En empirisk studie av New Keynesian Wage Phillips Curve
FÖR DANMARK, SCHWEIZ OCH SVERIGE

Ludvig Gillholm & Richard Håkansson
Vårterminen 2018

Abstract
In this paper the New Keynesian Wage Phillips Curve (NKWPC) is being discussed. The purpose of this paper was to evaluate NKWPC in Denmark, Sweden and Switzerland during the period 2000Q4-2017Q4 and investigate negative repo rates effect on wage inflation.

NKWPC is an enhanced model of the classic Phillips Curve that attempts to describe the dynamic relationship between wage inflation and unemployment. The model is estimated by executing OLS regressions.

The paper concludes that there is evidence for applicability of NKWPC for Denmark and Switzerland, but not for Sweden. Further on, the study displays that the period with and without negative repo rates, are significantly different from each other.

Keywords: New Keynesian Wage Phillips Curve, Negative repo rate, Unemployment rate, Wage inflation

Kandidatuppsats i Nationalekonomi (15hp)

Department of Economics,
School of Business, Economics and Law
University of Gothenburg

Handledare: Per-Åke Andersson
Innehållsförteckning

1. Introduktion ... 1
 1.1 Inledning .. 1
 1.2 Syfte och forskningsfråga ... 3
 1.3 Litteraturgenomgång ... 3

2. Teori ... 4
 2.1 Phillipskurvan ... 4
 2.2 New Keynesian Wage Phillips Curve (NKWPC) ... 5
 2.3 Reducerad form av NKWPC .. 7
 2.3 Kritik mot Phillipskurvan och NKWPC ... 8
 2.4 Reporänta .. 8

3. Data ... 10
 3.1 Förklaring av data och undersökningsperioden ... 10
 3.2 Prisinflation .. 10
 3.3 Arbetslöshet ... 10
 3.4 Lioneinflation .. 11
 3.5 Reporänta .. 11

4. Metod ... 13
 4.1 Modeller för NKWPC .. 13
 4.2 Test av OLS antaganden ... 14
 4.2.1 Heteroskedasticitet .. 14
 4.2.2 Stationäritet och kointegration ... 14
 4.2.3 Säsongsbundenhet .. 15
 4.2.4 Autokorrelation ... 15

5. Resultat och analys ... 17
 5.1 Phillipskurvans grafiska utveckling ... 17
 5.2 Resultat av OLS antaganden och statistiska tester ... 20
1. Introduktion

1.1 Inledning

Rapportens syfte är att fortsätta forska med samtida empiri på NKWPC och även använda elementet negativ reporänta. Som ovannämnt är NKWPC en skral utforskad teori, vilket skapar utrymme för rapporten att öka förståelsen av teorin och dess applicering. Negativ reporänta kommer användas för att undersöka en potentiell effekt på NKWPC. Med negativa reporäntor är nationalekonomin på outforskad mark, där extrem duvaktig1 penningpolitik bedrivs både i Europa och USA.

1 Beskrivning av en agenda att vara expansiv med att sänka en centralbanks reporänta. Motsatsen är hökaktig när det bedrivs en agenda att höja reporäntan från en centralbank.

1.2 Syfte och forskningsfråga

- Kan NKWPC förklara Danmark, Schweiz och Sveriges löneinflation under perioden 2000 kvartal fyra till 2017 kvartal fyra?
- Vilken effekt har centralbankernas negativa reporäntor haft på NKWPC? En jämförelse innan och efter negativa reporäntor.

1.3 Litteraturgenomgång

Samtliga vetenskapliga artiklar är referentgranskade vilket innebär att artiklarna är granskad av individer med likartade kompetenser. Att artiklar är referentgranskade är av betydelse för att de oftast anses besitta bra kvalitet. Det är samtidigt viktigt att belysa att en referentgranskad artikel inte är av kvalitet per automatik, då det kan uppstå brister i granskningsförfarandet (NE, u.å.).
2. Teori

I detta avsnitt presenteras teorin kring Phillipskurvan och NKWPC. Avsnittet tar även upp kritik till de två teorierna. En förklaring av reporänta och dess antaganden kommer även avhandlas.

