of dep2ast

The abstract syntax of an interlingual grammar (G) is characterized using a 3-tuple
(C,F,S) where C corresponds to the categories, F corresponds to the functions and S is
the start symbol in the grammar (Angelov, 2011). Using a similar characterization, the
extended configurations for the same grammar can be written as (EC,EF,S) coupled
with de f s where EC is the union of the categories defined in the grammar C and the
helper categories defined in the configurations. Similarly, EF correspond to the union

14 The input can be a dependency tree or a dependency graph as defined in UD.

14 CHAPTER 1. INTRODUCTION

the cat is black
the_Det cat_CN Cop- black_AP

root

det

nsubj

cop

Figure 1.9: ADT for the sentence NP the cat is black using helper categories. Also an
illustration of a quasi-ADT.

of the functions defined in the grammar F and the helper functions defined in the
configurations. The function definitions (de f s) define how helper functions can be
eliminated by applying the function to result a valid AST defined by the grammar.
The function definitions are checked for type consistency i.e. that the category of
the tree from applying helper functions matches the type of the expression provided
in the definition of the helper functions. This type consistency verification is an
approximation for checking that the grammar defined by the configurations generates
the same set of ASTs as the original grammar.15

The extended configurations define an approximate grammar for a given inter-
lingual grammar, where all syncategorematic words are eliminated using the helper
categories. The helper functions and definitions are called quasi-interlingua to em-
phasize the multilinguality i.e. these are shared similarly to the functions defined in
the abstract syntax, unlike the definition of helper categories. A similar distinction is
drawn in Croft et al. (2017) between constructions which are language-independent
and strategies which can be language-dependent, however strategies refer to only
multilingual phenomena e.g. the use of copula is a strategy.

It is interesting to note that the concrete configurations used in ast2dep are not
equivalent to the helper functions defined in dep2ast. In the case of ast2dep, the
configurations are clearly factored into language-independent (abstract) and language-
dependent (concrete) configurations. However, in dep2ast the set of helper functions
are used to handle both strategies and language-specific cases. The functions in
the grammar that trigger both the concrete configurations and helper functions are
however the same: the treatment of these however differs based on the direction of the
translation between ASTs and dependency trees.

Ambiguity and Spurious ambiguity

This basic algorithm is non-deterministic, though the ambiguity at this point is primar-
ily of one of two types:

1) functional ambiguity: when the abstract syntax has two or more functions with the
same configuration, then the under-specification in the underlying dependency
representation triggers ambiguity in the ASTs

2) structural ambiguity: when the input dependency tree contains more than one endo-
centric configuration or cyclic exocentric configurations, the ambiguity is triggered
because the order in which these functions are applied results in ambiguous ASTs.

15 In other words, both these grammars have the same strong generative capacity.

1.3. ABSTRACT SYNTAX TREES AND DEPENDENCY TREES 15

Ambiguity should be defined in the context of dep2ast which is different from
ambiguities encountered using the concrete syntax and a parser. A sentence is am-
biguous for a grammar G if the parser returns multiple ASTs corresponding to the
sentence. dep2ast returns the ASTs as generated by the parser, but also returns
additional spurious ASTs – an artifact of using the ADT instead of the sentence to
build the AST. Factoring the word order information from the data structures in the
search keeps the configurations multilingual, however, they also introduce ambiguity
which is not always available in the concrete syntax of the language.

Now, to define functional ambiguity, consider the case of two functions in the
grammar that share the same configurations.

fun1 : C1 -> C2 -> C ; head mod
fun2 : C1 -> C2 -> C ; head mod

The two functions in the grammar correspond to different linguistic phenomena
and may hence have different semantics, in which case, this is a genuine case of
ambiguity with respect to the abstract syntax: i.e. that the mapping to two ASTs is
valid. However, these are more a by-product of under-specification in the dependency
scheme, rather than genuine ambiguity. For example, the phrases two levels and
level two are indistinguishable with respect to their dependency trees in UD (two
is marked as a dependent of level(s) using nummod) and hence the ASTs resulting
from the fragment corresponding to level two can be linearized back to both level
two and incorrectly two levels. In order to address functional ambiguity, we specify
morphological constraints on top of the configurations to remove spurious ambiguity.
In cases when morphological constraints are inadequate for disambiguation, multiple
ASTs are returned.16

A more frequent case of ambiguity is the case of structural ambiguity: i.e. when an
endocentric function can be applied in different orders to cover the same dependency
subtree. In the example men, women, children, the ADT is indistinguishable from the
ADT corresponding to men, children, women. Similarly, the phrase big black cat is
ambiguous without the concrete syntax: the order in which the adjectival modification
is carried out can result in ASTs that can be linearized to both big black cat and black
big cat. However, the phrase grande famille française (big French family in French)
is also ambiguous but both the ASTs are linearized to grande famille française. In
order to address structural ambiguity, we define a a normalized ADT. A normalized
ADT is defined as an ordered dependency tree in which children are ordered based
on the distance with respect to its parent in the tree. In the above examples, black is
placed closer to cat than big in the ADT while both grande and française are equally
close. The lexical annotation step in dep2ast builds a normalized ADT in addition to
building the ADT and the syntactic annotation step uses a left associativity property in
the case of endocentric functions. This is an approximation in the syntactic annotation
step – one that eliminates both spurious ambiguity and the need for a generalized
function application step, while keeping the algorithm simple.

16 This can also happen if variations of existing functions are introduced in the abstract syntax to model
other linguistic universals, e.g. focus is optionally marked in the abstract syntax using different set of
functions.

16 CHAPTER 1. INTRODUCTION

Figure 1.10: Abstractions and representations underlying ast2dep and dep2ast

1.3.3 Expressivity and Limitations of ast2dep and dep2ast

The transducers for both ast2dep and dep2ast in the form presented here are limited
in the space of possible dependency structures that can be covered. Figure 1.10 shows
the primary, auxiliary and intermediate representations derived for an interlingual
grammar. In order to better understand this, consider an example function defined
in the abstract syntax as fTernary: C1 -> C2 -> C3 -> C. The function takes
3 arguments of distinct categories (C1, C2 and C3) and builds a result of category
C. If we assume that each of these arguments can be represented by a node in the
dependency tree (HC1, HC2, HC3), the number of dependency trees that can be
generated are 9: 3 trees of height one and 6 trees of height two. These are visualized
in Figure 1.11.17 ast2dep using an abstract configuration defined for the function
fTernary can only generate the 3 dependency trees of height one. This is also the case
for dep2ast, where the AST can be recovered from the one-level trees. The implicit
assumption defined by the configurations is that each function in the abstract syntax
has a unique head and that arguments to the function can be assigned dependency
labels limits the expressivity of the transducers.

When operationalizing these transducers for the GF-RGL and the UD scheme,
these limitations are relaxed by extending dependency configurations to generate other
dependency trees as defined by UD. The extensions necessary to cover the target
scheme do not necessitate generalized transducers, relevant extensions in the context
of Universal Dependencies are discussed next.

1.4 GF-RGL and Universal Dependencies
The implementation of interlingual grammars central to this thesis is the Resource
Grammar Library (RGL / GF-RGL), which consists of concrete syntaxes for over 30
languages for a shared abstract syntax (Ranta, 2009b). These grammars are expert-

17 Note that word order here is not reflected again since we are talking about ADTs.

1.4. GF-RGL AND UNIVERSAL DEPENDENCIES 17

HC1 HC2 HC3
C1 C2 C3

root

mod

mod

HC1 HC2 HC3
C1 C2 C3

mod

root

mod

HC1 HC2 HC3
C1 C2 C3

mod

mod

root

HC1 HC2 HC3
C1 C2 C3

root

mod mod

HC1 HC2 HC3
C1 C2 C3

mod

root

mod

HC1 HC2 HC3
C1 C2 C3

mod

mod

root

HC1 HC2 HC3
C1 C2 C3

root

mod

mod

HC1 HC2 HC3
C1 C2 C3

mod

root

mod

HC1 HC2 HC3
C1 C2 C3

mod mod

root

Figure 1.11: Possible dependency trees for 3 nodes. The first row corresponds to
one-level trees and are covered by the configurations of ast2dep and dep2ast.

designed and designed to be formal specifications of the morphology and syntax for
languages in the library. This collection of grammars is the primary linguistic artifact
central to GF – the RGL is used as a software library of syntax (Ranta, 2009a) to
develop application grammars used in multilingual applications (Ranta et al., 2010,
Dannells et al., 2013, Angelov et al., 2014). The design of the RGL i.e. the abstract
syntax of RGL has remained stable for well over 12 years. Concrete syntaxes for new
languages is ongoing work (Lange, 2017, Papadopoulou, 2013, Paikens and Gruzitis,
2012) and more recently Listenmaa (2019) proposed methods to find errors in these
libraries. More recently, there has also been work on connecting the RGL with external
linguistic resources like FrameNet (Dannells and Gruzitis, 2014, Gruzitis and Dannélls,
2015) and WordNet (Angelov and Lobanov, 2016, Virk et al., 2014). Bernardy and
Chatzikyriakidis (2017) have shown how the RGL can helpful in Natural Language
Inference (NLI) applications using formal semantics. Parsing in GF is the inverse of
the pure linearization rules specified in the concrete syntax of a language (Angelov,
2009). In the current thesis, reversibility of the GF grammars can be used to linearize
both sentences and dependency trees into multiple languages from ASTs.

The UD framework on the other hand develops annotated data a.k.a treebanks,
the current version18 contains treebanks for over 70 languages. The treebanks are
directly used to train dependency parsers – universal, multilingual and cross-lingual
– by applying machine learning and statistical methods to induce models for parsing
text. Applications built using UD include semantic parsing using logical forms (Reddy
et al., 2016).

The guidelines specifying the UD schema used in annotation are an encoding
of the underlying UD grammar, however the encoding is descriptive and not done

18 The latest version at the time of writing this is v2.3. The next revision UDv2.4 is expected to contain
83 languages.

18 CHAPTER 1. INTRODUCTION

property UD GF
primitive descriptors dependency trees abstract syntax trees
linguistic resources treebanks grammars
parser coverage robust brittle
parser speed fast slow
disambiguation context-sensitive context-free
multilingual parsing easy difficult
semantics loose compositional
generation non-deterministic accurate
multilingual generation difficult easy
new language low-level work high-level work

Table 1.2: Complementary properties of GF and UD strengths above the dividing line.

using a formal grammar. This grammar can be contrasted against the interlingual
grammars available in GF, using specification at different linguistic levels, in this case
both morphology and syntax. Table 1.2 shows a high-level comparison about the
current state of GF and UD excluding ongoing work. For example, context-sensitive
disambiguation models defined on abstract syntax in GF has been studied and shown to
work, though the widely used disambiguation model in GF is still context-free. Since
the two crosslingual efforts have largely been independent, there are differences in
ways of thinking when handling some linguistic phenomena. One alternative in these
cases is to redesign the RGL to match the target UD scheme.19 Another alternative is
to extend the dependency configuration, thus retaining the algorithms used in ast2dep
and dep2ast while also improving the correspondence between the two multilingual
descriptions of language.

1.4.1 gf2ud: Extensions to ast2dep

The deterministic nature of the mapping between the ASTs and UD trees in gf2ud
means that the abstraction levels between the RGL and UD are similar i.e. both
the grammar and the annotation scheme makes the same distinctions. This is not
necessarily always the case, which can be illustrated using the example of modifiers.

AdvVP VP→ Adv→ VP head advmod/obl/advcl
AdvS S→ Adv→ S head advcl
AdvAP AP→ Adv→ AP head advmod/obl/advcl
AdvCN CN→ Adv→ CN head nmod
AdvNP NP→ Adv→ NP head nmod

Table 1.3: Functions in RGL for modification. All the functions are recursive rules
with endo-centric configurations

Adverbial modifiers in GF are grouped into two classes, functional modifiers and
content modifiers. Functional modifiers like AdN, AdA and AdV are used to modifiy
numeral expressions, adjectives and verbs respectively. Content modifiers are grouped

19 UD has undergone one revision from UDv1 to UDv2 in the last 3 years. The current version UDv2 is
expected to be stable for next few years.

1.4. GF-RGL AND UNIVERSAL DEPENDENCIES 19

under a single category Adv, used to modify noun phrases (NPs), verb phrases (VPs)
and sentences (Ss). All these categories are characterized by recursive functions that
combine the modifiers with different categories. UDv2 on the other hand uses four
different labels – advmod, obl, nmod, advcl – to map the head of the modifier to its
respective label.20 Functions that use the functional modifiers have a straightforward
labelling, the advmod label. Table 1.3 shows the different functions that use the
content modifier Adv, it can be seen that the mapping in the case of AdvVP and AdvAP
is ambiguous. The precise mapping relies on the internal structure of the modifier,
when the Adv contains a VP modifier, it is mapped to a advcl, obl when it contains a
prepositional phrase and advmod in all other cases.

In order to induce these finer distinctions, non-local configurations are defined,
that specify additional context in which certain configurations are applied. Shown
below is the handling for the function AdvVP, similar extensions are necessary for
handling the function AdvAP. The first three mappings are applied only when the
internal structure of the Adv matches the specified tree-patterns.

AdvVP ? (GerundAdv ?) head advcl -- GerundAdv : VP -> Adv
AdvVP ? (PrepNP ? ?) head obl -- PrepNP : Prep -> NP -> Adv
AdvVP ? (PrepCN ? ?) head obl -- PrepCN : Prep -> CN -> Adv
AdvVP head advmod -- AdvVP : VP -> Adv -> VP

Similarly, the non-local configurations are also defined on the concrete syntax to
handle mismatches specific to a language.

Coordination poses a unique problem in gf2ud and ud2gf, for multiple reasons.
Figure 1.12 shows two fragments of GF grammars for coordination of noun phrases
(NPs). The first fragment – illustrating how coordination is implemented in GF-RGL –
defines a ConsNP function that takes two arguments: a NP and ListNP and prepends
the NP to the existing list of NPs. ListNP is the category in the grammar used to model
a list of NPs of arbitrary length. Similar List* categories are defined and used for other
categories in the grammars. The second fragment defines an analogous AppendNP
function that appends the NP to the existing list of NPs, to the end of the list. In other
words, the RGL fragment uses left-branching to build ASTs of ListNP category and
the alternative uses right-branching. Both fragments cover the same set of utterances,
and the choice of one branching over another was a grammar engineering choice and
not motivated for linguistic reasons. In the right-branching AST, local configurations
result in a flat dependency tree with the first item of the list as head and all other items
attached as dependents using the conj label. In the left-branching AST defined by the
RGL, similar local configurations result in a chain of head and conj edges. This is
shown in Figure 1.13.
The dependency tree corresponding to the left-branching AST derived using the
implementation in RGL generates non-projective edges (i.e. crossing edges in the
dependency tree). In comparison the right-branching AST generates a flat dependency
tree – with the first NP as the head and edges to all other NPs marked conj – without
any crossing edges. This is the annotation used in UDv1 for marking co-ordination.

1.4.2 ud2gf: Extensions to dep2ast
The dep2ast method presented in Section 1.3 abstracts away from certain practical
details encountered in addressing Universal Dependencies. The extensions in ud2gf
described below are primarily designed to address them.

20 In UDv1, these are mapped to three labels, advmod, nmod and advcl.

20 CHAPTER 1. INTRODUCTION

BaseNP : NP -> NP -> ListNP ; BaseNP head conj
ConsNP : NP -> ListNP -> ListNP ; ConsNP head conj
ConjNP : Conj -> ListNP -> NP ; ConjNP cc head

(a) Co-ordination of noun phrases (NPs) as implemented in GF-RGL and corresponding UD
configuration.

BaseNP : NP -> NP -> ListNP ; BaseNP head conj
AppendNP : ListNP -> NP -> ListNP ; AppendNP head conj
ConjNP : Conj -> ListNP -> NP ; ConjNP cc head

(b) An alternative implementation for co-ordination NPs and corresponding UD configuration.

Figure 1.12: Co-ordination in GF.

men women and children
(1) NOUN (2) NOUN (3) CCONJ (4) NOUN

root

conj

conj

cc

(a) UD tree for right-branching AST.

men women and children
(1) NOUN (2) NOUN (3) CCONJ (4) NOUN

root

conj

conjcc

(b) UD tree for left-branching AST.

Figure 1.13: Two possible dependency trees for NPs using different grammars for
co-ordination.

(1) Robustness using Backup grammars: The first extension is designed to simulta-
neously address two problems with dep2ast – incomplete coverage in grammars
and recovery from parser errors.

(2) Temporary categories: Extensions to the expressivity of dep2ast are required to
handle specific linguistic constructions in UD. One such extension is the definition
and use of temporary categories to the configurations which behave like aliases to
existing categories in the grammar. The result is still a restricted transducer, but
one that can correctly translate specific constructions in UD like coordination and
prepositional verbs.

(3) De-lexicalized ud2gf: The problem of dep2ast in the form presented in Sec-
tion 1.3 is a constrained search problem, i.e. the availability of a high-precision
grammar is a pre-requisite in this setup for completeness. This pre-requisite can
be relaxed, especially if we are interested in the frequent use-case of parsing with
an incomplete lexicon of a language in GF-RGL or parsing languages not covered
by GF-RGL.

Robustness in ud2gf

In Section 1.3, we glossed over the possibility in the search algorithm that syntac-
tic annotation at an intermediate step does not result in any functions matching the

1.4. GF-RGL AND UNIVERSAL DEPENDENCIES 21

dependency subtree. There are two possible reasons why this happens21: either the
grammar is missing a function (syntactic rule) to handle a specific dependency label
or the dependency tree does not match the configuration (head and label information)
corresponding to the relevant function in the grammar. The first issue of incomplete
coverage happens in the case of ungrammatical sentences where dependency parsers
correctly analyse the input, for example the phrase the every man in English. Indeed
this is one of the strengths of UD that needs to be imported to GF. Possible interpre-
tations for the example are the ASTs for the man and every man to which every and
the are added as modifiers respectively. The same also can happen because the set of
dependency structures generated by combination of the grammar and gf2ud is smaller
than the set of dependency structures in the UD annotation scheme. The second case
is possible due to errors in dependency parsing or annotation, where either the label is
wrongly suggested by the parser or the complete edge is wrong in the dependency tree.
In order for ud2gf to work as a robust front-end for parsing in GF, it is necessary to
address both these problems – which we do by extending the grammar with a backup
grammar. The backup grammar consists of a set of backup functions that are used to
recover from both scenarios. The backup grammar defines for every category in the
grammar, a pair of functions and a top-level function that can combine an arbitrary
number of trees of the Backup category (shown in Figure 1.14).

BackupC : C -> Backups -> C ; -- wrap tree of type C with Backups
CBackup : C -> Backup ; -- build Backup from tree of type C
NilBackup : Backups ; -- No Backups
ConsBackup : Backup -> Backups -> Backups ; -- chain of Backup

Figure 1.14: The two types of elementary functions defined in the backup grammar.
The BackupC functions are defined for functions higher in the GF category taxonomy
and CBackup functions are defined for every category in the grammar.

Consequently ud2gf adds another step- after each dependency subtree is translated
into an AST (T), ASTs corresponding to any uncovered subtrees are converted to
backups and added as adverbial modifiers to the interpreted AST T .

Temporary categories

The limited expressivity of the transducer discussed in Section 1.3 poses a systematic
problem when working with Universal Dependencies22 due to the annotation of
particular linguistic constructions that are common in text. This can be illustrated
using two examples in English – although there are other instances of this issue in the
RGL.

The first example is a UD tree for the phrase men, women and children, Figure 1.15
shows the different dependency trees defined by the annotation scheme of UDv1 and
UDv2. The annotation of the entire phrase is a one-level dependency tree in UDv1
while in UDv2 the resulting dependency tree is of depth 2. Converting the one-level
dependency tree used to annotated entire coordination in UDv1 is straightforward

21 The third possibility is plausible but easier to handle. The language-specific UD annotation defines
subtype of a core label and needs to be added as an ambiguous configuration to one of the existing functions.

22 This is more systematic in UDv2 in comparison to UDv1 due to the changes in how coordination is
annotated in UDv2.

22 CHAPTER 1. INTRODUCTION

men women and children
(1) NOUN (2) NOUN (3) CCONJ (4) NOUN

root

conj

conj

cc

cc

conj

Figure 1.15: NP coordination in phrase men, women and children per UD guidelines.
The red edge is the treatment of the conjunction per UDv2 while the blue edge is per
UDv1 annotation. The part-of-speech tag of the conjunction in UDv1 would be CONJ
instead of CCONJ.

4.a root ConjCN 3 (ConsCN 4 (BaseCN (UseN men_N) 2)) [CN] {1,2,3,4}
4.b root ConsCN 4 (BaseCN (UseN men_N) 2) [ListCN] {1,2,4}
4.c root BaseCN (UseN men_N) 2 [ListCN] {1,2}
4.d root UseN men_N [CN] {1}
4.e root men_N [N] {1}

1 conj UseN women_N [CN] {2}
2 cc and_Conj [Conj] {3}
3 conj UseN children_N [CN] {4}

Figure 1.16: Iterative function application to translate the NP coordination in UDv1.
Shown in red and blue is the order in which the ASTs are refined iteratively. The
details have been simplified by positing lexical functions for the plural forms.

(iterations in the syntactic annotation phase are shown in Figure 1.16). However, the
same does not work for the two-level dependency tree because there is no function
that can be applied to a single noun and conjunction in the grammar – the result
being that the conjunction “and” is covered using backup functions. The solution to
this is to introduce category aliases in the configurations and build helper functions
that use these categories to build the corresponding ASTs in a compositional way.
Table 1.4 shows the relevant additions to the configurations required to handle a single
conjunction – similar treatment for all conjunctions is added to the configurations.

category alias cat CN[and] = CN

quasi-interlinguahelper function and[Conj2CN] CN→ CN[and]→ CN head conj
and[ConjCN] ListCN→ CN[and]→ CN head conj

function definitions and[Conj2CN] λ init,last→ ConjCN and_Conj (BaseCN init last)
and[ConjCN] λ init,last→ ConjCN and_Conj (ConsCN last init)

helper function
ENand[CN] Conj→ CN→ CN[and] cc head cc.lemma=and

language-specific

SVand[CN] Conj→ CN→ CN[and] cc head cc.lemma=och
FIand[CN] Conj→ CN→ CN[and] cc head cc.lemma=ja

function definitions
ENand[CN] λ conj,last→ last
SVand[CN] λ conj,last→ last
FIand[CN] λ conj,last→ last

Table 1.4: Configurations added for handling conjunctions in UDv2.

1.4. GF-RGL AND UNIVERSAL DEPENDENCIES 23

Lexicalized vs De-lexicalized ud2gf

The second extension addresses a practical design choice in the pipeline: whether one
can assume the availability of multilingual lexicon for all languages as a prerequisite
for ud2gf. We address this by introducing two flavors of ud2gf – a lexicalized
variant and a de-lexicalized variant. The lexicalized ud2gf assumes the availability
of a GF lexicon (monolingual or multilingual), which is a reasonable assumption
when working with precision grammars. The de-lexicalized ud2gf on the other hand,
dynamically builds lexical functions using the lemma and category configurations in
the lexical annotation step. This variant is more suitable in a wide-coverage parsing
setup, which in turn is used to extend the core RGL in our experiments with treebanks
of UD.

A different way to perceive the lexicalized and de-lexicalized variants is to say
that the lexicalized variant is a constrained version of the transducer- where additional
configurations are required to accurately match non-compositional phrases in the
grammar. For example, in the lexicalized ud2gf setup, configurations corresponding
to phrasal verbs and multi-word expressions are required to match the correct phrasal
functions in the dictionary. These are semi-automatically generated from the dictionary
for the language and use a combination of helper functions and category aliases. This
assumption that a large scale interlingual dictionary is available does not scale well
with languages. In the de-lexicalized ud2gf setup, functions that build these phrasal
verbs for different patterns are introduced to the grammar. This does lead to some
over-generation in the de-lexicalized grammar, but also simplifies the handling of
configurations when compared against configurations derived from a dictionary in the
lexicalized case.

1.4.3 Applications

The implementations of gf2ud and ud2gf have multiple applications, a few of which
are listed below.

[I] The transducer gf2ud is useful to bootstrap parallel treebanks according to the
annotation scheme of UD.

[II] The transducer ud2gf combined with a dependency parser serves as a robust
front end instead of the parser used in GF.

[III] The configurations defined in gf2ud are also a formal encoding of the UD
annotation scheme, which is useful as a qualitative assessment of the cross-
lingual annotation scheme.

[IV] The combination of ud2gf and concrete syntax for a language has a similar
setup to the task of surface realization – from a UD tree without the order and
words, generate the sentence (Mille et al., 2017, 2018).

[V] Furthermore, the transducer ud2gf makes UD treebanks accessible to train
statistical models useful for disambiguation of ASTs.

The above applications have been studied in the current thesis, and are visually
summarized in Figure 1.17.

24 CHAPTER 1. INTRODUCTION

Figure 1.17: Pipeline of gf2ud and ud2gf.

1.5 Related Work

The dependency configuration central to both ast2dep and dep2ast are similar to
the head rules of Collins (1996) used to introduce selectional preferences in context-
free grammars for parsing.23 Translations between representations – from phrase-
structure trees to dependency structures – have been widely used in both NLP and CL,
and de Marneffe et al. (2006), de Marneffe and Manning (2008) can be considered
prototypical approaches in this line of work. The approach of de Marneffe et al. (2006)
consists of two steps: (a) dependency extraction and (b) dependency typing. The
dependency extraction step uses head rules to identify mark heads for each constituent
and construct an unlabelled dependency tree. This is followed by typing, where labels
are assigned to edges using pattern matching rules on the phrase-structure tree. The
pattern matching is done at every node in the tree and the pattern with the most specific
label is marked as the label. This is similar to the algorithm ast2dep and gf2ud,
however, the dependency typing and the head marking happen before the dependencies
are extracted. The pattern matching rules necessary for inducing the labels in the tree
are defined on the abstract syntax, instead of the phrase-structure tree.

There is however a significant difference in ast2dep and gf2ud when compared
against transducers for translating between representations. Transducers designed
between representations rely on heuristic rules, especially to recover from parser errors.
Both the head rules and the typing rules are thus defined on plausible tree patterns –
which makes them robust but also non-reversible. The domain of dependency trees is
not well-specified, instead the dependency scheme is precisely specified. Grammars
designed in computational syntactic formalisms like HPSG and LFG Kaplan and
Bresnan (1982) have been used to induce dependency representations from the primary
descriptions used in the respective frameworks(Meurer, 2017, Przepiórkowski and
Patejuk, 2018). More broadly, formalisms that use any degree of lexicalization can

23 Selectional preferences are lexical constraints on plausible sentences in a language like it is more likely
to say I eat pizza with a knife compared to I eat a pizza with sauce.

1.6. RESULTS 25

generate dependency trees as auxiliary descriptions.24 This is illustrated in both Tree
Adjoining Grammars (Joshi and Schabes, 1997) where these auxiliary descriptions
are called derivation trees and Combinatory Categorial Grammars Hockenmaier and
Steedman (2007). These frameworks constrain plausible dependency trees by defining
a domain restricted by the grammar, but also restricts the dependency scheme as
defined by the grammar. This is a necessary feature if one is interested especially in
translation in the other direction i.e. converting dependency structures to the primary
descriptions of the formalism. There has been a long line of work related to parsing in
these frameworks where dependency trees have been used to improve the robustness
of the parsing pipeline. However, the tight coupling between the original grammar
and dependency representations necessitates a redesign of the grammar to change the
dependency scheme.

The transducers described in this thesis should be seen as a combination of these
two approaches, the external configuration provides a flexibility to modify the target
annotation scheme without making changes to the grammar. But the configuration used
in ast2dep and gf2ud is also a specification of the grammar and is used in dep2ast
and ud2gf also. Using a dependency parser as a robust front end in dep2ast and
ud2gf is also related to parsing approaches using supertagging (Vaswani et al., 2016,
Dridan, 2013, Clark, 2002, Bangalore and Joshi, 1999) where the input is pre-processed
using a tagger to assign complex descriptions, significantly simplifying the task of
parsing (Bangalore, 1997). The interlingual grammars however are not lexicalized and
as such dep2ast uses a dependency parser instead of a plain tagger.

1.6 Results

The experiments reported in this thesis use both intrinsic and extrinsic evaluation to
validate the methods. The intrinsic evaluation in the experiments with gf2ud use
statistics about labelled edges in the bootstrapped parallel UD treebanks. Similarly, the
intrinsic evaluation in the experiments with ud2gf report statistics about the expected
tree quality in terms of coverage and interpretability – interpretability corresponds to
the fraction of cases where backups are used to built the AST. In cases where backups
are used in building the AST, there is the fraction of the tree that doesnot contain any
backups and hence is interepreted in the grammar and there are nodes which trigger
the backup functions in the translation algorithm. We measure these two seperately
in our evaluation. The results from these intrinsic evaluation for gf2ud is reported in
Table 1.5 and for ud2gf in Table 1.6.

Extrinsic evaluation is the evaluation of the transducers in an external application –
in the current thesis, we evaluate gf2ud on the task of bootstrapping de-lexicalized
UD treebanks. We use synthetic UD treebanks bootstrapped from the GF-RGL
grammar and train dependency parsers to evaluate the usefulness of data generated
using interlingual abstractions when compared to human annotations. Figure 1.18
shows the learning curves of a de-lexicalized parser for English trained on synthetic
data generated using interlingual grammars.

24 Lexicalized grammars are grammars in which complex descriptions are defined for each word (or
lexical item because the definition of word itself is complex and varies from language to language).
These descriptions can be trees, higher-order functions or attribute-value matrices (AVMs). The degree of
lexicalization in a formalism can range from strong – where the lexicon is the only and entire grammar – to
weak in which the lexicon constitutes only a large part of the grammar.

26 CHAPTER 1. INTRODUCTION

Language UD treebank GF treebankRGL Wide-coverage
Afrikaans 81.57 - 81.73
Amharic 73.60 - 75.29
Bulgarian 76.60 80.53 88.13
Catalan 82.18 76.13 83.10
Chinese 84.89 77.33 82.46
Danish 80.49 - 87.45
Dutch 83.62 68.10 84.23
English 84.12 81.17 93.13
Estonian 82.38 79.10 86.52
Finnish 81.84 74.09 91.27
French 82.81 79.61 93.47
German 83.09 77.47 95.27
Greek 83.09 - 88.13
Hindi 72.63 69.34 84.18
Italian 81.79 77.52 90.47
Japanese 71.39 71.09 84.94
Latvian 72.11 - 89.10
Maltese 83.92 - 90.29
Mongolian 72.22 - 87.34
Nepali 82.91 - 83.19
Norwegian 80.37 - 86.36
Persian 83.87 - 84.40
Punjabi 72.37 - 82.82
Polish 83.05 - 87.38
Romanian 69.58 - 86.75
Russian 87.30 - 87.92
Sindhi 68.21 - 84.59
Spanish 81.41 79.15 91.28
Swedish 82.56 83.05 93.89
Thai 83.72 73.12 85.29
Urdu 72.86 - 84.67

Table 1.5: Percentage of completeness in the bootstrapped dependency treebanks.
The Amharic grammar (underlined) is incomplete, i.e. does not implement all RGL
functions. The same table appears in Kolachina and Ranta (2016)

1.6. RESULTS 27

language #trees #confs %int’d tree %int’d nodes
English 2077 59 72 94
Finnish 648 49 68 92
Finnish* 648 0 61 79
Swedish 1219 62 70 91
Swedish* 1219 0 65 76

Table 1.6: Coverage of nodes in each test set (L-ud-test.conllu). L* (Swedish*,
Finnish*) is with language-independent configurations only. #conf’s is the number of
language-specific configurations. %int’d trees and %int’d nodes are the percentages of
interpreted trees and nodes, respectively. These results are improvements from Ranta
and Kolachina (2017).

Figure 1.18: Learning curves for English comparing synthetic treebanks vs real
treebank. Models trained on synthetic data take approximately twice the size of the
real examples to achieve comparable accuracies.

28 CHAPTER 1. INTRODUCTION

1.7 Summary of the studies
The individual studies themselves are structured as follows:

1) Paper I is a first part of the study to explore the relation between abstract syntax
trees (AST) and dependency structures in the UD scheme. This paper extensively
studies the connection between the two in addition to proposing a generalized
transducer to translate ASTs to dependency trees.

2) Paper II is the second part of the study: where the inverse problem i.e. translating
dependency trees to abstract syntax trees is studied. The algorithm presented here
is a restricted version of the generalized method discussed in Section 1.4. The
algorithm works on a large fragment of structures found in the UD treebanks.

3) Papers III and IV both cover the topic of dependency parsing, in related with
Universal Dependencies as the target scheme.

