Atherosclerosis in 64-year-old women with diabetes mellitus and impaired glucose tolerance

Gerhard Brohäll

Department of Molecular and Clinical Medicine,
Wallenberg Laboratory, Institute of Medicine,
Sahlgrenska Academy at Göteborgs University
2007
A doctoral thesis at a university in Sweden is produced either as a monograph or as a collection of papers. In the latter case, the introductory part constitutes the formal thesis, which summarises the accompanying papers. These papers have already been published or are in manuscript at various stages (in press, submitted or in manuscript).

Front page picture “Balans” by Anders Zorn 1919 is reprinted with permission from Zorn museum, Mora, Sweden.
This thesis is dedicated
to the women who have participated
in the DIWA-study.

"Måttet på livets krav är endast din egen kraft.
Och din eventuella bragd – att inte ha deserterat."

Dag Hammarskjöld, Vägmärken 1963
Abstract

Atherosclerosis in 64-year-old women with diabetes mellitus and impaired glucose tolerance

The incidence of obesity and type-2 diabetes (t2D) is rising around the world. T2D is accompanied by an increased risk of macrovascular, atherosclerotic diseases. The timing of the disease process and exact mechanism underlying the association between diabetes and atherosclerotic disease are not known. High-resolution B-mode ultrasound is a non-invasive technique to measure very early atherosclerotic disease as the intima-media thickness (IMT) and to assess occurrence, size and echogenicity of atherosclerotic plaques in superficial arteries such as the carotid arteries. Remodelling, i.e a change in vascular diameter in response to atherosclerosis may also be examined.

The overall aim of this thesis was to examine the occurrence of early atherosclerosis in t2D and impaired glucose tolerance (IGT). Our hypothesis was that there is a gradual enlargement of IMT and an increased occurrence of plaques, especially echolucent plaques, with worsening glucose tolerance, accompanied by a remodelling that might be visible already in subjects with IGT.

In order to summarise current knowledge a systematic reviews were made in order to identify cross-sectional studies using the ultrasound method. The differences between IMT in t2D or IGT and control subjects were calculated. Meta-analysis using random-effects model was used to calculate summary measures. In a cross-sectional study, the entire cohort of 64 years old women in Göteborg were invited to take part in a screening examination. Of these, 2595 participated and underwent anthropometric measurements and an oral glucose tolerance test (OGTT) that was repeated within two weeks. Ultrasound examinations were made in a cohort of women with known (n=99) and new diabetes (n=106), IGT (n=205) and NGT (n=188).

In the systematic review of 23 studies we found that t2D was associated with an 0.13 mm increase in IMT compared to controls. There was a considerable heterogeneity between the studies that complicated the interpretation of the meta-analysis. This difference can be interpreted as if the diabetic patients were ten years older than the control group and that they had an elevated risk for stroke and myocardial infarction. In patients with IGT, the increase in IMT was about 25% of that observed in diabetes.

The screening examination showed that 10% of the women had diabetes of whom half were newly detected. Without repeated OGTTs 37% of the new diabetes would have been missed. The women with t2D had larger IMT and plaque areas compared to women in IGT and NGT groups. The plaques were most frequently echolucent. In the IGT group, no increase in atherosclerosis was observed, but the result was within the confidence interval of the meta-analysis, indicating that IGT is associated with a small increase in IMT in the CCA (0.03mm). Carotid vascular remodelling with enlargement in IMT and lumen diameter had however occurred already in the women with new t2D. This remodelling process was seen only in women with atherosclerotic plaques and was not associated to t2D per se.

In conclusion, already in screening detected diabetes sub-clinical atherosclerosis with IMT enlargement and occurrence of plaque with vascular remodelling are observed, indicating that a powerful intervention must be initiated in such cases.

Keywords: systematic review, atherosclerosis, type-2 diabetes, IMT, vascular remodelling, IGT.

List of publications

This thesis is based on the following papers, which will be referred to in the text by their roman numerals I-IV.

I. Carotid artery intima-media thickness in patients with Type 2 diabetes and impaired glucose tolerance: a systematic review
 Brohall G, Odén A, Fagerberg B
 Diabetic medicine 2006;23:609-16

II. Prevalence of diabetes mellitus and impaired glucose tolerance in 64-year-old women. Experiences of using repeated oral glucose tolerance tests
 Diabetic Care 2006;29:363-67

III. Atherosclerotic plaques and carotid remodelling in a population sample of 64-year-old women with known and newly diagnosed diabetes
 Submitted

IV. Impaired glucose tolerance and subclinical atherosclerosis in carotid arteries: Results from a study of 64-year-old women and a meta-analysis of available studies
 Submitted
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>4</td>
</tr>
<tr>
<td>List of publications</td>
<td>5</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>8</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Onset and diagnosis of diabetes mellitus</td>
<td>9</td>
</tr>
<tr>
<td>Atherosclerosis and diabetes</td>
<td>11</td>
</tr>
<tr>
<td>Remodelling</td>
<td>17</td>
</tr>
<tr>
<td>Aims of the study</td>
<td>19</td>
</tr>
<tr>
<td>Materials and Methods</td>
<td>20</td>
</tr>
<tr>
<td>Paper I</td>
<td>20</td>
</tr>
<tr>
<td>Study design of the systematic review</td>
<td>20</td>
</tr>
<tr>
<td>Paper II-IV</td>
<td>22</td>
</tr>
<tr>
<td>Study population and study design</td>
<td>22</td>
</tr>
<tr>
<td>Examinations</td>
<td>24</td>
</tr>
<tr>
<td>Biochemical measurements</td>
<td>27</td>
</tr>
<tr>
<td>Statistical analysis</td>
<td>29</td>
</tr>
<tr>
<td>Results</td>
<td>31</td>
</tr>
<tr>
<td>Paper I</td>
<td>31</td>
</tr>
<tr>
<td>Test for bias</td>
<td>33</td>
</tr>
<tr>
<td>IMT in relation to age and cardiovascular risk</td>
<td>34</td>
</tr>
<tr>
<td>Paper II</td>
<td>35</td>
</tr>
<tr>
<td>Diabetes</td>
<td>35</td>
</tr>
<tr>
<td>IGT</td>
<td>35</td>
</tr>
<tr>
<td>Characteristics by glucose tolerance status</td>
<td>36</td>
</tr>
<tr>
<td>Paper III</td>
<td>38</td>
</tr>
<tr>
<td>IMT</td>
<td>40</td>
</tr>
<tr>
<td>Atherosclerotic plaques</td>
<td>41</td>
</tr>
<tr>
<td>Vascular remodelling</td>
<td>43</td>
</tr>
<tr>
<td>Paper IV</td>
<td>45</td>
</tr>
<tr>
<td>IMT and plaques</td>
<td>47</td>
</tr>
<tr>
<td>Meta-analysis</td>
<td>49</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>American Diabetes Association</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CCA</td>
<td>Common Carotid Artery</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiogram</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>FBG</td>
<td>Fasting Blood Glucose</td>
</tr>
<tr>
<td>FH+</td>
<td>Family history of diabetes in any of the parents</td>
</tr>
<tr>
<td>FH-</td>
<td>No family history of diabetes in any of the parents</td>
</tr>
<tr>
<td>GAD</td>
<td>Glutamic Acid Decarboxylase</td>
</tr>
<tr>
<td>HDL</td>
<td>High Density Lipoprotein</td>
</tr>
<tr>
<td>IFG</td>
<td>Impaired Fasting Glucose</td>
</tr>
<tr>
<td>IGT</td>
<td>Impaired Glucose Tolerance</td>
</tr>
<tr>
<td>IMT</td>
<td>Intima Media Thickness</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>NGT</td>
<td>Normal Glucose Tolerance</td>
</tr>
<tr>
<td>NGTm</td>
<td>NGT, matched</td>
</tr>
<tr>
<td>NGTr</td>
<td>NGT, random</td>
</tr>
<tr>
<td>OGTT</td>
<td>Oral Glucose Tolerance Test</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>T2D</td>
<td>Type 2 Diabetes</td>
</tr>
<tr>
<td>WHR</td>
<td>Waist Hip Ratio</td>
</tr>
</tbody>
</table>
Introduction

Recently UN declared that diabetes mellitus is a chronic, debilitating and costly disease associated with severe complications, which poses severe risks for families, Member States, and the entire world (General Assembly – 61st session – Agenda 113). Obesity and physical inactivity are the main underlying causes. Diabetes is a strong risk factor for development of atherosclerosis and cardiovascular diseases [Meigs 2002, Wei 1998]. Even when adjusted for conventional risk factors, diabetic individuals still exhibit a two- to fourfold increased relative risk in comparison to non-diabetic subjects [Stamler 1993]. This risk is even higher among diabetic women compared to non-diabetic women [Niskanen 1998]. It is a huge challenge to prevent this threat to public health and to better understand the underlying disease mechanism.