2.1 Phillipskurvan

Phillips (1958) beskrev sambandet mellan löneinflation och arbetslöshet med följande modell:

\[
\log (y + a) = \log b + c \log x
\]

(2.1)
Variabeln y står för procentuell förändring av lön och x är arbetslöshet uttryckt i procent. Vidare är variablerna a, b och c konstanter som är estimerade genom OLS\(^2\), där a och b representerar värden som bäst motsvarar\(^3\) x och y med en arbetslöshet mellan noll till fem procent. Konstanten c ska anta det värde som bäst motsvarar x och y med en arbetslöshet mellan fem och elva procent (Phillips, 1958).

2.2 New Keynesian Wage Phillips Curve (NKWPC)

NKWPC är en vidareutveckling av formeln nedan vilket utvecklades av forskarna Erceg, Henderson & Levin (2000). Ekvationen för löneinflation är enligt följande:

$$\pi_t^w = \beta E_t\{\pi_t^{w+1}\} - \lambda_w (\mu_t^w - \mu^w) \tag{2.2}$$

$
\pi_t^w$ är löneinflation, $E_t\{\pi_t^{w+1}\}$ är förväntad löneinflation, μ_t^w beskriver det genomsnittliga lönopåslaget samt μ^w redogör för det förväntade lönopåslaget vilket definieras som lönegap (Galí, 2011).

Variabeln λ_w är definierad enligt följande:

$$\lambda_w = \frac{(1 - \theta_w)(1 - \beta \theta_w)}{\theta_w(1 + \epsilon_w \varphi)} > 0 \tag{2.3}$$

Variabeln θ_w representerar nivån av lönestelhet och antar ett värde mellan ett och noll. Värdet benämns som ”Calvo wage parameter” och mäter hur stor andel av arbetskraften som kan omförhandla sina löner i ett land. Ju högre värde, desto färre antal som kan omförhandla sin

\(^2\) Den svenska termen är minstakvadratmetoden.

\(^3\) Den engelska termen är ”best fitted values”.
lön. Är det en hög lönestelhet innebär det att lönerna är trögörliga medan om lönestelheten är låg varierar lönerna mer. β är diskonteringsfaktorn för nytta, ϵ_w är den konstanta löneelasticiteten samt ϕ är ”Frisch labour supply elasticity”. Den sistnämnda variabeln visar på den procentuella förändringen av en persons utbjudna arbetskraft när det sker ett skift i reallönerna givet konstant marginalnytta av konsumtion (López & Saglio, 2017).

Generellt är elasticitet den procentuella förändringen av variabel x när det sker en förändring av variabel y som påverkar variabel x. Variabel ϵ_w representerar därför $\epsilon_w = (1 - \exp(-\mu n \phi))^{-1}$ (Gál, 2011).

$$\mu^w_t = \phi u_t$$

$$\mu^n = \frac{1}{\phi} \mu^w$$

Där u_t är faktisk arbetslöshet och u^n är naturlig arbetslöshet. Efter modifikationen förklaras löneinflation genom förväntad löneinflation samt avvikelse från jämviktssysselsättning som åskådliggörs i nedanstående 2.6 (Gál, 2011).

$$\pi^w_t = \beta E_t \{\pi^w_{t+1}\} - \lambda_w (u_t - u^n)$$

Variablen förväntat värde av framtida löneinflation, $\beta E_t \{\pi^w_{t+1}\}$, kan vara svår att estimera vilket får Galí (2011) att substituerar ut den framåtblickande variablen och presenterar följande:
\[
\pi_t^w = -\lambda_w \varphi \sum_{k=0}^{\infty} \beta^k E_t(u_{t+k} - u_n) \tag{2.7}
\]

Efter modifikationen implicerar NKWPC att löneinflation beror på den diskonterade summan av dagens och all framtida arbetslöshet (Galí, 2011).

Ekvation 2.6 beskriver att om allt annat lika, beror lutningen i NKWPC på graden av lönestelhet samt graden av arbetskraftens löneelasticitet. När lönestelheten är låg, det vill säga att stor del av arbetskraften har chans att omförhandla sina löner, eller när arbetskraftsutbudet är oelastiskt, är lutningen brant. (Muto & Shintani, 2014).