4) While Paper III focuses on the task of de-lexicalized parsing using synthetic UD
treebanks, paper IV focuses on addressing one specific short-coming of dependency
parsers: parsing sentences with out-of-vocabulary words.

Paper IV is a stand-alone study on symbolic dependency parsers and ways to
improve them, but also explores initial steps towards improving robustness of depen-
dency parsers and parsers in general. The work does set the tone for Paper III- which
shares the objective of improving robustness of parsers, albeit for GF grammars using
a completely different approach. The rest of this chapter summarizes the individual
contributions of each of these studies.

1.7.1 Paper I: gf2ud
From Abstract Syntax to Universal Dependencies

This paper presents a conversion method from abstract syntax trees to dependency trees.
This is done in two steps: by proposing a general algorithm that builds dependency
trees for a given interlingual grammar in GF (ast2dep), and applying this algorithm to
convert GF-RGL trees to Universal Dependencies (UD). One of the aims of the study
is to precisely describe the correspondence between the two multilingual abstractions,
namely GF-RGL grammars and UD. The correspondence between GF-RGL and UD
turns out to be good, and the relatively few discrepancies give rise to interesting
questions about universality.

The conversion also has applications: (a) to bootstrap parallel UD treebanks from
GF treebanks; (b) it defines a formal encoding of the annotation guidelines of UD,
in terms of functions in the GF-RGL grammar. (c) it makes information from UD
treebanks available for the construction of ASTs (d) it gives a method to check the
consistency of manually annotated UD trees with respect to the annotation schemes ;

The conversion is tested and evaluated by bootstrapping two small treebanks for
31 languages, as well as comparing a GF version of the English Penn treebank with
the UD version. In the first case, the bootstrapped treebanks are evaluated in terms of
% of labelled edges, while the Penn treebank is compared against a UDv1 treebank
obtained using the Stanford dependency converter on the Penn treebank. Furthermore,
the work in this paper serves as a pre-cursor to the work in Paper II and Paper III, and
leaves some unexplored directions for future research.

1.7. SUMMARY OF THE STUDIES 29

1.7.2 Paper II: ud2gf
From Universal Dependencies to Abstract Syntax

This study is a continuation of Paper I that describes the relation between ASTs and
dependency trees. This paper attempts to invert the mapping: take dependency trees
from standard UD treebanks and reconstruct AST trees from them. The primary aim of
this method is to help GF-based interlingual translation by providing a robust, efficient
front end – as a substitute for the exact parsing used in GF. However, since UD trees
are based on natural (as opposed to generated) data and built manually or by machine
learning (as opposed to rules), the conversion is not trivial.

As I mentioned above, this work uses both insights and artifacts (mainly the
dependency configurations) from Study I as a starting point. The study provides a
stand-alone description of a basic algorithm, essentially focussed on inverting the
conversion i.e. dep2ast. This method enables covering around 70% of nodes, and the
rest can be covered by approximative backup strategies. Analyzing the reasons of the
incompleteness reveals structures missing in GF grammars, but also some problems in
UD treebanks.

Extensions to the core algorithm and improvements of the results presented in this
study have already been described in Section 1.4.2.

1.7.3 Paper III: Bootstrapping UD treebanks
Bootstrapping UD treebanks for Delexicalized Parsing

Standard approaches to treebanking traditionally employ a waterfall model (Som-
merville, 2010), where annotation guidelines guide the annotation process and insights
from the annotation process in turn lead to subsequent changes in the annotation guide-
lines. This process remains a very expensive step in creating linguistic resources for a
target language, necessitates both linguistic expertise and manual effort to develop the
annotations and is subject to inconsistencies in the annotation due to human errors.
In this paper, we propose an alternative approach to treebanking – one that requires
writing grammars. This approach is motivated specifically in the context of Universal
Dependencies, an effort to develop uniform and cross-lingually consistent treebanks
across multiple languages.

We show here that a bootstrapping approach to treebanking via interlingual gram-
mars is plausible and useful in a process where grammar engineering and treebanking
are jointly pursued when creating resources for the target language. We demonstrate the
usefulness of synthetic treebanks in the task of delexicalized parsing. Our experiments
reveal that simple models for treebank generation are cheaper than human annotated
treebanks, especially in the lower ends of the learning curves for delexicalized parsing,
which is relevant in particular in the context of low-resource languages.

1.7.4 Paper IV: OOV words in Dependency parsing
Replacing OOV Words For Dependency Parsing with Distributional Semantics

Lexical information is an important feature in dependency parsers – both in the case
of stand-alone parsing given a tagged sequence and in pipeline systems where other
components like part-of-speech (POS) taggers rely on forms of the lexical items.
However, there is no such information available for out-of-vocabulary (OOV) words,

30 CHAPTER 1. INTRODUCTION

which causes many classification errors. In this study, we propose a method to address
this shortcoming: replacing OOV words with known, in-vocabulary words that are
similar according to different notions of similarity. Specifically, we study in detail two
such notions: semantic and morphological similarity. The replacement candidates are
obtained using distributional similar words computed from a large background corpus,
as well as morphologically similar according to common suffixes.

Extensive experiments are done to cover different design parameters: using both
transition-based and graph-based symbolic dependency parsers; count-based and
dense neural vector-based semantic models for distributional similarity and a set of
typologically diverse languages for each of the two similarity heuristics. We show
performance differences both for count-based and dense neural vector-based semantic
models using the proposed technique. Further, we discuss the interplay of POS and
lexical information for dependency parsing and provide a detailed analysis and a
discussion of results: while we observe significant improvements for count-based
methods, neural vectors do not increase the overall accuracy.

1.8 Conclusions and Future work

The thesis studies the interrelatedness between different types of multilingual ab-
stractions. On one side are interlingual reversible grammars built using Grammatical
Framework, designed to be used in applications focussed on multilingual generation
and semantics. On the other hand, Universal Dependencies are parallel abstractions
rather than interlingual, designed to be used in applications focused on light-weight
syntax. The primary representations in GF and UD are abstract syntax trees (ASTs)
and dependency trees respectively.

The aim of the thesis is to bridge these two representations, with the practical goal
to exchange linguistic artifacts between these two frameworks. Algorithms proposed
in this work address the translation of ASTs into dependency trees and the reverse
direction i.e. translating dependency trees into ASTs. These algorithms are useful
for both GF and UD – ease of multilingual parsing in UD is imported to GF, while
generation with GF is in turn useful to bootstrap UD resources for new languages.
Both these applications have been developed in this thesis – dependency parsers built
using UD resources have been used as a robust front end to parsing in GF. At the same
time, dependency parsers trained on UD treebanks generated using GF have also been
presented. This work shows how grammar engineering can be useful to bootstrap
treebanks as opposed to annotating data by hand, especially for languages with low
resources.

In the later part of the thesis, we also propose a method to address the well known
problem of out-of-vocabulary words in dependency parsers. Using a distributional
thesaurus as an additional source of information, we show that parsing can be im-
proved using a simple technique – replacing unknown words semantically similar
known words. Empirical results using multiple parsers across 7 languages show over-
all improvements and improvements specific for out-of-vocabulary words that are
statistically significant.

1.8. CONCLUSIONS AND FUTURE WORK 31

1.8.1 Open Problems and Future directions
From ASTs to Graphs

An alternate representation to Universal Dependencies that captures the semantics in
language in Abstract Meaning Representation (AMR) (Banarescu et al., 2013). Much
of the ongoing work in AMR is focussed on English and is missing a multilingual
component. The representations are richer that what is typically used in tasks focussed
on syntax – from trees to graphs and more generally a richer class of graphs. GF
grammars have been shown to work in controlled domains as precise models of the
semantics – thus it is interesting to look at connections between GF and the repre-
sentations used in AMR. These connections have been explored both in the context
of surface realization Gruzitis et al. (2017) and multilingual summarization (Gruzitis
and Barzdins, 2016). However, what remains to be seen is whether GF can help in
adding multilinguality to AMR. In the best case, the interlingua grammars of GF may
serve as under-specified representations in parallel graph treebanks that can accelerate
development of multilingual graph bank resources.

Data Augmentation for Dependency Parsing

The work on data augmentation presented in this thesis is a preliminary study in the
bigger topic of data augmentation methods for dependency parsing. There are multiple
directions left unexplored in this study – the use of grammar-based abstractions as
adversarial generators for breaking existing parsers as well as building new parsing
models using augmented data. Another clear direction forward with this line of work
is to study how synthetic data can be combined with real human-annotated data in
dependency parsing.

Predicting Consistency in Universal Dependencies

The configurations developed in gf2ud and ud2gf are a formalization of the guidelines
provided to human annotators. Xia (2001) described how annotation guidelines of a
treebank are a grammar – one of a radically different form that the formal grammars
used in this thesis. The encoded transductions on the abstract syntax for both gf2ud
and ud2gf raise an obvious question – how much of the annotated treebanks are
consistent across languages or within a language across treebanks. Previous work on
error detection in treebanks has been done in monolingual cases. Using the RGL –
specifically the concrete syntaxes for various languages – the question of how much of
the treebanks can be generated can be an indicator of how consistent these treebanks
are with respect to the interlingual grammar at hand.

Concept alignment: Inducing Interlingual grammars

Most of the work in this thesis has been focused on multilingual parsing and generation.
The obvious direction ahead is to put these two together i.e. to induce interlingua
grammars for a given multi-text. This particular question opens up questions that have
been avoided previously in NLP – extending sequence alignment methods to multiple
sequences and designing better abstractions for more than two languages. Current
research with deep neural machine translation has been encouraging to this direction
of working with more than two languages – however, interlingua grammars promise
an explainable abstraction that is more compact than deep neural models.

32 CHAPTER 1. INTRODUCTION

Chapter 2

Paper I: gf2ud

From Abstract Syntax to Universal Dependencies
Prasanth Kolachina, Aarne Ranta

Linguistic Issues in Language Technology 13(3), 2016.

33

Abstract
Abstract syntax is a semantic tree representation that lies between parse trees and
logical forms. It abstracts away from word order and lexical items, but contains enough
information to generate both surface strings and logical forms. Abstract syntax is
commonly used in compilers as an intermediate between source and target languages.
Grammatical Framework (GF) is a grammar formalism that generalizes the idea to
natural languages, to capture cross-lingual generalizations and perform interlingual
translation. As one of the main results, the GF Resource Grammar Library (GF-RGL)
has implemented a shared abstract syntax for over 30 languages. Each language has
its own set of concrete syntax rules (morphology and syntax), by which it can be
generated from the abstract syntax and parsed into it.

This paper presents a conversion method from abstract syntax trees to dependency
trees. The method is applied for converting GF-RGL trees to Universal Dependencies
(UD), which uses a common set of labels for different languages. The correspondence
between GF-RGL and UD turns out to be good, and the relatively few discrepancies
give rise to interesting questions about universality. The conversion also has potential
for practical applications: (1) it makes the GF parser usable as a rule-based depen-
dency parser; (2) it enables bootstrapping UD treebanks from GF treebanks; (3) it
defines formal criteria to assess the informal annotation schemes of UD; (4) it gives
a method to check the consistency of manually annotated UD trees with respect to
the annotation schemes; (5) it makes information from UD treebanks available for
the construction and ranking of GF trees, which can improve GF applications such
as machine translation. The conversion is tested and evaluated by bootstrapping two
small treebanks for 31 languages, as well as comparing a GF version of the English
Penn treebank with the UD version.

34 CHAPTER 2. PAPER I: GF2UD

2.1 Introduction
Computational syntax can work on different levels of abstraction. The lowest level
normally used when processing written text is strings of tokens ("words"). But it
is often useful to work with more abstract structures: part-of-speech (POS) tagged
lemma sequences, phrase structure trees, dependency trees, or some kind of logical
forms.

Raising the level of abstraction often gives new ways to relate different languages
to each other. Thus tagged lemmas enable the separation of surface strings from word
senses, which can be useful, for instance, in factored machine translation. Logical
forms ideally ignore all language-related features, and express just the pure propo-
sitional meaning. But what about syntax trees? Traditional phrase structure trees
preserve surface words and constituent order and are hence language-dependent. De-
pendency trees are often a bit more abstract, treating the word order as irrelevant
and lemmatizing the words. Sharing the POS tags and dependency labels between
languages increases this potential to abstract over languages.

Universal Dependencies (UD, de Marneffe et al. (2014)) is a recent approach to
dependency parsing that tries to maximize the sharing of structures between languages.
UD has a set of dependency labels and POS tags that are designed to fit many languages,
and a series of annotation manuals that guide treebank builders to use the labels and
tags in a uniform way. The expected gain is that efforts can be shared among languages.
For instance, searching for semantic roles in sentences can be defined uniformly for
different languages, and parsers for new languages can be bootstrapped by using
treebanks for other languages.

As suggested by Nivre (2015), UD can be seen as a modern approach to universal
grammar. The originally mediaeval idea of a universal grammar has many times
been rejected by linguists, often with good reasons. But much of it can be saved if we
think of it as an abstraction: on a proper level of abstraction, languages have much in
common, so why not try to find out what is common? Universality should be seen as a
working hypothesis rather than an a priori truth.

In UD, the working hypothesis is that languages have a common set of parts
of speech (nouns, verbs, etc) as well as grammatical functions (subject, modifier,
etc). Some languages don’t have all of these features, and individual languages may
have features that are not universal. The annotation manuals for treebank builders
have recommendations that maximize the use of common features, but give room to
diversity. This approach has proved successful, and as a result, UD has presented
treebanks for over 30 languages.

An older but nonetheless computational approach to universal grammar is Curry’s
notion of tectogrammatical structure (Curry, 1961). The tectogrammatical representa-
tions are function applications1. They are trees that describe pure constituency: what
the constituents are and how they are put together, but ignoring what word strings are
ultimately used and what their linear order is. To give an example, subject-verb-object
predication could be presented by a tectogrammatical function Pred,

Pred : TV -> NP -> NP -> S

that takes a transitive verb and two noun phrases as its arguments and produces a
sentence. The constituent order (SVO, SOV, etc) is specified separately for each
language in their phenogrammatical rules. These rules may look as follows:

1 Also known as lambda terms or LISP terms or, as in Curry’s original work, terms of combinatory logic.

2.1. INTRODUCTION 35

Pred verb subj obj = subj ++ verb ++ obj
Pred verb subj obj = subj ++ obj ++ verb

for SVO and SOV, respectively (with ++ marking concatenation).
Curry’s tectogrammar inspired the Prague school of dependency parsing (Böhmová

et al., 2003). The grammars, however, are different, since the Prague school is
based on the roles of words (similar to what is traditionally called "grammatical
functions"), whereas Curry’s tectogrammatical functions are functions that combine
words. Grammatical Framework (GF, Ranta (2004b, 2011)) is a grammar formalism
that is more directly based on Curry’s architecture. GF grammars are similar to
grammars used in compiler construction, where tectogrammar is called abstract
syntax and phenogrammar is called concrete syntax or linearization (McCarthy,
1962, Appel, 1998). 2

The most comprehensive multilingual grammar in GF is the Resource Grammar
Library, GF-RGL (Ranta, 2009b), which by the time of writing has concrete syntaxes
for over 30 languages, ranging from European through Finno-Ugric and Semitic to
East Asian languages.3 When the UD approach appeared, it became immediately
interesting to see how it relates to GF-RGL. The formal correspondence was obvious:
once we have a GF abstract syntax tree, we can easily derive a dependency tree. For
instance, a rule of the form

Pred verb subj obj

gives rise to a dependency tree where the first argument produces the head, the second
argument produces a dependent with label subj and the third argument a dependent
with label obj. As we will show more formally in Section 2.2.2, a simple recursive
function can convert abstract trees to dependency trees in this way. However, there are
details that remain to be worked out:

• How to convert GF-RGL to an independently given dependency scheme, such
as UD?

• Is GF-RGL complete, in the sense of covering all UD structures?
• Can GF-RGL give any new insights for developing UD further?

The purpose of this paper is to answer these questions. While doing so, we will often
discuss the differences in analyses between GF-RGL and UD, and in many cases argue
for the GF-RGL decisions. But in a bigger picture, we have been surprised to see
how much the approaches have in common. That so similar structures of "universal
grammar" have been found in two independent ways can be seen as confirming
evidence for both of them.

Our work is also expected to have practical uses: bootstrapping UD treebanks from
GF; using UD treebanks to help GF parsing (in particular, statistical disambiguation);
assessing UD annotation schemes and treebanks from a formal perspective. Our
conversion moreover makes the GF-RGL parser usable as a rule-based UD parser,
although a rather slow one. Perhaps more interestingly, generation from UD trees
becomes possible (including translations to other languages), because GF grammars
are reversible (and generation is fast, as opposed to parsing).

2As noted by Dowty (1979), also Montague grammar (Montague, 1974) can be seen as having Curry’s
architecture, although Montague only used it for English.

3 The current status of GF-RGL can be seen in http://www.grammaticalframework.org/lib/
doc/synopsis.html which also gives access to the source code.

http://www.grammaticalframework.org/lib/doc/synopsis.html
http://www.grammaticalframework.org/lib/doc/synopsis.html

36 CHAPTER 2. PAPER I: GF2UD

The structure of the paper is as follows: Section 2.2 prepares the discussion with
a concise introduction to GF and a mathematical definition of the correspondence
between abstract syntax trees and dependency trees. Section 2.3 gives an overview
of GF-RGL and UD; parts of it can be skipped by the reader who already knows
the approaches, and many of the details are given in an Appendix. Section 2.4 goes
through the great majority of structures, where GF-RGL and UD are similar enough
to allow a simple, local (i.e. compositional) and language-independent conversion
of trees. Section 2.5 covers the remaining structures, where non-local or language-
dependent conversions are needed. Section 2.6 presents an evaluation with three
different treebanks. Section 2.7 concludes.

2.2 Grammars and trees

2.2.1 Abstract and concrete syntax
A GF grammar consists of an abstract syntax and a set of concrete syntaxes. Figure 2.1
shows a set of abstract syntax rules, which is a small fragment of the GF Resource
Grammar Library, but representative in the sense that it covers some of the most
fundamental syntactic structures. The rule set includes a lexicon that is large enough
to cover our running example, the English sentence

the black cat sees us

and its French equivalent

le chat noir nous voit (word to word: "the cat black us sees")

An abstract syntax has two kinds of rules:
• cat rules defining categories, here S, NP, VP, etc.
• fun rules defining functions, here PredVP, ComplTV, etc.

All rules in Figure 2.1 are equipped with comments (starting –-) that explain the
categories and functions.

Categories are the basic building blocks of types, which have the form

C1→ . . .→Cn→C

where n ≥ 0 and C1, . . . ,Cn,C are categories. Each such type is a function type,
where C1, . . . ,Cn are the argument types and C is the value type. The limiting case
n = 0 gives types of constant functions, which typically correspond to lexical items,
such as we_Pron in Figure 2.1. Types with n > 1 typically correspond to syntactic
combinations, such as PredVP, combines an NP with a VP to an S. Types with n = 1
are typically coercions, such as UsePron, which lifts a pronoun into an NP.

A concrete syntax has two kinds of rules, parallel to cat and fun rules:
• for each category, a lincat rule defining its linearization type
• for each function, a lin rule defining its linearization, which is a function that

combines the linearizations of the arguments into an object of the linearization
type of the value type

To define a concrete syntax for Figure 2.1, we can start by uniformly using Str as
linearization type:

2.2. GRAMMARS AND TREES 37

cat
S ; -- sentence
NP ; -- noun phrase
VP ; -- verb phrase
TV ; -- transitive verb
AP ; -- adjectival phrase
CN ; -- common noun
Det ; -- determiner
Pron ; -- personal pronoun

fun
PredVP : NP -> VP -> S ; -- predication: (the cat)(sees us)
ComplTV : TV -> NP -> VP ; -- complementation: (see)(us)
DetCN : Det -> CN -> NP ; -- determination: (the)(cat)
AdjCN : AP -> CN -> CN ; -- adjectival modification: (black)(cat)
UsePron : Pron -> NP ; -- use pronoun as noun phrase: (us)

we_Pron : Pron ; -- we/us
see_TV : TV ; -- see/sees
the_Det : Det ; -- the
black_AP: AP ; -- black
cat_CN : CN ; -- cat/cats

Figure 2.1: An abstract syntax for a fragment of GF-RGL.

lincat S, NP, VP, TV, AP, CN, Det = Str

All linearizations are then defined as strings and their concatenations (denoted by ++).
Thus a tree formed by the function PredVP is in both English and French linearized by

lin PredVP np vp = np ++ vp

concatenating the linearization of the NP argument with the linearizations of the VP
argument. But usually the rules are different. Thus lexical items have rules such as

lin black_AP = "black" -- English
lin black_AP = "noir" -- French

More interestingly, linearization rules can also vary the word order:

lin ComplTV tv np = tv ++ np -- English
lin ComplTV tv np = np ++ tv -- French

lin AdjCN ap cn = ap ++ cn -- English
lin AdjCN ap cn = cn ++ ap -- French

The concrete syntax rules shown above use only strings and their concatenation.
Such rules have an expressive power similar to synchronous context-free grammars
(Aho and Ullman, 1969b), the main difference being that synchronous grammars
don’t make the abstract syntax explicit. Synchronous context-free grammars are
sufficient for changing the lexical items and their order, which is what we need in
our running example. However, the above rules are not correct, because they don’t

38 CHAPTER 2. PAPER I: GF2UD

deal with morphology (case and agreement) nor with variable word order (clitic vs.
non-clitic objects in French). To deal with natural languages in full scale while sharing
the abstract syntax, we need a bit more expressive power. We will return to this in
Section 2.2.3.

2.2.2 Trees and their conversions
Figure 2.2 summarizes the different kinds of trees that we will speak about, by showing
different representations of one and the same example.

• Abstract syntax trees (a) are trees where the nodes and leaves are abstract
syntax functions.

• Parse trees (b,c), also known as concrete syntax trees or phrase structure
trees, are trees where the nodes are categories and the leaves are words (strings).

• Dependency trees (d,e) are trees where the nodes are words and the edges are
marked by dependency labels; the order of words is significant.

• Abstract dependency trees (f) are trees where the nodes are constant functions
and the edges are marked by dependency labels; the order of nodes is not
significant.

The tree visualizations are generated by GF software.
The abstract syntax tree (Figure 2.2 (a)) is a non-redundant representation from

which all the others can be derived. Parse trees are derived as follows: given an
abstract syntax tree T,

[I] Linearize it to a word sequence S.
[II] Link each word in S to its smallest spanning subtree in T.

[III] Replace each function in the nodes of T by its value category.
The smallest spanning subtree of a word is the subtree whose top node is the function
whose linearization generates that word.

To convert an abstract tree to a dependency tree, we specify, for each abstract
syntax function, its dependency configuration: which of the arguments is the head,
and how the other arguments are labelled. The default dependency configuration used
in GF says that the head is the first argument, and the other arguments have labels
dep1, dep2, and so on. This default can be overridden by an explicit configuration. In
Figure 2.2, we assume the following configurations to produce the standard UD labels:

PredVP nsubj head
ComplTV head dobj
DetCN det head
AdjCN amod head

A similar configuration can be used for mapping GF categories to UD part of speech
tags. The default is the category symbol itself.

Given an abstract syntax tree T of a word sequence S, a dependency tree is derived
as follows:

[I] For each word w in S, find the function fw forming its smallest spanning subtree
in T.

[II] Link each word w in S with either
(a) the head argument of fw, if w is not the head
(b) the head of whole fw, if w is itself the head

Given a concrete syntax and a dependency configuration, an abstract syntax tree is
thus a non-redundant and faithful representation for all information about a sentence.

2.2. GRAMMARS AND TREES 39

(a)

(b) (c)

(d) (e)

(f)

Figure 2.2: Trees for the sentence the black cat sees us and its French translation: (a)
abstract syntax tree; (b,c) parse trees; (d,e) dependency trees; (f) abstract dependency
tree with unordered word senses.

40 CHAPTER 2. PAPER I: GF2UD

Figure 2.3: Dependency tree derivation from a decorated parse tree. The word cat has
sees as its head and nsubj as its label. The path from the top to the word sees is a spine.

In contrast to this, parse trees and dependency trees are lossy representations. For
dependency trees, this is easy to see: many functions can have the same dependency
configuration, and if we only see the labels attached to the arguments, we cannot
know what the dominating function is. For parse trees, it can likewise happen that a
context-free grammar rule encodes different ways of putting together its constituents.
For instance, the flat predication rule

S → NP TV NP

can, in a free word order language, match both SVO and OVS sequences.
For the reason of missing information, dependency trees and parse trees cannot in

general be derived from each other. This is why the existing algorithms use uncertain
heuristics such as head percolation (Collins, 1996). Using abstract syntax trees as the
master representation solves this problem.

An alternative way to derive dependency trees is to use parse trees decorated with
abstract syntax functions and dependency labels. This gives a natural way to explain
the conversions and will therefore be used later in this paper. In a decorated parse
tree, we mark the dependency labels at each branching point of the tree, as shown in
Figure 2.3, but omit the "head" labels. To find the labelled arc for each word,

[I] Follow edges up from the word until a label is reached: this is the label of the
word.

[II] From the dominating node, follow the (unique) path of unlabelled edges down
to another word: this is the head of the word. A head path in a tree is called a
spine.

[III] If no label is encountered on the way upwards, the word is itself the head of the
sentence.

Figure 2.3 shows the path corresponding to the labelled arc of the word cat.

2.2.3 Abstracting from morphological variation
If we swap the subject and the object in the example sentence of Figure 2.2 and
linearize with the concatenation rules of concrete syntax in Section 2.2.1, we get us

2.2. GRAMMARS AND TREES 41

sees the black cat in English and nous le chat noir voit in French. Both sentences
have a subject-verb agreement error. The English sentence also has a wrong case of
the pronoun, and the French sentence has a wrong word order, since the object can
appear before the verb only if it is a clitic pronoun. To solve these problems, we need
to introduce morphological variation in the grammar. Since morphological variation is
language-dependent, we introduce it in concrete syntax and not in the abstract syntax.
This forces us to go beyond the context-free linearization rules of Section 2.2.1.

Let us consider verb inflection first, restricted to present tense indicative forms for
simplicity. In English, we need two forms: the third person singular and "other". We
define, in the English concrete syntax, a parameter type of verb forms, which has
two elements:

param VForm = SgP3 | Other

The category TV (and also VP) has as its linearization type a table (similar to an
inflection table), which produces a string as a function of a verb form:

lincat VP, TV = VForm => Str

Thus the verb see is linearized as follows:

lin TV = table {SgP3 => "sees" ; Other => "see"}

For noun phrases, we need the parameter of case, which is nominative or accusative.

param Case = Nom | Acc

But we also need to account for the subject-verb agreement: the fact that a noun
phrase can determine the form of a verb. This we can do by using a record type as
the linearization type of NP:

lincat NP = {s : Case => Str ; a : VForm} ;

A record of this type has two fields: the field s, which is a case-dependent string, and
the field a (agreement feature), which is a verb form. An example is the linearization
of we_Pron:

lin we_Pron =
{s = table {Nom => "we" ; Acc => "us"} ; a = Other}

Putting everything together, we obtain the linearization rule for predication:

lin PredVP np vp = np.s ! Nom ++ vp ! np.a

This rule uses the s field of the NP (by the projection operator .), from which it takes
the Nom form (by the selection operator !). The result is concatenated to the verb form
selected for the value for the a field of the NP.

In French, we need different parameter types: for instance, verbs have six forms
and not just two. We also need some parameters not present in English, such as the
gender of adjectives, nouns, and determiners. The most interesting parameter for the
example at hand is, however, a boolean that states if an NP is a clitic, to determine its
position when used as object:

42 CHAPTER 2. PAPER I: GF2UD

lincat NP =
{s : Case => Str ; a : VForm ; isClitic : Bool}

Now we can write a complementation rule that inspects the cliticity feature of the
object to decide if the verb or the object comes first:

lin Compl tv np = table {vf =>
case np.isClitic of {
True => np.s ! Acc ++ tv ! vf ;
False => tv ! vf ++ np.s ! Acc
}

}

The generalization of linearization from strings to tables and records leads us
from context-free grammars to multiple context free grammars (MCFG) (Seki et al.,
1991). As shown in Ljunglöf (2004), GF is actually equivalent to PMCFG (Parallel
MCFG), which is MCFG with reduplication. 4

An MCFG is a grammar over tuples of strings rather than just strings. In addition
to inflection and word order variations, MCFG enables discontinuous constituents.
Thus for instance in VSO languages (such as classical Arabic) verb phrases are records
with separate fields for the verb and the complement:

lincat VP = {verb : Str ; compl : Str}

(ignoring all morphological parameters). The VSO order is realized in the predication
rule, which puts the subject noun phrase between the verb and the complement:

lin PredVP np vp = vp.verb ++ np ++ vp.compl

2.2.4 Abstracting from syncategorematic words
Designing a GF grammar involves finding a level of abstraction that makes sense for
all languages to be addressed. For instance, morphological distinctions present in
one language but not the others should be ignored in the abstract syntax. Some of
these questions can be subtle. The copula of adjectival predication is an example of a
common kind of questions encountered in the RGL-UD mapping task.

Let us extend the abstract syntax of Figure 2.1 with a rule converting adjectival
phrases to verb phrases:

fun CompAP : AP -> VP

The English linearization rule (ignoring morphology, which is irrelevant for this
question) introduces the copula is prefixed to the AP:

lin CompAP ap = "is" ++ AP

The copula has thus no abstract syntax of its own. The cross-linguistic justification of
this treatment is that many languages (Arabic, Russian) don’t need copulas, and that

4Reduplication is used only in few places in the RGL: Chinese yes/no questions and some semantic
constructions such as the intensification of adjectives in Swedish.

2.2. GRAMMARS AND TREES 43

(a) (b)

(c)

Figure 2.4: Dependency trees for the cat is black (a) with a syncategorematic copula
(b) with a categorized copula. Also shown in (c) is a collapsed variant of (a)

they should therefore not be introduced in the abstract syntax. Words with no abstract
syntax category attached are called syncategorematic.

The conversion defined in Section 2.2.2 generates no dependency labels for syn-
categorematic words. Thus the tree assigned to the cat is black in this grammar has no
label for the word is. A default dummy label "dep" can then be used, as in Figure 2.4
(a). This tree moreover uses VP as the part of speech tag, since this is the category of
the smallest spanning subtree of the copula.

However, the UD annotation manual for English says that the copula should have
the label "cop" with the word black as its head (Figure 2.4 (b)) and AUX as its POS tag.
The general principle in dependency parsing is that all words have labels connecting
them to a head (except for the head of the whole sentence). According to this principle,
there are no syncategorematic words.

The principle that all words are categorized makes sense in the dependency pars-
ing context, where the trees are trees of words and not of phrases, let alone abstract
functions. But from the "universal" point of view, this results in trees that may be
unnecessarily different in different languages, because syncategorematic words are
not universal. They can also be argued to be irrelevant for the semantic structure.
Thus dependency parsers are sometimes supplemented by "flattening" or "collapsing"
functions that remove semantically irrelevant words (de Marneffe and Manning, 2008,
Ruppert et al., 2015). The "collapsing" process achieves two characteristics: a col-
lapsed tree no longer contains all the words in a sentence and the dependency labels
and heads are semantically coherent (but may be syntactically heterogeneous).

When dependency trees are derived from abstract syntax, the situation is the op-
posite. What we get first, by straightforward dependency configurations, is a kind of
"collapsed" trees (Figure 2.4 (c)). The semantically irrelevant words are not provided
with a dependency label of their own using dependency configurations defined on
abstract syntax. To obtain these labels, we must extend the dependency configura-
tions with rules defined on concrete syntax. Such rules are language-dependent, not
universal.

44 CHAPTER 2. PAPER I: GF2UD

One could question whether not just stop at the collapsed trees, since they are
the truly universal ones. However, since we are interested in converting GF trees
to complete UD trees, we have chosen to extend our conversion algorithm with a
"decollapsing" phase, by extending the abstract (language-independent) dependency
configurations with language-dependent ones (Section 2.5). The resulting dependency
tree at the end of this "decollapsing" phase is a connected tree where all words have
labels connecting them to a head, as done in the UD scheme. The extended conversion
algorithm is presented in Section 2.5.7.

An alternative to these language-dependent configurations is to rewrite the gram-
mar. Rewriting the grammars facilitates constructing complete UD trees using depen-
dency configurations defined only on the abstract syntax. For the example at hand, this
is simple: just introduce a category Cop of copulas, with one element be_Cop, and
change the CompAP rule:

cat Cop
fun be_Cop : Cop
fun CompAP : Cop -> AP -> VP

In languages with zero copulas, the linearization of be_Cop is the empty string.
The line that we follow in this paper, however, is to keep GF-RGL as it is and

instead make the dependency configurations more elaborate. This choice has several
advantages:

• We can automatically get collapsed trees. These can be post-processed later to
add labels for syncategorematic words, but still be useful if the end goal is only
to extract relations between the content words in the sentence.