Onset and diagnosis of diabetes mellitus

Diabetes mellitus has several causes, ranging from autoimmune disease processes (type-1) to a combination of insulin resistance and pancreatic beta-cell insufficiency as a result of different mechanisms (type-2). There is also an overlap between type-1 and type-2 diabetes [Groop 1998, Groop 1988, Tuomi 1999]. Environmental and life style factors are important, especially obesity and a sedentary life style, that explain the steady raise in the incidence of type 2 diabetes. The current concept is that there is a gradual development of glucose intolerance with insulin resistance, and deteriorating beta-cell function leading to impaired glucose tolerance and finally diabetes[Stumvoll 2005]. The diagnosis is arbitrary as shown by the changing cut-off levels for definition of diabetes [WHO 1999]. It should be kept in mind that the diabetic complications that have been used in the attempt to decide the blood glucose level that is associated with increased risk are related to micro- and not macrovascular diseases [Engelgau 1997, McCance 1997]. OGTT is the golden standard in diagnosing diabetes mellitus. According to the latest guidelines, fasting glucose values have been
harmonised with OGTT values [ADA 2006, Engelgau 1997, Finch 1990, WHO 1999]. However, the OGTT is characterised by a high degree of intraindividual variability. [Feskens 1991, McDonald 1965, Riccardi 1985].

Type 2 diabetes is the most common form of diabetes and a worldwide epidemic increase is expected during the first quarter of the 21st century [Amos 1997, King 1998]. This increase is, however not so apparent in the Scandinavian countries [Drivsholm 2001, Eliasson 2002, Jansson 2007, Vilbergsson 1997] even if overweight is becoming more common [C Berg 2005].

Figure 1 demonstrates the prevalence of diabetes mellitus in European countries [Ryden 2007]. As seen in the figure there is a steep rise in diabetes prevalence after the age of 50 in men and after the age of 60 in women. For each decade the prevalence increases and this is most explicit in women. Other data indicate that the onset of type-2 diabetes occurs several years before clinical diagnosis [Harris 1992].

Figure 1. Age-and gender-specific prevalence of diabetes (DM) in 13 European population-based cohort included in the DECODE study. DMF = DM determined by FPG\geq7.0 mmol/l and 2 h plasma glucose <11.1 mmol/l. DMP = DM determined by 2 h plasma glucose ≥ 11.1 mmol/l. (L.Ryden 2007) Reprinted with permission from European Heart Journal.
Introduction

Impaired glucose tolerance (IGT) was defined in 1979 in USA by the National Diabetes Data Group as a state of disturbed glucose metabolism. IGT is viewed as a transitional stage in the development from normal glucose tolerance to type-2 diabetes. This concept that IGT is a road to diabetes is supported by results from two studies showing that in subjects with IGT, lifestyle treatment with weight reduction and increased physical exercise prevents the transition to diabetes [Knowler 2002, Lindstrom 2003, Lindstrom 2006, Tuomilehto 2001].

Impaired glucose tolerance (IGT) often coexists with a cluster of metabolic abnormalities such as; hypertension, central obesity, dyslipidemia, insulin resistance [Kylin 1923, Reaven 1988]. It is known that IGT is associated with a risk of future cardiovascular disease (CVD) [Coutinho 1999, Fuller 1980, Meigs 2002]. It is not clear if high “non-diabetic” glucose levels are independently related to atherosclerosis [Bonora 1999] Data indicate, however that IGT is a risk factor for CVD even when IGT is not followed by the subsequent development of diabetes [Qiao 2003].

The prevalence of IGT varies between different populations, just as the prevalence of diabetes. In a large population-based study in Sweden the prevalence of IGT among women at the age of 60 was 11% [Lindahl 1999].

(Against this background it is of interest to know the prevalence of IGT and diabetes in high risk groups such as women in late middle-age using repeated OGTT as the most sensitive diagnostic method.)

Atherosclerosis and diabetes

Atherosclerosis is an insidious process with specific predilection sites in the arterial tree. Atherosclerosis is found in young adults and increases steadily in parallel with aging [Dahl-Jorgensen 2005, Zieske 2002]. Manifest atherosclerotic diseases typically start in middle age and increase steeply in parallel with aging as shown in the Oxvasc-study [Rothwell 2005]. As previously mentioned diabetes is associated with an increased cardiovascular risk, also when
conventional risk factors have been taken into account. Many patients already have atherosclerotic disease when the diagnosis of diabetes is made [Uusitupa 1985].

Mechanisms involved in atherosclerosis

The mechanisms of atherogenesis in atherosclerotic disease are not fully known. The most popular hypothesis explaining the atherosclerotic process is the response to retention hypothesis [Camejo 1998, Carew 1984, Falcone 1984, Schwenke 1989]. The infiltration and retention of LDL-cholesterol in the arterial intima initiate an inflammatory process in the arterial wall where the modification of LDL through oxidation or other mechanisms take place [Leitinger 2003, Skalen 2002]. This process includes the activation of endothelial cells preferentially at sites of hemodynamic strain in the artery wall [Leitinger 2003] [Nakashima 1998]. A critical step in the development of atherosclerosis is taken when cytokine and cell adhesion molecules, produced in the inflamed intima, induce the monocytes to enter the plaque and differentiate into macrophages [Smith 1995]. The macrophages is thereafter further transformed to cholesterol-laden foam cells [Haberland 1984].
Introduction

Accumulation of macrophages, migration and proliferation of smooth-muscle cells and formation of fibrous tissue lead to further enlargement and restructuring of the lesion. The lesion becomes covered by a fibrous cap that overlies a core of lipid and necrotic tissue. An advanced, complicated lesion is created [Ross 1999]. The hallmark of atherosclerosis is the fibrous plaque. Such plaque increase by age and among 60 year old subjects more than half have plaques in the carotid arteries [Joakimsen 1999]. In the further process some lesions develop into vulnerable plaques which in general are characterised by large lipid pool, a thin overlying cap and an abundance of inflammatory cells in the shoulder regions of the plaque [Mann 1996].

Figure 2. LDL infiltrates the artery and is retained in the intima, particularly at sites of hemodynamic strain. The modified LDL particles are taken up by macrophages, which evolve into foam cells. (G Hansson.2005) Reprinted with permission from N Eng J Med.
Introduction

Figure 3. The formation of the vulnerable plaque with the lipid-core and the thin fibrous cap. The fibrous cap covers a mixture of leukocytes, lipids and debris, which may form a necrotic core. (Ross, R 1999) Reprinted with permission from N Eng J Med.

Some of these plaques rupture or have proportions that lead to thrombosis, resulting in end organ damage [Fuster 1990, Rothwell 2005]. Plaque vulnerability and plaque rupture are also mechanisms related to symptomatic plaques in the carotid arteries (Rothwell, 2005).

In the coronary circulation other mechanisms than plaque rupture are involved in acute coronary syndrome.

Ultrasound diagnosis of atherosclerosis in the carotid arteries

Non-invasive ultrasound techniques have been developed, enabling studies of atherosclerosis during the long clinically silent phase. B-mode ultrasound is a method that allows quantification and qualification of atherosclerosis in terms of intima-media thickness (IMT) and the occurrence and characteristics of atherosclerotic plaques [Gronholdt 1997, Schmidt 1999]. The lumen-intima and media-adventitia echoes in carotid ultrasound images were first identified by
Pignoli and co-workers [Pignoli 1986]. Our group also showed that the far wall IMT and lumen diameter could be measured in a valid way [Wendelhag 1991].

Several large epidemiological studies have demonstrated an association between carotid artery IMT and CVD risk factors in both men and women [Bonithon-Kopp 1991, Mathiesen 2001, Mitsuhashi 2002, O'Leary 1999]. Studies have also showed a relationship between carotid IMT and the angiographic presence of coronary artery disease (CAD) [Hulthe 1997, Wofford 1991] and the number of coronary vessels with lesions [Wofford 1991]. In addition, prospective studies have demonstrated a relationship between carotid IMT and future CAD [Bots 1997, Chambless 1997, Hodis 1998, O'Leary 1999]

The number of plaques and the degree of stenosis also predicts risk for CVD events [Hollander 2002, Mathiesen 2001]. Plaque occurrence in the carotid arteries has shown a positive correlation with coronary atherosclerosis [Hulthe 1997] and stroke [Hollander 2002]. In subjects with stabile angina, plaques are more common in patients with subsequent CVD-death or myocardial infarction compared to event-free subjects [Held 2001]. Studies have shown that age, systolic blood pressure, cholesterol and smoking are associated with plaques [Ebrahim 1999].

However, most atherosclerotic plaques never lead to clinical disease and the development of vulnerable plaque with plaque rupture. There is a need to identify vulnerable plaques and the ultrasound technique can be used for this purpose. Carotid plaques can be classified into those with low-level echoes (echolucent plaques) and those with medium and high-level echoes (echogenic plaques) [Gray-Weale 1988, Reilly 1983]. In the carotid artery the echolucent plaques seem to be lipid-rich, whereas echogenic plaques have a high content of fibrous tissue and calcifications as assessed by ultrasound related to histology [El-Barghouty 1996, Gronholdt 1997].
Echolucent plaques are associated with cardio-vascular events, silent coronary ischemia [Belcaro 1993, Geroulakos 1993] and also with ischemic cerebrovascular events [Honda 2004, Mathiesen 2001, Schmidt 2003]. Also the degree of echolucency in non-stenotic plaques is related to the future risk of CVD[Honda 2004].