I den enklaste formen av NKWPC antar Galí (2011) att lönerna är fasta om arbetskraften inte får chans att omförhandla sina löner. Galí (2011) fortsätter, om arbetskraften inte får chans att omförhandla sina löner utvecklas lönerna enligt nedanstående regel:

\[
w_{t+k|t} - w_{t+k-1|t} = \gamma \bar{\pi}_{t+k-1} + (1 - \gamma) \pi^P + g \tag{2.8}
\]

\(w_{t+k|t}\) är den nominella logaritmerade lönen i perioden \(t + k\) när arbetskraften senast omförhandlade sina löner i perioden \(t\). \(\bar{\pi}^P\) är det indexerade värdet för prisinflation, \(\pi^P\) är prisinflationen i stationärt läge och \(g\) är produktivitetstillväxten i stationärt läge. Galí (2011) beskriver då följande NKWPC:

\[
\pi_t^w = \alpha + \gamma \bar{\pi}_{t-1} + \beta E_t \{\pi_{t+1}^w - \gamma \bar{\pi}_t^P\} - \lambda_w \varphi (u_t - u^n) \tag{2.9}
\]

\[
\alpha = (1 - \beta)((1 - \gamma) \pi^P + g) \tag{2.10}
\]

2.3 Reducerad form av NKWPC

För att utforska sambandet mellan arbetslöshet och löneutveckling estimerar Galí (2011) en reducerad modell. Genom att kombinera ekvation 2.7 och 2.9 ges den estimerade modellen som analyseras med hjälp av OLS-regressioner.
\[
\pi_t^w = \tilde{\alpha} + \gamma \pi_{t-1}^p - \lambda \varphi \sum_{k=0}^{\infty} \beta^k E_t (u_{t+k} - u_n)
\]
(2.11)

Där \(\tilde{\alpha} = \frac{\alpha}{1-\beta} \)

\[
u_t = \phi_0 + \phi_1 u_{t-1} + \varepsilon_t
\]
(2.12)

Genom att kombinera ovanstående ekvation, 2.12, med ekvation 2.11 ges den reducerade modellen i ekvation 2.13.

\[
\pi_t^w = \delta + \gamma \pi_{t-1}^p + \psi_0 u_t
\]
(2.13)

Där \(\delta \equiv \frac{1}{1-\beta} \left\{ \alpha + \lambda \varphi (u_n - \frac{\beta \phi_0}{1-\beta \phi_1}) \right\} \)

samt \(\psi_0 \equiv - \frac{\lambda \varphi}{1-\beta \phi_1} \)

2.3 Kritik mot Phillipskurvan och NKWPC

2.4 Reporänta
Repo står för "repurchase agreement" som är en av centralbankens verktyg i den öppna finansmarknaden. En repo är ett kombinerat sälj- och köpekontrakt av en statligt backad tillgång. Det vill säga att centralbanken köper en statlig skuldförbindelse, obligation, från en
kommersiell bank med ett kontrakt att återförsälja samma tillgång till samma bank vid ett bestämt datum. Oftast är kontraktets slutdatum en vecka framåt (Gottfries, 2013).

3. Data
I detta avsnitt framställs den data som ligger till grund för de empiriska observationerna. En övergripande beskrivning av variablerna följs och en redogörelse för användningsområde och datainsamling.

3.1 Förklaring av data och undersökningsperioden
All tidsseriadata är kvartalsvis och säsongsrensad om inget annat framgår. Kvartalsdata är jämförd löpande i procent med samma period från föregående år. Valet av kvartalsdata har gjorts med bakgrund att fyrdubbla antalet observationer som kan undersökas, jämfört med årsdata.

3.2 Prisinflation

3.3 Arbetslöshet
Arbetslöshetdata hämtas från OECD (2018d) statistiska databas. Den matematiska formeln för arbetslöshet är enligt Gottfries (2013) följande:

\[u = \frac{L - N}{L} \]

(3.1)

Där \(u \) är den nominella arbetslösheten och \(L \) representerar antalet individer av landets arbetskraft. \(N \) är antalet individer av arbetskraften som arbetar. Arbetslöshet kan således räknas som antalet arbetslösa i procent av den totala arbetskraften.