• We don’t optimize for the particular dependency annotation scheme of UD and
can easily change the configurations.

• Since GF-RGL was from the start designed to be multilingual, we get evidence
to assess the universality of the current UD.

2.3 An overview of GF-RGL and UD
This section provides readers with an overview of GF-RGL and the UD annotation
project. Readers familiar with GF can skip Section 2.3.1 and readers familiar with UD
can skip Section 2.3.2.

2.3.1 Overview of RGL
The first applications of GF were small grammars built for translation systems on
specific application domains, such as geographic facts (Dymetman et al., 2000),
mathematics (Hallgren and Ranta, 2000), and simple health-care dialogues (Khegai,
2006). The abstract syntax in these applications encoded the semantic structures that
were to be preserved in translation. But the idea soon emerged to generalize the abstract
syntax idea from domain semantics to domain-independent syntactic structures, such
as NP-VP predication. This led to the development of the GF Resource Grammar
Library (RGL), whose first version was inspired by the syntactic structures used in
CLE (Core Language Engine) (Rayner et al., 2000). The RGL was first intended to
be a library that would help domain grammarians by giving them reusable functions
for surface syntax and morphology (Ranta, 2009a). But it was soon also seen as a

2.3. AN OVERVIEW OF GF-RGL AND UD 45

linguistic experiment, to find out how comprehensive a common abstract syntax could
be and how many languages it could apply to. This experiment had no commitment to
any theory of linguistic universals, but the idea was just to try and see how far one can
get. Nevertheless, the sharing of tree structures was more far reaching than parallel
grammar development in systems like CLE, LinGO Matrix (Bender and Flickinger,
2005), and ParGram (Butt et al., 2002).

The first experiments on a handful of not too similar languages (English, Finnish,
French, Russian) were encouraging. Gradual modifications led to a stable abstract
syntax, which was reported in Ranta (2009b) and was at the time implemented for
14 languages. In late 2015, the same abstract syntax has concrete syntaxes for 30
languages, and 5 to 10 more are under construction. More than 50 persons have
contributed to the GF-RGL. Its source code and documentation are available on the
GF web page.5

The GF Resource Grammar Library has an abstract syntax with 86 categories
and 356 functions. Of these functions, 140 are functions that don’t take arguments
(mostly structural words such as determiners), 85 are one-argument coercions, and
131 are syntactic combinations with more than one argument (the only class that needs
dependency configurations). This abstract syntax is the core RGL, which is specified
as the minimum to be implemented for a language to count as a "complete" resource
grammar. This notion of completeness is of course purely formal, and does not mean
that the whole language is analysable by the grammar. But it does mean that the
standard GF applications, such as controlled language grammars (Ranta et al., 2012,
Dannélls et al., 2012, Kaljurand and Kuhn, 2013) are directly portable to that language.

In addition to the core RGL, the library has language-specific extensions, which
need not be shared by all languages. These extensions are grouped hierarchically,
so that for instance Romance languages have a set of common extensions, on top
of which Catalan, French, Italian, and Spanish have their own extensions. These
modules typically make a 10% addition to the core RGL code. The extension modules
enable grammarians to experiment with individual languages without bothering about
the universality of all constructs. There is after all no reason why all grammatical
constructs should be universal: it is good enough if a core subset is.

Another, recent addition to the core RGL is a set of categories and functions that
enable wide coverage parsing and translation (Angelov et al., 2014). To maintain
the interlingual translation architecture, these extensions are shared by all languages
(15 at the time of writing). But they are generally less precise than the original RGL
functions. In particular, there is a category of chunks, which is used as a robust
back-up to syntactically complete parsing.

The present paper focuses on the core RGL, showing how the main syntactic
structures of GF are mapped into UD. This is sufficient for two small treebanks, which
are covered for 31 languages. Dealing with a larger treebank, covering 15 languages,
also includes the robust back-up rules. But this part is less stable and more ad hoc, and
we will report the result for the two parts separately.

Figure 2.18 in the Appendix shows the hierarchy of categories in the core RGL.
The same picture appears in (Ranta, 2011), and Ranta (2009b) provides a systematic
linguistic discussion of the categories and functions. In this paper, we will present
the RGL from another perspective, showing how the functions are decorated by UD
labels to convert them to dependency trees. Table 2.11 in the Appendix lists the RGL
categories with explanations, examples, and corresponding UD POS tags.

5http://www.grammaticalframework.org/lib/doc/synopsis.html

http://www.grammaticalframework.org/lib/doc/synopsis.html

46 CHAPTER 2. PAPER I: GF2UD

Let us walk through an example, which shows many of the main functions in use.
Figure 2.5 shows an abstract syntax tree for the sentence my two brothers and I would
not have bought that red car and its RGL equivalents in 29 other languages, artificially
constructed to show as many structures as possible. The tree is decorated with UD
dependency labels.

Figure 2.5: Dependency-decorated abstract syntax tree for my two brothers and I
would not have bought that red car.

The topmost category in Figure 2.5 is Utt, utterances, which is built from S,
sentence; an Utt could also be built from a question or an imperative, as shown in
Figure 2.18. The sentence in turn is built from a clause (Cl) by adding temporal and
polarity features: conditional anterior negative. The core RGL has 16 tense-polarity
combinations for clauses. The clause is built from a noun phrase (NP) and a verb
phrase (VP).

The subject noun phrase is a coordination, built from a list of noun phrases (ListNP)
with a conjunction (Conj). The list is a recursive structure, with the base case taking
two elements. Longer lists are (in English and many other languages) linearized by
using commas, for instance, her mother, my brother and I.

The first conjunct of the subject is built from a determiner (Det) and a common
noun (CN). The determiner is further analysed into the head quantifier (Quant) and a
number (Num). The quantifier is a pronoun (Pron) used possessively, and the number
is a cardinal numeral. The second conjunct is just a pronoun.

The verb phrase is built from a slash verb phrase (VPSlash), by providing an

2.3. AN OVERVIEW OF GF-RGL AND UD 47

object noun phrase; VPSlash is similar to a "slash category" (VP/NP in the notation
of Gazdar et al. (1985)). The VPSlash is here just a two-place verb (V2). V2 is a
generalization of TV and covers both transitive and prepositional verbs, as well as
verbs taking different complement cases in different languages. A verb being transitive
is not a multilingual invariant and therefore not maintained in the abstract syntax. The
complement NP is built from a Det and a CN that has an AP modifier. The determiner
has a dummy number (NumSg) indicating that the quantifier that_Quant is used in
the singular form.

As we can see from the tree, most of the dependency labels are straightforward to
define, since the words ultimately appear as categorized lexical items. But some of
them need special attention, in particular the tense and polarity features, which in En-
glish are realized syncategorematically as auxiliary verbs (discussed in Section 2.5.4).
Also coordination is worth discussion (Section 2.4.5), as it is a perennial question in
dependency parsing.

2.3.2 Overview of UD
The UD annotation scheme defines a taxonomy of 40 relations as the core or universal
dependency label set (shown in Table 2.12 in the Appendix). This taxonomy is
further refined (or reduced) to address language-specific extensions, not necessarily
shared by all languages. The scheme also defines universal sets of part-of-speech
tags and morphological features (shown in Table 2.13 in the Appendix). The part-
of-speech tagset includes 17 tags, with extensions to previously proposed Universal
Part-of-Speech tagset (Petrov et al., 2012). The project is an effort to consistently
annotate multilingual corpora with these morphological features, part-of-speech tags
and universal labels in the dependency parse tree. Figure 2.6 shows all three layers
of UD annotation for a French sentence Toutefois les filles adorent les desserts au
chocolat (trans. “However girls love chocolate desserts”; example and figure quoted
verbatim from Nivre et al. (2016)).

Figure 2.6: UD annotation for a French sentence (lemmas are capitalized). Figure
quoted verbatim from Nivre et al. (2016).

Core arguments of clauses are marked as either a subject (nsubj in the case of
nominal subjects and csubj for clausal subjects) or direct/indirect objects depending
on their grammatical function. An example is shown in Figure 2.7. In the case of
direct objects, distinction between nominal arguments (dobj), finite clausal arguments
(ccomp) and open clausal arguments (xcomp) is made. Furthermore, in the case of
passive constructions, separate labels are used to mark subjects (nsubjpass and
csubjpass) to indicate transformation of voice. We will look at these constructions
separately in Section 2.5.

Non-core dependents of clausal predicates like prepositional phrases attached to

48 CHAPTER 2. PAPER I: GF2UD

Figure 2.7: UD dependency labels for arguments in clauses

the verb are annotated as nominal dependents using nmod label or adverbial modifiers
(advmod for adverbs and advcl for clausal dependents). Other labels used for non-
core dependents in a clause are neg to mark negation of predicates (and also noun
phrases), vocative to mark vocative noun phrases and expl for expletives. Expletives
are nominals that appear with labels for the core arguments in a clause, but have no
semantic significance by themselves (for example, there is an expletive in there is a
cat in the house). More frequently found labels in annotated corpora from this class
are aux for auxiliary verbs, auxpass for auxiliary verbs in passive voice constructions
and cop for copula verbs. The mapping for auxiliary verbs and copulas is discussed in
Section 2.5.

An example of language-specific extensions defined in the UD annotation scheme
are labels used to annotate these non-core nominal dependents. In English, the
nmod label is refined to indicate temporal adverbs nmod:tmod, possessive noun mod-
ifiers nmod:poss and noun phrases used as adverbials nmod:npmod. In case of
Swedish, the nmod is further refined to indicate agents used in passive voice con-
structions nmod:agent and the same possessive noun modifiers as in English. The
annotation scheme allows fine-grained extensions to a label, but the choice of annotat-
ing the extension is left to the annotators of the language. The guidelines for a specific
language provides details on when to annotate these extensions in the language. The
mapping we discuss in this paper will ignore these fine-grained extensions, since
the goal is to map the core RGL to the core label set. But it is possible to add the
fine-grained distinctions to the mapping if we are interested in independently analysing
each language. In our own experiments, the extensions to nominal dependents for
possessive noun modifiers, and noun phrase adverbials are defined in a separate map-
ping on the abstract syntax. This mapping is defined only for English. Similarly, the
extension in Swedish for agents in passive constructions is equally straight forward to
define.

When annotating noun phrases, dependents are typically labelled using either
nummod for numerical modifiers, appos for appositions or a generic nmod label for all
other nominal modifiers like prepositional phrases. There is a det label for determiners
and an amod label for adjectival modifiers. Relative clauses that modify the noun
are marked using the acl label (that we saw in the NP the children that we saw).
Prepositions are always marked as modifiers using the case label.

Other labels defined in the core label set include cc and conj for coordination
constructions (an example of flat-structure provided for coordinations is shown in
Figure 2.9), compound for compounding, mwe to treat multi-word expressions and a
loosely defined goeswith label for robust analysis of web and raw texts. Annotation
strategies for these specific labels will be clearly explained when we discuss the

2.4. DEPENDENCY MAPPINGS: STRAIGHTFORWARD CASES 49

Figure 2.8: UD labels for modifiers in NPs

mapping between the GF-RGL for these phenomena. In this paper, the labels used for
defining these loose joining relations will not receive critical attention.

Figure 2.9: UD labels for a coordination of 3 NPs

2.4 Dependency mappings: straightforward cases
In the general case, we define the mapping between functions in the core RGL and the
universal UD labels using dependency configurations to UD labels. The mapping to
the core UD labels allows bootstrapping treebanks for new languages using the abstract
syntax defined in GF-RGL. Additionally, we also define a fine-grained mapping over
these functions to derive language-specific UD labels defined in the annotation scheme.
Throughout this paper, we will mainly describe the mapping to the core UD labels.

2.4.1 Clausal predicates: predication and complementation
We will start by detailing the mappings for functions in the GF-RGL library used
to build declarative clauses. The example shown in Figure 2.5 discussed some of
these functions. Table 2.1 shows the complete set of functions used to construct these
clauses, the argument types and value type of the resulting phrase and the dependency
configuration for each of these functions.

The PredVP and PredSCVP functions are the main functions responsible for predi-
cation. The interpretation of the type signature shown in column 2 of the table is as
follows- the PredVP function takes a noun phrase (NP) and a verb phrase (VP) and
constructs a clause (Cl). Similarly, the PredSCVP function takes an embedded clause
SC and a verb phrase and constructs a clause. Figure 2.10 shows the parse trees for the
example sentences, John killed him and that she came will make news. We map the
noun phrase in the PredVP function to the nsubj label, and in the case of PredSCVP,
the embedded clause is mapped to the csubj label.

50 CHAPTER 2. PAPER I: GF2UD

Figure 2.10: Decorated parse trees showing nominal and clausal predication in GF.
The parse trees shows the abstract function names, the category of each node and the
UD labels.

VP are created using the ComplSlash that takes a VPSlash type phrase and NP
phrase as a core argument. Alternative complementation functions are ComplVS
for clausal arguments S (he says that you want to swim), ComplVV for verb phrase
complements (want to swim) and ComplVA for adjectival phrase complements (feel
bad). In these cases, we map the NP phrase using a dobj label and the clause S using
the ccomp label. The complement arguments of ComplVV and ComplVA functions are
mapped using the xcomp label. In all complementation functions, the arguments with
different verb types (VPSlash, VS, VV, VA) are marked as the head of the phrases.

Verbs that take sentential arguments VS in the GF-RGL library are used in the
ComplVS function to create a VP. The clausal argument (S), is mapped to the ccomp
label. Alternatively, the RGL also defines a ComplVQ function for verbs that takes
question clauses as arguments (do you know who did it), here also we map the clausal
argument to the ccomp label.

Similarly, SlashVP and SlashVS functions are alternate ways to combine an NP
with a VPSlash (verb phrase missing an NP), or ClSlash (clause missing an NP). These
types of phrases are used to create question clauses and relative clauses. In both these
functions, we map the arguments to nsubj and nsubj and ccomp respectively.

Passive voice constructions in GF are created using a type-raising function to
create the VP phrase, by dropping one of the mandatory arguments. In the case of
transitive verbs and ditransitive verbs, the VPSlash type is converted into a VP type
without any additional NPs. The predication functions PredVP and PredSCVP remain
the same since the voice is localized in the sub-tree corresponding to the VP. In order
to distinguish the nsubj and nsubjpass labels in the case of passive voice, we extend
our dependency configuration rules defined on the abstract syntax. We describe the
mapping for passive constructions in Section 2.5.1.

It is worth mentioning here that the entire mapping of the UD labels is encoded in
a declarative fashion, exactly as shown in Table 2.1. Our mappings are the first and the
third columns in this table. The other two columns are shown for convenience. The
declarative style of specification allows for the conversion algorithm from GF-RGL

2.4. DEPENDENCY MAPPINGS: STRAIGHTFORWARD CASES 51

PredVP NP -> VP -> Cl nsubj head John walks
PredSCVP SC -> VP -> Cl csubj head that she came will make news

ComplSlash VPSlash -> NP -> VP head dobj love it
ComplVS VS -> S -> VP head ccomp say that she runs
ComplVQ VQ -> QS -> VP head ccomp wonder who runs
ComplVV VV -> VP -> VP head xcomp want to sleep
ComplVA VA -> AP -> VP head xcomp become red
SlashVP NP -> VPSlash -> ClSlash nsubj head (whom) he sees
SlashVS NP -> VS -> SSlash -> ClSlash nsubj head ccomp (who) he says that she loves

Table 2.1: UD mappings for declarative clauses

trees to remain independent of the annotation scheme, allowing one to easily switch
between different annotation schemes.

2.4.2 Adverbial modifiers
Adverbial phrases that modify VP phrases are analysed using either AdVVP function
that takes a VP phrase and a AdV phrase (always sleep) or AdVVPSlash that modifies
a VPSlash instead of a VP phrase. Alternatively, simple adverbs can modify a VP
phrase using the AdvVP function (sleep here). For all these functions, we map the head
of the adverbial phrase using the advmod label. Table 2.2 lists the functions used to
modify VP phrases.

AdVVP AdV -> VP -> VP advmod head always sleep
AdVVPSlash AdV -> VPSlash -> VPSlash advmod head always use (something)

AdvVP VP -> Adv -> VP head advmod sleep here
AdvVPSlash Adv -> VPSlash -> VPSlash advmod head use (something) here

AdvS Adv -> S -> S advmod head then I will go home
AdAP AdA -> AP -> AP advmod head very warm

Table 2.2: UD mappings for adverbial modifiers

2.4.3 Questions and relative clauses
The GF-RGL provides a module for questions combining interrogatives (IP, IComp,
IAdv) with verb phrases (VP, VPSlash) and clauses (Cl, ClSlash). For example, the
function QuestIAdv takes a clause like John walks and a pronoun like why to construct
the question why does John walk. Similarly, relative clauses are constructed using one
of NP, VP or ClSlash types. Table 2.3 shows the mappings defined for functions used
in constructing question and relative clauses.

2.4.4 Noun phrases and modifiers
The GF-RGL provides two primary kinds of functions to create noun phrases. Func-
tions used to generate noun phrases and phrases with adjectival modifiers and functions
used to modify these noun phrases using prepositional phrases, appositional NPs and
relative clauses. We will present these two groups separately. There are in all two

52 CHAPTER 2. PAPER I: GF2UD

QuestIAdv IAdv -> Cl -> QCl advmod head why does John walk
QuestIComp IComp -> NP -> QCl head nsubj where is John

QuestVP IP -> VP -> QCl nsubj head who walks
QuestSlash IP -> ClSlash -> QCl dobj head who does John love
QuestQVP IP -> QVP -> QCl nsubj head who buys what he is selling
RelSlash RP -> ClSlash -> RCl mark head whom John loves
RelVP RP -> VP -> RCl who loves John mark head

Table 2.3: UD mappings for questions and relative clauses

different categories for nouns defined in the RGL, CN for the basic nouns, N2 for
nouns that take a noun complement (mother of king, list of names). The primary DetCN
function takes a determiner and a CN to create a NP (the boy, this paper). N2 type
nouns take an NP complement phrase to construct a CN. In the DetCN function, we
map the determiner to the det label and make the CN argument head of the NP phrase.
In ComplN2 and ComplN3 functions, NP arguments are mapped as modifiers of the
noun using the nmod label (names is marked as the child of list with nmod). Alternative
ways to generate NP phrases use CNIntNP for phrases like level 5, CNNumNP for level
five; in both cases we map the Int/Card argument to the nummod label. The AdjCN
function is used to modify nouns; these nouns still need a Det argument to become
noun phrases (the blue house). Here, the head of the adjective phrase AP is mapped to
the amod label. Table 2.4 lists the functions used to construct the basic NP phrases
and the respective mappings.

DetCN Det -> CN -> NP det head the man
ComplN2 N2 -> NP -> CN head nmod mother of the king
CNIntNP CN -> Int -> NP head nummod level 5

CNNumNP CN -> Card -> NP head nummod level five
AdjCN AP -> CN -> CN amod head big house

DetQuant Quant -> Num -> Det det head these five
DetQuantOrd Quant -> Num -> Ord -> Det det head amod these five best

Table 2.4: UD mappings for generating basic noun phrases

The Det type in GF is used for determiners, typically constructed by taking a Quant
type and Num type. For the definite article the, the analysis would be

the: DetQuant (DefArt) (NumSg)
the: DetQuant (DefArt) (NumPl)

This Det type and the DetCN is used to construct determiner phrases like these five
that can modify a noun or act as noun phrases by themselves. An alternative function
to generate the Det type is DetQuantOrd using which phrases like these five best can
be analysed. In both these cases, we map the Quant type as the head of the phrase and
the Num type is mapped using the nummod label. As such in phrases like these boys
where there are no numerical modifiers in the phrase, we obtain the same structure
as in UD i.e. these is given the det label and boys is the head. However in phrases
with numerical modifiers (for example these five boys), the numerical modifier five is
attached to the quantifier these and not to the noun boys.

2.4. DEPENDENCY MAPPINGS: STRAIGHTFORWARD CASES 53

In addition to these functions, NPs can be modified using other NPs for apposition,
prepositional phrases. The list of functions is shown in Table 2.5. ApposCN is
used for apposition (Sam, my brother) and PossNP for possessive nominal modifier
constructions (Marie’s book), PartNP for partitive constructions (glass of wine). The
modifier NP phrases are mapped to appos, and nmod labels. In the PossNP, the noun
representing the possessive modifier is assigned the nmod (or nmod:poss for English)
label where as in the PartNP function, it is the opposite.

ApposCN CN -> NP -> NP head appos city Paris
PossNP CN -> NP -> CN head nmod Marie’s brother
PartNP CN -> NP -> CN head nmod glass of wine

ComparA A -> NP -> AP amod head warmer than I
RelCN CN -> RelS -> CN head acl house that John bought
RelNP NP -> RelS -> NP head acl Paris, which is beautiful

Table 2.5: UD mappings for modifying noun phrases

The RelCN and RelNP functions are used to modify nouns and noun phrases with
relative clauses. In this case, we map the head of the relative clausal predicate using
the acl label.

2.4.5 Coordination
The RGL defines multiple functions for building coordination constructions by com-
bining lists of phrases (two or more) in the same category using conjunctions. Base*
functions accepts two phrases of same type and create a tree of type List*. The List*
types are combined with conjunctions (marked as Conj) using Conj* functions to
form trees corresponding to coordination constructions. Additionally, Cons* functions
recursively add a new phrase to List* phrases. These Cons* functions are used when
coordinating more than two phrases of a given type. The Conj* functions handle
both syndetic and asyndetic coordination constructions in all languages. Syndetic
coordination is a form of coordination with the help of an explicit coordinating con-
junction (ham and eggs) while asyndetic coordination allows for conjunctions to be
omitted from one or all the conjuncts in the coordination construction (he came, saw
and conquered).

Let us look at an example of adverbial coordination using the phrase here, there
and everywhere. The parse tree for this example is shown in Figure 2.11. Adverbials
there and everywhere are first analysed using the BaseAdv function. The ConsAdv
function adds here to the list of adverbs from the BaseAdv function. This resulting
ListAdv phrase is used by the ConjAdv function along with the conjunction and to
form the AST for the coordinated phrase.

The existing UD scheme annotates the first conjunct in the construction as the
head, and treats the rest of the conjuncts as modifiers attached directly to the head
via the conj relation. Similarly, conjunctions are attached to the same head via the
cc relation. Table 2.6 shows the mapping defined for coordinating any two types in
the GF-RGL. Note that when coordinating more than two phrases, the first conjunct
always comes from the argument of the ConsNP function. The same mapping is
defined for the set of these three functions defined for all types in GF-RGL (complex

54 CHAPTER 2. PAPER I: GF2UD

Figure 2.11: Coordination of three adverbials

nouns CN, noun phrases NP, adjectival phrases AP, adverbial phrases AdV, simple
clauses S and relative clauses RS).

BaseT T -> T -> ListT head conj
ConsT T -> ListT -> ListT head conj
ConjT Conj -> ListT -> T cc head

Table 2.6: UD mappings for generic type T in GF-RGL. T can be CN, NP, AP, AdV, S
and RS

2.5 Dependency mappings: Problematic cases
The mappings described in the previous section are straightforward rules defined over
the abstract syntax in GF-RGL. When the equivalent labelled dependency tree for
a given phrase can be completely identified from the AST by defining a mapping
to dependency labels for the functions over its immediate arguments, then such a
mapping is sufficient to construct a fully connected dependency tree from the AST.

This is not necessarily the case. Using only rules described in the previous section,
the mappings can result in a dependency tree with edges labelled using the dep
label. The main reason for this is the presence of the syncategorematic words in
GF (discussed in Section 2.2.4) due to the abstraction level of GF-RGL intended to
maximize sharedness across languages.

For example, GF-RGL defines multiple functions in abstract syntax for existen-
tial clauses (there is a cat). Existential clauses are analysed using the ExistNP or
ExistNPAdv function. The ExistNP function takes a NP and constructs a clause Cl.
The dummy pronoun, an expletive there and the copula verb is are abstracted by the

2.5. DEPENDENCY MAPPINGS: PROBLEMATIC CASES 55

ExistNP function in the AST. Similarly, the ExistNPAdv takes a NP and a modifier
phrase Adv (for example, in the bag to construct the clause. Linearizations of these
functions vary across languages depending on whether expletives are necessary and
the choice of copula in the language. See Figure 2.12 for the parse trees of the clause
in English and Bulgarian. The Bulgarian translation of the existential clause neither
contains the expletive or the copula, instead the verb used here is annotated as the main
head in current UD annotation. We will discuss existential clauses in Section 2.5.6.

Figure 2.12: Parse trees of the existential clause there is a cat and its translation in
Bulgarian

We extend the set of mappings defined until now with three additional types of
rules:

i) local abstract rules are rules on abstract functions addressing their immediate
arguments only (all rules defined until this point are of this type)

ii) non-local abstract rules allow mappings to be defined on the abstract functions
using more context than the immediate arguments of the functions.

iii) local concrete rules are defined for each language on the respective linearizations
of an abstract function.

iv) non-local concrete rules are defined to map the linearization of a function to the
UD labels using more contexts like in the case of non-local abstract rules.

Abstract Concrete
Local Fun Label+ Fun ReLabel+
Non-local (Fun args*) Label+ (Fun args*) ReLabel+

Table 2.7: Type of rules in the extended mapping to construct full UD trees

56 CHAPTER 2. PAPER I: GF2UD

Table 2.7 shows the different types of rules and specification formats used to
encode UD information. We previously mentioned that the mapping is encoded in a
declarative manner to remain independent of annotation schemes. We briefly explain
these new types of rules before explaining how they are used in our conversion. This
is discussed in more detail at the end of this section (and Appendix).

The local abstract rules discussed previously are encoded using the syntax shown
in Section 2.2. Fun here refers to the name of a function in the abstract syntax (PredVP
or ComplSlash). One argument of Fun is mapped to a label called head and the rest
are mapped to corresponding UD labels. In the trivial case, where a function takes
only one argument, the argument is always mapped to the head label.

Non-local abstract rules are an extension of local abstract rules, that are applied
only if the arguments of Fun in the abstract syntax tree match the values (or patterns)
specified in this rule. args* represents the list of arguments of the function Fun (*
corresponds to the Kleene operator in regular expressions) and each item in this list
expresses a pattern for the arguments. We explain these in Section 2.5.1. These
patterns for arguments encode a context that is outside the scope of what is matched in
local abstract rules. Non-local rules can simply be interpreted as multi-level rules in
the grammar while local rules are one-level rules in the grammar. We will see these
rules in more detail in Section 2.5.1.

Local concrete rules are introduced to address different realizations of an abstract
function across multiple languages. The example of existential clauses mentioned
above is an instance of this. These mappings are encoded using a list, similar to local
abstract rules. In both cases of local and non-local concrete rules, each item in the list
represents a relabelling operation of an edge in the dependency tree. This relabelling
can be one of three types: relabel an existing edge in the dependency tree with a new
label, relabel an edge with a new label after reversing the direction of the edge or
add both an edge and a label to the dependency tree. These rules will be discussed
in Section 2.5.2 for cases of copula constructions and Section 2.5.3 for verb phrase
complements and prepositional verbs.

Non-local concrete rules are again an extension of local concrete rules, where
the relabelling operations are applied only if the arguments of the abstract function
Fun match the context specified in these rules. These rules are explained in the context
of clausal negation and auxiliary verbs in Section 2.5.4.

The terms “local” and “non-local” refer to the scope over which the conversion
algorithm matches the specified mappings. The mappings are always specified over
functions in the abstract syntax. The terms “abstract” and “concrete” refers to the layer
of syntax on which the mappings are applied. Abstract rules are applied on the AST
and concrete rules are applied after abstract rules on labelled dependency trees for the
specific language. Both sets of local and non-local concrete rules must be defined for
each language in the RGL. In the absence of concrete rules, the conversion results
in a connected UD tree, where some edges are connected artificially using the dep
label. When the edges marked with these dummy labels are collapsed, the resulting
dependency tree structure can be a representation that is closer to the semantics of the
sentence. We will show this in our experiments described in Section 2.6.

2.5.1 Passive voice constructions

Passive clauses in GF are constructed using functions that allow a verb to drop one of
its obligatory arguments to construct the VP, for example PassV2 and PassVPSlash.

2.5. DEPENDENCY MAPPINGS: PROBLEMATIC CASES 57

Let us look at the ASTs for the clause John killed him and its passive counterpart
(he was killed), shown in Figure 2.13. The grammatical subject of the passive clause
is incorrectly mapped to nsubj label using only local abstract rules.

Figure 2.13: Decorated ASTs for the clause John killed him and its passive counterpart
He was killed using both local and non-local abstract rules

The PassV2 function in GF-RGL allows a transitive verb to form a VP phrase
without the obligatory NP phrase (dobj). The extensions in GF-RGL define a function
PassVPSlash that can be used to construct passive voice constructions for both
transitive and ditransitive verbs. This function can be understood to be a generalization
of the PassV2 defined in the core RGL. However, the top level predication function
remains the same (PredVP) irrespective of active or passive voice.

The UD annotation scheme distinguishes between subjects of active and passive
clauses (NP arguments) using two labels — nsubj and nsubjpass. In order to make
this distinction in our mapping, the rules corresponding to PredVP should be enriched
with more context. We define the following non-local rules for PredVP function for
this purpose.

(1) (PredVP ? PassV2) nsubjpass head
(2) (PredVP ? PassVPSlash) nsubjpass head
(3) PredVP nsubj head

The context in this example is encoded using abstract function names corresponding
to passivization of VP phrases. The first rule (1) is only applicable in the case when
PassV2 appears in the sub-tree corresponding to the VP phrase i.e. transitive verbs
in passive voice constructions. Similarly, the second rule (2) addresses di-transitive
verbs in passive voice, when PassVPSlash appears in the sub-tree of the VP phrase.
Finally, the general rule ((3), also the local abstract rule) is applied in all other cases,
when none of these two contexts are matched i.e. in active voice constructions. The
? character represents a meta-variable in the tree. This is interpreted as matching
anything i.e. there are no restrictions on the sub-tree corresponding to this argument.
In the example of the predication function, there are no restrictions on the sub-tree
corresponding to the NP argument. Using these non-local rules, grammatical subjects
of passive voice clauses are mapped to the nsubjpass label instead of the nsubj
label.

We also define similar rules for PredSCVP function, used in analyses of construc-
tions with clausal subjects. Recall from Section 2.4 that the PredSCVP function is

58 CHAPTER 2. PAPER I: GF2UD

used to construct a clause using an embedded clause and a VP phrase.
The passive voice constructions described above is addressed using a limited

non-local context (the daughter nodes). However, in principle it is possible to define
contexts corresponding to abstract functions using expressions of arbitrary depth.

Before extending the format of the dependency configurations, we considered the
alternative of changing the RGL to resemble UD annotation in this particular case.
RGL localizes the voice transformation to the VPs while UD uses a different label
for subject arguments that is non-local to the VP, which could be easy to achieve
in GF as well. However, if we consider co-ordinated constructions with subject
sharing (he killed his wife and was chased by the police), the shared subject he
should be both an nsubj and an nsubjpass. UD resolves the conflict with its flat
structure to coordinations, by choosing the label appropriate for the first conjunct
(nsubj). However, by localizing the voice to the VP, it is possible to give separate
interpretations to the subject.6

At this point, it is clear that the addition of non-local rules makes it necessary to
introduce a notion of precedence between the local and non-local rules for a specific
function. We will formally address this question in Section 2.5.7. For now, it is enough
to note that non-local rules should precede local rules, and this is specified in the
semantics of dependency configurations.

2.5.2 Copula constructions

Copula constructions in GF-RGL are analysed in two steps: any of the Comp* functions
are used to convert phrases into copula complements (Comp in GF-RGL) followed
by UseComp function that converts this complement into a VP. The UseComp function
also introduces the copula verb into the VP (when necessary). The choice of copula
verb and its form is specified in concrete syntax and the abstract syntax tree does not
know exactly what the copula verb in the specific language is. This abstraction is
desired because the realization of copula constructions varies across languages. For
example, the linearization of the UseComp in Russian (so called zero-copula language)
doesnot contain a copula verb in present tense. The linearization rules in English,
Finnish and Swedish introduce the verbs is, on and är respectively. In the case of
Chinese and Thai, the copula verbs are restricted to only some selected complements.
Figure 2.14 shows the decorated parse tree in English for the sentence John is clever.
Notice the dummy dep label for the copula verb is obtained using abstract rules.