(More knowledge is needed to better understand the involved mechanisms behind the development of vulnerable plaques and to identify the risk factors correctly. There is also a need for better imaging and information regarding the prevalence of echolucent plaques in t2D.)

Diabetes, IGT and atherosclerosis.

Atherosclerotic disease is a major complication of diabetes mellitus. A number of known risk factors for coronary disease such as hypertension and abnormal lipids are also more common in diabetics than the general population. However, no more than 25% of the excess coronary atherosclerotic from diabetes can be
attributed to these known risk factors [Keaney 2000]. The mechanism behind the relation between diabetes and atherosclerosis is not fully known. Oxidative stress, through the production of reactive oxygen species (ROS) has been proposed as the root cause underlying insulin resistance, type 2 diabetes and vascular complications [Ceriello 2004]. Apart from inflammation and diabetic dyslipidemia [Haffner 2003], the impaired glucose metabolism and “advanced glycation end products” (AGE) [Bansilal 2007, Brownlee 1992, Cipollone 2003] might contribute to the atherosclerotic process.

There are many studies indicating that type-2 diabetes mellitus (t2D) is associated with thicker intima-media in the carotid artery [Folsom 1994, Wagenknecht 1998]. Some studies have, on the other hand, not showed any significant difference between t2D and controls [el-Barghouti 1997, Tuomilehto 1998].

Studies examining whether IGT is associated with increased carotid IMT show inconsistent results [Ishizaka 2003, Temelkova-Kurktschiev 2000, Wagenknecht 1998]. However, all these studies were based on one single OGTT, and it is known that glucose tolerance is normal at a second OGTT in half of the cases [Riccardi 1985].

(Hence, a more strict diagnosis of IGT using repeated OGTT may show more consistent association with IMT. Taken together it is unclear when the atherosclerotic process starts in relation to the level of glucose intolerance.)

Remodelling

Remodelling is a process when the artery geometry changes as a response to the atherosclerotic process [Pasterkamp 2002, Ward 2000]. In histological sections of coronary arteries Glagov et. al., demonstrated that coronary arteries enlarge in response to the development of atherosclerotic plaques [Glagov 1987]. According to the analyses of Glagov et al the compensatory remodelling process maintained or even enlarged luminal dimensions during early atherosclerosis.
Introduction

These investigators also reported that the capacity for compensatory enlargement diminished as plaques reached a cross-sectional area stenosis of ~ 40 % and plaque growth beyond this point resulted in a reduction of luminal area.(Figure 5) [Glagov 1987].

Figure 5. In early atherosclerosis a compensatory remodelling process is maintaining or even enlarging the lumen dimension. (Glagov et al, N Eng J Med 1987)

It has been suggested to take lumen diameter and remodelling into account when examining the importance of IMT as a surrogate marker of atherosclerotic disease [Bots 2005]. One previous study has indicated that remodelling occurs among patients with known diabetes but the relation to plaques is unknown [Henry 2004]. Artery size is also related to other factors. Male sex, height, weight and blood pressure are positively associated with carotid artery lumen diameter [Bonithon-Kopp 1996]. An increased IMT may also be a non-atherosclerotic response to increased stress in order to keep the wall tension normal [Bots 2005].

(There is a lack of knowledge regarding the onset of atherosclerosis assessed as increase in IMT, plaque occurrence and remodelling in relation to the gradual deterioration of glucose tolerance, leading to diabetes.)
Aims of the study

The main aim of this thesis was to examine the occurrence of early atherosclerosis in type 2 diabetes (t2D) and impaired glucose tolerance (IGT).

The specific aims were:

I. To perform a systematic review and a meta-analysis of the literature in order to clarify whether t2D and IGT are associated with increased carotid artery IMT, and to relate differences in IMT to clinical correlates such as age and risk for myocardial infarction and stroke. (Paper I)

II. To describe the prevalence of diabetes mellitus and IGT in a cohort of 64-year-old women in Gothenburg, Sweden and to examine the variability and practical use of the OGTT in the screening for IGT and diabetes. (Paper II)

III. To investigate the occurrence of echolucent plaques in diabetic patients; to examine if carotid artery remodelling in women is present already at the diagnosis of new t2D, and if it is similar to that in known t2D, and to investigate if non-atherosclerotic remodelling may occur in t2D. (Paper III)

IV. To examine if IGT, as diagnosed by double OGTT, is associated with sub clinical carotid atherosclerosis assessed as IMT and occurrence of echolucent plaques. A post-hoc aim was to clarify if carotid IMT is thicker in groups of IGT compared to groups of NGT by performing an up-dated meta-analysis, adjusted for differences in age. (Paper IV)
Materials and Methods

Paper I

Study design of the systematic review

Inclusion criteria

Inclusion criteria were 1) cross-sectional studies of patients with type 2 diabetes mellitus or impaired glucose tolerance (IGT), and controls; 2) use of the ultrasound method to examine the carotid artery IMT. Type 2 diabetes was defined by the authors concerned, and IGT was based on the WHO definition [WHO 1999]. Both epidemiological, cross-sectional studies based on random population samples and case-control studies were included. If a study was reported in more than one publication we could use data from other publications to obtain necessary information, but only one report was included.

Search strategy

MEDLINE, EMBASE, and Cochrane were the primary sources of identification of included studies. We started our searches with the keywords “diabetes”, “impaired glucose tolerance”, “atherosclerosis” and “intima-media”. The searches spanned the previous 20 years. The references in the identified or related articles were manually reviewed in the search for other published studies. Articles in languages other than English were accepted. Personal contacts with researchers in the field were used to identify unpublished studies.

Data extraction

A data abstract form was created and two of the authors (GB, BF) independently extracted the requested information. The tabulated data included study design, recruitment and number of patients and control subjects, ethnicity, sex and age distribution, definition of diabetes and IGT and description of the ultrasound
method to measure carotid IMT. In case of discrepancy of assessments, consent was reached after discussion. The main outcome was carotid artery IMT in the different study groups. The analysis was restricted to studies which contained known numbers of participants and in which carotid artery IMT measurements were presented in figures. Attempts were made to obtain complementary data in studies lacking necessary data.

Updated review

In paper IV an updated meta-analysis of the difference between IMT in IGT and NGT was performed with the addition of the present and two new studies [Mohan 2006, Zhang 2006]. Adjustment for differences in age was also performed as age was higher in IGT than in NGT groups in seven studies [Henry 2004, Ishizaka 2003, Keven 1999, Snehalatha 2001, Wagenknecht 1998, Zhang 2006]. In previous studies it has been reported that an age difference of one year corresponds to a 0.01 mm difference in CCA IMT [Hedblad 2000, Howard 1993, Le Gal 2003]
Study population and study design

DIWA study

Inclusion and exclusion criteria

The inclusion criteria were 64-year-old woman registered at the County Register in Gothenburg Sweden. Exclusion criteria for all women were recent cancer disease, severe mental disorder, chronic inflammatory disease or other diseases demanding longer use of anti-inflammatory drugs. Women with drug addictions or other severe illnesses were excluded. Women who could not understand Swedish were also excluded. For women with normal glucose tolerance (NGT) additional exclusion criteria were coronary heart disease, previous stroke or
transient ischemic attack, intermittent claudication, treatment or need for
treatment for hypertension or dyslipidemia.

The study was approved by the Ethical Committee of Sahlgrenska University
Hospital. The subjects received both written and oral information before they
gave their consent to participate.

Screening procedure

All the 64-year-old women identified through the County Register in Gothenburg
were invited to take part in a screening that took place 2001-2004 and included
women born 1937-1940.

In all, 4856 women were sent an invitation and reply form in which they
accepted or did not accept participation in the screening examination. Those 2893
who accepted completed a brief questionnaire that was enclosed. Subject who in
this first reply letter reported diseases according to exclusion criteria were
excluded. As a reminder to non-responders a second letter was sent. An attempt
was made to contact a sample of these non-responders for a telephone interview
concerning their medical conditions including diabetes.

The screening examination included an oral glucose tolerance test (OGTT).
Women with known diabetes treated with oral anti-diabetic drugs or insulin were
directly included in the study and examined without preceding OGTTs, whereas
women with diet treated diabetes and fasting blood glucose (FBG) < 7.5 mmol/l
were examined with OGTTs. The OGTT was repeated within two weeks if
impaired glucose tolerance (IGT) or diabetes was found.

Glucose tolerance groups

The women were stratified into three groups; type-2 diabetes, IGT and NGT. In
the NGT group of 1651 women, 1231 women had no history of cardiovascular
disease and were without medication for hypertension and hyperlipidemia. Out of
this healthy group, two groups were recruited. The first group (NGTr) of 99
Materials and Methods

Women was randomly selected from the entire NGT group. The second group (NGTm) consists of 96 women matched to the IGT group for body mass index (BMI) and waist-hip-ratio (WHR).