Definitionen av arbetslöshet är personer vilka är utan arbete, men som är benägna att arbeta och som har vidtagit aktiva åtgärder till att finna ett nytt arbete inom de senaste fyra veckorna (OECD, 2018d).

3.4 Löneinflation

3.5 Reporänta

För data om Schweiz centralbanks reporänta avser ”Swiss Average Rate Overnight” (SARON) det syftet. SARON är en volym-vägd genomsnittsränta som har arbetats fram tillsammans av Schweiz centralbank och finansföretaget SIX för att återge en referensränta. SARON är en referensränta som speglar både verkliga transaktioner och kvoter för den underliggande schweiziska repomarknaden (SIX, 2017). SARON-data har i rapporten beräknats från medelvärdet på slutkurser från dagsdata inordnat efter rätt kvartal.

Sveriges Riksbank har löpande reporäntapubliceringar som har applicerats till rätt kvartal med hjälp av Riksbankens (2018) beräkningsmetod som visar medelvärdet för specifikt kvartal. Alla
4. Metod
Rapporten använder statistikprogrammet Stata för de ekonometriska uträkningarna och grafiska modellerna. Huvudmetodiken är NKWPC och dess grund Phillipskurvan.

4.1 Modeller för NKWPC

\[
\Delta \log(\text{löneinflation}) = \delta_0 + \delta_1 \frac{\text{arbetslöshet}}{100} + \epsilon \quad \text{Modell 1}
\]

I regression modell 2 adderas "laggad" prisinflation.

\[
\Delta \log(\text{löneinflation}) = \alpha_0 + \alpha_1 \frac{\text{arbetslöshet}}{100} + \alpha_2 \Delta \log(kpi_{t-1}) + \epsilon \quad \text{Modell 2}
\]

Prisinflation tillförs till regressionen för att undersöka hur konsumentens köpkraftsutveckling påverkar löneutvecklingen.

Vid en regression av modell 2 tillsammans med dummyvariabeln reporänta kommer följande OLS-regression, kallad modell 3, att estimeras.

\[
\Delta \log(\text{löneinflation}) = \rho_0 + \rho_1 \frac{\text{arbetslöshet}}{100} + \rho_2 \Delta \log(kpi_{t-1}) + \rho_3 \text{reporänta} + \epsilon \quad \text{Modell 3}
\]

4.2 Test av OLS antaganden
I följande avsnitt presenteras de metodologiska utmaningar som användandet av tidsseriedata medför.

4.2.1 Heteroskedasticitet

\[H_0: E(u^2|x_1, x_2, \ldots, x_k) = E(u^2) = \sigma^2 \]

(4.1)

Nollhypotesen håller om \(\sigma^2 \) har en konstant varians, således ett lågt värde. Om nollhypotesen förkastas med p-värde \(\leq 0.05 \) antas en alternativhypotes. Alternativhypotesen är enligt Williams (2015) att felmarginalen i variansen ökar (eller minskar) när det prognoserade värdet på utfallet ökar. Det vill säga att ju större det prognosticerade värdet på utfallet är, desto större är felmarginalen i variansen.

4.2.2 Stationäritet och kointegration

Test för stationäritet utförs genom Augmented Dickey-Fuller test (ADF-test) vilket också är det mest använda testet. Kointegration testas genom Johansen Trace test som är det mest ändamålsenliga testet för kointegration (Sjö, 2016).
Nollhypotesen för ett ADF-test är att det finns enhetsrot. Alternativhypotesen blir därför att det inte finns enhetsrot, det vill säga, variabeln är stationär. I ett Johansen Trace test är nollhypotesen att det inte finns någon kointegration och alternativhypotesen att kointegration existerar (Sjö, 2016). ADF-testets resultat visas i tabell 3 under delavsnitt 5.2 och Johansen Trace-testets resultat i tabell 4 under samma delavsnitt.

4.2.3 Säsongsbundenhet
En annan utmaning med att använda tidsseriedata är att vissa perioder, som kvartal, har utmärkande egenskaper som påverkar koefficienten. Detta kallas säsongsbundenhet\(^4\) och är oftast en inneboende egenskap i tidsseriedata. Det enklaste alternativet för att testa om säsongsbundenhet berör data är att använda dummyvariabler (Sjö, 2016).