The UD scheme in the case of copula constructions annotates the copula verb as a
child of the complement using the cop label. In order to match this structure in our
mapping, we introduce a local concrete rule, that marks copula verbs using the cop
label. Shown below is the concrete rule specified for English:

UseComp head {"am", "is", "was",
"are", "were", "be", "been", "being"} cop head

This rule specifies that if any of the different forms of the copula verb in English (am,
is, was, are, were, be, been) are found under the functions in the spine corresponding
to the head of the UseComp function in the AST, they should be attached to the head
of the UseComp function using the cop label. The expression

6With the above local rules for PredVP, the AST for this example will yield the same dependency tree
as the UD tree, which is just what we wanted.

2.5. DEPENDENCY MAPPINGS: PROBLEMATIC CASES 59

Figure 2.14: Decorated parse tree for a copula construction in English

head {"am", "is", ...} cop head

specifies a single relabelling operation in the concrete rule.

2.5.3 Verb phrase complements and prepositional verbs
Let us look at one more example of these local concrete rules used in our mapping
for verb phrase complements and prepositional verbs. GF-RGL defines a different
function for complementation in case the argument is a verb phrase (these verbs are
marked as VV in RGL). The ComplVV function is used with verb phrase complements.
The ComplSlash function used for nominal objects additionally is also used for
prepositional verbs (listen to ...). For these verbs, the required case of the NP argument
is specified in the entry corresponding to the verb in the lexicon. This case information
is then propagated to the ComplSlash function (specifically the function stores this
information in a record with label c2).

Figure 2.15 shows the parse tree for the sentence I like to listen to music in
French. The verb like is an example of verb phrase complement and listen to is a
prepositional verb. Note that in both these functions, the infinitive marker to the verb
phrase complement and the case are abstracted from the AST, these are localized in
the concrete syntax (seen only in parse tree) of the language. The local abstract rules
shown in Table 2.1 map the head of these arguments to xcomp and dobj, but leave the
infinitive marker to and preposition for unlabelled.

ComplSlash head .c2 case dobj
ComplVV head {"to"} mark xcomp

The local rules above specify the following relabeling operations: for the ComplSlash
function, the preposition/case in the .c2 record field should be relabelled as a child of

60 CHAPTER 2. PAPER I: GF2UD

Figure 2.15: Decorated parse tree showing verb phrase complements and prepositional
verbs

the direct object (marked dobj) using the label case. In the ComplVV function, the
infinitive marker to is labelled using the mark label as a child of the verb complement.

2.5.4 Auxiliary verbs and verbal negation

Non-local concrete rules address dependencies of words introduced in the concrete
syntax where context inside the arguments of an abstract function are necessary to
determine the respective UD labels. In order to understand the necessity of these rules,
we will look at a concrete example (shown in Figure 2.16). The motivation in this
example is to address cases of auxiliary verbs constructed from tense in GF and clausal
negation in our mapping.

The decorated parse tree in Figure 2.16 shows the analysis provided by GF for
the sentence John had not slept. The parse tree for the clause John sleeps has the
same functions and categories as this sentence. Why is this? The Cl type resulting
from the predication (PredVP) function represents an untensed clause, in other words
a simple proposition. This proposition is transformed to a sentence when Tense and
Polarity arguments are given to the UseCl function along with an untensed clause
Cl. The UseCl function will then result in a sentence of type S. Note the PNeg value
for the polarity of the clause and the TPast,AAnter for the tense in our example. The
not appears due to the PNeg value and the auxiliary verb had due to the anteriority of
the tense. The tense parameter dictates the choice of auxiliary verbs and the polarity
parameter if not occurs in the clause. The equivalent UD labels are also shown in the
parse tree. It can be seen that the modifiers according to UD are not always in the
same sub-tree as the head (not modifies slept).

In order to make the mapping to UD labels, we need non-local concrete rules, as
the specific auxiliary verbs in a language are abstracted by the Tense parameters in the

2.5. DEPENDENCY MAPPINGS: PROBLEMATIC CASES 61

Figure 2.16: Decorated parse tree showing tense and clausal negation with the UD
labels

AST and are only available in concrete rules for the language. The non-locality is also
required to handle cases of negation.

(1) (UseCl ? PNeg ?) head {"not"} neg head
(2) (UseCl tense ? ?) head {*} aux head

The non-local rules for auxiliaries and copulas are defined as shown above. The
negation modifier (not) is introduced into the clause by the UseCl function if its
polarity argument has the PNeg value. The word not is introduced under the UseV
function, which lies on the spine corresponding to the head of the UseCl function.
The same is also true for auxiliary verbs, they are introduced by the Tense parameter
under the UseV function. For clausal negation, the edge between the head word of the
UseCl function and the word not is labelled using the neg label, with not as the child.
Similarly, auxiliary verbs introduced by the Tense argument to the UseCl function,
irrespective of what exactly is the auxiliary are always connected to the head using
the aux label. The {*} in the rule specifies that all and any auxiliary verbs can be
matched in this relabelling operation.

2.5.5 Multi-word expressions
One of the UD taxons we haven’t discussed yet are cases of multi-word expressions
and some instances of compounding. Compounding encompasses a wide range of
linguistic phenomena, from compound nouns and phrasal verbs to non-compositional
multi-word expressions. In the UD scheme, this also includes foreign language phrases
and two parts of a single word in poorly written text. The annotation of compound
nouns in UD (for example phone book, agent provocateur) is fairly consistent across
languages. However, there is variation in annotations of phrasal verbs. This is not
surprising given the variety of "phrasal verb" constructions in different languages.

In the GF-RGL, compounds are handled in two different ways: compositional com-
pounds are analysed using the functions in RGL mentioned previously CompoundN and

62 CHAPTER 2. PAPER I: GF2UD

CompoundAP (for example control systems, language independent). Other compounds
i.e. non-compositional compounds are addressed inside the lexicon specific to a lan-
guage. The analyses provided to these types of compounds is very much dependent on
the concrete syntax of the language, whether the translation in the specific language
is compositional or not. It is also possible that the translation is simply lexicalized,
without any compounding in a languages. For these reasons, the abstract syntax shared
for these compounds is only the function name, specific analysis of the compound is
localized in the concrete syntax. This is because languages allow for discontinuous
compounds, particularly in cases of phrasal verbs and light verb constructions (for
example shut off in shut it off, shut off the TV).

We provide three dependency labels for all these compounding phenomena in our
mapping, it can either be a compound, mwe or goeswith. However, unlike the local
abstract rules for the functions that correspond to compositional compounds, these
labels are defined on the concrete syntax of a specific language. Shown below are
the local concrete rules used for particle verbs shut off and multi-word expressions
according to and in front of.

shut_off_V2 head {"off"} compound head
according_to_Prep head {"to"} mwe head
in_front_of_Prep head {"front", "of"} mwe head

The relabelling operation in the case of shut_off_V2 specifies that the particle off be
added as a child to shut with a compound label. Similarly, for in_front_of_Prep,
edges from in to front and of are relabelled using the mwe operation. In all these
cases, it is implicitly understood that the first word (shut, according, in) is the head
of the function. This is in sync with the current UD annotation scheme in its current
form. However, the rule specification format is flexible to allow a different choice
of the head, say for example, a semantic head for multi-word expressions. The UD
annotation scheme where multi-word expressions are concerned might be revised in
the future, and our current mapping scheme allows room for any such changes.

2.5.6 Idiomatic and Semantic (CxG) Constructions

Finally, we discuss semantic constructions that are commonly found in languages and
can be translated idiomatically in languages. We discussed at the beginning of this
section how GF-RGL defines functions for constructions like existential clauses (there
is a blue house on the hill) or cleft sentences (it is money that was owed to him). There
is also a small subset of semantic constructions defined in GF-RGL. One example of
these semantic constructions is a function that accepts a number, say 10 and renders
the semantic linearization of the VP is 10 years old in a specific language.

has_age_VP n -- (someone) "is" n "years old"

We define the mappings to UD labels over these semantic constructions defined in the
RGL. In order to construct the fully connected UD trees, it is necessary to define both
abstract rules and concrete rules over these functions. The rules used for the ExistNP
function are shown below. The expletive pronoun there is marked using the expl and
the copula verb indicating tense has the label cop.

ExistNP head {"there"} expl head ; head {*} cop head

2.5. DEPENDENCY MAPPINGS: PROBLEMATIC CASES 63

Notice that in these examples, the concrete mappings specify more than one relabelling
operation. This is possible and the ; is used as a separator between different operations.
The conversion algorithm carries out each of these operations in the order specified by
the mapping.

2.5.7 Dependency conversion algorithm and specification language

We show the exact dependency configuration syntax used to specify the mappings to
UD scheme and more generally to any dependency annotation scheme in Figure 2.19
(in Appendix). The figure shows the BNF fragment specifying the syntax of the
configuration rules.

In the case of local rules, both abstract and concrete, the key to the mapping is the
abstract syntax function name Fun that specifies where the mapping should be applied.
Similarly for non-local rules, this key is extended from Fun to a pattern of expression
that matches sub-trees. Each arg in the non-local rule is a pattern for the arguments
of Fun, the number of such patterns being the same as the number of arguments. The
? character is used to indicate match everything.

For abstract rules, the mapping is a list of labels of the same size as the number of
arguments to function. The items in these lists are any of the labels specified according
to the annotation scheme or the special label head that encodes what is the head
corresponding to the abstract function. By definition, there should be one and only
one head in each mapping specified.

The mapping in the case of concrete rules is a list of relabelling operations. The
number of these operations specified by a single rule depends on the number of lexical
items introduced by the concrete syntax in the language that are hidden in the AST.
There are three possible relabelling operations defined: renaming an existing edge
with a new label (retains the already encoded head-modifier relationship), renaming
an existing edge after modifying the direction of the edge with a new label or adding a
completely new edge that did not exist before. Examples of all three operations have
been shown before. Each relabelling operation is specified as

Label Part Label Label

The first Label in a relabelling operation is a label specified in the abstract rules,
to indicate functions(s) in the AST marked with Label. This specifies a spine in the
AST used to locate functions under which syncategorematic words can be found. Part
specifies either a set of words (in the case of copula verbs) or a record label (in the case
of prepositional verbs) or a * to match all lexical items introduced under a function in
the AST. The remaining two Label specify the label of the modifier and the label of
the head in the AST in that order.

The precedence of the local and non-local rules corresponding to a function Fun
is defined in the same order as they are specified in the configuration syntax. In
other words, non-local rules that must be applied before are specified before the local
rules. By choosing to put this in the configuration, we do not modify the conversion
algorithm to specially handle non-local rules.

With this dependency configuration syntax, the dependency conversion algorithm
is extended to derive the complete UD tree. In Section 2.2, the conversion method
given an AST T and a word sequence S to its corresponding dependency tree was
described. The algorithm is divided into two separate steps: conversion using the

64 CHAPTER 2. PAPER I: GF2UD

abstract rules and the concrete rules in that order. Algorithm 1 (in Appendix) describes
the extended conversion algorithm we used in this paper.

2.6 Experiments
In our experiments, we focus on evaluating two things: the mapping proposed in this
paper to convert GF trees into UD dependency trees and subsequently how much the
abstract syntax in GF-RGL and the mapping is useful in bootstrapping treebanks. We
carry out experiments to evaluate the correctness of our mapping and to understand
the systematic similarities between GF-RGL and the UD annotation scheme.

In the first set of experiments, using mappings defined on the abstract syntax alone
(both local and non-local rules), we bootstrap dependency trees for 31 languages from
a treebank of ASTs. Analyses of these bootstrapped treebanks give insights about the
UD scheme and the GF-RGL. The lack of concrete local and non-local rules for a
specific language result in trees that resemble collapsed dependency trees (de Marneffe
and Manning, 2008, Ruppert et al., 2015) by deleting the dummy dep labels. Due
to the lack of concrete rules so far, the bootstrapped treebanks for languages other
than English do not contain labels for syncategorematic words, and these dep labels
are collapsed. Figure 2.17 shows examples of bootstrapped and “collapsed” UD trees
for Swedish and Bulgarian in the context of this work. When defined, the concrete
rules “decollapse” these trees by introducing the right UD labels for syncategorematic
words.

2.6.1 UD test treebank
In order to evaluate the mapping described in this paper, we created two treebanks of
ASTs. The first treebank was constructed using examples in UD annotation guidelines
for English dependency relations 7. The ASTs from the GF parser (Angelov and
Ljunglöf, 2014) were post-edited to correct the ambiguity choices in these examples.
The collection of examples from the UD guidelines ensure good coverage of the
dependency relations proposed in UD scheme. Similarly, in an attempt to maximize the
coverage of functions defined in the GF-RGL, we created a second treebank composed
of minimal examples used to document the linguistic usage of abstract functions in
writing resource grammars for new languages8. The second treebank is relevant for
two purposes: the ASTs from the GF-RGL documentation ensure full coverage over
the GF interlingua, and also provide minimal examples/test-cases for purposes of UD
documentation. These can be used as unit tests to validate the UD annotation efforts.
Unit tests are typically used in software engineering to validate the software i.e. if the
actual output of the system matches the expected result. Additionally, these examples
can be compositionally combined to automatically create a treebank of ASTs which
can then be bootstrapped to UD treebanks for languages in GF. We refer to the former
treebank as UD treebank and the latter as GF treebanks here, these should not be
confused with the treebanks provided in the UD and GF distribution. Using both these
treebanks we evaluate the precision of the mapping and make qualitative analyses.

The UD treebank contains a total of 104 ASTs, 66 ASTs that are covered by
RGL and 38 ASTs that use the robust back-up rules in the grammar enabled for wide

7http://universaldependencies.github.io/docs/en/dep/all.html
8http://www.grammaticalframework.org/lib/doc/synopsis.html

http://universaldependencies.github.io/docs/en/dep/all.html
http://www.grammaticalframework.org/lib/doc/synopsis.html

2.6. EXPERIMENTS 65

coverage parsing and translation. As these examples are hand-picked to document
the annotation guidelines for UD treebanks, the treebank does not have a specific
genre. We will report the precision of the mapping rules separately for these two
sets. One reason to set apart these two sets is the ad-hoc nature of recovering UD
labels in case of rules corresponding to chunking that are a small part of the robust
back-up rules. Another reason is that these rules are implemented only for 15 of the
31 languages covered by the core RGL. So, the subset of ASTs covered by the RGL
are bootstrapped into all 31 languages while the rest of them are bootstrapped into
only 15 languages. Many of these examples have been used previously in this paper as
examples in Section 2.3, Section 2.4 and Section 2.5.

The GF treebank contains a total of 400 ASTs, that are covered by the core RGL.
These examples are used to document the usage of abstract functions while writing
concrete rules for a new language. Hence, these examples provide a complete coverage
over the RGL-grammar and are minimal examples of different linguistic phenomena
that can be tested for cross-lingual consistency in UD annotations. We bootstrap this
treebank into all 31 languages in the RGL (these examples have been previously used
in this paper in Tables 2.1 and other tables).

2.6.2 Evaluation

Local Non-local
Abstract 132 11
Concrete 17 29

Table 2.8: Distribution of rules for English according to their types

The complete mapping described in this paper, contains a total of 185 rules, 143 of
which are defined on the abstract syntax. The remaining 46 rules are defined as either
concrete local and non-local rules for English. Table 2.8 shows the distribution of the
rules in the complete mapping for English. It is necessary to define concrete rules for
each language to construct fully labelled UD trees.

Figure 2.17 shows an example of bootstrapped trees for the Swedish, Finnish and
Bulgarian translations of the English sentence John was killed generated using only
the rules defined on the abstract syntax. Also shown is the full UD tree for the English
sentence generated using both the abstract and concrete mappings.

Analyses of English dependency trees

The converted UD trees in the UD treebank have a 99% labelled attachment score
(LAS) to the gold UD trees. The dissimilarities in English occur only in two cases:
modal verbs and noun phrases, specifically noun phrases with nummod labels. A
100% LAS score is achieved by adding additional rules to handle modal verbs in our
mappings. While our mappings with these additional rules result in perfect matching
with the UD trees, we look at these two specific cases in some detail below.

The UD annotation guidelines treat modal verbs in English the same way as
auxiliary verbs, with a POS tag AUX and aux label. The lexical features of the word
indicate its modality feature, but the label assigned is the same as auxiliary verbs.
This is expected since modal verbs in English are realized as auxiliaries in English.

66 CHAPTER 2. PAPER I: GF2UD

Figure 2.17: Bootstrapped UD trees in Swedish, Finnish and Bulgarian and the
complete UD tree in English. The trees on the right are the collapsed variants of the
bootstrapped trees.

However, modal verbs in other languages can be realized in inflectional variants of the
main verb, for instance, English would as conditional forms in French.

Non-auxiliary modal verbs in GF receive a structure that is shared across languages:
they are verbs of the category VV, i.e. verbs that take VP complements, similar to
verbs like want or like in I want to ask you something and I like to run. This analysis of
modal verbs from GF-RGL maps the modal verb to the head and the main verb to the
xcomp label as a child of the modal verb using the mapping defined for the ComplVV
function (complementation using non-finite arguments). The labels to the arguments
of the main verb remain the same though.

It is possible to give modals in English the aux label by adding non-local abstract
rules for the ComplVV function to match only modals:

(ComplVV can_VV ?) aux head
(ComplVV must_VV ?) aux head

However, by defining these mappings on the abstract functions, we would map modal
verbs in all the thirty languages to the aux label, even in languages where modal verbs
are not realized as auxiliary verbs. The UD treebanks in some languages treat the
modal verb as the head of the clause, while other languages treat them consistently
as auxiliaries (English and Swedish in particular). The problem is that modal verbs
are not always realized as auxiliaries across languages. For instance, can and must in

2.6. EXPERIMENTS 67

English translate to pouvoir (or savoir) and devoir in French, which are semantically
modal but work otherwise just like normal verbs. In the other direction, want is not
modal in English, but its equivalent wollen in German is. The RGL choice is to have a
uniform abstract category VV of VP-complement verbs and to treat the property of
being “modal” in the concrete syntax of each language9.

Alternatively, the mapping of modal verbs can be addressed using concrete rules
specific to a language. This allows our conversion method to address the differences in
the way modal verbs are treated in different languages in UD. These rules are shown
below. These concrete rules relabel the edges of the converted tree in the case of modal
verbs to obtain the exact UD tree. What these rules say is that the head of the ComplVV
function i.e modal verbs in this case (can or must) are relabelled using the aux label
while the other argument i.e. the verb is relabelled to be the head of the ComplVV
function. Defining the mapping for modal verbs using concrete rules for English is the
best way to address the different annotations used for modal verbs.

(ComplVV can_VV ?) head {*} aux head; xcomp {*} head head
(ComplVV must_VV ?) head {*} aux head; xcomp {*} head head

The other divergence from UD is in the case of noun phrases with numerical modifiers:
UD annotation scheme treats all numerical modifiers occurring in NPs as modifiers
of the head noun using the nummod label. While this is valid in almost all cases, it
is possible for the number to require another label than a modifier. For example the
phrase level 3 is treated as a compound in GF, one where both level and 3 contribute to
the meaning. We retain this analysis by mapping this to the compound label, rather
than using the nummod label. Also, in instances of how noun phrases with numerical
heads, as in the case of these five will come with me, there is a difference in how the
NPs are analysed. As explained previously, we treat the quantifier as the head in the
DetQuant function, as such these modifiers are attached to the quantifier using the
nummod label. These can be addressed using non-local abstract rules for the DetCN
function where the Det argument is an ordinal number.

Analyses of bootstrapped dependency trees

Table 2.9 shows the percentage of labelled edges in the bootstrapped treebanks. We
report these numbers by calculating the fraction of edges in the treebank for the
language labelled using the dep relation. The numbers in turn suggest the reduction in
UD annotation efforts by bootstrapping using the GF RGL and wide-coverage abstract
syntax. Note here that for these bootstrapping experiments, we only use the rules on
abstract syntax (for all languages, English especially). One interesting result is that
partial UD treebanks can be obtained even for languages with incomplete grammars.
If the linearization rules for all the functions defined by the core RGL are missing
in the concrete syntax for a specific language, we say that the RGL grammar for the
specific language is incomplete. In Table 2.9, Amharic is one example of a language
with an incomplete grammar implementation.

In the case of the UD treebank, it can be seen that on average across all languages,
about 80% of the edges are labelled with the UD labels from the RGL bootstrapped
treebanks. There is a decrease in this when we go to the wide coverage treebank. This
is because of the semantic constructions introduced in the wide coverage grammars,

9More concrete syntax distinctions are needed in languages like Finnish, where VV can take its comple-
ment in at least five different infinitival forms, and Hindi, where modal verbs interfere with verbalizers.

68 CHAPTER 2. PAPER I: GF2UD

Language UD treebank GF treebankRGL Wide-coverage
Afrikaans 81.57 - 81.73
Amharic 73.60 - 75.29
Bulgarian 76.60 80.53 88.13
Catalan 82.18 76.13 83.10
Chinese 84.89 77.33 82.46
Danish 80.49 - 87.45
Dutch 83.62 68.10 84.23
English 84.12 81.17 93.13
Estonian 82.38 79.10 86.52
Finnish 81.84 74.09 91.27
French 82.81 79.61 93.47
German 83.09 77.47 95.27
Greek 83.09 - 88.13
Hindi 72.63 69.34 84.18
Italian 81.79 77.52 90.47
Japanese 71.39 71.09 84.94
Latvian 72.11 - 89.10
Maltese 83.92 - 90.29
Mongolian 72.22 - 87.34
Nepali 82.91 - 83.19
Norwegian 80.37 - 86.36
Persian 83.87 - 84.40
Punjabi 72.37 - 82.82
Polish 83.05 - 87.38
Romanian 69.58 - 86.75
Russian 87.30 - 87.92
Sindhi 68.21 - 84.59
Spanish 81.41 79.15 91.28
Swedish 82.56 83.05 93.89
Thai 83.72 73.12 85.29
Urdu 72.86 - 84.67

Table 2.9: Percentage of completeness in the bootstrapped dependency treebanks.
The Amharic grammar (underlined) is incomplete, i.e. does not implement all RGL
functions.

2.6. EXPERIMENTS 69

necessary to achieve the abstractions required for interlingua-based MT. These con-
structions require concrete mappings in order to construct the dependency trees. In
comparison, the GF treebank results in much better scores. The percentage of labelled
edges is higher in the GF treebank because syncategorematic words have a much lesser
incidence in the unit tests corresponding to functions defined in the GF-RGL.

From the collapsed trees in the bootstrapped treebanks, we primarily learned that
the missing labels correspond to auxiliary verbs and copula verbs in most instances.
The fact that these are frequent in all languages is clearly the reason for this. But this
also suggests that defining a very small fragment of concrete non-local rules will give
us huge improvements in connecting the bootstrapped treebanks with the correct UD
labels.

A full investigation of the quality of these bootstrapped treebanks is pending due
to the lack of manually annotated UD treebanks for this collection of languages.

2.6.3 GF Penn Treebank

Previous work on parsing in GF has resulted in a version of the Penn treebank mapped
to the GF-RGL functions (Angelov and Ljunglöf, 2014). The GF-Penn treebank was
created by mapping the annotation schema used in Penn treebanks with the abstract
functions in the RGL using hand-crafted rules. This treebank is used to train statistical
models for disambiguation in the parser and the wide-coverage translator. In cases
where a fragment of the sentence is not covered by the grammar, the resulting AST
is a tree, except that the missing functions in the grammar are replaced by missing
nodes. Hence, the GF-Penn treebank is a GF annotation of the trees in the original
Penn treebank where constructions outside the scope of the grammar are marked
using a default function indicating incompleteness of the grammar. Nonetheless,
the partially complete trees in the GF-Penn treebank are useful in estimating the
probability distributions over the grammar.

We performed experiments with converting the GF treebank into the UD annotation
scheme using our mapping. The entire treebank has about 5% of missing functions, on
average each such function has two arguments. So, 10% of the edges on average are
simply assigned the dep label because the algorithm can not determine the mapping
corresponding to this function. We did not make any changes to the mappings or the
conversion procedure to address the case of missing nodes.

The converted treebank is evaluated against a UD version of the Penn treebank,
these UD annotations are obtained from the Stanford parser distribution (de Marneffe
and Manning, 2008, de Marneffe et al., 2014). We evaluate our converted treebank
against this UD treebank by computing labelled attachment scores used in evaluating
dependency parser performance. This metric calculates the percentages of edges in the
treebank that are attached to their correct head and assigned the correct dependency
label. Table 2.10 shows the LAS scores on Sections 22, 23 and 24 of the GF-Penn
treebank, against standard partitions of the Penn treebank that are used to report parser
accuracies.

Analysis of the converted UD treebank showed three major reasons for failure to
map the entire treebank to the UD labels.

i) About 5% of the edges in these sections are wrongly labelled due to divergence
in our mapping from UD annotation scheme. Most of these correspond to the
treatment of modal verbs (mentioned previously) and a small fraction of these

70 CHAPTER 2. PAPER I: GF2UD

Section LAS
WSJ-22 81.34
WSJ-23 83.21
WSJ-24 85.12

Table 2.10: LAS scores to compare our mappings to UDs against Penn UD treebank

edges correspond to numerical modifiers mapped as children of the quantifiers in
our mapping.

ii) About 7% of the wrongly labelled edges correspond to proper nouns in the corpus.
The UD annotation scheme selects the first token in a name to be the head and
all the rest of the tokens in the name are labelled using the name label. Contrary
to this, GF treats the entire name as a single token and does not assign edges
between tokens in a proper noun.

iii) About 7% of the edges are wrong labelled due to the missing functions in the
GF treebank. We mentioned previously we did not make any changes to the
conversion algorithm or the mappings to address these cases.

2.7 Conclusion
In this paper, we investigate the similarities and differences between GF-RGL and
Universal Dependencies (UDs). Our main result is a conversion from GF-RGL abstract
syntax trees to UD dependency trees.

The conversion from abstract syntax trees in GF to UD trees is parameterized by a
mapping defined on functions in the abstract syntax, to encode the notion of “head”
and the grammatical relation of other modifiers with respect to the head. The mapping
described in this work has has two levels – rules defined on the abstract syntax and
rules defined on the concrete syntax. Rules defined on the abstract syntax are by
definition language-independent and “shared”. However, rules defined on concrete
syntax are defined for each language separately, even if the UD labels for these may
be shared across languages. Furthermore, both abstract and concrete rules have two
types – “local” and “non-local”. In the case of “local” rules, the mapping between
function and its arguments and their UD annotations (both the identity of head and the
UD labels) is determined using only the function, unlike “non-local” rules where a
mapping applies only in certain contexts.

The mapping from GF-RGL to UDs showed that a large part of the GF-RGL and
UD annotation scheme is language-independent. About 30 of the 40 UD labels are
mapped using the abstract “local” and “non-local” rules in our experiments. These
parts of both GF-RGL and UD scheme can be said to be language-independent. The
parts of the mapping defined on the concrete syntax interestingly falls into two taxons
within the UD annotation scheme (clausal dependents such as aux, auxpass, cop,
mark, expl and compounding labels compound, mwe).

One application of the conversion detailed in this paper is to automatically create
UD treebanks from GF treebanks. Our experiments using a small treebank showed
that about 80% of UD treebank annotations can be ported using the abstract syntax in
GF-RGL. The remaining annotations can also be derived from GF, provided a small

2.8. APPENDIX: GF-RGL AND UD REFERENCE 71

effort is put into defining concrete rules in the mapping for languages of interest.
Other plausible applications and future directions of our work include multilingual
consistency checking in the UD annotated treebanks and using these treebanks to
estimate probabilistic ranking of GF abstract syntax trees.

Acknowledgements

We would like to thank Krasimir Angelov, Filip Ginter, Richard Johansson, Joakim
Nivre and the two anonymous referees for their valuable comments and suggestions.
Special thanks to Annie Zaenen for her technical comments in addition to all editorial
help. The research was funded by the REMU project (Reliable Multilingual Digital
Communication, Swedish Research Council 2012-5746).

2.8 Appendix: GF-RGL and UD Reference

This Appendix gives a listing of GF-RGL categories and UD tags and labels.

2.8.1 GF-RGL categories

Figure 2.18 shows the hierarchy of categories in the core RGL. The same picture
appears in (Ranta, 2011), whereas Ranta (2009b) provides a systematic linguistic
discussion of the RGL categories and functions. Table 2.11 lists the same categories
with explanations, minimal linguistic examples and corresponding UD parts of speech.

Figure 2.18: The categories of core RGL.

72 CHAPTER 2. PAPER I: GF2UD

Category Explanation Example UD POS
A adjective old ADJ
AP adjectival phrase very warm phrasal
Adv adverb or adverbial phrase in the house ADV
Ant anteriority simultaneous, anterior syncat
CN common noun (without determiner) red house phrasal
Card cardinal number seven NUM
Cl declarative clause, with all tenses she looks at this phrasal
Comp complement of copula, such as AP very warm phrasal
Conj conjunction and CONJ
Det determiner phrase those seven DET,phrasal
IAdv interrogative adverb why ADV
IComp interrogative complement of copula where phrasal
IDet interrogative determiner how many DET,phrasal
IP interrogative pronoun who PRON
Imp imperative look at this phrasal
Interj interjection alas INTJ
N common noun house NOUN
NP noun phrase (subject or object) the red house phrasal
Num number determining element seven phrasal
Numeral cardinal or ordinal in words five/fifth NUM
Ord ordinal number (used in Det) seventh NUM
PConj phrase-beginning conjunction therefore CONJ
PN proper name Paris PROPN
Phr phrase in a text but be quiet please phrasal
Pol polarity positive, negative syncat
Predet predeterminer (prefixed Quant) all DET
Prep pre/postposition, or just case in ADP
Pron personal pronoun she PRON
Punct punctuation mark ! PUNCT
QCl question clause, with all tenses why does she walk phrasal
QS question where did she live phrasal
Quant quantifier (’nucleus’ of Det) this/these DET
RCl relative clause, with all tenses in which she lives phrasal
RP relative pronoun in which PRON
RS relative clause, tense fixed in which she lived phrasal
S declarative sentence she lived here phrasal
SC embedded sentence or question that it rains phrasal
Subj subjunction if SCONJ
Temp temporal and aspectual features past anterior syncat
Tense tense present, past, future syncat
Text text consisting of several phrases He is here. Why? phrasal
Utt sentence, question, word... be quiet phrasal
V one-place verb sleep VERB
V2 two-place verb love VERB
V2V verb with NP and V complement cause VERB
V3 three-place verb show VERB
VA adjective-complement verb look VERB
VP verb phrase is very warm phrasal
VPSlash verb phrase missing complement give to John phrasal
VQ question-complement verb wonder VERB
VS sentence-complement verb claim VERB
VV verb-phrase-complement verb want VERB
Voc vocative my darling phrasal

Table 2.11: Main RGL categories and corresponding UD POS tags. The tag "phrasal"
means that the category has only complex phrases. "syncat" means that the category is
linearized to abstract features, to which words are assigned syncategorematically.

2.8. APPENDIX: GF-RGL AND UD REFERENCE 73

2.8.2 UD tags and labels
Table 2.12 shows the hierarchy of core UD labels used to annotate treebanks in
the UD annotation project. Table 2.13 shows the universal part-of-speech tags and
the morphological features annotated in the UD treebanks. We recommend the UD
Documentation 10 for readers interested in further details about the UD annotation
efforts.

Core dependents of clausal predicates
Nominal dep Predicate dep
nsubj csubj
nsubjpass csubjpass
dobj ccomp xcomp
iobj
Non-core dependents of clausal predicates
Nominal dep Predicate dep Modifier word
nmod advcl advmod

neg
Special clausal dependents
Nominal dep Auxiliary Other
vocative aux mark
discourse auxpass punct
expl cop
Noun dependents
Nominal dep Predicate dep Modifier word
nummod acl amod
appos det
nmod neg
Case-marking, prepositions, possessive
case
Coordination
conj cc punct
Compounding and unanalysed
compound mwe goeswith
name foreign
Loose joining relations
list parataxis remnant
dislocated reparandum
Other
Sentence head Unspecified dependency
root dep

Table 2.12: Dependency labels used in UD, organized as a taxonomy, as shown in
Nivre et al. (2016)

10http://universaldependencies.org/docs/

http://universaldependencies.org/docs/

74 CHAPTER 2. PAPER I: GF2UD

Open class words Closed class words Other
ADJ adjective ADP preposition/postposition PUNCT punctuation
ADV adverb AUX auxiliary SYM symbol
INTJ interjection CONJ coordinating conjunction X unspecified POS
NOUN noun DET determiner
PROPN proper noun NUM numeral
VERB verb PART particle

PRON pronoun
SCONJ subordinating conjunction

Lexical Inflectional
(Nominal) (Verbal)

PronType Gender VerbForm
NumType Animacy Mood
Poss Number Tense
Reflex Case Aspect

Definite Voice
Degree Person

Negative

Table 2.13: Top table shows the Part-of-speech tags in UD. Table below shows
morphological features in UD. Both tables shown verbatim as-in Nivre et al. (2016)

2.9 Appendix: Dependency conversion algorithm and
specification language

Figure 2.19 shows the BNF grammar of dependency configurations.