Sample size calculations

The preliminary sample size was calculated as the number of subjects necessary to include in order to show a significant difference in the common carotid artery (CCA) intima-media thickness (IMT) between women with type-2 diabetes and normal glucose tolerance ($\alpha<0.05$ and $\beta=0.20$). The assumptions were based on data obtained from a large population-based study of 3800 women 55-67 years old in Malmö Sweden using almost similar ultrasound technique (personal communication Hedblad). These Malmö women with NGT had a mean CCA IMT of 0.76±0.13 mm and it was 0.04 mm higher IMT in the diabetes group. The calculations indicated that 200 women with type-2 diabetes and 200 with normal glucose tolerance would be included in the study.

Examinations

At both entry and at the ultrasound examination the subjects were examined with anthropometric measurements and blood pressure. The first visit to the Wallenberg Laboratory included completing of questionnaires, anthropometric measures, measurement of blood pressure, recording of ECG and examination with OGTT. The second visit, within a few weeks included the ultrasound examination.

Questionnaires

Self-administered questionnaires were used to obtain information on previous and present disease, current medication, smoking habits and family history of diabetes [CM Berg 2005].
Anthropometry

Body weight was measured in underwear on a balance scale to the nearest 0.1 kg and height to the nearest 1.0 cm. Waist and hip circumference were performed with the patient standing and in accordance with current guidelines. Waist-hip-ratio (WHR) and body mass index (BMI) were calculated. BMI was defined as weight in kilograms divided by the squared height in meters.

Blood pressure

Blood pressure was measured in the right arm with the patient in supine position, using a cuff of appropriate size after at least 5 minutes of rest. The mean of two recordings was used.

Oral glucose tolerance test (OGTT)

A 75g OGTT (WHO) was performed in the morning (before 11 a.m.), fasting- and 2-h post load capillary blood glucose were measured. The participants had been asked to fast overnight, to avoid heavy physical activity during the previous day and to avoid smoking in the morning before the test. Women who reported a current infection had the examination postponed two weeks. Women fulfilling the criteria for DM or IGT were re-examined within 2 weeks with a repeated OGTT. If fasting glucose was in the diabetic range at the second examination, OGTT was not performed.

Ultrasound measurements of the carotid arteries

Examination was performed with an ultrasound scanner (Acuson Sequoia 512 Siemens, Mountain View, CA) with a linear 8-MHz transducer aperture of 42 mm. An electrocardiographic signal (lead II) was simultaneously recorded to synchronize the image capture to the top of the R wave in order to minimize variability during the cardiac cycle. The right and left carotid arteries were scanned at the level of the bifurcation. At the position of the thickest part (visually judged), frozen longitudinal images of the common carotid artery
(CCA) and the carotid bulb were recorded. A short real-time sequence was also recorded to assist in interpreting frozen images.

The ultrasound images were analyzed in an automated analyzing system, based on automatic detection of the echo structures in the image but with the option to make manual corrections by the operator [Wendelhag 1997]. IMT was defined as the distance from the leading edge of the lumen-intima interface of the far wall to the leading edge of the media-adventitia interface of the far wall. The measurement of IMT in the carotid artery was made in two separate segments (Figure 7): along a 10-mm-long segment in the CCA, and along a 10-mm-long segment distal to the beginning of the carotid artery bulb, (i.e. where the echoes from the near and far walls are no longer parallel).

![Figure 7. Ultrasound picture of carotid artery.](image)

The computer program calculated the mean thickness of the intima-media complex of the far wall. Lumen diameter was defined by the distance between the leading edges of the intima-lumen interface of the near wall and the lumen-intima interface of the far wall. A composite measure of IMT in the carotid artery was calculated as the mean IMT in the CCA and the carotid bulb from the right.
Materials and Methods

and left side. The interobserver variability for measurement of IMT in the CCA and the carotid artery bulb is 5.3% and 6.0%, respectively, and 7.6 % for the composite measure [Schmidt 1999].

The screening for plaques was performed over a larger area of the carotid arteries starting 40 mm proximally to the bulb and extending 10 mm in to internal carotid artery and external carotid artery, respectively. The right and left carotid arteries were scanned both longitudinally and transversely to assess the occurrence of plaques. A plaque was defined as a distinct area with an IMT >50% greater than neighbouring sites (visually judged). This analysis included plaques in the near wall as well as the far wall in both the carotid arteries. The total numbers of plaques were calculated. A computer program was used to calculate the area of each plaque and the total areas were computed. The assessment of plaque echogenicity was based on the version of classification proposed by Gray-Weale et al [Gray-Weale 1988], modified in the present study to two classes; 1) dominantly or substantially echolucent plaques, or 2) dominantly or uniformly echogenic. Two examiners simultaneously classified the plaque echogenicity, which has previously been shown to have good reproducibility (K=0.95) [Schmidt 2003]. Echogenicity was defined in each plaque and the ratio between the numbers of echolucent and all plaques was calculated.

Biochemical measurements

At the visit with ultrasound examination blood samples for biochemical analysis were collected and serum and plasma were frozen in aliquots at -70ºC within 4 hours.

Serum lipids

The cholesterol and triglyceride levels were determined by fully enzymatic techniques (Thermo Clinical Labsystems, Espoo, Finland). All analyses were performed on a Konelab 20 autoanalyser (Thermo Clinical Labsystems) at the Wallenberg Laboratory. High-density lipoprotein (HDL) was determined after
precipitation of apolipoprotein (apo) B-containing lipoproteins with magnesium sulfate and dextran sulfate (Thermo Clinical Labsystems). Low-density lipoprotein (LDL) was calculated as described by Friedewald et al. [Friedewald 1972].

HbA1c and blood glucose

HbA1c was determined with high pressure liquid chromatography on a Mono S HR 5/5 column (Amersham Biosciences, Piscataway, N.J., USA and Pharmacia, Uppsala, Sweden) [Eckerbom 1994]. Fasting capillary blood glucose was measured immediately with the glucose oxidase technique by using HemoCue® (Hemocue AB, Ängelholm, Sweden).

GAD-antibodies

Antibodies against glutamic acid decarboxylase (GAD) were measured by an autoantibody ELISA kit (RSR Ltd, Cardiff, UK) according to WHO standard. Women with serum GAD antibodies ≥4.6 were defined as suffering from type 1 diabetes [Bingley 2003].

Definitions

The WHO criteria [1999] for capillary blood glucose cut-off values were used. IGT was defined as fasting-blood-glucose less than 6.1 mmol/l and 2 h post glucose load ≥ 7.8 - < 11.1 mmol/l measured at two occasions. Diabetes was defined as FG ≥ 6.1 and/or 2 h post glucose load ≥ 11.1 mmol/l measured at two occasions. Impaired fasting glucose (IFG) was defined as fasting-blood-glucose ≥ 5.6 - < 6.1 mmol/l and 2 h post glucose load < 7.8 mmol/l.

Subjects with normal glucose tolerance at the first OGTT were defined as normal glucose tolerance (NGT); women with IGT at both the first and second examinations were defined as IGT; women fulfilling diabetes criteria at the first examination but IGT at the re-examination, or the reverse were also classified as
IGT. Women with IGT or DM at the first examination and (NGT) at the second examination were defined as IGT/NGT.

Family history of diabetes was defined as having either a parent or a sibling with diabetes.

Statistical analysis

The statistical analysis was carried out using SPSS version 9.0 for Windows. Results are presented as means and standard deviations for continuous variables if nothing else is indicated, and as percentage for categorical variables. P<0.05 (two-sided) was regarded as statistically significant.

Paper I and IV

For each study in the systematic review, the differences between diabetes patients or subjects with IGT and controls in carotid artery IMT were calculated, as well as the 95% confidence intervals. A random effect model (an iterative maximum likelihood estimation) was used to perform the meta-analysis, resulting in an overall estimate of the mean difference (and 95% confidence interval) in IMT between diabetes patients and controls, and between patients with IGT and controls, respectively. Homogeneity was studied by the weighted mean μ of the differences Δ_i between the diabetes and control group in n studies. The estimated standard error SE_i of the difference within each group was used to calculate the sum of squares $\sum [(\Delta_i - \mu)/ SE_i]^2$, which under the hypothesis of homogeneity has a chi-square distribution with $n-1$ degrees of freedom. Possible bias was also checked by creating a funnel plot with the difference in IMT plotted versus the number of subjects included in each trial. Similar analyses were performed in an up-dated meta-analysis after addition of the present and two new studies, and after adjustment for age (Paper IV).
Materials and Methods

Paper II

Mann-Whitney and ANOVA were used for comparisons between groups, and a linear model was used for testing of trend between groups. Pearson’s correlation coefficient was calculated. Multiple regression was used to create an algorithm that was based on fasting glucose and waist girth from the first examination in order to predict fasting glucose at the second examination for eleven women who abstained from undergoing a second examination. (This was done in order to have the diagnoses of diabetes based on two elevated values.)

Paper III and IV

Unpaired Student's t-tests were used for comparison of continuous variables. In paper III multiple regression was used and β-coefficients are presented as 95% confidence intervals. Covariance analysis was used to calculate partial correlation coefficients in paper IV.
Results

Paper I

(Aim: To perform a systematic review and a meta-analysis of the literature in order to clarify whether t2D and IGT are associated with increased carotid artery IMT and relate differences in IMT to clinical correlates such as age and risk for myocardial infarction and stroke.)