För kvartalsvisa tidsserier differenser implicerar Sjö (2016) följande ekvation:

\[(1 - L^4)y_t = y_t - y_{t-4} = \Delta_4 y_t\] (4.2)

För att testa följande i Stata, utgörs en regression med \(y_t\) som är utfallet i perioden med kvartalsvariablerna i perioden som kontrolvariabler. Om någon av kvartalsvariablerna visar på statistisk signifikans (p-värde \(\leq 0.05\) i ett F-test) finns det risk för säsongsbunden förändlighet.\(^5\) Detta enligt Farago (2015) och följande ekvation och nollhypotes:

\[y_t = \alpha_0 + \alpha_1 q_{2t} + \alpha_2 q_{3t} + \alpha_3 q_{4t} + u_t\] (4.3)

\[H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0\] (4.4)

\(\alpha_0\) är en konstant och \(\alpha_{1,2,3}\) är koefficienter till kvartalen, \(q_{it}\). Feltermen står \(u_t\) för. Om nollhypotesen inte kan förkastas finns det ingen säsongsbundenhet i \(y_t\). Resultatet från F-testet visas i sektion 5.2 i resultatavsnittet.

4.2.4 Autokorrelation

\[\hat{e}_t = \delta x_t + \gamma \hat{e}_{t-1} + e_t\] (4.5)

\(^4\) Den engelska termen är ”seasonality”.
\(^5\) Den engelska termen är ”seasonality bias”.

15
Efter att residualerna i den första regressionen har sparats tillsammans med samma antal eftersläpande residualer som antalet oberoende variabler. Där \(\hat{\epsilon}_t \) är den estimerade residualen från den första regressionen. Det nya slumpfelet är \(e_t \) och den förklarande variabeln, \(x_t \), i ekvationen skapas möjligheten att testa om variabeln är strikt exogen och inte korrelerad med \(\hat{\epsilon}_{t-1} \). δ och γ är koefficienter till tidigare nämnd a variabler. Testet estimeras i Stata genom följande steg:

\[
(T - p) \times R^2
\]
(4.6)

Där \(T \) är antal observationer, \(p \) är antalet eftersläpande residualer och \(R^2 \) är determinationskoefficienten i ekvation 4.8. Nollhypotesen är att det inte finns någon autokorrelation och speglar att \(\gamma = 0 \) i ekvation 4.5 (Nielsen, 2005). Vid autokorrelation rekommenderar Wooldridge (2012) att använda Newey-West metoden, som finns inkorporerat i Stata. Resultatet från testet visas i delavsnitt 5.2. Valet av ”lag” på residualerna är fyra för att återge ett rullande årligt resultat från kvartalsdata om autokorrelation finns i någon av regressionerna.
5. Resultat och analys
I följande avsnitt redovisas resultat och analys för genomförda ekonometriska undersökningar och statistiska tester. Första delavsnittet behandlar Phillipskurvan grafiskt och dess innehållande variablers utveckling och samband. Vidare presenteras testresultaten angående autokorrelation, homoskedasticitet, kointegration, stationäritet och säsongsbundenhet. Avsnittet avslutas med att redovisa genomförda regressioner på NKWPC med och utan reporänta.

5.1 Phillipskurvans grafiska utveckling
Nedanstående diagram visar på sambandet mellan arbetslöshet och löneinflation. Det vänstra diagrammet visar linjära variabler med separata y-axlar. Sambandsdiagrammet till höger och dess kvadratiska lösning visar sambandet mellan löneinflation och arbetslöshet. Tre olika kvadratiska lösningar presenteras för olika tidsperioder. Perioden före negativa reporäntor betecknas ”före 15Q1” och perioden efter införandet av negativa räntor betecknas ”efter 15Q1”. ”00Q4 till 17Q4” visar den kvadratiska lösningen och sambandet mellan variablerna för hela mätperioden.