Rule ::= Fun Label+
| Fun Relabels
| Tree Label+
| Tree Relabels

Relabels ::= Relabel ; Relabels
| Relabel

Relabel ::= Label Part Label Label
Part ::= "." Field

| "(" Words ")"
| "{*}"

Tree ::= "(" Fun Arg* ")"
Arg ::= "(" Tree ")"

| "?"
Fun ::= Ident
Label ::= Ident
Words ::= QuotedString

| QuotedString "," Words

Figure 2.19: BNF specification of the dependency configuration syntax. Label+ refers
to one or more labels using the syntax of regular expressions.

Shown in Algorithm 1 is the conversion algorithm used to obtain dependency trees
from abstract syntax trees.

2.9. APPENDIX: DEPENDENCY CONVERSION ALGORITHM AND SPECIFICATION LANGUAGE 75

Data: Abstract syntax tree T, configuration on abstract syntax Cabstract and concrete
syntax Cconcrete

Result: Dependency tree D
Decorate T with labels to get TL and list of concrete
configurations

TL, concreterelabels← decorate(T)
Convert TL to dependency tree D
Dpartial← getdependencies(TL)
Apply concrete mappings to get complete dependency tree
UD← relabeledges(Dpartial, concreterelabels)

Function decorate(tree)
decoratedtree← tree
concreterelabels← Table() # initialize an empty table
foreach node in AST tree do

funcontext← get subtree dominated by node
funname← get function name at node
abstractconfigs← Cabstract [funname]
for config in abstractconfigs do

context, labels← unpack(config)
if match(context, funcontext) then

add labels to children of node in decoratedtree
break loop

concreteconfigs← Cconcrete[funname]
for config in concreteconfigs do

context, relabelops← unpack(config)
if match(context, funcontext) then

store relabelops for node in table concreterelabels
break loop

return decoratedtree, concreterelabels

Function getdependencies(tree)
D← DependencyTree() # initialize an empty dependency tree
foreach word in Linearization(tree) do

find lowest node parent in tree spanning the word
foreach leaf in AST T do

find UD label by traversing unlabelled edges up the AST
find head by traversing unlabelled edges from the dominating node
store the word, parent, head function and UD label in D

return D

Function relabeledges(deptree, concreterelabels)
foreach node in Table concretelabels do

relabelops← concreterelabels[fun]
foreach relabelop in relabelops do

(label, words, newlabel, newhead)← unpack(relabelop)
for word in children of node in deptree do

if word matches words then
assign new UD label newlabel and head newhead in deptree

return deptree
Algorithm 1: Algorithm for converting ASTs to dependency trees

76 CHAPTER 2. PAPER I: GF2UD

Data: Context for a node in AST nodecontext and context pattern in configuration
configcontext

Result: True or False

remove branches from nodecontext that are not heads from node context
foreach arg in nodecontext do

pat← next(configcontext) # pattern of next argument
if argmatch(arg, pat) then

return False;
return True;

Function argmatch(tree, treepattern)
if treepattern is "?" then

return True # match everything
funname, patargs = unpack(treepattern)
topnode, args = unpack(tree)
if funname does not match name of topnode then

return False
else

if patargs is Empty then
return True # Local rule

foreach argument in args and pat in patargs do
if not argmatch(argument, pat) then

return False
return True

Algorithm 2: Algorithm used to match contexts in configurations to AST

Chapter 3

Paper II: ud2gf

From Universal Dependencies to Abstract Syntax
Aarne Ranta and Prasanth Kolachina

Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies (UDW
2017), pp. 107–116.

77

Abstract
Abstract syntax is a tectogrammatical tree representation, which can be shared between
languages. It is used for programming languages in compilers, and has been adapted to
natural languages in GF (Grammatical Framework). Recent work has shown how GF
trees can be converted to UD trees, making it possible to generate parallel synthetic
treebanks for those 30 languages that are currently covered by GF. This paper attempts
to invert the mapping: take UD trees from standard treebanks and reconstruct GF
trees from them. Such a conversion is potentially useful in bootstrapping treebanks by
translation. It can also help GF-based interlingual translation by providing a robust,
efficient front end. However, since UD trees are based on natural (as opposed to
generated) data and built manually or by machine learning (as opposed to rules), the
conversion is not trivial. This paper will present a basic algorithm, which is essentially
based on inverting the GF to UD conversion. This method enables covering around 70%
of nodes, and the rest can be covered by approximative back up strategies. Analysing
the reasons of the incompleteness reveals structures missing in GF grammars, but also
some problems in UD treebanks.

78 CHAPTER 3. PAPER II: UD2GF

The abstract syntax defines a set of categories,
such as CN (Common Noun) and AP (Adjec-
tival Phrase), and a set of functions, such as
ModCN (modification of CN with AP):
cat CN ; AP
fun ModCN : AP -> CN -> CN
A concrete syntax defines, for each category,
a linearization type, and for each function, a
linearization function; these can make use of
parameters. For English, we need a parameter
type Number (singular or plural). We define
CN as a table (similar to an inflection table),
which produces a string as a function Number
(Number=>Str). As AP is not inflected, it is
just a string. Adjectival modification places the
AP before the CN, passing the number to the
CN head of the construction:
param Number = Sg | Pl
lincat CN = Number => Str
lincat AP = Str
lin ModCN ap cn = \\n => ap ++ cn ! n
In French, we also need the parameter of gender.
An AP depends on both gender and number. A
CN has a table on Number like in English, but
in addition, an inherent gender. The table and
the gender are collected into a record. Adjec-
tival modification places the AP after the CN,
passing the inherent gender of the CN head to
the AP, and the number to both constituents:
param Gender = Masc | Fem
lincat CN = {s : Number => Str ;

g : Gender}

lincat AP = Gender => Number => Str
lin ModCN ap cn = {

s = \\n => cn ! n ++
ap ! cn.g ! n ;

g = cn.g
}

Context-free grammars correspond to a special
case of GF where Str is the only linearization
type. The use of tables (P=>T) and records
({a : A ; b : B}) makes GF more expres-
sive than context-free grammars. The distinc-
tion between dependent and inherent features,
as well as the restriction of tables to finite pa-
rameter types, makes GF less expressive than
unification grammars. Formally, GF is equiva-
lent to PMCFG (Parallel Multiple Context-Free
Grammars) (Seki et al., 1991), as shown in
(Ljunglöf, 2004), and has polynomial parsing
complexity. The power of PMCFG has shown
to be what is needed to share an abstract syntax
across languages. In addition to morphological
variation and agreement, it permits discontinu-
ous constituents (used heavily e.g. in German)
and reduplication (used e.g. in Chinese ques-
tions). The GF Resource Grammar Library
uses a shared abstract syntax for currently
32 languages (Indo-European, Fenno-Ugric,
Semitic and East Asian) written by over 50
contributors.
Software, grammars, and documen-
tation are available in http://www.
grammaticalframework.org

Figure 3.1: GF in a nutshell. The text works out a simple GF grammar of adjectival
modification in English and French, showing how the structure can be shared despite
differences in word order and agreement.

3.1 Introduction

GF (Grammatical Framework (Ranta, 2011)) is a formalism for multilingual gram-
mars. Similarly to UD (Universal Dependencies, (Nivre et al., 2016)), GF uses shared
syntactic descriptions for multiple languages. In GF, this is achieved by using ab-
stract syntax trees, similar to the internal representations used in compilers and
to Curry’s tectogrammatical formulas (Curry, 1961). Given an abstract syntax tree,
strings in different languages can be derived mechanically by linearization functions
written for that language, similar to pretty-printing rules in compilers and to Curry’s
phenogrammatical rules. The linearization functions of GF are by design reversible to
parsers, which convert strings to abstract syntax trees. Figure 3.1 gives a very brief
summary of GF to readers unfamiliar with GF.

In UD, the shared descriptions are dependency labels and part of speech tags
used in dependency trees. The words in the leaves of UD trees are language-specific,
and languages can extend the core tagset and labels to annotate constructions in the

http://www.grammaticalframework.org
http://www.grammaticalframework.org

3.1. INTRODUCTION 79

Figure 3.2: Conversions between UD trees, GF trees, and surface strings in English
and French.

language. The relation between trees and strings is not defined by grammar rules,
but by constructing a set of example trees—a treebank. From a treebank, a parser is
typically constructed by machine learning (Nivre, 2006). There is no mechanical way
to translate a UD tree from one language to other languages. But such a translation
can be approximated in different ways to bootstrap treebanks (Tiedemann and Agic,
2016).

GF’s linearization can convert abstract syntax trees to UD trees (Kolachina and
Ranta, 2016). This conversion can be used for generating multilingual (and parallel)
treebanks from a given set of GF trees. However, to reach the full potential of the
GF-UD correspondence, it would also be useful to go to the opposite direction, to
convert UD trees to GF trees. Then one could translate standard UD treebanks to new
languages. One could also use dependency parsing as a robust front-end to a translator,
which uses GF linearization as a grammaticality-preserving backend (Angelov et al.,
2014), or to a logical form generator in the style of (Reddy et al., 2016), but where
GF trees give an accurate intermediate representation in the style of (Ranta, 2004a).
Figure 3.2 shows both of these scenarios, using the term gf2ud for the conversion of
Kolachina and Ranta (2016) and ud2gf for the inverse procedure, which is the topic of
this paper.

GF was originally designed for multilingual generation in controlled language
scenarios, not for wide-coverage parsing. The GF Resource Grammar Library (Ranta,
2009b) thus does not cover everything in all languages, but just a “semantically
complete subset”, in the sense that it provides ways to express all kinds of content,
but not necessarily all possible ways to express it. It has therefore been interesting
to see how much of the syntax in UD treebanks is actually covered, to assess the
completeness of the library. In the other direction, some of the difficulties in ud2gf
mapping suggest that UD does not always annotate syntax in the most logical way, or
in a way that is maximally general across languages.

The work reported in this paper is the current status of work in progress. Therefore
the results are not conclusive: in particular, we expect to improve the missing coverage

80 CHAPTER 3. PAPER II: UD2GF

Figure 3.3: Annotating a GF tree with dependency labels. The label dobj results from
the annotation of the ComplV2 function. The category annotation (cat) are used in
Figures 3.2 and 3.4 to map between GF categories and UD POS tags.

in a straightforward way. The most stable part of the work is the annotation algorithm
described in Sections 3 an 4. It is based on a general notation for dependency configu-
rations, which can be applied to any GF grammar and to any dependency annotation
scheme—not only to the UD scheme. The code for the algorithm and the annotations
used in experiments is available open source.1

The structure of the paper is as follows: Section 3.2 summarizes the existing gf2ud
conversion and formulates the problem of inverting it. Section 3.3 describes a baseline
bottom-up algorithm for translation from UD trees to GF trees. Section 3.4 presents
some refinements to the basic algorithm. Section 3.5 shows a preliminary evaluation
with UD treebanks for English, Finnish, and Swedish. Section 3.6 concludes.

3.2 From gf2ud to ud2gf
The relation between UD and GF is defined declaratively by a set of dependency
configurations. These configurations specify the dependency labels that attach to each
subtree in a GF tree. Figure 3.3 shows an abstract syntax specification together with a
dependency configuration, as well as a GF tree with corresponding labels attached.

Consider, for example, the second line of the “abstract syntax" part of Figure 3.3,
with the symbol ComplV2. This symbol is one of the functions that are used for
building the abstract syntax tree. Such a function takes a number of trees (zero or
more) as arguments and combines them to a larger tree. Thus ComplV2 takes a V2
tree (two-place verb) and an NP tree (noun phrase) to construct a VP tree (verb
phrase). Its name hints that it performs complementation, i.e. combines verbs with
their complements. Its dependency configuration head dobj specifies that the first
argument (the verb) will contain the label head in UD, whereas the second argument
(the noun phrase) will contain the label dobj (direct object). When the configuration

1https://github.com/GrammaticalFramework/gf-contrib/tree/master/ud2gf

https://github.com/GrammaticalFramework/gf-contrib/tree/master/ud2gf

3.3. THE UD2GF BASIC ALGORITHM 81

is applied to a tree, the head labels are omitted, since they are the default. Notice that
the order of arguments in an abstract syntax tree is independent of the order of words
in its linearizations. Thus, in Figure 3.2, the object is placed after the verb in English
but before the verb in French.

The algorithm for deriving the UD tree from the annotated GF tree is simple:

• for each leaf X (which corresponds to a lexical item)

– follow the path up towards the root until you encounter a label L

– from the node immediately above L, follow the spine (the unlabelled
branches) down to another leaf Y

– Y is the head of X with label L

It is easy to verify that the UD trees in Figure 3.2 can be obtained in this way,
together with the English and French linearization rules that produce the surface words
and the word order. In addition to the configurations of functions, we need category
configurations, which map GF types to UD part of speech (POS) tags.

This algorithm covers what Kolachina and Ranta (2016) call local abstract con-
figurations. They are sufficient for most cases of the gf2ud conversion, and have
the virtue of being compositional and exactly the same for all languages. However,
since the syntactic analysis of GF and UD are not exactly the same, and within UD
can moreover differ between languages, some non-local and concrete configurations
are needed in addition. We will return to these after showing how the local abstract
configurations are used in ud2gf.

The path from GF trees to UD trees (gf2ud) is deterministic: it is just linearization
to an annotated string representing a dependency tree. It defines a relation between GF
trees and UD trees: GF tree t produces UD tree u. Since the mapping involves loss of
information, it is many-to-one. The opposite direction, ud2gf, is a nondeterministic
search problem: given a UD tree u, find all GF trees t that can produce u. The first
problem we have to solve is thus

Ambiguity: a UD tree can correspond to many GF trees.

More problems are caused by the fact that GF trees are formally generated by a gram-
mar whereas UD trees have no grammar. Thus a UD tree may lack a corresponding
GF tree for many different reasons:

Incompleteness: the GF grammar is incomplete.
Noise: the UD tree has annotation errors.
Ungrammaticality: the original sentence has grammar errors.

Coping with these problems requires robustness of the ud2gf conversion. The situa-
tion is similar to the problems encountered when GF is used for wide-coverage parsing
and translation (Angelov et al., 2014). The solution is also similar, as it combines a
declarative rule-based approach with disambiguation and a back-up strategy.

3.3 The ud2gf basic algorithm
The basic algorithm is illustrated in Figure 3.4
Its main data-structure is an annotated dependency tree, where each node has the
form

82 CHAPTER 3. PAPER II: UD2GF

Restructuring and lexical annotation

A node annotation by endo- and exocentric functions

The final annotated tree

Figure 3.4: Steps in ud2gf

3.3. THE UD2GF BASIC ALGORITHM 83

< L, t, ts,C, p > where

• L is a dependency label (always the same as in the original UD tree)
• t is the current GF abstract syntax tree (iteratively changed by the

algorithm)
• ts is a list of alternative GF abstract syntax trees (iteratively changed

by the algorithm)
• C is the GF category of t (iteratively changed by the algorithm)
• p is the position of the original word in the UD tree (always the

same as in the original UD tree)

Examples of such nodes are shown in Figure 3.4, in the tree marked (5) and in all trees
below it.

The algorithm works in the following steps, with references to Figure 3.4:

1. Restructuring. Convert the CoNLL graph (marked (2) in Figure 3.4) to a tree
data-structure (3), where each node is labelled by a dependency label, lemma, POS
tag, and word position. This step is simple and completely deterministic, provided that
the graph is a well-formed tree; if it isn’t, the conversion fails2.

2. Lexical annotation. Preserve the tree structure in (3) but change the structure of
nodes to the one described above and shown in (5). This is done by using a GF lexicon
(4), and a category configuration, replacing each lemma with a GF abstract syntax
function and its POS with a GF category.3

3. Syntactic annotation. The GF trees t in the initial tree (5) are lexical (0-argument)
functions. The syntactic annotation step annotates the tree recursively with applica-
tions of syntactic combination functions. Some of them may be endofunctions (i.e.
endocentric functions), in the sense that some of the argument types is the same as the
value type. In Figure 3.3, the functions AdvVP and ModCN are endocentric. All other
functions are exofunctions (i.e. exocentric functions), where none of the argument
types is the same as the value type. In the syntactic annotation, it is important to apply
endofunctions before exofunctions, because exofunctions could otherwise block later
applications of endofunctions.4 The algorithm is a depth-first postorder traversal: for
an annotated tree T = (N T1 . . .Tn), where N =< L, t, ts,C, p >,

• syntax-annotate the subtrees T1, . . . ,Tn

• apply available combination functions to N:

– if an endofunction f : C→C applies, replace < t, ts > with < ((f t),{t}∪
ts >

– else, if an exofunction f : C→ C′ applies, replace < t, ts,C > with <
(f t),{t}∪ ts,C′ >

where a function f : A→ B applies if f = (λx)(g . . .x . . .) where g is an endo- or
exocentric function on C and all other argument places than x are filled with GF trees
from the subtrees of T . Every subtree can be used at most once.

2This has never happened with the standard UD treebanks that we have worked with.
3The GF lexicon is obtained from the GF grammar by linearizing each lexical item (i.e. zero-place

function) to the form that is used as the lemma in the UD treebank for the language in question.
4This is a simplifying assumption: a chain of two or more exofunctions could in theory bring us back to

the same category as we started with.

84 CHAPTER 3. PAPER II: UD2GF

An example of syntactic annotation is shown in the middle part of Figure 3.4. The
node for the word cat at position 3 (the second line in the tree) has one applicable
endofunction, ModCN (adjectival modification), and one exofunction, DetCN (determi-
nation). Hence the application of the endofunction ModCN combines the AP in position
2 with the CN in position 3. For brevity, the subtrees that the functions can apply to
are marked by the position numbers. 5 Hence the tree

DetCN 1 3

in the final annotated tree actually expands to

DetCN the_Det
(ModCN (PositA black_A) (UseN cat_N))

by following these links. The whole GF tree at the root node expands to the tree shown
in Figures 3.2 and 3.3.

3.4 Refinements of the basic algorithm
We noted in Section 2 that ud2gf has to deal with ambiguity, incompleteness, noise,
and ungrammaticality. The basic algorithm of Section 3 takes none of these aspects
into account. But it does contain what is needed for ambiguity: the list ts of previous
trees at each node can also be used more generally for storing alternative trees. The
“main” tree t is then compared and ranked together with these candidates. Ranking
based on tree probabilities in previous GF treebanks, as in (Angelov, 2011), is readily
available. But an even more important criterion is the node coverage of the tree. This
means penalizing heavily those trees that don’t cover all nodes in the subtrees.

This leads us to the problem of incompleteness: what happens if the application
of all possible candidate functions and trees still does not lead to a tree covering all
nodes? An important part of this problem is due to syncategorematic words. For
instance, the copula in GF is usually introduced as a part of the linearization, and does
not have a category or function of its own.6 To take the simplest possible example,
consider the adjectival predication function and its linearization:

fun UseAP : AP -> VP
lin UseAP ap = \\agr => be agr ++ ap

where the agreement feature of the verb phrase is passed to an auxiliary function be,
which produces the correct form of the copula when the subject is added. The sentence
the cat is black has the following tree obtained from UD:

root (PredVP 2 4) [UseAP...black_A] S 4
nsubj (DetCN 1 2) [UseN 2,cat_N] 2
det the_Det Det 1

cop "be" String 3 ***

5 If the argument has the same node as the head (like 3 here), the position refers to the next-newest item
on the list of trees.

6 This is in (Kolachina and Ranta, 2016) motivated by cross-lingual considerations: there are languages
that don’t need copulas. In (Croft et al., 2017), the copula is defined as a strategy, which can be language-
dependent, in contrast to constructions, which are language-independent. This distinction seems to
correspond closely to concrete vs. abstract syntax in GF.

3.4. REFINEMENTS OF THE BASIC ALGORITHM 85

The resulting GF tree is correct, but it does not cover node 3 containing the copula.7

The problem is the same in gf2ud (Kolachina and Ranta, 2016), which introduces
language-specific concrete annotations to endow syncategorematic words with UD
labels. Thus the concrete annotation

UseAP head {"is","are","am"} cop head

specifies that the words is,are,am occurring in a tree linearized from a UseAP applica-
tion have the label cop attached to the head.

In ud2gf, the treatment of the copula turned out to be simpler than in gf2ud. What
we need is to postulate an abstract syntax category of copulas and a function that uses
the copula. This function has the following type and configuration:

UseAP_ : Cop_ -> AP -> VP ; cop head

It is used in the basic algorithm in the same way as ordinary functions, but eliminated
from the final tree by an explicit definition:

UseAP_ cop ap = UseAP ap

The copula is captured from the UD tree by applying a category configuration that has
a condition about the lemma:8

Cop_ VERB lemma=be

This configuration is used at the lexical annotation phase, so that the last line of the
tree for the cat is black becomes

cop be Cop_ 3

Hence the final tree built for the sentence is

PredVP (DetCN the_Det (UseN cat_N))
(UseAP_ be (PositA black_A))

which covers the entire UD tree. By applying the explicit definition of UseAP_, we
obtain the standard GF tree

PredVP (DetCN the_Det (UseN cat_N))
(UseAP (PositA black_A))

Many other syncategorematic words—such as negations, tense auxiliaries, infinitive
marks—can be treated in a similar way. The eliminated constants are called helper
functions and helper categories, and for clarity suffixed with underscores.

Another type of incomplete coverage is due to missing functions in the grammar,
annotation errors, and actual grammar errors in the source text. To deal with these, we
have introduced another type of extra functions: backup functions. These functions
collect the uncovered nodes (marked with ***) and attach them to their heads as
adverbial modifiers. The nodes collected as backups are marked with single asterisks
(*). In the evaluation statistics, they are counted as uninterpreted nodes, meaning that
they are not covered with the standard GF grammar. But we have added linearization

7We use *** to mark uncovered nodes; since be has no corresponding item in the GF lexicon, its only
possible categorization is as a String literal.

8The simplicity is due to the fact that the trees in the treebank are lemmatized, which means that we
need not match with all forms of the copula.

86 CHAPTER 3. PAPER II: UD2GF

I have a change in plans next week .

root have_V2 : V2 2 I have a change in plans "."
nsubj i_Pron : Pron 1 [next week]
dobj change_N : N 4
det IndefArt : Quant 3 minulla on muutos suunnitelmissa "."
nmod plan_N : N 6 [seuraava viikko]
case in_Prep : Prep 5

nmod:tmod Backup week_N : N 8 * jag har en ändring i planer "."
amod next_A : A 7 * [nästa vecka]
punct "." : String 9

Figure 3.5: A tree from the UD English training treebank with lexical annotations and
backups marked, and the resulting linearizations to English, Finnish, and Swedish.

rules to them, so that they are for instance reproduced in translations. Figure 3.5 gives
an example of a UD tree thus annotated, and the corresponding translations to Finnish
and Swedish, as well as back to English. What has happened is that the temporal
modifier formed from the bare noun phrase next week and labelled nmod:tmod has not
found a matching rule in the configurations. The translations of the resulting backup
string are shown in brackets.

3.5 First results
The ud2gf algorithm and annotations are tested using the UD treebanks (v1.4)9. The
training section of the treebank was used to develop the annotations and the results are
reported on the test section. We evaluated the performance in terms of coverage and
interpretability of the GF trees derived from the translation. The coverage figures show
the percentage of dependency nodes (or tokens) covered, and interpreted nodes show
the percentage nodes covered in “normal” categories, that is, other than the Backup
category. The percentage of interpreted nodes is calculated as the number of nodes in
the tree that use a Backup function to cover all its children. Additionally, the GF trees
can be translated back into strings using the concrete grammar, allowing for qualitative
evaluation of the translations to the original and other languages.10

We performed experiments for three languages: English, Swedish and Finnish.
Table 3.1 show the scores for the experiments using the gold UD trees. Also shown are
the number of trees (i.e. sentences) in the test set for each language. The results show an
incomplete coverage, as nodes are not yet completely covered by the available Backup
functions. As a second thing, we see the impact of language-specific configurations
(mostly defining helper categories for syncategorematic words) on the interpretability
of GF trees. For example, in Swedish, just a small number of such categories (26)
increases the coverage significantly. Further experiments also showed an average
increase of 4-6% points in interpretability scores when out-of-vocabulary words were
handled using additional functions based on the part-of-speech tags; in other words,

9https://github.com/UniversalDependencies/,retrievedinOctober2016
10A quantitative evaluation would also be possible by standard machine translation metrics, but has not

been done yet.

https://github.com/UniversalDependencies/, retrieved in October 2016

3.5. FIRST RESULTS 87

language #trees #confs %cov’d %int’d
English 2077 31 94 72
Finnish 648 12 92 61
Finnish* 648 0 74 55
Swedish 1219 26 91 65
Swedish* 1219 0 75 57

Table 3.1: Coverage of nodes in each test set (L-ud-test.conllu). L* (Swedish*,
Finnish*) is with language-independent configurations only. #conf’s is the number of
language-specific configurations. %cov’d and %int’d are the percentages of covered
and interpreted nodes, respectively.

rule type number
GF function (given) 346
GF category (given) 109
backup function 16
function config 128
category config 33
helper function 250
helper category* 26

Table 3.2: Estimating the size of the project: GF abstract syntax (as given in the
resource grammar library) and its abstract and concrete configurations. Helper category
definitions are the only genuinely language-dependent configurations, as they refer to
lemmas.

more than 10% of uninterpreted nodes contained words not included in the available
GF lexica.

Table 3.2 shows how much work was needed in the configurations. It shows
the number of GF functions (excluding the lexical ones) and language-independent
configurations. It reveals that there are many GF functions that are not yet reached by
configurations, and which would be likely to increase the interpreted nodes. The helper
categories in Table 3.2, such as Copula, typically refer to lemmas. These categories,
even though they can be used in language-independent helper rules, become actually
usable only if the language-specific configuration gives ways to construct them.

A high number of helper functions were needed to construct tensed verb phrases
(VPS) covering all combinations of auxiliary verbs and negations in the three languages.
This is not surprising given the different ways in which tenses are realized across
languages. The extent to which these helper functions can be shared across languages
depends on where the information is annotated in the UD tree and how uniform the
annotations are; in English, Swedish, and Finnish, the compound tense systems are
similar to each other, whereas negation mechanisms are quite different.

Modal verbs outside the tense system were another major issue in gf2ud (Ko-
lachina and Ranta, 2016), but this issue has an easier solution in ud2gf. In GF resource
grammars, modal verbs are a special case of VP-complement verbs (VV), which also
contains non-modal verbs. The complementation function ComplVV hence needs two
configurations:

ComplVV : VV -> VP -> VP ; head xcomp

88 CHAPTER 3. PAPER II: UD2GF

property UD GF
parser coverage robust brittle
parser speed fast slow
disambiguation cont.-sensitive context-free
semantics loose compositional
generation ? accurate
new language low-level work high-level work

Table 3.3: Complementary strengths and weaknesses of GF and UD. UD strengths
above the dividing line, GF strengths below.

ComplVV : VV -> VP -> VP ; aux head

The first configuration is valid for the cases where the VP complement is marked using
the xcomp label (e.g. want to sleep). The second one covers the cases where the VP
complement is treated as the head and the VV is labelled aux (e.g. must sleep). The
choice of which verbs are modal is language-specific. For example, the verb want
marked as VV in GF is non-nodal in English but translated in Swedish as an auxiliary
verb vilja. In gf2ud, modal verbs need non-local configurations, but in ud2gf, we
handle them simply by using alternative configurations as shown above.

Another discrepancy across languages was found in the treatment of progressive
verb phrases (e.g. be reading, Finnish olla lukemassa). in English the verb be is
annotated as a child of the content verb with the aux label. In Finnish, however the
equivalent verb olla is marked as the head and the content verb as the child with the
xcomp label. This is a case of where the content word is not chosen to be the head, but
the choice is more syntax-driven.

3.6 Conclusion
The main rationale of relating UD with GF is their complementary strengths. Generally
speaking, UD strengths lie in parsing and GF strengths in generation. UD pipelines
are robust and fast at analyzing large texts. GF on the other hand, allows for accurate
generation in multiple languages apart from compositional semantics. This suggests
pipelines where UD feeds GF.

In this paper, we have done preparatory work for such a pipeline. Most of the work
can be done on a language-independent level of abstract syntax configurations. This
brings us currently to around 70–75 % coverage of nodes, which applies automatically
to new languages. A handful of language-specific configurations (mostly for syncate-
gorematic words) increases the coverage to 90–95%. The configuration notation is
generic and can be applied to any GF grammar and dependency scheme.

Future work includes testing the pipeline in applications such as machine transla-
tion, abstractive summarization, logical form extraction, and treebank bootstrapping.
A more theoretical line of work includes assessing the universality of current UD
praxis following the ideas of Croft et al. (2017). In particular, their distinction between
constructions and strategies seems to correspond to what we have implemented with
shared vs. language-specific configurations, respectively.

Situations where a shared rule would be possible but the treebanks diverge, such
as the treatment of VP-complement verbs and progressives (Section 5), would deserve

3.6. CONCLUSION 89

closer inspection. Also an analysis of UD Version 2, which became available in the
course of the project, would be in place, with the expectation that the differences
between languages decrease.

Acknowledgements
We want to thank Joakim Nivre and the anonymous referees for helpful comments on
the work. The project has been funded by the REMU project (Reliable Multilingual
Digital Communication, Swedish Research Council 2012-5746).

90 CHAPTER 3. PAPER II: UD2GF

Chapter 4

Paper III: Bootstrapping UD
treebanks

Bootstrapping UD treebanks for Delexicalized Parsing
Prasanth Kolachina and Aarne Ranta

Under submission.

91

Abstract
Standard approaches to treebanking traditionally employ a waterfall model (Som-
merville, 2010), where annotation guidelines guide the annotation process and insights
from the annotation process in turn lead to subsequent changes in the annotation guide-
lines. This process remains a very expensive step in creating linguistic resources for a
target language, necessitates both linguistic expertise and manual effort to develop the
annotations and is subject to inconsistencies in the annotation due to human errors.
In this paper, we propose an alternative approach to treebanking—one that requires
writing grammars. This approach is motivated specifically in the context of Universal
Dependencies, an effort to develop uniform and cross-lingually consistent treebanks
across multiple languages.

We show here that a bootstrapping approach to treebanking via interlingual gram-
mars is plausible and useful in a process where grammar engineering and treebanking
are jointly pursued when creating resources for the target language. We demonstrate the
usefulness of synthetic treebanks in the task of delexicalized parsing. Our experiments
reveal that simple models for treebank generation are cheaper than human annotated
treebanks, especially in the lower ends of the learning curves for delexicalized parsing,
which is relevant in particular in the context of low-resource languages.

92 CHAPTER 4. PAPER III: BOOTSTRAPPING UD TREEBANKS

4.1 Introduction

Treebanking remains a vital step in the process of creating linguistic resources for a
language – a practice that was established in the last 2-3 decades (Marcus et al., 1994).
The process of treebanking involves training human annotators in order to obtain
high-quality annotations. This is a human-intensive and costly process where multiple
iterations are performed to refine the quality of the linguistic resource. Grammar engi-
neering is a complementary approach to creating linguistic resources: one that requires
a different kind of expertise and incurs comparable costs. These two approaches have
remained orthogonal for obvious reasons: treebanks are primarily necessary to induce
abstractions in NLU (Natural Language Understanding) models from data, while
grammars are themselves abstractions arising from linguistic knowledge. Abstractions
induced from data have proven themselves to be useful for robust NLU tasks, while
grammars are better at precision tasks involving NLG (Natural Language Generation).

Given the resources required for treebanking, synthetic treebanks have been pro-
posed and used as substitute in cross-lingual parsing for languages where treebanks
do not exist. Such treebanks are created using parallel corpora where parse trees in
one language are bootstrapped into a target language using alignment information
through annotation projection (McDonald et al., 2011, Tiedemann, 2014) or using
machine translation systems to bootstrap existing treebanks in one or more source
language(s) to the target language (Tiedemann and Agic, 2016, Tyers et al., 2018).
More recently, synthetic treebanks are generated for both real and artificial languages
using multilingual treebanks by learning feasible parameter combinations (Wang and
Eisner, 2016) – Wang and Eisner (2018) show that such treebanks can be useful to
select the most similar language to train a parsing model for an unknown language.

At the same time, grammar-based treebanking approaches have been shown to
work in monolingual setups—to derive rich linguistic representations defined by
explicit grammars (Oepen et al., 2004). These approaches are carried out by parsing
raw corpora with a target grammar and using an additional human disambiguation
phase. Alternatively, existing treebanks are matched against the target grammar further
reducing the human effort in disambiguation: these approaches face a challenge of
under-specification in the source treebanks (Angelov, 2011). In the current paper,
we propose a hybrid of these two methods: we use abstract syntax grammars as
core linguistic abstraction to generate synthetic treebanks for a grammar that can be
translated to target representations with high precision.