Twenty-one studies of patients with t2D and control subjects were included in the review. Nine studies of subjects with IGT were identified. In all studies IMT of the common carotid artery was measured. Nearly all studies used the far wall for measurements. One study examined only the near wall [Guvener 2000]. In all 21 studies, except one study [Tuomilehto 1998], the diabetic patients had larger IMT than the subjects in the control groups. The differences were statistically significant in all except four studies [el-Barghouti 1997, Rajala 2002, Tuomilehto 1998, Visona 1995](figure 7). The estimated mean difference in IMT calculated by a random effect model was 0.13 (95% CI: 0.123-0.144) mm.

Three [Henry 2004, Temelkova-Kurktschiev 1999, Wagenknecht 1998] out of nine studies showed, with statistical significance, that carotid IMT was thicker in the IGT group compared with the control group (figure). The estimated mean difference in IMT calculated by a random effect model was 0.04 (95% CI: 0.014-0.071) mm.
Results

Carotid Artery IMT in Diabetes vs Controls

<table>
<thead>
<tr>
<th>Study</th>
<th>Number</th>
<th>Control IMT thicker</th>
<th>Diabetes IMT thicker</th>
<th>Mean</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folsom WW (17)</td>
<td>4348</td>
<td>0.05</td>
<td>0.05</td>
<td>(0.05 to 0.05)</td>
<td></td>
</tr>
<tr>
<td>Folsom BW</td>
<td>1727</td>
<td>0.06</td>
<td>0.06</td>
<td>(0.059 to 0.061)</td>
<td></td>
</tr>
<tr>
<td>Folsom WM</td>
<td>3499</td>
<td>0.07</td>
<td>0.07</td>
<td>(0.069 to 0.071)</td>
<td></td>
</tr>
<tr>
<td>Folsom BM</td>
<td>1016</td>
<td>0.05</td>
<td>0.05</td>
<td>(0.048 to 0.051)</td>
<td></td>
</tr>
<tr>
<td>Yamasaki (18)</td>
<td>294</td>
<td>0.41</td>
<td>0.41</td>
<td>(0.404 to 0.416)</td>
<td></td>
</tr>
<tr>
<td>Pujia (30)</td>
<td>108</td>
<td>0.08</td>
<td>0.08</td>
<td>(0.074 to 0.086)</td>
<td></td>
</tr>
<tr>
<td>Geroulakos (23)</td>
<td>194</td>
<td>0.17</td>
<td>0.17</td>
<td>(0.165 to 0.175)</td>
<td></td>
</tr>
<tr>
<td>Viscomi (36)</td>
<td>87</td>
<td>0.01</td>
<td>0.01</td>
<td>(-0.002 to 0.002)</td>
<td></td>
</tr>
<tr>
<td>Niskanen (25)</td>
<td>182</td>
<td>0.14</td>
<td>0.14</td>
<td>(0.130 to 0.150)</td>
<td></td>
</tr>
<tr>
<td>Vila (22)</td>
<td>807</td>
<td>0.05</td>
<td>0.05</td>
<td>(0.049 to 0.051)</td>
<td></td>
</tr>
<tr>
<td>El-Barghouthi (35)</td>
<td>464</td>
<td>0.02</td>
<td>0.02</td>
<td>(0.017 to 0.023)</td>
<td></td>
</tr>
<tr>
<td>Bonora (38)</td>
<td>114</td>
<td>0.25</td>
<td>0.25</td>
<td>(0.243 to 0.257)</td>
<td></td>
</tr>
<tr>
<td>Tuomilehto (27)</td>
<td>144</td>
<td>-0.08</td>
<td>-0.08</td>
<td>(-0.122 to -0.038)</td>
<td></td>
</tr>
<tr>
<td>Wagenknecht (29)</td>
<td>1079</td>
<td>0.10</td>
<td>0.10</td>
<td>(0.099 to 0.101)</td>
<td></td>
</tr>
<tr>
<td>Keven (37)</td>
<td>41</td>
<td>0.22</td>
<td>0.22</td>
<td>(0.205 to 0.240)</td>
<td></td>
</tr>
<tr>
<td>Temerkovai (31)</td>
<td>142</td>
<td>0.13</td>
<td>0.13</td>
<td>(0.122 to 0.138)</td>
<td></td>
</tr>
<tr>
<td>Mohan (24)</td>
<td>243</td>
<td>0.21</td>
<td>0.21</td>
<td>(0.204 to 0.216)</td>
<td></td>
</tr>
<tr>
<td>Taniwaki (26)</td>
<td>356</td>
<td>0.36</td>
<td>0.36</td>
<td>(0.357 to 0.363)</td>
<td></td>
</tr>
<tr>
<td>Guver (21)</td>
<td>122</td>
<td>0.18</td>
<td>0.18</td>
<td>(0.171 to 0.189)</td>
<td></td>
</tr>
<tr>
<td>Hanefeld (33)</td>
<td>712</td>
<td>0.13</td>
<td>0.13</td>
<td>(0.127 to 0.133)</td>
<td></td>
</tr>
<tr>
<td>Rajala (19)</td>
<td>111</td>
<td>0.09</td>
<td>0.09</td>
<td>(0.078 to 0.104)</td>
<td></td>
</tr>
<tr>
<td>Ishizaka (30)</td>
<td>904</td>
<td>0.06</td>
<td>0.06</td>
<td>(0.057 to 0.063)</td>
<td></td>
</tr>
<tr>
<td>Malmö men (16)</td>
<td>2303</td>
<td>0.07</td>
<td>0.07</td>
<td>(0.069 to 0.071)</td>
<td></td>
</tr>
<tr>
<td>Malmö women</td>
<td>3291</td>
<td>0.07</td>
<td>0.07</td>
<td>(0.069 to 0.071)</td>
<td></td>
</tr>
<tr>
<td>Sigurdardottir (32)</td>
<td>271</td>
<td>0.10</td>
<td>0.10</td>
<td>(0.096 to 0.104)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>22630</td>
<td>0.12</td>
<td>0.12</td>
<td>(0.11 to 0.13)</td>
<td></td>
</tr>
</tbody>
</table>

Carotid Artery IMT in Impaired Glucose Tolerance (IGT) vs Controls

<table>
<thead>
<tr>
<th>Study</th>
<th>Number</th>
<th>Control IMT thicker</th>
<th>IGT IMT thicker</th>
<th>Mean</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niskanen (25)</td>
<td>119</td>
<td>0.03</td>
<td>0.03</td>
<td>(0.009 to 0.051)</td>
<td></td>
</tr>
<tr>
<td>Tuomilehto (27)</td>
<td>125</td>
<td>-0.03</td>
<td>-0.03</td>
<td>(-0.086 to -0.026)</td>
<td></td>
</tr>
<tr>
<td>Wagenknecht (29)</td>
<td>948</td>
<td>0.05</td>
<td>0.05</td>
<td>(0.049 to 0.051)</td>
<td></td>
</tr>
<tr>
<td>Keven (37)</td>
<td>41</td>
<td>0.07</td>
<td>0.07</td>
<td>(0.050 to 0.090)</td>
<td></td>
</tr>
<tr>
<td>Snehalatha (26)</td>
<td>99</td>
<td>0.04</td>
<td>0.04</td>
<td>(0.029 to 0.051)</td>
<td></td>
</tr>
<tr>
<td>Rajala (19)</td>
<td>154</td>
<td>0.02</td>
<td>0.02</td>
<td>(0.011 to 0.029)</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>1486</td>
<td>0.04</td>
<td>0.04</td>
<td>(0.021 to 0.059)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7. Meta-analysis showing the difference in carotid artery intima media thickness (IMT) between type 2 diabetes and controls (upper panel), and between patients with impaired glucose tolerance (IGT) and controls (lower panel). Means and 95% confidence intervals for the differences in separate studies and the summary of all studies are given.
Test for bias

Heterogeneity was indicated as the homogeneity test rejected the null hypothesis for the diabetes-control groups (p<0.001). The funnel plot (figure 8) showed a skewed distribution with an abundance of smaller studies showing larger IMT differences for diabetic patients compared with control subjects. Of the 14 studies with fewer than 500 subjects seven [Bonora 1997, el-Barghouti 1997, Geroulakos 1994, Niskanen 1996, Pujia 1994, Visona 1995, Yamasaki 1994] included only patients with well established diabetes. On the other hand just one of the 7 studies with 500 or more subjects dealt exclusively with patient with established diabetes [Wei 1996]. In the present meta-analysis five studies [Ishizaka 2003, Keven 1999, Sigurdardottir 2004, Temelkova-Kurktschiev 1999, Wagenknecht 1998] included only, or reported separately, newly detected diabetes patients and in those IMT was 0.11 (95% CI: 0.095 – 0.121) mm thicker than in control subjects compared to a corresponding difference of 0.13 (95% CI: 0.129 – 0.139) mm in the ten studies that included patients with known diabetes and control subjects. The approach to measure IMT in the segment with the largest thickness was used by nearly 50% of the authors in the studies with less than 500 subjects [el-Barghouti 1997, Geroulakos 1994, Mohan 2000, Niskanen 1996, Tuomilehto 1998, Yamasaki 1994] and by one of the larger studies [Taniwaki 1999]. The studies performing the IMT measurements at the thickest point showed a larger IMT in diabetes patients (mean difference between diabetes patients and controls 0.21 [95% CI 0.206-0.219] mm). The corresponding mean difference in IMT, in studies measuring the thickness in predefined segments, was 0.09 [95% CI 0.091-0.097] mm. The differences between t2D and controls were similar in both sexes and in different ethnic groups.
Results

Figure 8. Funnel plot presenting difference in common carotid artery IMT between diabetic patients and control subjects by study size.