Figur 1. Variablers utveckling Danmark

Med negativ reporänta, efter det första kvartalet 2015, observeras inget som skiljer från den totala uppfattningen om ett negativt samband. Observationerna i grafen ”Efter 15Q1” visar på
en centrering av variablerna. Det kan även synas i det normaltillstånd som variabeln löneinflation hamnat i, under figur 1. Löneinflationen har haft svårt att återhämta sig till högre nivåer efter punkten ”Q1-2009”. Även om arbetslösheten har visat på en fallande trend kring samma tidsperiod.

I figur 6 ”efter 15Q1” syns en positiv korrelation mellan arbetslöshet och löneinflation i den kvadratiska lösningen. Detta samband har sitt ursprung i figur 5 där arbetslösheten i nutid för Sverige har haft en avtagande trend tillsammans med löneinflationen. Ovanstående överensstämmer inte med Phillipskurvans teori om ett skiljaktigt samband.
5.2 Resultat av OLS antaganden och statistiska tester

Tabell 1. Resultat av statistiska tester för modell 1

<table>
<thead>
<tr>
<th>Breusch-Pagan test</th>
<th>Breusch-Godfrey LM test</th>
<th>Säsongbundenhet F-test</th>
</tr>
</thead>
</table>
| Danmark | 0,969 | 0,001** | Q1 = 0,969
| | | | Q2 = 0,727
| | | | Q3 = 0,955
| | | | Q4 = utelämnad |
| Schweiz | 0,680 | 0,008** | Q1 = 0,674
| | | | Q2 = 0,868
| | | | Q3 = 0,957
| | | | Q4 = utelämnad |
| Sverige | 0,626 | 0,001** | Q1 = 0,777
| | | | Q2 = 0,982
| | | | Q3 = 0,993
| | | | Q4 = utelämnad |

Anmärkningar:

* Signifikant på 5 %-nivå
** Signifikant på 1 %-nivå

Breusch-Pagan testet för modell 1 angående heteroskedasticitet visar inte på att några ändringar angående regressionerna i detta fallet behövs. Däremot visar Breusch-Godfrey LM testet att autokorrelation finns i ovanstående regression för alla tre länder. Detta betyder att Newey-West metoden, som finns inkorporerat i Stata, kommer användas för samtliga länder regressioner. F-testen angående säsongsbundenhet ger inga indikationer att någon av kvartalen påverkar den beroende variabeln.
Tabell 2. Resultat av statistiska tester för modell 2

<table>
<thead>
<tr>
<th></th>
<th>Breusch-Pagan test</th>
<th>Breusch-Godfrey LM test</th>
<th>Säsongbundenhet F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danmark</td>
<td>0,893</td>
<td>0,001**</td>
<td>Q1 = 0,969</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q2 = 0,727</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q3 = 0,955</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q4 = utelämnad</td>
</tr>
<tr>
<td>Schweiz</td>
<td>0,096</td>
<td>0,005**</td>
<td>Q1 = 0,674</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q2 = 0,868</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q3 = 0,957</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q4 = utelämnad</td>
</tr>
<tr>
<td>Sverige</td>
<td>0,797</td>
<td>0,001**</td>
<td>Q1 = 0,777</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q2 = 0,982</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q3 = 0,993</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Q4 = utelämnad</td>
</tr>
</tbody>
</table>

Anmärkningar:
* Signifikant på 5 %-nivå
** Signifikant på 1 %-nivå

Likt modell 1 finns varken heteroskedasticitet eller säsongbundenhet i modell 2. Däremot visar även Breusch-Godfrey LM testet i detta fallet att autokorrelation finns i regressionerna av modell 2 för länderna.

Tabell 3. Fortsättning resultat av statistiska tester för modell 2

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Koefficient</th>
<th>ADF-test Danmark</th>
<th>ADF-test Schweiz</th>
<th>ADF-test Sverige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log (Löneinflation)</td>
<td>y_i</td>
<td>0,358</td>
<td>0,369</td>
<td>0,001**</td>
</tr>
<tr>
<td>Arbetslöshet</td>
<td>α_1</td>
<td>0,635</td>
<td>0,096</td>
<td>0,358</td>
</tr>
<tr>
<td>Log (KPI)</td>
<td>α_2</td>
<td>0,000**</td>
<td>0,000**</td>
<td>0,000**</td>
</tr>
</tbody>
</table>