The question of annotation costs and ways to minimize the dependence on such
annotated corpora has been a recurring theme in the field for the last two decades (Ngai
and Yarowsky, 2000, Garrette and Baldridge, 2013). This question has also been
extensively addressed in the context of dependency treebanks. We revisit this question
in context of Universal Dependencies and recent work on the interplay between
interlingua grammars and multilingual dependency trees in this scheme (Kolachina
and Ranta, 2016, Ranta and Kolachina, 2017, Ranta et al., 2017). The use of interlingua
grammars to bootstrap dependency treebanks guarantees two types of consistencies:
multilingual treebank consistency and intra-treebank consistency. We study the efficacy
of these dependency treebanks using learning curves of a transition-based parser in a
delexicalized parsing setup. The delexicalized parsing setup allows for generation of
parallel UD treebanks in multiple languages with minimal pre-requisites on language-
specific knowledge.

Another rationale behind the the current work in the context of cross-lingual

4.2. GRAMMATICAL FRAMEWORK 93

Figure 4.1: Abstract syntax of a GF grammar and its specification for UD scheme.
Also shown is an example AST for the sentence the black cat sees us today. Any
function with a definition written as f : C1→ C2→ ...Cn→ C; can be rewritten as a
context-free rule f. C ::= C1C2...Cn.

parsing is while synthetic treebanks offer a “cheap” alternative, the signal for the target
language is limited by the quality of the MT system. On the other hand, interlingua
grammars provide a high-quality signal about the target language. High-quality using
interlingual grammars refers to accurate generation of word-order and morphology –
although lexical selection in translation is still a problem. There have not been previous
attempts in cross-lingual parsing to our knowledge studying the effect of these.

This paper is structured as follows- Section 4.2 gives the relevant background on
interlingua grammars and the algorithm used to generate UD trees given treebank
derived from an interlingua grammar. Section 4.3 describes our algorithm to bootstrap
treebanks for a given interlingua grammar and parallel UD treebanks from them along
with an intrinsic evaluation of these bootstrapped UD treebanks. Section 4.4 shows
the parsing setup we use and Section 4.5 details the results of the parsing experiments.

4.2 Grammatical Framework
Grammatical Framework (GF) is a multilingual grammar formalism using abstract
syntax trees (ASTs) as primary descriptions (Ranta, 2011). Originating in compilers,
AST is a tectogrammatical tree representation that can be shared between languages. A
GF grammar consists of two parts – an abstract syntax shared between languages and
concrete syntax that is defined for each language. The abstract syntax defines a set of
categories and a set of functions, as shown in Figure 4.1. The functions defined in the
abstract syntax specify the result of putting subparts of two categories together and the
concrete syntax specifies how the subparts are combined i.e. word-order preferences
and agreement constraints specific to the language.

A comprehensive implementation of a multilingual grammar in GF is the Resource
Grammar Library, GF-RGL (Ranta, 2009b), which currently has concrete syntaxes

94 CHAPTER 4. PAPER III: BOOTSTRAPPING UD TREEBANKS

for over 40 languages, ranging from Indo-European through Finno-Ugric and Semitic
to East Asian languages. 1 This implementation contains a full implementation of the
morphology of the language, and a set of 284 syntactic constructors that correspond to
the core syntax of the language. Also included is a small lexicon of 500 lexical concepts
from a set of 19 categories, of which 10 correspond to different sub-categorization
frames of verbs, 2 classes of nouns and adjectives. These grammars are reversible- i.e.
they can be used for parsing and simultaneous multilingual generation into multiple
languages. The concrete syntaxes for all the languages define the rules for these
syntactic constructors and the lexical concepts. The expressivity of these grammars is
equivalent to a PMCFG (Seki et al., 1991), which makes parsing complexity of this
formalism polynomial in sentence length. Polynomial parsing with high exponents can
still be too slow for many tasks, and it is also brittle if the grammars are designed to not
over-generate. But generation using GF grammars has been shown to be both precise
and fast, which suggests the idea of combining data-driven parsing with grammar-
driven generation. We refer the interested reader to Ljunglöf (2004) for discussion on
expressivity of this formalism and Angelov (2011), Angelov and Ljunglöf (2014) for
discussion on probabilistic parsing using GF grammars.

4.2.1 gf2ud
Kolachina and Ranta (2016) propose an algorithm to translate ASTs to dependency
trees, that takes a specification of the abstract syntax of the GF grammar (referred to as
configurations, see Figure 4.1) which describes the mapping between the grammar and
a target dependency scheme, in this case Universal Dependencies. These configurations
can be interpreted as a synchronous grammar over the abstract syntax as source and
dependency scheme as target.
The first step in this transducer is a recursive annotation that marks for each function
in the AST, one of the arguments as head and specifies labels for the other arguments,
as specified by the configuration. The algorithm to extract the resulting dependency
tree from the annotated AST is simple.

• for each leaf X (which corresponds to a lexical item) in the AST
– trace the path up towards the root until you encounter a label L
– from the node immediately above L, follow the spine (the unlabeled

branches) down to another leaf Y
– Y is the head of X with label L

At the end of these two steps, the resulting data-structure is an abstract dependency
tree (ADT shown in Figure 4.2). It should be noted that the order of nodes shown in
the ADT does not reflect the surface order that is specific to a language. The ADT
combined with the concrete syntax of a language and concrete configurations (when
necessary) results in the corresponding full UD tree. The concrete configurations are
necessary to provide appropriate labels to syncategorematic words like auxiliary verbs
and negation particles. Additionally, the category configuration on the abstract syntax
can be augmented with a language-specific category configurations to generate the
morphological features in the dependency tree with a desired tag set.

Kolachina and Ranta (2016) show that their method can be used to generate
partially labeled UD trees for 30 languages when the corresponding concrete syntax is
available. They also show that using configurations defined on abstract syntax alone

1The current status of GF-RGL can be seen in http://www.grammaticalframework.org/lib/
doc/synopsis.html which also gives access to the source code.

http://www.grammaticalframework.org/lib/doc/synopsis.html
http://www.grammaticalframework.org/lib/doc/synopsis.html

4.3. BOOTSTRAPPING AST AND UD TREEBANKS 95

see_V2 cat_CN the_Det black_AP we_Pron today_Adv
V2 CN Det AP Pron Adv

root

nsubj det

amod

obj

mod

Figure 4.2: ADT for the sentence the black cat sees us today. The nodes in the
ADT correspond to lexical functions defined in the grammar. Also shown is the UD
part-of-speech tag sequence. Note that the order of nodes does not reflect the surface
order in any particular language.

and depending on the availability of the concrete syntax, a large fraction (around
75–85% of edges) of the dependency treebanks can be generated automatically. This
is done with small treebanks of ASTs – a UD treebank of 104 ASTs and a GF treebank
of 400 ASTs. Their results show that parallel UD treebanks can be bootstrapped
using ASTs and interlingua grammars, the usefulness of such treebanks however
is not addressed in that work. Full UD treebanks can be generated when concrete
configurations (those addressing syncategorematic words) are additionally available
for the language.

4.3 Bootstrapping AST and UD treebanks
The abstract syntax component of a GF grammar is an algebraic datatype definition,
which can also be seen as a context-free grammar (CFG). The disambiguation model
defined in GF uses a context-free probability distribution defined on the abstract
syntax. The advantage of defining the distribution on the abstract syntax is it allows
for transfer of distribution to languages for which data GF treebanks do not exist. The
context-free distribution decomposes the probability estimate of a tree as the product
of probabilities of the sub-trees and the probability of the function applied to these
subtrees. The probabilistic abstract syntax grammar can therefore be defined in terms
analogous to a probabilistic CFG (PCFG). The probability distribution over the set
of categories in the grammar is also included in the distribution corresponding to the
abstract syntax.

We use this formulation as a starting point and generate ASTs for a given grammar.
The ASTs bootstrapped using the probability model defined above are correct in
terms of the grammar but do not follow the selectional preferences typically found in
language. For this reason, we refer to the bootstrapped treebanks as “synthetic” data.
Additionally, while the algorithm used to bootstrap ASTs does not change depending
on whether the grammar includes a lexicon or not, it is significantly faster depending
the size of the grammar. Stacking gf2ud defined using abstract configurations on top
of these bootstrapped ASTs results in a treebank of ADTs. Alternatively, the concrete
syntax of a language can straightforwardly be used to linearize a corpus of the target
language. The concrete syntax and the concrete configurations when available are
used to generate fully labelled UD treebanks for a target language.Figure 4.3 shows an
example of a synthetic AST and delexicalized UD tree bootstrapped using the RGL.

96 CHAPTER 4. PAPER III: BOOTSTRAPPING UD TREEBANKS

(a) An AST of an existential clause bootstrapped using our model.

nothing_NP or_Conj nobody_NP saturday_Weekday
PRON CCONJ PRON NOUN

root

cc

conj

obl

(b) ADT corresponding to the above example that has to be delexicalized.

PRON VERB PRON CCONJ PRON ADJ NOUN

expl

root

nsubj cc

conj

amod

nmod

(c) The delexicalized UD tree in both English and Swedish shares the same part-of-speech tag
sequence and dependency labels

Figure 4.3: Example of a bootstrapped AST and UD tree and the intermediate ADT.

4.4. UD PARSING 97

The bootstrapping algorithm uses a parameter corresponding to the maximum depth
of the trees d to be generated. The generative story is as follows:

• Pick a category C using the distribution over categories defined in the probability
model.

• Select a function f with the definition C1 → C2...Cn → C according to the
conditional distribution P(F |C).

• Recursively apply the same step to build subtrees of maximum depth d−1, t1,
t2 ... tn of categories C1, C2 ... Cn respectively.

• Apply the function to all the subtrees and return (f t1 t2 .. tn).

4.3.1 Differences against UDv2

The design of the RGL and corresponding configurations do not contain all of the
structures defined in the UD annotation scheme. The missing structures fall into two
major categories: labels that depend on the lexical realization in a specific language,
and structures that correspond to specific linguistic constructions that are not part of
the core RGL syntax. Examples of the first type include multi-word expressions and
proper nouns (labeled using fixed and flat label). In the second class, are ellipsis
and paratactic constructions in addition to labels that are used in robust analysis of
web text (orphan, goeswith and reparandum). Examples that cover these labels
can be generated by re-writing the grammar: however, we found very few instances of
these in the treebanks. Finally, another variation in the bootstrapped treebanks is in the
case of label subtypes that are optionally defined in a language-specific manner. While
the configurations allow for accurate generation of certain labels (e.g. obl:agent
in the case of passive agents), recovering similar information in other instances is
not possible without a significant redesign of the RGL (e.g. obl:tmod for temporal
modifiers). We address this issue by restricting gf2ud to generate only the core labels
in UD and ignore subtype labels uniformly across languages.

Table 4.1 shows the entropies of the conditional probability distribution defined as
probability of a UD label given the part-of-speech tag of the head. The distributions
are estimated on both the synthetic UD treebank and a human annotated UD treebank 2

Also shown in the table are the cross-entropy values between the distribution estimated
from the synthetic and the original treebanks.

4.4 UD Parsing

The bootstrapped UD treebanks are used to train delexicalized parsing models. We
choose to work with the delexicalized UD treebanks for two reasons: the context-free
assumption in the probabilistic model defined on the abstract syntax makes the tree
generation decomposable, but selectional preferences are not encoded in the generative
model used for bootstrapping the ASTs. Additionally, generating a full UD treebank
assumes the availability of a interlingua lexicon – which reduces the portability of this
approach to new languages.3 For both these reasons, we restrict ourselves to strictly
delexicalized UD treebanks in our parsing experiments.

2The UD treebanks are taken from the v2.3 distribution.
3 There is ongoing work on developing interlingual lexica from linked data like WordNet (Virk et al.,

2014, Angelov and Lobanov, 2016).

98 CHAPTER 4. PAPER III: BOOTSTRAPPING UD TREEBANKS

Language H(PUD) H(PGF) Cross-entropy
Afrikaans 39.59 58.34 63.12
Arabic 40.00 42.13 51.38
Basque 44.19 51.19 54.21
Bulgarian 32.09 53.76 61.23
Catalan 44.49 49.37 57.39
Chinese 39.25 42.10 59.76
Danish 44.85 55.28 63.39
Dutch 48.99 49.67 61.27
English 50.52 45.31 58.17
Estonian 39.45 43.82 49.35
Finnish 47.86 41.52 54.39
French 43.41 49.43 53.47
German 41.35 49.35 51.29
Greek 29.48 41.13 49.17
Hindi 32.99 43.18 54.27
Italian 38.55 51.37 59.64
Japanese 27.34 40.18 47.25
Latin 42.07 43.47 49.89
Latvian 49.75 49.91 59.26
Norwegian (bokmal) 40.29 45.97 53.17
Norwegian (nynorsk) 37.29 44.56 56.32
Persian 33.07 47.29 47.16
Polish 23.85 41.27 49.83
Portuguese 40.84 48.73 53.60
Romanian 47.31 52.31 57.12
Russian 39.14 47.92 52.84
Spanish 46.36 52.17 57.73
Swedish 35.36 47.41 51.39
Urdu 33.70 42.14 58.73
Icelandic N/A 51.26 N/A
Thai N/A 41.23 N/A

Table 4.1: Entropy values of probability distributions P(label|(head-pos)) for different
languages estimated from real (PUD) and bootstrapped (PGF) treebanks. If a language
has more than one treebank in the UD distribution, we select one treebank as the pri-
mary treebank and use that to estimate the distribution and in the parsing experiments.
Languages for which a UD treebank does not exist but is included in GF-RGL are
listed towards the bottom of the table.

4.5. EXPERIMENTS 99

We are interested in the following three use-cases depending on the size of the
training data (N) available for inducing parsing models.

• When N ≤ 1K sentences4 are available for a language. There are around 20
treebanks in the current UD distribution that match this criterion and almost all
these treebanks have been manually annotated from scratch. This corresponds to
the scenario of under-resourced languages, where either the monolingual corpus
for treebank or annotators for treebanking are scarce. This scenario strongly
corresponds to our proposed idea of simultaneous grammar engineering and
treebanking.

• When 1K ≤ N ≤ 5K sentences5 are available for a language. There are around
18 treebanks in the current UD distribution that match this criterion. While one
can argue that these languages are not really under-resourced, this setup matches
the typical case of training domain-specific parsers either for a particular domain
like bio-medical or legal texts.

• The case where treebanks are larger than either of the two previous scenariosN
≥ 5K. This setup is interesting to test the limit of how useful are bootstrapped
ASTs and UD treebanks to train parsing models.

For each of these use-cases, we train parsing models using data from both human
annotated UD treebanks and synthetic treebanks for different sizes of training data.
The resulting parsing models are evaluated using labelled attachment scores, obtained
by parsing the test set of the UD treebank for the language in question. We experiment
with an off-the-shelf transition-based dependency parser that gives good results in the
dependency parsing task (Straka and Straková, 2017). In the ideal case the experiments
need to be carried out using multiple parsers from both the transition-based and graph-
based paradigms, we leave that here for future work.

4.5 Experiments
We ran experiments with 3 languages – English, Swedish and Finnish in this paper. In
addition to the availability of a concrete syntax for the language, our approach also
requires concrete configurations for the languages (Ranta and Kolachina, 2017) in order
to bootstrap full UD trees. Table 4.2 shows statistics about the concrete configurations
for the RGL grammar for the languages. The probability distribution defined on the
RGL was estimated using the GF-Penn treebank (Marcus et al., 1994, Angelov, 2011)
of English. The raises another question – how well does the distribution defined on
the abstract syntax of the RGL estimated from monolingual data transfer across other
languages. The bootstrapping algorithm was restricted to generate 20K ASTs of depth
less than 10.6

We use UDPipe (Straka and Straková, 2017) to train parsing models, using compa-
rable settings to the baseline systems provided in the CoNLL18 shared task (Zeman
and Hajič, 2018). Gold tokenization and part-of-speech tags are used in both training
and testing the parser. This was done to control for differences in tagging performance

4This approximately corresponds to 20K tokens.
5This approximately corresponds to 20K – 100K tokens.
6Trees of depth less than 4 were filtered out in the process.

100 CHAPTER 4. PAPER III: BOOTSTRAPPING UD TREEBANKS

Language Abstract Concrete Morph-features
English 143 21 57
Swedish 143 25 59
Finnish 143 31 57

Table 4.2: Estimate of the effort required in gf2ud. The abstract configurations
are the same for all languages, while the concrete functions and morph-features are
defined for each language. The first column corresponds to configurations for syntactic
constructors in the RGL, and second column corresponds to constructors that use
syncategorematic words in the linearization.

across the synthetic and original UD treebanks. The models are trained using the pri-
mary treebanks from Universal Dependencies v2.3 distribution.7 We plot the learning
curves for parsing models in Figure 4.4 trained on both the original and synthetic
treebank data for each use case outlined in Section 4.4. The learning curves were
plotted using the LAS accuracies obtained on the test set for the three languages using
models trained on both the original and the synthetic treebanks. It is seen from the
learning curves that models trained on the synthetic treebanks do not outperform the
models trained using original UD treebanks.

However, the full learning curves shown in Figure 4.4 do not tell the complete story.
Figure 4.5 shows the learning curves (visualized using bar plots) for English, Finnish
and Swedish in the setup where less than 1K sentences from UD treebanks are used.
It is clear from the plots for all the three languages that the synthetic treebanks are
sub-optimal when directly compared against real treebanks of the same size. However,
what is interesting is that parsing models in this range (i.e. N ≤ 1K) with synthetic
treebanks quickly reach comparable accuracies to using real treebank data, with an
approximate effective data coefficient of 2.0. In other words comparable accuracies
can be obtained using roughly twice the amount of synthetic data, generated for free
by the abstract syntax grammar.

It is interesting to note that the learning curves using the synthetic data for the En-
glish parsing models become comparably flat in our setup with less than 5K sentences
(shown in Figure 4.6a). Despite the lower improvements with increasing treebank
sizes, there is still a consistent improvement in parsing accuracies with the best accu-
racy of 65.4 LAS using 10K synthetic samples (shown in Figure 4.6b). This pattern is
consistent across Swedish and Finnish, which allows us to draw the conclusion that
while the effective data co-efficient is smaller, the synthetic treebanks are still useful
to improve parsing accuracies.

4.6 Related Work
The current trend in dependency parsing is directed towards using synthetic treebanks
in an attempt to cover unknown languages for which resources are minimal or do
not exist altogether. Such treebanks rely on various auxiliary resources: parallel
corpora (Tiedemann, 2014), multilingual word-embeddings (Xiao and Guo, 2014),
MT system for the target language (Tiedemann and Agic, 2016, Tyers et al., 2018) or
more minimally, tagged corpora in the target language (Wang and Eisner, 2018).

7 The notion of primary treebank for a language has been made obsolete in UD v2.3 distribution - with
all treebanks being assigned a code. So, we use the term primary in this paper to refer to EWT for English,
TDT for Finnish and Talbanken for Swedish.

4.7. CONCLUSIONS 101

Tiedemann and Agic (2016) propose a method to generate synthetic treebanks
for new languages using machine translation systems to transfer cross-linguistic
information from resource-rich language to under-resourced languages. This work
builds on top of many previous approaches to cross-lingual parsing using parallel
corpora and multilingual word-embeddings. The synthetic treebanks generated in the
current work are are different in two ways:

• we assume multilingual abstraction and the concrete syntaxes are available-
namely the GF-RGL to generate language-independent samples in the form of
ASTs.

• we also assume that a distribution of the target language is not available- and
what is available is a distribution on the abstract syntax that generalizes to other
languages.

Hence, the resulting treebank is licensed by a grammar, and high-precision cross-
linguistic information is specified, but the distribution over the resulting treebank is
different from the distribution obtained using the real treebanks. An alternative to the
method of bootstrapping UD treebanks is to use ud2gf (Ranta and Kolachina, 2017)
as a way to translate existing UD treebanks to GF treebanks, that are licensed by a
grammar.

The current work also relates to more recent work in data-augmentation for depen-
dency parsing (Sahin and Steedman, 2018) and more generally in NLP (Sennrich et al.,
2016). The augmentation methods are designed to address data scarcity by exploiting
monolingual corpora or generating synthetic samples in multilingual applications.
However, the underlying abstractions used to generate the synthetic data are induced
from auxiliary corpora.

Jonson (2006) show that synthetic corpora generated using a GF grammar can
be used to build language models for speech recognition. Experiments in their work
show that synthetic in-domain examples generated using the grammar when combined
with large out-of-domain data result in significant reduction of word error rate of the
speech recognizer. This work falls in line with similar approaches to combine corpus
driven approaches with rule-based systems (Bangalore and Johnston, 2004), as a way to
combine the statistical information available from corpora with good coverage resulting
from rule-based abstractions especially when working with restricted domains. In this
paper, we restrict ourselves to utilizing synthetic treebanks for parsing, and leave the
discussion on ways to combine synthetic treebanks with real treebanks as future work.
This choice is primarily motivated by our interest in grammar-based development of
dependency treebanks as opposed to the traditional way of treebanking– by training
human annotators.

4.7 Conclusions

In the current paper, we propose an alternative approach to cross-lingual treebanking—
one that recommends grammar engineering. Multilingual abstractions that facilitate
bootstrapping of cross-lingual treebanks have been previously explored in the setup of
low precision high recall methods. These methods presume the availability of differ-
ent resources in order to induce the cross-linguistic signal – parallel or multilingual
corpora, word embeddings etc. Our approach explores the opposite direction- multi-
lingual grammars of high precision are used to bootstrap parallel treebanks. While
these multilingual grammars are not easy to develop, the question of how useful such

102 CHAPTER 4. PAPER III: BOOTSTRAPPING UD TREEBANKS

grammars are is one that has been largely unexplored in the context of cross-lingual
syntactic parsing.

We use a context-free model to generate ASTs that are used to bootstrap parallel
UD treebanks in 3 languages. Experiments in delexicalized parsing show that these
treebanks are useful in two scenarios– when data in the target language is minimal
(<1K sentences) and small (<5K sentences). In the future, we intend to look at
ways to generate synthetic treebanks from existing UD treebanks of languages using
ud2gf (Ranta and Kolachina, 2017), that aims to address the lack of syntactic dis-
tributions in our synthetic treebanks. We also did not pursue the obvious direction
of combining the real and synthetic treebanks in the current work- we leave this for
future work. Another direction that is of interest is to augment existing treebanks
with syntactic variations to quantify the need for regular syntactic variants in parser
development, such as converting declaratives to questions, varying tense and polarity,
adding and removing modifiers, and so on. String-based augmentation (as opposed
to precise grammar-based generation) in this direction has already shown promising
results (Sahin and Steedman, 2018).

4.7. CONCLUSIONS 103

(a) Learning curves for English

(b) Learning curves for Finnish

(c) Learning curves for Swedish

Figure 4.4: Learning curves for parsing models of trained on original UD and synthetic
UD treebanks.

104 CHAPTER 4. PAPER III: BOOTSTRAPPING UD TREEBANKS

(a) Learning curves for English

(b) Learning curves for Finnish

(c) Learning curves for Swedish

Figure 4.5: Learning curves shown using bar plots for parsing models trained on
less than 1000 sentences from original UD and 2000 sentences from synthetic UD
treebanks.

4.7. CONCLUSIONS 105

(a) Learning curves for English with N between 1K and 5K samples

(b) Learning curves for English with N between 5K and 10K samples

Figure 4.6: Learning curves shown using bar plots for parsing models of English

106 CHAPTER 4. PAPER III: BOOTSTRAPPING UD TREEBANKS

Chapter 5

Paper IV: OOV words in
Dependency Parsing

Replacing OOV Words For Dependency Parsing With Distribu-
tional Semantics
Kolachina Prasanth and Martin Riedl and Chris Biemann

Proceedings of the 21st Nordic Conference on Computational Linguistics (NoDaL-
iDa), pp. 11–19.

107

Abstract
Lexical information is an important feature in syntactic processing like part-of-speech
(POS) tagging and dependency parsing. However, there is no such information avail-
able for out-of-vocabulary (OOV) words, which causes many classification errors.
We propose to replace OOV words with in-vocabulary words that are semantically
similar according to distributional similar words computed from a large background
corpus, as well as morphologically similar according to common suffixes. We show
performance differences both for count-based and dense neural vector-based semantic
models. Further, we discuss the interplay of POS and lexical information for depen-
dency parsing and provide a detailed analysis and a discussion of results: while we
observe significant improvements for count-based methods, neural vectors do not
increase the overall accuracy.

108 CHAPTER 5. PAPER IV: OOV WORDS IN DEPENDENCY PARSING

5.1 Introduction
Due to the high expense of creating treebanks, there is a notorious scarcity of training
data for dependency parsing. The quality of dependency parsing crucially hinges on
the quality of part-of-speech (POS) tagging as a preprocessing step; many dependency
parsers also utilize lexicalized information, which is only available for the training
vocabulary. Thus errors in dependency parsers often relate to OOV (out of vocabulary,
i.e. not seen in the training data) words.

While there has been a considerable amount of work to address the OOV problem
with continuous word representations (see Section 5.2), this requires a more complex
model and hence, increases training and execution complexity.

In this paper, we present a very simple yet effective way of alleviating the OOV
problem to some extent: we use two flavors of distributional similarity, computed on
a large background corpus, to replace OOV words in the input with semantically or
morphologically similar words that have been seen in the training, and project parse
labels back to the original sequence. If we succeed in replacing OOV words with
in-vocabulary words of the same syntactic behavior, we expect the tagging and parsing
process to be less prone to errors caused by the absence of lexical information.

We show consistent significant improvements both for POS tagging accuracy as
well as for Labeled Attachment Scores (LAS) for graph-based semantic similarities.
The successful strategies mostly improve POS accuracy on open class words, which
results in better dependency parses. Beyond improving POS tagging, the strategy also
contributes to parsing accuracy. Through extensive experiments – we show results for
seven different languages – we are able to recommend one particular strategy in the
conclusion and show the impact of using different similarity sources.

Since our method manipulates the input data rather than the model, it can be
used with any existing dependency parser without re-training, which makes it very
applicable in existing environments.

5.2 Related Work
While part-of-speech (POS) tags play a major role in detecting syntactic structure, it
is well known (Kaplan and Bresnan (1982) inter al.) that lexical information helps
for parsing in general and for dependency parsing in particular, see e.g. Wang et al.
(2005).

In order to transfer lexical knowledge from the training data to unseen words in the
test data, Koo et al. (2008) improve dependency parsing with features based on Brown
Clusters (Brown et al., 1992), which are known to be drawing syntactic-semantic
distinctions. Bansal et al. (2014) show slight improvements over Koo et al. (2008)’s
method by tailoring word embeddings for dependency parsing by inducing them on
syntactic contexts, which presupposes the existence of a dependency parser. In more
principled fashion, Socher et al. (2013) directly operate on vector representations.
Chen et al. (2014) address the lexical gap by generalizing over OOV and other words
in a feature role via feature embeddings. Another approach for replacing OOV words
by known ones using word embeddings is introduced by Andreas and Klein (2014).

All these approaches, however, require re-training the parser with these additional
features and make the model more complex. We present a much simpler setup of
replacing OOV words with similar words from the training set, which allows retrofitting
any parser with our method.

5.3. METHODOLOGY 109

This work is related to Biemann and Riedl (2013), where OOV performance of
fine-grained POS tagging has been improved in a similar fashion. Another similar
work to ours is proposed by Huang et al. (2014), who replace OOV named entities with
named entities from the same (fine-grained) class for improving Chinese dependency
parsing, which largely depends on the quality of the employed NER tagger and is
restricted to named entities only. In contrast, we operate on all OOV words, and try to
improve prediction on coarse universal POS classes and universal dependencies.

On a related note, examples for a successful application of OOV replacements
is demonstrated for Machine Translation (Gangadharaiah et al., 2010, Zhang et al.,
2012).

5.3 Methodology
For replacing OOV words we propose three strategies: replace OOV words by most
similar ones using distributional semantic methods, replace OOV words with words
with the most common suffix and replacing OOV words before or after POS tagging to
observe the effect on dependency parsing. The influence of all components is evaluated
separately for POS tagging and dependency parsing in Section 5.5.

5.3.1 Semantic Similarities
In order to replace an OOV word by a similar in-vocabulary word, we use models that
are based on the distributional hypothesis (Harris, 1951). For showing the impact of
different models we use a graph-based approach that uses the left- and right-neighbored
word as context, represented by the method proposed by Biemann and Riedl (2013),
and is called distributional thesaurus (DT). Furthermore, we apply two dense numeric
vector-space approaches, using the skip-gram model (SKG) and CBOW model of the
word2vec implementation of Mikolov et al. (2013).

5.3.2 Suffix Source
In addition, we explore replacing OOVs with words from the similarity source that
are contained in the training set and share the longest suffix. This might be beneficial
as suffixes reflect morphological markers and carry word class information in many
languages. The assumption here is that for syntactic dependencies, it is more crucial
that the replacement comes from the same word class than its semantic similarity. This
also serves as a comparison to gauge the benefits of the similarity source alone. Below,
these experiments are marked with suffix, whereas the highest-ranked replacement
from the similarity sources are marked as sim. As a suffix-only baseline, we replace
OOVs with its most suffix-similar word from the training data, irrespective of its
distributional similarity. This serves as a sanity check whether semantic similarities
are helpful at all.

5.3.3 Replacement Strategies regarding POS
We explore two different settings for dependency parsing that differ in the use of POS
tags:

(1) oTAG: POS-tag original sequence, then replace OOV words, retaining original
tags for parsing;

110 CHAPTER 5. PAPER IV: OOV WORDS IN DEPENDENCY PARSING

(2) reTAG: replace OOV word, then POS-tag the new sequence and use the new
tags for parsing.

The oTAG experiments primarily quantify the sensitivity of the parsing model to
word forms, whereas reTag assess the potential improvements in the POS tagging.

5.3.4 Replacement Example
As an example, consider the automatically POS-tagged input sentence “We/P went/V
to/P the/D aquatic/N park/N" where “aquatic" is an OOV word. Strategy oTAG sim
replaces “aquatic" with “marine" since it is the most similar in-vocabulary word
of “aquatic". Strategy oTAG suffix replaces it with “exotic" because of the suffix
“tic" and its similarity with “aquatic". The suffix-only baseline would replace with
“automatic" since it shares the longest suffix of all in-vocabulary words. The reTAG
strategy would then re-tag the sentence, so the parser will e.g. operate on “We/P
went/V to/P the/D marine/ADJ park/N". Table 5.1 shows an example for different
similarity-based strategies for English and German1. We observe that the sim strategy
returns semantically similar words that do not necessarily have the same syntactic
function as the OOV target.

sim sim&suffix
English OOV: upgraded

Suffix-only paraded
CBOW upgrade downloaded
SKG upgrade expanded
DT expanded updated

German OOV: Nachtzeit
Suffix-only Pachtzeit
CBOW tagsüber Ruhezeit
SKG tagsüber Echtzeit
DT Jahreswende Zeit

Table 5.1: Here we show replacements for different methods using different strategies.

5.4 Experimental Settings
Here we describe the methods, background corpora used for computing similarities
and all further tools used for the experiments. With our experiments, we target to
address the following research questions:

• Can syntactic processing benefit from OOV replacement, and if so, under what
strategies and conditions?

• Is there a qualitative difference between similarity sources with respect to
tagger/parser performance?

• Are there differences in the sensitivity of parsing inference methods to OOV
replacement?

1Translations: Nachtzeit = night time; tagsüber = during the day; Pachtzeit = length of lease; Ruhezeit =
downtime; Echtzeit = real time; Jahreswende = turn of the year

5.4. EXPERIMENTAL SETTINGS 111

5.4.1 Similarity Computations

We are using two different approaches to determine semantic similarity: a symbolic,
graph-based framework for distributional similarity and a neural language model that
encodes words in a dense vector space.

Graph-based Semantic Similarity

The computation of a corpus-based distributional thesaurus (marked as DT below) is
performed following the approach by Biemann and Riedl (2013) as implemented in the
JoBimText2 software. For computing similarities between words from large unlabeled
corpora, we extract as word-context the left and right neighboring words, not using
language-specific syntactic preprocessing. Words are more similar if they share more
of their most salient 1000 context features, where salient context features are ranked
by Lexicographer’s Mutual Information (LMI), (Evert, 2005). Word similarity in the
DT is defined as the count of overlapping salient context features. In addition we
prune similar words3 below a similarity threshold of 5.

In order to use such a DT to replace an OOV word, we look up the most similar
terms for the OOV word and choose the highest-ranked word from the training data
vocabulary, respectively the most similar word with the longest common suffix.