IMT in relation to age and cardiovascular risk

In a large Swedish study [Hedblad 2000] the age-related change of carotid artery IMT can be estimated at 1% per year. The difference in IMT between individuals with type 2 diabetes patients and control subjects found in the present meta-analysis corresponds to an expected age difference of more than 10 years, using these Swedish population data.

Bots et al. [Bots 1997] used the Rotterdam population to estimate the gradient of risk of myocardial infarction and stroke per 1 standard deviation (0.163 mm) increase of IMT. They found the gradients 1.43 for myocardial infarction and 1.41 for stroke. In the previously mentioned Swedish study, a correlation
Results

A coefficient of 0.77 was observed between measurements of two observers. That yields a coefficient of \((0.77)^{\frac{1}{2}}\) between one observer and the true value. The gradient of risk adjusted for measurement error can be determined as \(\exp(\log(1.43)/r) = 1.50\) for MI. The corresponding gradient for stroke was 1.48. The risk ratio of myocardial infarction when comparing the diabetes group versus controls is \(\exp(\log(1.50)\cdot 0.12 / 0.163) = 1.38\), and for stroke the ratio is 1.37. Thus, the difference of IMT between diabetes patients and control subjects in the present meta-analysis is associated with increases in relative risks of 38% and 37% for myocardial infarction and stroke, respectively.

Paper II

(Aim: To describe the prevalence of diabetes mellitus and IGT in a cohort of 64-year-old women in Gothenburg and to examine the variability and practical use of the OGTT in the screening for IGT and diabetes.)

The outcome of the screening process is shown in figure 9.

Diabetes

The prevalence of diabetes in this cohort of 64-year-old women was 9.5%. New diabetes mellitus, detected by screening, was found in 4.8% and known diabetes in 4.7% of the women. Just performing fasting blood glucose measurements would have resulted in 44 fewer cases, i.e., 37% of new diabetes subjects who were identified by repeated OGTTs.

IGT

IGT, as defined by two OGTT, was found in 14.4% of the women. At the first examination, 22% of the women had IGT. At the re-examination of 367 women with IGT at the first examination, 175 (48%) turned out to have NGT.
Results

Screening procedure

![Screening procedure diagram]

1) % of invited n=4856
2) % of screened n=2595
*) IGT at the first test, did not participate in a second test.
†) DM value at the first test, refused to participate in the re-examination.
‡) IGT and new DM adjusted prevalence values.

Figure 9. The screening procedure.

Characteristics by glucose tolerance status

Table 1 shows that with worsening glucose tolerance there was a gradual increase in BMI, waist, waist-hip-ratio (WHR) and blood pressure, with the exception that known and treated diabetic women had lower blood pressure. The proportion of women with a family history of diabetes was doubled in the diabetic group in comparison with the NGT group. A closer analysis showed that women with IGT/IGT, in contrast to those with IGT/NGT had higher mean BMI, waist girth, WHR, diastolic blood pressure, heart rate and contained more subjects with family history of diabetes than the group with NGT women.
Results

Table 1 Characteristics of 64-year-old women by glucose tolerance after two OGTT.

<table>
<thead>
<tr>
<th></th>
<th>NGT</th>
<th>IGT/NGT</th>
<th>IGT</th>
<th>New diabetes</th>
<th>Known diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>1651</td>
<td>221</td>
<td>269</td>
<td>119</td>
<td>122</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>70.3±11.3</td>
<td>70.6±11.3</td>
<td>74.8±14.0*</td>
<td>77.5±12.7</td>
<td>80.0±15.2†</td>
</tr>
<tr>
<td>Height, cm</td>
<td>164.5±6.0</td>
<td>164.3±5.6</td>
<td>163.6±5.8*</td>
<td>163.7±6.1</td>
<td>163±5.5†</td>
</tr>
<tr>
<td>BMI</td>
<td>26.0±4.0</td>
<td>26.1±4.1</td>
<td>27.9±5.0*</td>
<td>28.9±4.4</td>
<td>30.1±5.5†</td>
</tr>
<tr>
<td>Waist, cm</td>
<td>86.6±10.7</td>
<td>87.9±10.9</td>
<td>92.4±12.0*</td>
<td>96.4±11.1</td>
<td>101±13.5†</td>
</tr>
<tr>
<td>Hip, cm</td>
<td>102.8±8.5</td>
<td>102.8±8.4</td>
<td>105.7±10.3*</td>
<td>107.1±9.6</td>
<td>109.3±11.8†</td>
</tr>
<tr>
<td>WHR</td>
<td>0.84±0.068</td>
<td>0.85±0.068*</td>
<td>0.874±0.076*</td>
<td>0.900±0.068</td>
<td>0.924±0.072†</td>
</tr>
<tr>
<td>Arm, cm</td>
<td>29.8±3.2</td>
<td>29.5±3.1</td>
<td>30.9±4.0*</td>
<td>31.2±3.8</td>
<td>32.4±4.3†</td>
</tr>
<tr>
<td>Neck, cm</td>
<td>34.7±4.0</td>
<td>35.0±2.3</td>
<td>36.1±2.8*</td>
<td>36.7±2.5</td>
<td>36.9±12.8†</td>
</tr>
<tr>
<td>Blood pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic, mm Hg</td>
<td>146 ±20.2</td>
<td>149 ±18.9*</td>
<td>154 ±20.2*</td>
<td>158 ±20.7</td>
<td>148±21.3†</td>
</tr>
<tr>
<td>Diastolic, mm Hg</td>
<td>83 ±9.0</td>
<td>84.0±9.3</td>
<td>86 ±9.2*</td>
<td>89 ±9</td>
<td>78±10†</td>
</tr>
<tr>
<td>Heart rate,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beats/min</td>
<td>70±9</td>
<td>71±10</td>
<td>72 ±10*</td>
<td>73 ±11</td>
<td>69±11†</td>
</tr>
<tr>
<td>Family history</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM</td>
<td>25 % (379/1514)</td>
<td>26 % (50/195)</td>
<td>34 % (84/249) *</td>
<td>48 % (53/111)</td>
<td>52% (44/84)†</td>
</tr>
</tbody>
</table>

Data are mean ± SD unless otherwise indicated. * p<0.05 in comparison with NGT; † p < 0.001 for trend. NA – not applicable.

Impaired fasting glucose (IFG) as screening test

A fasting blood glucose FBG ≥ 5.6mmol/l (IFG) had a sensitivity of 0.87 and a specificity of 0.84 to identify women with diabetes. Out of 2475 women without known DM, 472 had FBG ≥ 5.6 mmol/l. Performing repeated OGTT in just this group (472 instead of 2475) would have resulted in identification of 103 new DM cases. Sixteen women with new DM were not identified with such an approach.

Non-participants

To explore the potential differences between participants and non-participants, attempts were made to contact the first 191 women who did not answer the two invitation letters. It was possible to interview 89 women by telephone contact.
Results

Three of these women had known diabetes (3.4%) corresponding to 3.3% among the screened patients

Paper III

(Aim; To investigate the occurrence of echolucent plaques in diabetic patients; to examine if carotid artery remodelling in women is present already at the diagnosis of new t2D, and if it is similar to that in known t2D and to investigate if non-atherosclerotic remodelling may occur in t2D.)