Anmärkningar:
* Signifikant på 5 %-nivå
** Signifikant på 1 %-nivå

Resultatet av ADF-testet för länderna visar på att andelen av oberoende variabler som är stationära är fyra stycken av nio möjliga. Att tillägga är som tidigare nämnt att ekonomiska

Tabell 4: Resultat av Johansen Trace test för Modell 2

<table>
<thead>
<tr>
<th>Antal kointegrationsvektorer</th>
<th>Trace-statistik</th>
<th>Kritiskt värde, signifikans på 5 %-nivå</th>
</tr>
</thead>
<tbody>
<tr>
<td>enligt nollhypotesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danmark</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>65,8947</td>
<td>29,68</td>
</tr>
<tr>
<td>1</td>
<td>11,6761*</td>
<td>15,41</td>
</tr>
<tr>
<td>2</td>
<td>2,1671</td>
<td>3,76</td>
</tr>
<tr>
<td>Schweiz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>37,1604</td>
<td>29,68</td>
</tr>
<tr>
<td>1</td>
<td>19,252</td>
<td>15,41</td>
</tr>
<tr>
<td>2</td>
<td>1,648*</td>
<td>3,76</td>
</tr>
<tr>
<td>Sverige</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>39,7336</td>
<td>29,68</td>
</tr>
<tr>
<td>1</td>
<td>17,8444</td>
<td>15,41</td>
</tr>
<tr>
<td>2</td>
<td>4,4805</td>
<td>3,76</td>
</tr>
</tbody>
</table>

Anmärkningar:
* Indikerar värdet av r, utvalt av Johansens multipel-trace testprocedur. Detta antar värdet av antalet kointegrationsvektorer.

5.3 Estimering av NKWPC med och utan reporäntans påverkan

Tabell 5. Regression av modell 1

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Koefficient</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beroende variabel Log (Löneinflation)</td>
<td>y_i</td>
<td>Danmark</td>
</tr>
<tr>
<td>Skärningspunkt</td>
<td>δ_0</td>
<td>Schweiz</td>
</tr>
<tr>
<td>Arbetslöshet</td>
<td>δ_1</td>
<td>Sverige</td>
</tr>
<tr>
<td>Determinationskoefficient</td>
<td>R^2</td>
<td></td>
</tr>
<tr>
<td>Antal observationer</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Danmark</td>
<td>Schweiz</td>
</tr>
<tr>
<td></td>
<td>0,0266**</td>
<td>0,0181**</td>
</tr>
<tr>
<td></td>
<td>(11,86)</td>
<td>(10,85)</td>
</tr>
<tr>
<td></td>
<td>0,0172**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5,87)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0,2517**</td>
<td>-0,3098**</td>
</tr>
<tr>
<td></td>
<td>(-6,32)</td>
<td>(-8,41)</td>
</tr>
<tr>
<td></td>
<td>-0,0736*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1,82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,571</td>
<td>0,645</td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>0,065</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

*Anmärkningar:
I tabellen återges koefficienternas storlek med t-värden inom parentes.
* Signifikant på 5 %-nivå
** Signifikant på 1 %-nivå

Det är intressant ur aspekten att Phillipskurvan indikerar samma samband. Resultatet visar att en trend finns att uttyda, när arbetslösheten minskar (ökar), ökar (minskar) lönerninflationen. Skillnaden i koefficienternas styrka kan bero på olika lönestelheter i länderna, samt graden av arbetskraftens löneelasticitet.
Tabell 6. Regression av modell 2

<table>
<thead>
<tr>
<th>Variabel</th>
<th>Koefficient</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beroende variabel Log (Löneinflation)</td>
<td>y_i</td>
<td>Danmark</td>
</tr>
<tr>
<td>Skärbningspunkt</td>
<td>α_0</td>
<td>0,0258** (12,26)</td>
</tr>
<tr>
<td>Arbetslöshet</td>
<td>α_1</td>
<td>-0,2458** (-6,83)</td>
</tr>
<tr>
<td>Log (KPI)</td>
<td>α_2</td>
<td>0,2925* (2,17)</td>
</tr>
<tr>
<td>Determinationskoefficient</td>
<td>R^2</td>
<td>0,5894</td>
</tr>
<tr>
<td>Antal observationer</td>
<td>N</td>
<td>69</td>
</tr>
</tbody>
</table>

Anmärkningar:

I tabellen återges koefficienternas storlek med t-värden inom parentes.