Neural Semantic Similarity

As an alternative similarity we run word2vec with default parameters (marked as w2v
below) (Mikolov et al., 2013) on our background corpora, obtaining 200-dimensional
dense vector embeddings for all words with a corpus frequency larger than 5. We
conduct this for both flavors of w2v: skipgram, marked as SKG below (based on
positional windows) and CBOW (based on bag of word sentential contexts).

Following the standard approach, we use the cosine between word vectors as a
similarity measure: for each OOV, we compare vectors from all words in the training
set and pick the word that correspond to the most similar vector as a replacement,
respectively the most similar word of those with the longest common suffix.

5.4.2 Corpora for Similarity Computation

As we perform the experiments on various languages, we will compute similarities
for each language separately. The English similarities are computed based on 105M
sentences from the Leipzig corpora collection (LCC) (Richter et al., 2006). The
German (70M) and the Hindi (2M) corpora are extracted from the LCC as well. We
compute similarities on 19.7M sentences of Arabic, 259.7M sentences of French and
128.1M sentences of Spanish extracted from web corpora4 provided by Schäfer and
Bildhauer (2013). For the computation of the Swedish similarities we use a 60M-
sentence news corpus from Spraakbanken.5 In summary, all background corpora are in
the order of about 1 Gigaword, except the Hindi corpus, which is considerably smaller.

2http://www.jobimtext.org
3we have tried a few thresholds in preliminary experiments and did not find results to be very sensitive

in the range of 2 – 20
4http://corporafromtheweb.org/
5http://spraakbanken.gu.se

http://www.jobimtext.org
http://corporafromtheweb.org/
http://spraakbanken.gu.se

112 CHAPTER 5. PAPER IV: OOV WORDS IN DEPENDENCY PARSING

5.4.3 Dependency Parser and POS Tagger

For the dependency parsing we use the implementation of the graph-based dependency
parser provided in Mate-tools (Bohnet, 2010, version 3.6) and the transition-based
Malt parser (Nivre, 2009, version 1.8.1). Graph-based parsers use global inference to
construct the maximum spanning dependency tree for the input sequences. Contrary,
the greedy algorithm in the transition-based parser uses local inference to predict the
dependency tree. The parsing models for both parsers, Mate-tools and Malt parser,
are optimized using cross-validation on the training section of the treebank6. We train
the dependency parsers using POS tags (from the Mate-tools tagger) predicted using a
5-fold cross-validation. The evaluation of the parser accuracies is carried out using
MaltEval. We report labeled attachment score (LAS) for both overall and on OOV
token positions.

5.4.4 Treebanks

For training and testing we apply the treebanks (train/dev/test size in tokens in paren-
theses) from the Universal Dependencies project (Nivre et al., 2016, version 1.2 re-
leased November 15th, 2015) for Arabic (226K/28K/28K), English (205K/25K/25K),
French (356K/39K/7K), German (270K/12K/16K), Hindi (281K/35K/35K), Spanish
(383K/41K/8K), and Swedish (67K/10K/20K). Tagset definitions are available online.7

5.5 Results

In this section, we report experimental results and compare them to the baseline
without OOV replacement. All statistical significance tests are done using McNemar’s
test. Significant improvements (p < 0.05) over the baseline without OOV replacement
are marked with an asterisk (∗), significant performance drops with a hashmark (#)
and the best result per experiment is marked in bold.

5.5.1 Results for POS Tagging

In Table 5.2 we show overall and OOV-only POS tagging accuracies on the respective
test set for seven languages using similarities extracted from the DT.

Unsurprisingly, we observe consistent performance drops, mostly significant, for
the suffix-only baseline. For all languages except German, the DT-based replacement
strategies result in significant improvements of either overall accuracy, OOV accuracy
or both. In most experiments, the DT suffix replacement strategy scores slightly higher
than the DT sim strategy.

Table 5.3 lists POS accuracies for three languages for similarities from the w2v
neural language model in its SKG and CBOW flavors using the cosine similarity. In
contrast to the DT -based replacements, there are no improvements over the baseline,
and some performance drops are even significant. Also replacing the cosine similarity

6Using Malt Optimizer (Ballesteros and Nivre, 2014) for the Malt parser; for Mate-tools, we tuned
the parameter that represents the percentage of non-projective edges in a language, which matches the
parameters suggested by Bohnet (2010).

7http://universaldependencies.org/

http://universaldependencies.org/

5.5. RESULTS 113

LANG OOV baseline suffix only DT sim DT suffix
% all OOV all OOV all OOV all OOV

Arabic 10.3 98.53 94.01 97.82# 87.44# 98.49# 93.67# 98.52 93.91
English 8.0 93.43 75.39 93.09# 72.03# 93.82* 78.67* 93.61* 76.75
French 5.3 95.47 83.29 95.17# 78.30# 95.68* 86.28* 95.73* 86.78*
German 11.5 91.92 85.63 90.88# 77.70# 91.84 85.32 91.92 85.68
Hindi 4.4 95.35 76.41 95.07# 71.27# 95.41 77.57 95.44* 78.00*
Spanish 6.9 94.82 79.62 95.00 81.17 95.45* 86.36* 95.49* 85.84*
Swedish 14.3 95.34 89.80 94.78# 86.04 # 95.57* 90.88* 95.82* 92.40*

Table 5.2: Test set overall OOV rates, POS accuracy in % for baseline, suffix-only
baseline, DT similarity and suffix replacement strategies for seven languages.

SKG CBOW
LANG sim suffix sim suffix

all OOV all OOV all OOV all OOV
Arabic 98.46# 93.39# 98.50# 93.73# 98.48# 93.60# 98.52 93.94
English 93.10# 72.29# 93.57 76.31 93.24# 73.91 93.52 75.70
German 90.99# 77.65# 91.62# 83.61# 91.78 83.92# 91.91 85.43

Table 5.3: Test set POS accuracies for w2v-based model’s similarity and suffix replace-
ment strategies for three languages.

with the Euclidian distance did not change this observation. The suffix-based strat-
egy seems to work better than the similarity-based strategy also for the w2v-based
replacement.

It seems that count-based similarities perform better for the replacement. Thus,
we did not extend the experiments with w2v to other languages.

5.5.2 Results for Dependency Parsing

As a general trend for all languages (see Table 5.4), we observe that the graph-based
parser achieves higher LAS scores than the transition-based parser.

However, the optimal replacement strategy depends on the language for both
parsers. Only for Swedish (reTAG DT suffix) and Spanish (reTAG DT sim), the
same replacements yield the highest scores both on all words and OOV words for
both parsers. Using the modified POS tags (reTAG) results in improvements for the
transition-based parser for 4 languages and for 5 languages using the graph-based
parser. Whereas the results improve only marginal when using the reTAG strategy as
can be observed from Table 5.4, most improvements are significant.

Using word embeddings for the reTAG strategy (see Table 5.5), we again observe
performance drops, except for Arabic.

Following the oTAG strategy, we observe significant improvements on German and
Arabic for the CBOW method. For German the best performance is obtained with the
SKG model (74.47*) which is slightly higher than the suffix only replacement, which

114 CHAPTER 5. PAPER IV: OOV WORDS IN DEPENDENCY PARSING

oTAG reTAG
baseline suffix only DT sim DT suffix suffix only DT sim DT suffix

Language all OOV all OOV all OOV all OOV all OOV all OOV all OOV
Graph-based Parser

Arabic 75.60 56.90 75.61 57.76* 75.74* 58.18* 75.71* 58.31* 74.54# 52.84# 75.75* 58.18* 75.72* 58.31*
English 79.57 63.64 79.55 63.77 79.64 64.38* 79.54 64.20 79.24# 62.37 79.95* 66.17* 79.78* 65.30*
French 77.76 64.59 77.91 65.34 77.61 64.09 77.79 64.84 77.59 64.59 77.59 64.09 77.97 65.84
German 74.24 68.93 74.43* 69.66* 74.27 69.14 74.21 69.24 72.26# 63.43# 74.13 68.10 74.22 69.09
Hindi 87.67 72.00 87.76* 72.74 87.78* 72.80* 87.71 72.86* 87.49# 70.60 87.67 72.62 87.69 72.74
Spanish 80.02 63.56 80.07 65.28* 80.32* 67.18* 80.30* 66.84* 79.38# 64.59 80.41* 68.91* 80.27 68.05*
Swedish 77.13 70.70 77.16 70.87 77.44* 71.07 77.31* 71.03 76.55# 69.12# 77.62* 71.96* 77.65* 72.05*
∆ all 0.00 0.00 0.10 0.72 0.10 0.89 0.08 0.93 -0.79 -1.89 0.02 0.95 0.12 1.35

Transition-based Parser
Arabic 72.63 52.81 72.71 53.67 72.79* 53.94* 72.75* 53.91* 71.75# 48.61# 72.77* 53.84* 72.74* 53.84*
English 77.26 61.84 77.15# 61.67 77.16 61.84 77.30 62.41 76.85# 60.14# 77.32 62.33 77.53* 63.29*
French 74.25 63.09 74.37 63.84 74.38 64.09 74.24 62.84 74.14 62.34 74.59* 64.59 74.69* 64.09
German 70.29 63.02 70.24 62.97 70.22 62.76 70.29 63.07 67.97# 56.38# 70.21 62.19 70.16 62.34
Hindi 84.08 66.14 83.99# 65.16 84.16* 67.24* 84.14* 67.05* 83.78# 63.08# 84.10 66.99 84.14 66.99
Spanish 75.39 57.86 75.52 59.59* 75.67* 59.93* 75.38 59.07 75.19 60.10 76.10* 63.90* 75.68 62.52*
Swedish 73.45 66.59 73.48 66.46 73.52 66.66 73.60* 67.02 72.91# 64.61# 74.01* 68.27* 74.09* 68.53*
∆ all 0.00 0.00 0.02 0.36 0.11 0.70 0.02 0.53 -0.76 -2.10 0.12 1.01 0.20 1.50

Table 5.4: LAS scores for the parsing performance on the test sets when replacing
OOV words with a DT. Additionally, we present ∆ values for all languages.

oTAG reTAG
similarity suffix similarity suffix

SKG CBOW SKG CBOW SKG CBOW SKG CBOW
Language all OOV all OOV all OOV all OOV all OOV all OOV all OOV all OOV

Graph-based Parser
Arabic 75.62 58.00* 75.71* 57.97* 75.67 58.62* 75.73* 58.49* 75.54 57.66* 75.69 57.83* 75.65 58.42* 75.73* 58.49*
English 79.55 63.85 79.57 64.16 79.58 63.99 79.61 64.03 78.86# 59.97# 79.64 64.12 79.38 62.81 79.57 64.03
German 74.47* 69.55* 74.39 69.29 74.39* 69.35 74.40* 69.24 72.82# 64.26# 73.70# 66.60# 74.06 67.95 74.14 68.41
∆ all 0.08 0.64 0.08 0.83 0.09 0.65 0.11 0.76 -0.73 -2.53 -0.11 -0.10 -0.13 -0.31 0.01 0.49

Transition-based Parser
Arabic 72.62 53.67* 72.65 53.60* 72.88* 54.80* 72.72 53.67* 72.60 53.46 72.64 53.49* 72.85* 54.53* 72.71 53.63*
English 77.10# 61.49 77.24 62.06 77.17 62.28 77.28 62.46* 76.54# 57.78# 77.22 61.84 77.07 60.58 77.24 62.37
German 70.19 63.07 70.22 63.38 70.17 63.54 70.36 63.49 68.90# 57.62# 69.48# 60.68# 69.98# 62.09 70.06 62.60
∆ all -0.09 0.19 0.01 0.98 -0.02 0.46 0.06 0.65 -0.71 -2.94 -0.09 -0.16 -0.28 -0.55 0.06 0.31

Table 5.5: LAS scores for the parsing performance replacing OOV words with w2v
and ∆ values.

achieves high scores in the oTAG setting. Whereas for POS tagging the suffix-based
DT replacement mostly results in the highest scores, there is no clear recommendation
for a replacement strategy for parsing all languages. Looking at the average delta
(∆) values for all languages (see Tables 5.4 and 5.5) in comparison to the baseline,
the picture is clearer: here, for both parsers the reTAG DT suffix strategy yields the
highest improvements and the CBOW and SKG methods only result in consistent
improvements for the oTAG strategy. Further average performance gains are observed
for the CBOW suffix-based method using the reTAG strategy.

To sum up, we have noted that the DT-based strategies seem more advantageous
than the w2v-strategies across languages. Comparing the different strategies for using
DTs, we observe an advantage of reTAG over oTAG and a slight advantage over suffix
vs. sim. Most notably, DT reTAG suffix is the only strategy that never resulted in a
significant performance drop on all datasets for both parsers and yields the highest
average ∆ improvement of 1.50. Given its winning performance on the POS evaluation,
we recommend to use this strategy.

5.6. DATA ANALYSIS 115

5.6 Data Analysis

5.6.1 Analysis of POS Accuracy
Since POS quality has a direct influence on parser accuracy, we have analyzed the two
reTag strategies suffix and sim for our three similarity sources (DT, SKG, CBOW) in
more detail for German and English by comparing them to the oTAG baselines. In
general, differences are mostly found for open word classes such as ADJ, ADV, NOUN,
PROPN and VERB, which naturally have the highest OOV rates in the test data. In both
languages, the DT-based strategies supply about 84% of the replacements of the w2v
strategies.

For German, only the DT suffix-based replacements led to a slight overall POS
improvement. All similarity sources improved the tagging of NOUN for suffix, but
not for sim. All replacements led to some losses in VERBs, with SKG losing the
most. Both w2v sources lost more on ADJ than the DT, which also showed the largest
improvements on ADV. In addition, we analyzed the POS classification only for tokens
that could be replaced both by the DT and the w2v-methods. For these tokens, the SKG
method can not surpass the oTAG performance. Furthermore, for DT and CBOW, the
suffix strategies achieve slightly lower scores than sim (0.18%-0.63%). On the tokens
where all methods propose replacements, the DT results in better accuracy (86.00%)
than CBOW (85.82%).

For English, the picture is similar but in general the improvement of the scores is
larger: while the DT sim led to the largest and the DT suffix to the second-largest overall
improvements, the suffix-based w2v-strategies can also improve POS tagging quality,
whereas the sim w2v-strategies decrease POS accuracy. Here, we see improvements
for ADJ for all but the sim-based w2v-strategies, improvements on NOUN for all but
SKG suffix, and for all suffix strategies for VERB. Inspecting again the words that can be
replaced by all replacement strategies we observe the highest accuracy improvement
using the suffix strategies: here the scores outperform the baseline (78.07%) up to
84.00% using the DT and up to 80.90% with CBOW.

The largest difference and the decisive factor for English and German happens on
the PROPN tag: Whereas DT sim and SKG suffix only result in small positive changes,
all other strategies frequently mis-tag PROPN as NOUN, increasing this error class by
a relative 15% – 45%. These are mostly replacements of rare proper names with
rare nouns, which are less found in DT replacements due to the similarity threshold.
Regarding the other languages, we found largest improvements in French for NOUN for
the DT sim replacement, coupled with losses on PROPN. Both DT strategies improved
VERB. For Spanish largest improvements were found in ADJ, NOUN and PRON for both
DT strategies. Small but significant improvements for Hindi were distributed across
parts of speech, and for Arabic, no sizeable improvements were observed.

Only for Arabic we observe a general performance drop when replacing OOV
words. Inspecting the OOV words, we detect that around 97% of these words have
been annotated as X (other). Overall, the test set contains 8.4% of such annotations,
whereas X is rarely encountered in our other languages. Since the baseline performance
for Arabic POS is very high, there is not much to improve with replacements.

5.6.2 Analysis of Parsing Accuracy by Relation Label
We have conducted a differential analysis comparing LAS F-scores on all our lan-
guages between the baseline and the different replacement options, specifically for

116 CHAPTER 5. PAPER IV: OOV WORDS IN DEPENDENCY PARSING

understanding the effects of DT reTAG strategies. Focusing on frequent dependency
labels (average occurrence: 4% – 14%), we gain improvements for the relations conj,
amod and case across all test sets. Except for Hindi, the LAS F1 score increases
up to 0.6% F1 for case relations, which is the relation between preposition (or post-
positions) and the head noun of the prepositional phrase. For the amod relation that
connects modifying adjectives to nouns, we observe a +0.5% – +1% improvement
in F-score for all languages except Hindi and French, corresponding largely to the
increased POS accuracy for nouns and adjectives.

For English, we found most improvements in the relations compound (about +1
F1) and name (+0.5 – +5.0 F1) for both parsers, while relations cop and xcomp were
recognized less precisely (-0.2 – -0.9 F1). The graph-based parser also improves
largely in appos (+3.5 – +4.2 F1) and nmod:npmod (+5.2 – +6.5 F1), while the
transition-based parser sees improvements in iobj (+3.8 – +5.1 F1) and neg (+1.0
F1). For German, the case relation improves for both parsers with +0.2 – +0.6 F1.
The graph-based parser improves on auxpass (+1.1 – 1.4 F1) and conj (+0.4 – +0.9
F1). Whereas pinpointing systematic differences between the two parsers is hardly
possible, we often observe that the graph-based parser seems to perform better on rare
relations, whereas the transition-based parser deals better with frequent relations.

As with the overall evaluation, there is no clear trend for the suffix vs. the sim
strategy for single relations, except for graph-based German dobj and iobj, which
stayed the same or performed worse for the DT suffix reTAG (0 – -0.9 F1), but improved
greatly for DT sim reTAG (+0.9 – +2.4 F1).

In summary, OOV replacement seems to benefit dependency parsing mostly on
relations that involve open class words, as well as relations that need semantic infor-
mation for disambiguation, e.g. case, dobj and iobj.

5.7 Discussion
In the following we want to discuss about selecting a recommendation for the OOV
replacement and will highlight the differences we observed in our experiments between
graph-based and dense-vector-based similarities.

5.7.1 Recommendations for OOV Replacement
Our experiments show that a simple OOV replacement strategy can lead to significant
improvements for dependency parsing across typologically different languages. Im-
provements can be partially attributed to gains in the POS tagging quality especially
with the suffix-based replacement strategy, and partially attributed to improved use of
lexicalized information from semantic similarity.

Overall, the strategy of replacing OOV words first and POS-tagging the sequence
on the basis of the replacements (reTAG) shows to be more effective than the other
way around. While improvements are generally small yet significant, we still believe
that OOV replacement is a viable strategy, especially given its simplicity. In learning
curve experiments, as exemplified in Figure 5.1, we found the relative effect to be
more pronounced for smaller amounts of training, despite having less in-vocabulary
material to choose from. Thus, our approach seems especially suited for low-resource
languages where labeled training material is notoriously scarce.

The question whether to use DT suffix or DT sim as replacement strategy for
dependency parsing is not easily answered – while DT suffix shows the best overall

5.7. DISCUSSION 117

Figure 5.1: Learning curve of LAS for OOV words for English development set.

improvements across the datasets, DT sim performs slightly better on Arabic and
English graph-based parsing and English POS tagging.

5.7.2 On Differences between Graph-Based and Dense-Vector Sim-
ilarity

What would be needed to fruitfully utilize the popular neural language model w2v as a
similarity source, and why does the graph-based DT seems to be so much more suited
for OOV replacement? From above analysis and from data inspection, we attribute the
advantage of DT to its capability of NOT returning replacements when it has too low
confidence, i.e. no in-vocabulary word is found with a similarity score of 5 or more. In
contrast, vector spaces do not provide an interpretable notion of similarity/closeness
that can be uniformly applied as a similarity threshold: we have compared cosine
similarities of token replacements that lead to improvements, no changes and drops,
and found no differences between their average values. A further difference is the
structure of the vector space and the DT similarity rankings: Whereas the DT returns
similar words with a frequency bias, i.e. rather frequent words are found in the most
similar words per OOV target, the vector space does not have such frequency bias
and, since there are more rare than frequent words in language, returns many rare
words from the background corpus8. This effect can be alleviated to some extent
when applying frequency thresholds, but is in turn aggravated when scaling up the
background corpus. Thus, a condition that would only take the top-N most similar
words from the background collection into account for expansions is also bound to fail
for w2v. The only reasonable mechanism seems to be a background corpus frequency
threshold on the in-vocabulary word. However, even when comparing only on the
positions where both DT and w2v returned replacements, we still find DT replacements

8we have seen this effect repeatedly and consistently across corpora, languages and parameters

118 CHAPTER 5. PAPER IV: OOV WORDS IN DEPENDENCY PARSING

more advantageous. Inspection revealed that while many replacements are the same
for the similarity sources, the DT replacements more often stay in the same word class
(cf. Table 5.1), e.g. regarding conjugative forms of verbs and regarding the distinction
between common and proper nouns.

5.8 Conclusion
In this paper, we have shown that syntactic preprocessing, both POS tagging and
dependency parsing, can benefit from OOV replacement. We have devised a simple
yet effective strategy (DT suffix reTAG) to improve the quality of universal dependency
parsing by replacing OOV words via semantically similar words that share a suffix,
subsequently run the POS tagger and the dependency parser over the altered sequence,
and projecting the labels back to the original sequence. In these experiments similar
words from a count-based distributional thesaurus are more effective than the dense
numeric w2v approach.

In future work, we will apply our method for other types of lexicalized parsers,
such as constituency grammar and combinatory categorial grammar parsers, as well
as examine the influence of OOVs on semantic tasks like semantic role labeling or
frame-semantic parsing.

Bibliography

Anne Abeillé, Lionel Clément, and Alexandra Kinyon. Building a Treebank for
French. In Proceedings of the Second International Conference on Language
Resources and Evaluation (LREC’00), Athens, Greece, May 2000. European
Language Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2000/pdf/230.pdf.

Alfred Aho and Jeffrey Ullman. Properties of syntax directed translations. Journal of
Computer and System Sciences, 3(3):319 – 334, 1969a. ISSN 0022-0000. doi: https:
//doi.org/10.1016/S0022-0000(69)80018-8. URL http://www.sciencedirect.
com/science/article/pii/S0022000069800188.

Alfred V. Aho and Jeffrey D. Ullman. Syntax directed translations and the pushdown
assembler. Journal of Computer and System Sciences, 3(1):37–56, 1969b.

Jacob Andreas and Dan Klein. How much do word embeddings encode about syntax?
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 822–827, Baltimore, Maryland, June
2014. Association for Computational Linguistics. doi: 10.3115/v1/P14-2133. URL
https://www.aclweb.org/anthology/P14-2133.

Krasimir Angelov. Incremental Parsing with Parallel Multiple Context-Free Grammars.
In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL
2009), pages 69–76, Athens, Greece, March 2009. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/E09-1009.

Krasimir Angelov. The Mechanics of the Grammatical Framework. PhD thesis,
Chalmers University of Technology, 2011.

Krasimir Angelov and Peter Ljunglöf. Fast Statistical Parsing with Parallel Multiple
Context-Free Grammars. In Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, pages 368–376, Gothen-
burg, Sweden, April 2014. Association for Computational Linguistics. doi: 10.
3115/v1/E14-1039. URL https://www.aclweb.org/anthology/E14-1039.

Krasimir Angelov and Gleb Lobanov. Predicting Translation Equivalents in Linked
WordNets. In Proceedings of the Sixth Workshop on Hybrid Approaches to Transla-
tion (HyTra6), pages 26–32, Osaka, Japan, December 2016. The COLING 2016 Or-
ganizing Committee. URL https://www.aclweb.org/anthology/W16-4504.

Krasimir Angelov, Björn Bringert, and Aarne Ranta. Speech-Enabled Hybrid
Multilingual Translation for Mobile Devices. In Proceedings of the Demon-
strations at the 14th Conference of the European Chapter of the Association

119

http://www.lrec-conf.org/proceedings/lrec2000/pdf/230.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/230.pdf
http://www.sciencedirect.com/science/article/pii/S0022000069800188
http://www.sciencedirect.com/science/article/pii/S0022000069800188
https://www.aclweb.org/anthology/P14-2133
https://www.aclweb.org/anthology/E09-1009
https://www.aclweb.org/anthology/E14-1039
https://www.aclweb.org/anthology/W16-4504

120 BIBLIOGRAPHY

for Computational Linguistics, pages 41–44, Gothenburg, Sweden, April 2014.
Association for Computational Linguistics. doi: 10.3115/v1/E14-2011. URL
https://www.aclweb.org/anthology/E14-2011.

Andrew Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

Miguel Ballesteros and Joakim Nivre. MaltOptimizer: Fast and effective parser
optimization. Natural Language Engineering, FirstView:1–27, 2 2014.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf
Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider.
Abstract Meaning Representation for Sembanking. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperability with Discourse, pages 178–
186, Sofia, Bulgaria, August 2013. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/W13-2322.

Srinivas Bangalore. Complexity of Lexical Descriptions and Its Relevance to Partial
Parsing. PhD thesis, University of Pennsylvania, Philadelphia, Pennsylvania, 6
1997.

Srinivas Bangalore and Michael Johnston. Balancing data-driven and rule-based
approaches in the context of a Multimodal Conversational System. In HLT-NAACL
2004: Main Proceedings, pages 33–40, Boston, Massachusetts, USA, May 2004.
Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/N04-1005.

Srinivas Bangalore and Aravind K. Joshi. Supertagging: An Approach to Almost
Parsing. Computational Linguistics, 25(2):237–265, 1999. URL https://www.
aclweb.org/anthology/J99-2004.

Mohit Bansal, Kevin Gimpel, and Karen Livescu. Tailoring Continuous Word Rep-
resentations for Dependency Parsing. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pages
809–815, Baltimore, Maryland, June 2014. Association for Computational Linguis-
tics. doi: 10.3115/v1/P14-2131. URL https://www.aclweb.org/anthology/
P14-2131.

Kenneth R. Beesley and Lauri Karttunen. Finite State Morphology. CSLI, 2003.

Emily M. Bender and Dan Flickinger. Rapid Prototyping of Scalable Grammars:
Towards Modularity in Extensions to a Language-Independent Core. In Companion
Volume to the Proceedings of Conference including Posters/Demos and tutorial
abstracts, 2005. URL https://www.aclweb.org/anthology/I05-2035.

Jean-Philippe Bernardy and Stergios Chatzikyriakidis. A Type-Theoretical system for
the FraCaS test suite: Grammatical Framework meets Coq. In IWCS 2017 - 12th
International Conference on Computational Semantics - Long papers, 2017. URL
https://www.aclweb.org/anthology/W17-6801.

Chris Biemann and Martin Riedl. Text: Now in 2D! A Framework for Lexical
Expansion with Contextual Similarity. Journal of Language Modelling, 1(1):
55–95, 2013. URL http://jlm.ipipan.waw.pl/index.php/JLM/article/
view/60.

https://www.aclweb.org/anthology/E14-2011
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/N04-1005
https://www.aclweb.org/anthology/N04-1005
https://www.aclweb.org/anthology/J99-2004
https://www.aclweb.org/anthology/J99-2004
https://www.aclweb.org/anthology/P14-2131
https://www.aclweb.org/anthology/P14-2131
https://www.aclweb.org/anthology/I05-2035
https://www.aclweb.org/anthology/W17-6801
http://jlm.ipipan.waw.pl/index.php/JLM/article/view/60
http://jlm.ipipan.waw.pl/index.php/JLM/article/view/60

BIBLIOGRAPHY 121

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora Hladká. The Prague Depen-
dency Treebank. In Treebanks, pages 103–127. Springer, 2003.

Bernd Bohnet. Top Accuracy and Fast Dependency Parsing is not a Contradiction. In
Proceedings of the 23rd International Conference on Computational Linguistics
(Coling 2010), pages 89–97, Beijing, China, August 2010. Coling 2010 Organizing
Committee. URL https://www.aclweb.org/anthology/C10-1011.

Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jenifer C. Lai, and Robert L.
Mercer. Class-Based n-gram Models of Natural Language. Computational Lin-
guistics, 18(4):467–480, 1992. URL https://www.aclweb.org/anthology/
J92-4003.

Miriam Butt, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian
Rohrer. The Parallel Grammar Project. In COLING-02: Grammar Engineering and
Evaluation, 2002. URL https://www.aclweb.org/anthology/W02-1503.

Eugune Charniak. Tree-bank Grammars. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence and Eighth Innovative Applications of Artificial
Intelligence Conference, pages 1031–1036, Portland, Oregon, August 1996. ISBN
0-262-51091-X. URL http://portal.acm.org/citation.cfm?id=1864519.
1864540.

Wenliang Chen, Yue Zhang, and Min Zhang. Feature Embedding for Dependency
Parsing. In Proceedings of COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers, pages 816–826, Dublin, Ireland,
August 2014. Dublin City University and Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/C14-1078.

David Chiang. A Hierarchical Phrase-Based Model for Statistical Machine Translation.
In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), pages 263–270, Ann Arbor, Michigan, June 2005. Association
for Computational Linguistics. doi: 10.3115/1219840.1219873. URL https:
//www.aclweb.org/anthology/P05-1033.

David Chiang. Hierarchical Phrase-Based Translation. Journal of Computational
Linguistics, 33(2):201–228, 2007. doi: 10.1162/coli.2007.33.2.201. URL https:
//www.aclweb.org/anthology/J07-2003.

Stephen Clark. Supertagging for Combinatory Categorial Grammar. In Proceedings
of the Sixth International Workshop on Tree Adjoining Grammar and Related
Frameworks (TAG+6), pages 19–24, Universitá di Venezia, May 2002. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/
W02-2203.

Michael John Collins. A New Statistical Parser Based on Bigram Lexical Depen-
dencies. In Proceedings of the 34th Annual Meeting of the Association for Com-
putational Linguistics, pages 184–191, Santa Cruz, California, USA, June 1996.
Association for Computational Linguistics. doi: 10.3115/981863.981888. URL
https://www.aclweb.org/anthology/P96-1025.

https://www.aclweb.org/anthology/C10-1011
https://www.aclweb.org/anthology/J92-4003
https://www.aclweb.org/anthology/J92-4003
https://www.aclweb.org/anthology/W02-1503
http://portal.acm.org/citation.cfm?id=1864519.1864540
http://portal.acm.org/citation.cfm?id=1864519.1864540
https://www.aclweb.org/anthology/C14-1078
https://www.aclweb.org/anthology/P05-1033
https://www.aclweb.org/anthology/P05-1033
https://www.aclweb.org/anthology/J07-2003
https://www.aclweb.org/anthology/J07-2003
https://www.aclweb.org/anthology/W02-2203
https://www.aclweb.org/anthology/W02-2203
https://www.aclweb.org/anthology/P96-1025

122 BIBLIOGRAPHY

Ann Copestake and Dan Flickinger. An Open Source Grammar Development Environ-
ment and Broad-coverage English Grammar Using HPSG. In Proceedings of the Sec-
ond International Conference on Language Resources and Evaluation (LREC’00),
Athens, Greece, May 2000. European Language Resources Association (ELRA).
URL http://www.lrec-conf.org/proceedings/lrec2000/pdf/371.pdf.

William Croft, Dawn Nordquist, Katherine Looney, and Michael Regan. Linguistic
Typology meets Universal Dependencies. In Treebanks and Linguistic Theories
(TLT-2017), pages 63–75, Bloomington IN, January 20–21, 2017.

Haskell B. Curry. Some Logical Aspects of Grammatical Structure. In Structure of
Language and its Mathematical Aspects: Proceedings of the Twelfth Symposium in
Applied Mathematics, pages 56–68. American Mathematical Society, 1961.

Dana Dannells and Normunds Gruzitis. Extracting a bilingual semantic grammar
from FrameNet-annotated corpora. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC’14), pages 2466–
2473, Reykjavik, Iceland, May 2014. European Language Resources Association
(ELRA). URL http://www.lrec-conf.org/proceedings/lrec2014/pdf/
1079_Paper.pdf.

Dana Dannélls, Mariana Damova, Ramona Enache, and Milen Chechev. Multilingual
Online Generation from Semantic Web Ontologies. In Proceedings of the 21st
International Conference on World Wide Web, pages 239–242, Lyon, France, 2012.
ACM.

Dana Dannells, Aarne Ranta, Ramona Enache, Mariana Damova, and Maria Mat-
eva. Multilingual access to cultural heritage content on the Semantic Web. In
Proceedings of the 7th Workshop on Language Technology for Cultural Heritage,
Social Sciences, and Humanities, pages 107–115, Sofia, Bulgaria, August 2013.
Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/W13-2715.

Marie-Catherine de Marneffe and Christopher D. Manning. The Stanford Typed
Dependencies Representation. In Coling 2008: Proceedings of the workshop
on Cross-Framework and Cross-Domain Parser Evaluation, pages 1–8, Manch-
ester, UK, August 2008. Coling 2008 Organizing Committee. URL https:
//www.aclweb.org/anthology/W08-1301.