In total 624 women underwent the ultrasound measurements. Out of the 122 known diabetic women; 15 had type-1 diabetes (t1D) according to the GAD-criteria; it was not possible to examine eight women; and 99 underwent the ultrasound examination. For the 119 screening identified women with diabetes, five had t1D and eight were not examined, and 106 were included. General characteristics of the study group are presented in Table 2. With the exception of smoking and LDL cholesterol, there was a continuously worsening of the cardiovascular risk factor profile in parallel with impairment of glucose tolerance.
Table 2. Characteristics of a population-based cohort of 64-year-old women by glucose tolerance group

<table>
<thead>
<tr>
<th></th>
<th>Normal glucose tolerance (n=99)</th>
<th>Type 2 diabetes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>New (n=106)</td>
</tr>
<tr>
<td>BMI kg/m²</td>
<td>24.9±3.4</td>
<td>28.2±4.4</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.65±0.06</td>
<td>1.64±0.06</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>85.2±9.1</td>
<td>95.0±11.3</td>
</tr>
<tr>
<td>Smoking current, % (n)</td>
<td>15(15)</td>
<td>25(26)</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>131±17</td>
<td>143±18</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>75±8</td>
<td>79±9</td>
</tr>
<tr>
<td>HbA1c,% §</td>
<td>4.46±0.26</td>
<td>5.04±0.97</td>
</tr>
<tr>
<td>HDL mmol/L</td>
<td>1.83±0.42</td>
<td>1.57±0.42</td>
</tr>
<tr>
<td>LDL mmol/L</td>
<td>3.70±0.97</td>
<td>3.45±1.0</td>
</tr>
<tr>
<td>Triglycerides, mmol/L §</td>
<td>1.12±0.59</td>
<td>1.35±0.73</td>
</tr>
<tr>
<td>Previous myocardial infarction, % (n)</td>
<td>0</td>
<td>3(3)</td>
</tr>
<tr>
<td>Previous stroke, % (n)</td>
<td>0</td>
<td>2(2)</td>
</tr>
<tr>
<td>Hypertension known, % (n)</td>
<td>0</td>
<td>51(54)</td>
</tr>
<tr>
<td>Statin therapy, % (n)</td>
<td>0</td>
<td>16(17)</td>
</tr>
<tr>
<td>Fibrate therapy, % (n)</td>
<td>0</td>
<td>1(1)</td>
</tr>
<tr>
<td>Insulin therapy, % (n)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oral anti-diabetic therapy, % (n)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Glitazone therapy, % (n)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Data are mean±SD, § geometric mean±SD. Linear trend NGT, t2Dnew, t2Dknown
*p<0.002; **p<0.001 †No statistic test was performed as the NGT group by selection was free of cardiovascular diseases.

It was not possible to obtain complete ultrasound examinations in 195 women. As shown in Table 3, these women were more obese and showed a worse cardiovascular risk factor profile than the women with complete examinations. Mean CCA IMT values were significantly higher in the women in whom incomplete ultrasound examinations were performed compared with the women.
Results

with complete examinations (incomplete: 0.89±0.20 mm, n=195; complete: 0.84±0.16 mm; n=429; P<0.01).

Table 3. Comparison between the women with complete ultrasound and incomplete ultrasound examinations.

<table>
<thead>
<tr>
<th>Ultrasound examinations</th>
<th>Complete (n=429)</th>
<th>Incomplete (n=195)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus, % (n)</td>
<td>34(148)</td>
<td>39(76)</td>
</tr>
<tr>
<td>Impaired glucose tolerance, % (n)</td>
<td>31(131)</td>
<td>42(81)*</td>
</tr>
<tr>
<td>BMI</td>
<td>26.5±4.6</td>
<td>28.8±4.5†</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>89.8±11.7</td>
<td>96.9±12.0†</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>137±20</td>
<td>141±19†</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.64±0.44</td>
<td>1.44±0.40†</td>
</tr>
<tr>
<td>Triglycerides, mmol/L</td>
<td>1.25±0.75</td>
<td>1.6±0.86†</td>
</tr>
</tbody>
</table>

Geometric mean ±SD * p<0.05 † p<0.01

IMT

In comparison to the NGT group, women with known t2D had larger mean composite IMT, mean bulb IMT, and mean CCA IMT, whereas women with new t2D had a larger mean CCA IMT (Table 4). The mean CCA IMT was increased in both the known and new t2D groups, also after adjustment for the covariates (Table 5).
Table 4. Morphology of the carotid arteries. CCA- common carotid artery, IMT-intima media thickness. Composite IMT is the mean of IMT in CCA and carotid artery bulb.

<table>
<thead>
<tr>
<th></th>
<th>Normal glucose tolerance (n=99)</th>
<th>Type 2 diabetes New (n=106)</th>
<th>Type 2 diabetes Known (n=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CCA IMT, mm</td>
<td>0.82±0.18</td>
<td>0.87±0.20**</td>
<td>0.91±0.18***</td>
</tr>
<tr>
<td>Mean bulb IMT, mm</td>
<td>1.00±0.62</td>
<td>1.02±0.32</td>
<td>1.11±0.35**</td>
</tr>
<tr>
<td>Mean composite IMT, mm</td>
<td>0.92±0.34</td>
<td>0.95±0.25</td>
<td>1.02±0.23***</td>
</tr>
<tr>
<td>Mean lumen CCA, mm</td>
<td>5.80±0.60</td>
<td>6.08±0.58***</td>
<td>6.21±0.67***</td>
</tr>
<tr>
<td>Women with any plaque,%(n)</td>
<td>47(46)</td>
<td>46(48)</td>
<td>58(57)</td>
</tr>
<tr>
<td>Women with any echolucent plaque % (n)</td>
<td>40(39)</td>
<td>41(42)</td>
<td>57(56)*</td>
</tr>
<tr>
<td>Mean total plaque area per subject mm² (mean, SD)</td>
<td>11.6±19.5</td>
<td>15.6±26.0</td>
<td>20.4±25.9†</td>
</tr>
<tr>
<td>Mean total plaque area for echolucent plaques per subject, mm², (mean, SD)</td>
<td>10.4±18.5</td>
<td>14.8±25.6</td>
<td>18.2±23.9†</td>
</tr>
</tbody>
</table>

Data are geometric mean±SD, unless stated. T-test *p<0.05, **p≤0.015; ***p<0.001 compared to NGT group. † p<0.05 for trend

Atherosclerotic plaques

The proportion of women with any echolucent plaque, mean echolucent plaque area, and mean total plaque area increased gradually in women with new and known T2D compared to the NGT group (Table 4). The ratio between the numbers of echolucent and total plaques did not differ between the groups (data not shown).
Figure 10. Total and echolucent plaquearea.

In a stepwise multiple regression analysis, known t2D was associated with increased occurrence of echolucent plaques after adjustment for BMI, height, systolic blood pressure, smoking, and LDL cholesterol (0.20 [0.01 to 0.40 95% CI]) in comparison to the NGT group. For echolucent plaque area and total plaque area the corresponding finding was (8.4 [2.1 to 14.7 95% CI] mm²) and (7.4 [1.1 to 13.7 95% CI] mm²) respectively (Figure 10).
Table 5. Common carotid artery remodelling. Known (t2Dk, n=99) and newly detected (t2Dn, n=106) type 2 diabetes in comparison to healthy control women with normal glucose tolerance (n=99). Results are given as mean differences (95% CI) between t2D groups and control group.

<table>
<thead>
<tr>
<th>Adjustments</th>
<th>Lumen diameter, mm</th>
<th>Mean CCA IMT, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted</td>
<td>t2Dk 0.42 (0.24 to 0.60)</td>
<td>t2Dn 0.28 (0.12 to 0.44)</td>
</tr>
<tr>
<td>Log BMI, height</td>
<td>t2Dk 0.28 (0.06 to 0.49)</td>
<td>t2Dn 0.22 (0.04 to 0.40)</td>
</tr>
<tr>
<td>+ diastolic blood pressure</td>
<td>t2Dk 0.31 (0.09 to 0.52)</td>
<td>t2Dn 0.20 (0.02 to 0.39)</td>
</tr>
<tr>
<td>+ serum LDL cholesterol</td>
<td>t2Dk -0.06 (0.41)</td>
<td>t2Dn -0.01 (0.36)</td>
</tr>
<tr>
<td>+ smoking</td>
<td>t2Dk 0.15 (-0.08 to 0.37)</td>
<td>t2Dn 0.14 (-0.03 to 0.31)</td>
</tr>
</tbody>
</table>

Vascular remodelling

As shown in Table 4 and 5, both known and new t2D were associated with increases in mean lumen diameter in comparison to the NGT group, also after adjustment for BMI, height and diastolic blood pressure.
Results

Table 6. Lumen and IMT in common carotid artery by tertiles of plaque area, in relation to subject characteristics.

<table>
<thead>
<tr>
<th>Tertiles of plaque area</th>
<th>1 n=78</th>
<th>2 n=42</th>
<th>3 n=58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plaque surface, range, mm²</td>
<td>No plaque</td>
<td>4.7 – 20.5</td>
<td>20.9 – 145.7</td>
</tr>
<tr>
<td>Lumen diameter (LD), mm</td>
<td>6.1±0.7</td>
<td>6.2±0.6</td>
<td>6.2±0.6</td>
</tr>
<tr>
<td>Mean CCA IMT, mm</td>
<td>0.83±0.140</td>
<td>0.92±0.16</td>
<td>1.01±0.23**</td>
</tr>
<tr>
<td>Body mass index, kg/ m²</td>
<td>29.9±5.0</td>
<td>28.3±4.2</td>
<td>28.0±4.8*</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>141±18</td>
<td>143±21</td>
<td>144±21</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>79±9</td>
<td>78±8</td>
<td>76±11**</td>
</tr>
</tbody>
</table>

*p<0.05; **p≤0.001 linear trend

With an attempt to separate the impact of atherosclerotic plaques all t2D women were divided by tertiles of plaque area. As shown in Table 6, tertile 3 contains the women with the largest plaque area and tertile 1 the women without any plaques. Table 6 also shows that women in tertile 2 and 3 had larger mean CCA IMT in comparison to tertile 1. Figure 11 demonstrates that, among women in tertile 3 the lumen diameter was significantly larger compared to tertile 1 also after adjustment for BMI and diastolic blood pressure. Similar findings were obtained if echolucent plaque area was used in instead of total plaque area in dividing the sample into tertiles (data not shown). In women without plaques, t2D had larger lumen diameter than NGT but the difference was not significant after adjustment for BMI and height (0.16 [-0.10 to 0.42, 95% CI] mm).
Results

Figure 11. Differences in lumen diameter and intima-media thickness (IMT) in the common carotid arteries (CCA) by tertiles of carotid plaque area in 64-year-old women. The figure shows the differences between plaque area tertile 2, and 3, versus tertile 1 in which there were no plaques (plaque area=0). Means and 95% confidence intervals are given after adjustment for BMI and diastolic blood pressure.