* Signifikant på 5 %-nivå
** Signifikant på 1 %-nivå

Gällande KPI indikerar variabeln att indexering av prisinflation är betydande för den beroende variabeln löneneutveckling i Danmark men kan inte bevisas ha någon statistisk signifikant effekt i Schweiz och Sverige. Tecknet framför α_2 avseende KPI, är positiv. Betydelsen är att om prisinflation ökar så ökar också löneneinflationen. En anledning till detta kan vara att prisinflationen i större utsträckning påverkar och har effekt på lönesättningen i Danmark, jämfört med Schweiz och Sverige.
<table>
<thead>
<tr>
<th>Variabel</th>
<th>Koefficient</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beroende variabel Log (löneinflation)</td>
<td>y_i</td>
<td>Danmark</td>
</tr>
<tr>
<td>Skärningspunkt</td>
<td>ρ_0</td>
<td>0,026** (12,58)</td>
</tr>
<tr>
<td>Arbetslöshet</td>
<td>ρ_1</td>
<td>-0,2362** (-6,53)</td>
</tr>
<tr>
<td>Log (KPI)</td>
<td>ρ_2</td>
<td>0,1762 (1,27)</td>
</tr>
<tr>
<td>Reporänta dummy</td>
<td>ρ_3</td>
<td>-0,0031** (-3,79)</td>
</tr>
<tr>
<td>Determinationskoefficient</td>
<td>R^2</td>
<td>0,6565 69</td>
</tr>
</tbody>
</table>

Anmärkningar:
I tabellen återges koefficienternas storlek med t-värden inom parentes.
* Signifikant på 5 %-nivå
** Signifikant på 1 %-nivå

Arbetslösheten som variabel minskar i påverkan för de tre länderna när den oberoende dummyvariabeln av reporänta tillförs. Även KPI som en statistik signifikant variabel försvinner för Danmark. Det kan bero på att en till förklarande variabel finns i OLS-regressionen i och med reporäntans inträde.

6. Slutsats

Arbetslöshet samt KPI är statistiskt signifikanta för Danmark. Resultatet tyder på att tillägget indexerad prisinflation har betydelse för Danmark. Samma fall kan inte påvisas ha någon statistisk signifikans och påverkan för Schweiz eller Sverige. Det kan innebära att lönesättningsprocessen skiljer sig åt mellan länderna och att löneinflationen påverkas av prisinflationen i Danmark

En skillnad i löneinflation efter införandet av negativa reporäntor bevisades ha effekt för samtliga länder då negativ reporänta som binär variabel visade på signifikans som negativ koefficient. Det bör beaktas att tidsperioderna innan och efter negativa reporäntor skiljer sig mycket åt, där en historiskt låg löneinflation i nutid sammanfallit med negativa reporäntors existens. Det är inte möjligt för denna rapporten att fastställa att negativa reporäntor som binär variabel ensamt kan förklara den negativa utvecklingen av löneinflation. Skillnad mellan tidsperioderna existerar dock, där negativa reporäntor kan vara en del av den förklarande faktorn.

En sammanvägd bedömning av Phillipskurvan och NKWPC kan ge sken av att Sverige har ett osäkert samband mellan löneinflation och arbetslöshet. Genom regressioner av NKWPC och okulär besiktning av Phillipskurvan, visar studien att det inte finns ett entydigt samband mellan löneinflation och arbetslöshet i Sverige under den valda undersökningsperioden.

Vidare forskning kan utforska den empiriska möjligheten att applicera NKWPC på ECB-länder under samma tidsperiod. Även där finns utgångspunkten att fokusera på att ECB bedriver en negativ reporänta och se om sådant utförande visar på signifikans. Där kan strukturella skillnader mellan ECB-ländernas lönesättningsprocess undersökas och jämföras med ECB:s identiska penningpolitik.
7. Referenser

8. Appendix

FIGUR 8. BRYTPUNKT REPORÄNTA FÖR SAMTLIGA LÄNDER