Marie-Catherine de Marneffe and Joakim Nivre. Dependency grammar.
Annual Review of Linguistics, 5(1):197–218, 2019. doi: 10.1146/
annurev-linguistics-011718-011842. URL https://doi.org/10.1146/
annurev-linguistics-011718-011842.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Gener-
ating Typed Dependency Parses from Phrase Structure Parses. In Proceedings of the
Fifth International Conference on Language Resources and Evaluation (LREC’06),
Genoa, Italy, May 2006. European Language Resources Association (ELRA). URL
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen,
Filip Ginter, Joakim Nivre, and Christopher D. Manning. Universal Stanford

http://www.lrec-conf.org/proceedings/lrec2000/pdf/371.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1079_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1079_Paper.pdf
https://www.aclweb.org/anthology/W13-2715
https://www.aclweb.org/anthology/W13-2715
https://www.aclweb.org/anthology/W08-1301
https://www.aclweb.org/anthology/W08-1301
https://doi.org/10.1146/annurev-linguistics-011718-011842
https://doi.org/10.1146/annurev-linguistics-011718-011842
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf

BIBLIOGRAPHY 123

dependencies: A cross-linguistic typology. In Proceedings of the Ninth Inter-
national Conference on Language Resources and Evaluation (LREC’14), pages
4585–4592, Reykjavik, Iceland, May 2014. European Language Resources Associ-
ation (ELRA). URL http://www.lrec-conf.org/proceedings/lrec2014/
pdf/1062_Paper.pdf.

Ralph Debusmann. An introduction to dependency grammar. January 2000.

David R. Dowty. Word Meaning and Montague Grammar. D. Reidel, Dordrecht,
1979.

Rebecca Dridan. Ubertagging: Joint Segmentation and Supertagging for English.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1201–1212, Seattle, Washington, USA, October 2013.
Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/D13-1120.

Marc Dymetman, Veronika Lux, and Aarne Ranta. XML and Multilingual Document
Authoring: Convergent Trends. In COLING 2000 Volume 1: The 18th International
Conference on Computational Linguistics, pages 243–249, Saarbrücken, Germany,
2000. URL https://www.aclweb.org/anthology/C00-1036.

Stefan Evert. The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD thesis, Institut für maschinelle Sprachverarbeitung, University of Stuttgart,
2005.

Winthrop Francis Nelson and Henry Kučera. Manual of Information to accompany
a Standard Corpus of present-day edited American English, for use with digital
computers. Brown University, Department of Lingustics, 1979.

Rashmi Gangadharaiah, Ralf D. Brown, and Jaime Carbonell. Monolingual Distri-
butional Profiles for Word Substitution in Machine Translation. In Coling 2010:
Posters, pages 320–328, Beijing, China, August 2010. Coling 2010 Organizing
Committee. URL https://www.aclweb.org/anthology/C10-2037.

Dan Garrette and Jason Baldridge. Learning a Part-of-Speech Tagger from Two
Hours of Annotation. In Proceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 138–147, Atlanta, Georgia, June 2013. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/N13-1014.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. Generalized Phrase
Structure Grammar. Basil Blackwell, Oxford, 1985.

Normunds Gruzitis and Guntis Barzdins. The role of CNL and AMR in scalable
abstractive summarization for multilingual media monitoring. In Controlled Natural
Language, volume 9767 of Lecture Notes in Computer Science, pages 127–130.
Springer, 2016. doi: 10.1007/978-3-319-41498-0. URL http://arxiv.org/
abs/1606.05994.

Normunds Gruzitis and Dana Dannélls. A Multilingual FrameNet-based Grammar and
Lexicon for Controlled Natural Language. Language Resources and Evaluation,
2015. URL http://arxiv.org/abs/1511.03924.

http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://www.aclweb.org/anthology/D13-1120
https://www.aclweb.org/anthology/D13-1120
https://www.aclweb.org/anthology/C00-1036
https://www.aclweb.org/anthology/C10-2037
https://www.aclweb.org/anthology/N13-1014
http://arxiv.org/abs/1606.05994
http://arxiv.org/abs/1606.05994
http://arxiv.org/abs/1511.03924

124 BIBLIOGRAPHY

Normunds Gruzitis, Didzis Gosko, and Guntis Barzdins. RIGOTRIO at SemEval-2017
Task 9: Combining machine learning and grammar engineering for AMR parsing
and generation. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval), pages 924–928, Vancouver, Canada, 2017. doi: 10.18653/
v1/S17-2159. URL http://www.aclweb.org/anthology/S17-2159.

Thomas Hallgren and Aarne Ranta. An Extensible Proof Text Editor. In Logic for
Programming and Automated Reasoning: 7th International Conference, LPAR 2000
Proceedings, volume 1955 of LNCS/LNAI, pages 70–84. Springer, 2000.

Zellig S. Harris. Methods in Structural Linguistics. University of Chicago Press,
Chicago, 1951.

Julia Hockenmaier and Mark Steedman. CCGbank: A Corpus of CCG Derivations
and Dependency Structures Extracted from the Penn Treebank. Journal of Compu-
tational Linguistics, 33(3):355–396, 2007. doi: 10.1162/coli.2007.33.3.355. URL
https://www.aclweb.org/anthology/J07-3004.

Hen-Hsen Huang, Huan-Yuan Chen, Chang-Sheng Yu, Hsin-Hsi Chen, Po-Ching Lee,
and Chun-Hsun Chen. Sentence Rephrasing for Parsing Sentences with OOV Words.
In Proceedings of the Ninth International Conference on Language Resources and
Evaluation (LREC’14), pages 2859–2862, Reykjavik, Iceland, May 2014. European
Language Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2014/pdf/60_Paper.pdf.

Mark Johnson. PCFG Models of Linguistic Tree Representations. Computational
Linguistics, 24(4):613–632, 1998. URL https://www.aclweb.org/anthology/
J98-4004.

Rebecca Jonson. Generating Statistical Language Models from Interpretation Gram-
mars in Dialogue Systems. In 11th Conference of the European Chapter of the
Association for Computational Linguistics, 2006. URL https://www.aclweb.
org/anthology/E06-1008.

Aravind K. Joshi and Yves Schabes. Tree-Adjoining Grammars. In Handbook of
Formal Languages, 1997.

Kaarel Kaljurand and Tobias Kuhn. A Multilingual Semantic Wiki Based on Attempto
Controlled English and Grammatical Framework. In Proceedings of The Semantic
Web: Semantics and Big Data: 10th International Conference, ESWC 2013, pages
427–441. Springer, 2013.

Ronald M. Kaplan and Joan Bresnan. Lexical-Functional Grammar: A Formal System
for Grammatical Representation. In The Mental Representation of Grammatical
Relations, pages 173–281. MIT Press, Cambridge, MA, 1982.

Janna Khegai. GF Parallel Resource Grammars and Russian. In Proceedings of the
COLING/ACL 2006 Main Conference Poster Sessions, pages 475–482, Sydney,
Australia, July 2006. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/P06-2062.

Prasanth Kolachina and Aarne Ranta. From Abstract Syntax to Universal Dependen-
cies. Linguistic Issues in Language Technology, 13(3), 2016.

http://www.aclweb.org/anthology/S17-2159
https://www.aclweb.org/anthology/J07-3004
http://www.lrec-conf.org/proceedings/lrec2014/pdf/60_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/60_Paper.pdf
https://www.aclweb.org/anthology/J98-4004
https://www.aclweb.org/anthology/J98-4004
https://www.aclweb.org/anthology/E06-1008
https://www.aclweb.org/anthology/E06-1008
https://www.aclweb.org/anthology/P06-2062
https://www.aclweb.org/anthology/P06-2062

BIBLIOGRAPHY 125

Terry Koo, Xavier Carreras, and Michael Collins. Simple Semi-supervised Dependency
Parsing. In Proceedings of ACL-08: HLT, pages 595–603, Columbus, Ohio, June
2008. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/P08-1068.

Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency Parsing. Syn-
thesis Lectures on Human Language Technologies, 2(1):1–127, 2009. doi:
10.2200/S00169ED1V01Y200901HLT002. URL https://doi.org/10.2200/
S00169ED1V01Y200901HLT002.

Joachim Lambek. The Mathematics of Sentence Structure. Journal of Symbolic Logic,
33(4):627–628, 1968. doi: 10.2307/2271418.

Herbert Lange. Implementation of a latin grammar in grammatical framework. In
Proceedings of the 2Nd International Conference on Digital Access to Textual
Cultural Heritage, DATeCH2017, pages 97–102, New York, NY, USA, 2017. ACM.
ISBN 978-1-4503-5265-9. doi: 10.1145/3078081.3078108. URL http://doi.
acm.org/10.1145/3078081.3078108.

P. M. Lewis, II and R. E. Stearns. Syntax-directed transduction. J. ACM, 15(3):
465–488, July 1968. ISSN 0004-5411. doi: 10.1145/321466.321477. URL http:
//doi.acm.org/10.1145/321466.321477.

Inari Listenmaa. Formal Methods for Testing Grammars. PhD thesis, Chalmers
University of Technology and University of Gothenburg, Gothenburg, Sweden,
October 2019.

Peter Ljunglöf. The Expressivity and Complexity of Grammatical Framework. PhD
thesis, Department of Computing Science, Chalmers University of Technology and
University of Gothenburg, 2004.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyr, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger. The Penn Treebank: Anno-
tating Predicate Argument Structure. In HUMAN LANGUAGE TECHNOLOGY:
Proceedings of a Workshop held at Plainsboro, New Jersey, March 8-11, 1994,
pages 114–119, 1994. URL https://www.aclweb.org/anthology/H94-1020.

John McCarthy. Towards a mathematical science of computation. In Proceedings
of the Information Processing Congress (IFIP) 62, pages 21–28, Munich, West
Germany, August 1962. North-Holland.

Ryan McDonald, Slav Petrov, and Keith Hall. Multi-Source Transfer of Delexicalized
Dependency Parsers. In Proceedings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 62–72, Edinburgh, Scotland, UK., July
2011. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/D11-1006.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipan-
jan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, Oscar Täckström,
Claudia Bedini, Núria Bertomeu Castelló, and Jungmee Lee. Universal Dependency
Annotation for Multilingual Parsing. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pages
92–97, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/P13-2017.

https://www.aclweb.org/anthology/P08-1068
https://www.aclweb.org/anthology/P08-1068
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
http://doi.acm.org/10.1145/3078081.3078108
http://doi.acm.org/10.1145/3078081.3078108
http://doi.acm.org/10.1145/321466.321477
http://doi.acm.org/10.1145/321466.321477
https://www.aclweb.org/anthology/H94-1020
https://www.aclweb.org/anthology/D11-1006
https://www.aclweb.org/anthology/D11-1006
https://www.aclweb.org/anthology/P13-2017

126 BIBLIOGRAPHY

I. Dan Melamed and Wei Wang. Statistical Machine Translation by Parsing. CoRR,
cs.CL/0407005, 2004. URL http://arxiv.org/abs/cs.CL/0407005. An al-
ternate version of Generalized Parsers for Machine Translation.

I. Dan Melamed, Giorgio Satta, and Benjamin Wellington. Generalized Multitext
Grammars. In Proceedings of the 42nd Meeting of the Association for Compu-
tational Linguistics (ACL’04), Main Volume, pages 661–668, Barcelona, Spain,
July 2004. doi: 10.3115/1218955.1219039. URL https://www.aclweb.org/
anthology/P04-1084.

Paul Meurer. From LFG structures to dependency relations. Bergen Language and
Linguistics Studies, 8(1), November 2017. doi: 10.15845/bells.v8i1.1341. URL
https://bells.uib.no/index.php/bells/article/view/1341.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation
of Word Representations in Vector Space. In Proceedings of First International
Conference on Learning Representations, ICLR 2013, Workshop Track, ICLR 2013,
pages 1310–1318, 2013. URL http://arxiv.org/pdf/1301.3781.

Simon Mille, Bernd Bohnet, Leo Wanner, and Anja Belz. Shared Task Proposal:
Multilingual Surface Realization Using Universal Dependency Trees. In Pro-
ceedings of the 10th International Conference on Natural Language Genera-
tion, pages 120–123, Santiago de Compostela, Spain, September 2017. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/W17-3517. URL
https://www.aclweb.org/anthology/W17-3517.

Simon Mille, Anja Belz, Bernd Bohnet, Yvette Graham, Emily Pitler, and Leo Wanner.
The First Multilingual Surface Realisation Shared Task (SR’18): Overview and
Evaluation Results. In Proceedings of the First Workshop on Multilingual Surface
Realisation, pages 1–12, Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/W18-3601.

Richard Montague. Formal Philosophy. Yale University Press, New Haven (Conn.)
(etc.), 1974. Collected papers edited by Richmond Thomason.

Reinhard Muskens. New Directions in Type-Theoretic Grammars. Journal of Logic,
Language and Information, 19(2):129–136, 2010.

Mark-Jan Nederhof and Heiko Vogler. Synchronous Context-Free Tree Grammars. In
Proceedings of the 11th International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+11), pages 55–63, Paris, France, September 2012. URL
https://www.aclweb.org/anthology/W12-4607.

Graham Neubig, Philip Arthur, and Kevin Duh. Multi-Target Machine Translation with
Multi-Synchronous Context-free Grammars. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 293–302, Denver, Colorado, May–June
2015. Association for Computational Linguistics. doi: 10.3115/v1/N15-1033. URL
https://www.aclweb.org/anthology/N15-1033.

Grace Ngai and David Yarowsky. Rule Writing or Annotation: Cost-efficient Resource
Usage for Base Noun Phrase Chunking. In Proceedings of the 38th Annual Meeting
of the Association for Computational Linguistics, pages 117–125, Hong Kong,

http://arxiv.org/abs/cs.CL/0407005
https://www.aclweb.org/anthology/P04-1084
https://www.aclweb.org/anthology/P04-1084
https://bells.uib.no/index.php/bells/article/view/1341
http://arxiv.org/pdf/1301.3781
https://www.aclweb.org/anthology/W17-3517
https://www.aclweb.org/anthology/W18-3601
https://www.aclweb.org/anthology/W12-4607
https://www.aclweb.org/anthology/N15-1033

BIBLIOGRAPHY 127

October 2000. Association for Computational Linguistics. doi: 10.3115/1075218.
1075234. URL https://www.aclweb.org/anthology/P00-1016.

Joakim Nivre. Inductive Dependency Parsing. Text, Speech and Language Technology.
Springer Netherlands, 2006.

Joakim Nivre. Non-Projective Dependency Parsing in Expected Linear Time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP,
pages 351–359, Suntec, Singapore, August 2009. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/P09-1040.

Joakim Nivre. Towards a Universal Grammar for Natural Language Processing. In
CICLing 2015: Proceedings of Computational Linguistics and Intelligent Text
Processing, volume 9041 of LNCS, pages 3–16, Cairo, Egypt, April 2015.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic,
Christopher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, Reut Tsarfaty, and Daniel Zeman. Universal Dependencies v1: A Multilin-
gual Treebank Collection. In Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC 2016), pages 1659–1666, Portorož,
Slovenia, May 2016. European Language Resources Association (ELRA). URL
https://www.aclweb.org/anthology/L16-1262.

Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christopher D. Man-
ning. LinGO Redwoods: A Rich and Dynamic Treebank for HPSG. Research
on Language and Computation, 2(4):575–596, December 2004. ISSN 1572-
8706. doi: 10.1007/s11168-004-7430-4. URL https://doi.org/10.1007/
s11168-004-7430-4.

Peteris Paikens and Normunds Gruzitis. An implementation of a Latvian resource
grammar in Grammatical Framework. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC-2012), pages 1680–
1685, Istanbul, Turkey, May 2012. European Language Resources Association
(ELRA). URL http://www.lrec-conf.org/proceedings/lrec2012/pdf/
976_Paper.pdf.

Ioanna Papadopoulou. GF Modern Greek Resource Grammar. In Proceedings of
the Student Research Workshop associated with RANLP 2013, pages 126–133,
Hissar, Bulgaria, September 2013. INCOMA Ltd. Shoumen, BULGARIA. URL
https://www.aclweb.org/anthology/R13-2019.

Adam Pauls, Dan Klein, David Chiang, and Kevin Knight. Unsupervised Syn-
tactic Alignment with Inversion Transduction Grammars. In Human Language
Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics, pages 118–126, Los Ange-
les, California, June 2010. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/N10-1014.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A Universal Part-of-Speech Tagset.
In Proceedings of the Eighth International Conference on Language Resources and
Evaluation (LREC-2012), pages 2089–2096, Istanbul, Turkey, May 2012. European

https://www.aclweb.org/anthology/P00-1016
https://www.aclweb.org/anthology/P09-1040
https://www.aclweb.org/anthology/L16-1262
https://doi.org/10.1007/s11168-004-7430-4
https://doi.org/10.1007/s11168-004-7430-4
http://www.lrec-conf.org/proceedings/lrec2012/pdf/976_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/976_Paper.pdf
https://www.aclweb.org/anthology/R13-2019
https://www.aclweb.org/anthology/N10-1014

128 BIBLIOGRAPHY

Language Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2012/pdf/274_Paper.pdf.

Adam Przepiórkowski and Agnieszka Patejuk. From Lexical Functional Grammar to
Enhanced Universal Dependencies. In Proceedings of the Joint Workshop on Linguis-
tic Annotation, Multiword Expressions and Constructions (LAW-MWE-CxG-2018),
pages 2–4, Santa Fe, New Mexico, USA, August 2018. Association for Computa-
tional Linguistics. URL https://www.aclweb.org/anthology/W18-4902.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language Models are Unsupervised Multitask Learners. 2018. URL
https://d4mucfpksywv.cloudfront.net/better-language-models/
language-models.pdf.

Aarne Ranta. Computational Semantics in Type Theory. Mathematics and Social
Sciences, 165:31–57, 2004a.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar Formalism.
The Journal of Functional Programming, 14(2):145–189, 2004b.

Aarne Ranta. Grammars as Software Libraries. In From Semantics to Computer
Science. Essays in Honour of Gilles Kahn, pages 281–308. Cambridge University
Press, 2009a.

Aarne Ranta. The GF Resource Grammar Library. Linguistic Issues in Language
Technology, 2(2), 2009b.

Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford, 2011.

Aarne Ranta and Prasanth Kolachina. From Universal Dependencies to Abstract
Syntax. In Proceedings of the NoDaLiDa 2017 Workshop on Universal Depen-
dencies (UDW 2017), pages 107–116, Gothenburg, Sweden, 2017. Association for
Computational Linguistics.

Aarne Ranta, Krasimir Angelov, and Thomas Hallgren. Tools for Multilingual
Grammar-Based Translation on the Web. In Proceedings of the ACL 2010 System
Demonstrations, pages 66–71, Uppsala, Sweden, July 2010. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/P10-4012.

Aarne Ranta, Ramona Enache, and Grégoire Détrez. Controlled Language for Ev-
eryday Use: The MOLTO Phrasebook. In Controlled Natural Language: Second
International Workshop, CNL 2010, Revised Papers, volume 7175 of LNCS/LNAI,
pages 115–136. Springer, 2012.

Aarne Ranta, Prasanth Kolachina, and Thomas Hallgren. Cross-Lingual Syntax:
Relating Grammatical Framework with Universal Dependencies. In Proceed-
ings of the 21st Nordic Conference on Computational Linguistics, pages 322–325,
Gothenburg, Sweden, May 2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/W17-0247.

Manny Rayner, David Carter, Pierrette Bouillon, Vassilis Digalakis, and Mats Wirén.
The Spoken Language Translator. Cambridge University Press, Cambridge, 1st
edition, 2000.

http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
https://www.aclweb.org/anthology/W18-4902
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://www.aclweb.org/anthology/P10-4012
https://www.aclweb.org/anthology/W17-0247

BIBLIOGRAPHY 129

Siva Reddy, Oscar Täckström, Michael Collins, Tom Kwiatkowski, Dipanjan Das,
Mark Steedman, and Mirella Lapata. Transforming Dependency Structures to
Logical Forms for Semantic Parsing. Transactions of the Association for Computa-
tional Linguistics, 4:127–140, December 2016. doi: 10.1162/tacl_a_00088. URL
https://www.aclweb.org/anthology/Q16-1010.

Matthias Richter, Uwe Quasthoff, Erla Hallsteinsdóttir, and Chris Bie-
mann. Exploiting the Leipzig Corpora Collection. In Proceed-
ings of the IS-LTC 2006, pages 68–73, Ljubljana, Slovenia, 2006.
URL http://wortschatz.uni-leipzig.de/~cbiemann/pub/2006/
RichterQuasthoffHallsteinsdottirBiemann-ISLTC.pdf.

Rudolf Rosa, Jan Mašek, David Mareček, Martin Popel, Daniel Zeman, and Zdeněk
Žabokrtský. HamleDT 2.0: Thirty Dependency Treebanks Stanfordized. In Pro-
ceedings of the Ninth International Conference on Language Resources and Eval-
uation (LREC’14), pages 2334–2341, Reykjavik, Iceland, May 2014. European
Language Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2014/pdf/915_Paper.pdf.

Eugen Ruppert, Jonas Klesy, Martin Riedl, and Chris Biemann. Rule-based Depen-
dency Parse Collapsing and Propagation for German and English. In Proceedings
of International Conference of the German Society for Computational Linguistics
and Language Technology, Essen, 2015.

Gozde Gul Sahin and Mark Steedman. Data Augmentation via Dependency Tree
Morphing for Low-Resource Languages. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pages 5004–5009, Brussels,
Belgium, October-November 2018. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/D18-1545.

Roland Schäfer and Felix Bildhauer. Web Corpus Construction. Synthesis
Lectures on Human Language Technologies, 6(4):1–145, 2013. doi: 10.
2200/S00508ED1V01Y201305HLT022. URL https://doi.org/10.2200/
S00508ED1V01Y201305HLT022.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple
context-free grammars. Theoretical Computer Science, 88(2):191–229, 1991.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving Neural Machine Trans-
lation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany, August 2016. Association for Computational Linguis-
tics. doi: 10.18653/v1/P16-1009. URL https://www.aclweb.org/anthology/
P16-1009.

Petr Sgall, Eva Hajičová, and Jarmila Panevová. The Meaning of the Sentence in Its
Semantic and Pragmatic Aspects. Reidel, Dordrecht, 1986.

Stuart M. Shieber. Bimorphisms and synchronous grammars. Journal of Language
Modelling, 2(1):51–104, 2014. doi: 10.15398/jlm.v2i1.84. URL http://jlm.
ipipan.waw.pl/index.php/JLM/article/view/84.

https://www.aclweb.org/anthology/Q16-1010
http://wortschatz.uni-leipzig.de/~cbiemann/pub/2006/RichterQuasthoffHallsteinsdottirBiemann-ISLTC.pdf
http://wortschatz.uni-leipzig.de/~cbiemann/pub/2006/RichterQuasthoffHallsteinsdottirBiemann-ISLTC.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/915_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/915_Paper.pdf
https://www.aclweb.org/anthology/D18-1545
https://doi.org/10.2200/S00508ED1V01Y201305HLT022
https://doi.org/10.2200/S00508ED1V01Y201305HLT022
https://www.aclweb.org/anthology/P16-1009
https://www.aclweb.org/anthology/P16-1009
http://jlm.ipipan.waw.pl/index.php/JLM/article/view/84
http://jlm.ipipan.waw.pl/index.php/JLM/article/view/84

130 BIBLIOGRAPHY

Richard Socher, John Bauer, Christopher D. Manning, and Andrew Y. Ng. Parsing
with Compositional Vector Grammars. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages
455–465, Sofia, Bulgaria, August 2013. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/P13-1045.

Ian Sommerville. Software Engineering. Addison-Wesley Publishing Company, USA,
9th edition, 2010. ISBN 0137035152, 9780137035151.

Milan Straka and Jana Straková. Tokenizing, POS Tagging, Lemmatizing and Parsing
UD 2.0 with UDPipe. In Proceedings of the CoNLL 2017 Shared Task: Multilin-
gual Parsing from Raw Text to Universal Dependencies, pages 88–99, Vancouver,
Canada, August 2017. Association for Computational Linguistics. doi: 10.18653/
v1/K17-3009. URL https://www.aclweb.org/anthology/K17-3009.

Lucien Tesnière. Elements of Structural Syntax. John Benjamins, 2015. URL
https://www.jbe-platform.com/content/books/9789027269997.

Jörg Tiedemann. Rediscovering Annotation Projection for Cross-Lingual Parser
Induction. In Proceedings of COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages 1854–1864, Dublin, Ireland,
August 2014. Dublin City University and Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/C14-1175.

Jörg Tiedemann and Zeljko Agic. Synthetic Treebanking for Cross-Lingual Depen-
dency Parsing. The Journal of Artificial Intelligence Research (JAIR), 55:209–248,
2016. doi: 10.1613/jair.4785.

Francis Tyers, Mariya Sheyanova, Aleksandra Martynova, Pavel Stepachev, and
Konstantin Vinogorodskiy. Multi-source synthetic treebank creation for im-
proved cross-lingual dependency parsing. In Proceedings of the Second Work-
shop on Universal Dependencies (UDW 2018), pages 144–150, Brussels, Bel-
gium, November 2018. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/W18-6017.

Ashish Vaswani, Liang Huang, and David Chiang. Smaller Alignment Models for Bet-
ter Translations: Unsupervised Word Alignment with the l0-norm. In Proceedings of
the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 311–319, Jeju Island, Korea, July 2012. Association for Compu-
tational Linguistics. URL https://www.aclweb.org/anthology/P12-1033.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan Musa. Supertagging With
LSTMs. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pages 232–237, San Diego, California, June 2016. Association for Computational
Linguistics. doi: 10.18653/v1/N16-1027. URL https://www.aclweb.org/
anthology/N16-1027.

K Vijay-Shanker and David Weir. The Equivalence Of Four Extensions Of Context-
Free Grammars. Mathematical Systems Theory, 27, 02 1995. doi: 10.1007/
BF01191624.

https://www.aclweb.org/anthology/P13-1045
https://www.aclweb.org/anthology/K17-3009
https://www.jbe-platform.com/content/books/9789027269997
https://www.aclweb.org/anthology/C14-1175
https://www.aclweb.org/anthology/W18-6017
https://www.aclweb.org/anthology/W18-6017
https://www.aclweb.org/anthology/P12-1033
https://www.aclweb.org/anthology/N16-1027
https://www.aclweb.org/anthology/N16-1027

BIBLIOGRAPHY 131

Shafqat Mumtaz Virk, K.V.S Prasad, Aarne Ranta, and Krasimir Angelov. Developing
an interlingual translation lexicon using WordNets and Grammatical Framework. In
Proceedings of the Fifth Workshop on South and Southeast Asian Natural Language
Processing, pages 55–64, Dublin, Ireland, August 2014. Association for Computa-
tional Linguistics and Dublin City University. doi: 10.3115/v1/W14-5508. URL
https://www.aclweb.org/anthology/W14-5508.

Dingquan Wang and Jason Eisner. The Galactic Dependencies Treebanks: Getting
More Data by Synthesizing New Languages. Transactions of the Association for
Computational Linguistics, 4:491–505, December 2016. doi: 10.1162/tacl_a_00113.
URL https://www.aclweb.org/anthology/Q16-1035.

Dingquan Wang and Jason Eisner. Synthetic Data Made to Order: The Case of
Parsing. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pages 1325–1337, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/D18-1163.

Qin Iris Wang, Dale Schuurmans, and Dekang Lin. Strictly Lexical Dependency
Parsing. In Proceedings of the Ninth International Workshop on Parsing Tech-
nology, pages 152–159, Vancouver, British Columbia, October 2005. Association
for Computational Linguistics. URL https://www.aclweb.org/anthology/
W05-1516.

Dekai Wu. Stochastic Inversion Transduction Grammars and Bilingual Parsing of
Parallel Corpora. Computational Linguistics, 23(3):377–403, 1997. URL https:
//www.aclweb.org/anthology/J97-3002.

F. Xia. Automatic grammar generation from two different perspectives. PhD thesis,
2001. AAI3031738.

Min Xiao and Yuhong Guo. Distributed Word Representation Learning for Cross-
Lingual Dependency Parsing. In Proceedings of the Eighteenth Conference on
Computational Natural Language Learning, pages 119–129, Ann Arbor, Michigan,
June 2014. Association for Computational Linguistics. doi: 10.3115/v1/W14-1613.
URL https://www.aclweb.org/anthology/W14-1613.

XTAG. A Lexicalized Tree Adjoining Grammar for English. Technical Report
IRCS-01-03, IRCS, University of Pennsylvania, 2001.

Daniel Zeman and Jan Hajič. Proceedings of the CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Dependencies. Brussels, Bel-
gium, October 2018. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/K18-2000.

Hao Zhang, Daniel Gildea, and David Chiang. Extracting Synchronous Grammar
Rules From Word-Level Alignments in Linear Time. In Proceedings of the 22nd
International Conference on Computational Linguistics (Coling 2008), pages 1081–
1088, Manchester, UK, August 2008. Coling 2008 Organizing Committee. URL
https://www.aclweb.org/anthology/C08-1136.

Jiajun Zhang, Feifei Zhai, and Chengqing Zong. Handling Unknown Words in
Statistical Machine Translation from a New Perspective. In Proceedings of the 1st

https://www.aclweb.org/anthology/W14-5508
https://www.aclweb.org/anthology/Q16-1035
https://www.aclweb.org/anthology/D18-1163
https://www.aclweb.org/anthology/D18-1163
https://www.aclweb.org/anthology/W05-1516
https://www.aclweb.org/anthology/W05-1516
https://www.aclweb.org/anthology/J97-3002
https://www.aclweb.org/anthology/J97-3002
https://www.aclweb.org/anthology/W14-1613
https://www.aclweb.org/anthology/K18-2000
https://www.aclweb.org/anthology/K18-2000
https://www.aclweb.org/anthology/C08-1136

132 BIBLIOGRAPHY

Conference on Natural Language Processing and Chinese Computing, NLP&CC
’12, pages 176–187, Beijing, China, 2012. ISBN 978-3-642-34455-8. URL http:
//link.springer.com/chapter/10.1007%2F978-3-642-34456-5_17.

http://link.springer.com/chapter/10.1007%2F978-3-642-34456-5_17
http://link.springer.com/chapter/10.1007%2F978-3-642-34456-5_17

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Research Questions
	Multilingual Grammars and Representations
	Abstract Syntax trees and Dependency trees
	ast2dep: From Abstract Syntax to Dependency trees
	dep2ast: From Dependencies to Abstract Syntax trees
	Expressivity and Limitations of ast2dep and dep2ast

	GF-RGL and Universal Dependencies
	gf2ud: Extensions to ast2dep
	ud2gf: Extensions to dep2ast
	Applications

	Related Work
	Results
	Summary of the studies
	Paper I: gf2ud
	Paper II: ud2gf
	Paper III: Bootstrapping UD treebanks
	Paper IV: OOV words in Dependency parsing

	Conclusions and Future work
	Open Problems and Future directions

	Paper I: gf2ud
	Introduction
	Grammars and trees
	Abstract and concrete syntax
	Trees and their conversions
	Abstracting from morphological variation
	Abstracting from syncategorematic words

	An overview of GF-RGL and UD
	Overview of RGL
	Overview of UD

	Dependency mappings: straightforward cases
	Clausal predicates: predication and complementation
	Adverbial modifiers
	Questions and relative clauses
	Noun phrases and modifiers
	Coordination

	Dependency mappings: Problematic cases
	Passive voice constructions
	Copula constructions
	Verb phrase complements and prepositional verbs
	Auxiliary verbs and verbal negation
	Multi-word expressions
	Idiomatic and Semantic (CxG) Constructions
	Dependency conversion algorithm and specification language

	Experiments
	UD test treebank
	Evaluation
	GF Penn Treebank

	Conclusion
	Appendix: GF-RGL and UD Reference
	GF-RGL categories
	UD tags and labels

	Appendix: Dependency conversion algorithm and specification language

	Paper II: ud2gf
	Introduction
	From gf2ud to ud2gf
	The ud2gf basic algorithm
	Refinements of the basic algorithm
	First results
	Conclusion

	Paper III: Bootstrapping UD treebanks
	Introduction
	Grammatical Framework
	gf2ud

	Bootstrapping AST and UD treebanks
	Differences against UDv2

	UD Parsing
	Experiments
	Related Work
	Conclusions

	Paper IV: OOV words in Dependency Parsing
	Introduction
	Related Work
	Methodology
	Semantic Similarities
	Suffix Source
	Replacement Strategies regarding POS
	Replacement Example

	Experimental Settings
	Similarity Computations
	Corpora for Similarity Computation
	Dependency Parser and POS Tagger
	Treebanks

	Results
	Results for POS Tagging
	Results for Dependency Parsing

	Data Analysis
	Analysis of POS Accuracy
	Analysis of Parsing Accuracy by Relation Label

	Discussion
	Recommendations for OOV Replacement
	On Differences between Graph-Based and Dense-Vector Similarity

	Conclusion

	Bibliography