Paper IV

(Aim: To examine if IGT, as diagnosed by doubled OGTT, is associated with subclinical carotid atherosclerosis assessed as IMT and occurrence of echolucent plaques. A post-hoc aim was to clarify if carotid IMT is thicker in groups of IGT compared to groups of NGT by performing an up-dated meta-analysis adjusted for differences in age.)

As a consequence of the study design just healthy women, free of hypertension and cardiovascular diseases, were recruited to the NGT groups. These healthy NGT women were divided into two groups; one randomly selected and the other matched to the IGT group for BMI and WHR. As seen in Table 7 women in the IGT group showed significantly higher systolic blood pressure and
disadvantageous changes in serum concentration of HDL-cholesterol and triglycerides.

Table 7. Characteristics of the women by glucose tolerance group. (IGT-impaired glucose tolerance, NGT-normal glucose tolerance).

<table>
<thead>
<tr>
<th></th>
<th>IGT (n=205)</th>
<th>NGTm (matched to IGT group)* (n=96)</th>
<th>NGTr (randomly selected) (n=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height, cm</td>
<td>163±5.9</td>
<td>164±6.4</td>
<td>165±5.7†</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>27.3±4.9</td>
<td>27.3±3.1</td>
<td>24.9±3.4‡</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>91.6±12.0</td>
<td>91.3±8.3</td>
<td>85.0±9.1‡</td>
</tr>
<tr>
<td>Smoking current, %(n)</td>
<td>18(37)</td>
<td>21(20)</td>
<td>15(15)</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>142±19</td>
<td>134±18†</td>
<td>131±17‡</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>79±9</td>
<td>77±9</td>
<td>75±8‡</td>
</tr>
<tr>
<td>HDL cholesterol, mmol/L</td>
<td>1.62±0.42</td>
<td>1.73±0.40¶</td>
<td>1.83±0.42‡</td>
</tr>
<tr>
<td>LDL cholesterol, mmol/L</td>
<td>3.66±0.89</td>
<td>3.81±0.89</td>
<td>3.70±0.97</td>
</tr>
<tr>
<td>Serum triglycerides, mmol/L§</td>
<td>1.35±0.74</td>
<td>1.20±0.52¶</td>
<td>1.12±0.59†</td>
</tr>
<tr>
<td>Hypertension known, %(n)</td>
<td>26(53)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Statin therapy, %(n)</td>
<td>10(22)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fibrate therapy, %(n)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Previous myocardial infarction %(n)</td>
<td>1(2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Previous stroke %(n)</td>
<td>3(6)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Matched to IGT for BMI and waist-hip ratio. Data are mean±SD, unless stated. §Geometric mean±SD. †p<0.005, ‡p<0.0005, ¶p<0.05 in comparison to IGT group.

Out of the 269 women with IGT after repeated OGTTs the 212 first detected were invited to ultrasound measurements. It was not possible to examine seven women and 205 were included. In 74 women it was not possible to obtain complete examinations from all ultrasound locations. As shown in table 8 these women were more obese and showed a worse cardiovascular risk factor profile. They also had thicker CCA intima-media.
Table 8. Women with impaired glucose tolerance (IGT), with and without all ultrasound measurements.

<table>
<thead>
<tr>
<th></th>
<th>IGT not possible to assess measurements from all locals. (n=74)</th>
<th>IGT with measurements from all locals. (n=131)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight kg</td>
<td>77.1±16.2</td>
<td>70.8±9.8*</td>
</tr>
<tr>
<td>Waist cm</td>
<td>96.4±13.0</td>
<td>88.9±10.5*</td>
</tr>
<tr>
<td>BMI</td>
<td>29.2±5.2</td>
<td>26.3±4.4*</td>
</tr>
<tr>
<td>Bp syst</td>
<td>145±19</td>
<td>140±18</td>
</tr>
<tr>
<td>Bp dias</td>
<td>81±9</td>
<td>77±9 †</td>
</tr>
<tr>
<td>HDL</td>
<td>1.52±0.41</td>
<td>1.67±0.42 †</td>
</tr>
<tr>
<td>LDL</td>
<td>3.81±1.02</td>
<td>3.58±0.81</td>
</tr>
<tr>
<td>TG</td>
<td>1.73±0.69</td>
<td>1.37±0.73*</td>
</tr>
<tr>
<td>Mean CCA IMT</td>
<td>0.90±0.19</td>
<td>0.82±0.13*</td>
</tr>
<tr>
<td>Max CCA IMT</td>
<td>1.02±0.22</td>
<td>0.91±0.14*</td>
</tr>
<tr>
<td>Heredity for DM</td>
<td>25%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Data are mean ± SD, t-test *p< 0.005, †p<0.05

IMT and plaques

Mean CCA IMT, mean bulb IMT and mean composite IMT did not differ between the groups (Table 9). The NGTm and NGTr groups were combined as there was no difference between the groups in IMT. There was still no difference in mean CCA IMT between the IGT and the combined NGT-group [0.84 (95% CI -0.03 to 0.03) vs 0.84 (95% CI -0.03 - 0.03) mm]. No differences in the results were found when statin treatment or medication for hypertension in the IGT group was taken into account. In the combined IGT, and NGT group CCA IMT correlated to systolic blood pressure (0.23, p<0.001), previous smoking (0.13, p=0.020), and negatively to HDL cholesterol, but not to LDL cholesterol, current smoking, or HbA1c (data not shown). The proportions of subjects with a family history of diabetes in any of the parents (FH+) were 29 % (n=59), and 17% (n=32), in the IGT and NGT groups, respectively (p=0.006). This difference in proportions was statistically significant for a family history of maternal (19% [n=38] versus 11% [n=20], p=0.027), but not for paternal diabetes. In the combined IGT and NGT groups FH+ was associated with 0.03 (96% CI -0.007 to 0.07) mm larger CCA IMT in comparison to those with no family history of
Results

diabetes (FH-). Women with a family history of maternal diabetes were associated with a larger CCA IMT than in those with FH- (mean difference 0.05 mm [95% CI 0.005 to 0.10 mm]). In a covariance analysis log CCA IMT was associated with maternal diabetes (partial correlation coefficient=0.12, p=0.027), independently of glucose tolerance group (IGT/NGT), systolic blood pressure, HDL cholesterol, and smoking.

Atherosclerotic plaques

As shown in Table 9 the proportion of women with any plaque, mean number of plaque per subject, and mean total plaque area per subject did not differ between the groups. The corresponding findings concerning echolucent plaques did not differ between the groups. The ratio between the numbers of echolucent and total plaques was similar between the groups (Table 9).

Table 9. Morphology of the carotid arteries.
(IGT-impaired glucose tolerance, NGT normal glucose tolerance, CCA common carotid artery). Composite IMT is the mean of IMT in CCA and carotid artery bulb.

<table>
<thead>
<tr>
<th></th>
<th>IGT (n=205)</th>
<th>NGT matched to IGT group (n=96)</th>
<th>NGT randomly selected (n=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CCA IMT, mm (n)</td>
<td>0.83±0.16 (205)</td>
<td>0.84±0.15 (96)</td>
<td>0.82±0.18 (99)</td>
</tr>
<tr>
<td>Mean bulb IMT, mm (n)</td>
<td>0.99±0.30 (181)</td>
<td>0.96±0.24 (90)</td>
<td>1.00±0.62 (98)</td>
</tr>
<tr>
<td>Mean composite IMT, mm (n)</td>
<td>0.91±0.19 (180)</td>
<td>0.91±0.16 (89)</td>
<td>0.92±0.34 (98)</td>
</tr>
<tr>
<td>Women with any plaque, % (n)</td>
<td>40(82)</td>
<td>38(37)</td>
<td>46(46)</td>
</tr>
<tr>
<td>Mean total plaque area per subject mm² (mean, SD)</td>
<td>12.0±25.4</td>
<td>10.4±17.7</td>
<td>11.9±19.6</td>
</tr>
<tr>
<td>Women with any echolucent plaque, % (n)</td>
<td>34(67)</td>
<td>34(33)</td>
<td>40(40)</td>
</tr>
<tr>
<td>Mean total area for echolucent plaques per subject, (mean SD)</td>
<td>10.6±24.8</td>
<td>9.0±16.6</td>
<td>10.2±18.5</td>
</tr>
</tbody>
</table>

Geometric mean ±SD, unless stated
*Matched to IGT group for BMI and waist-hip-ratio
Meta-analysis

Three new studies including our own were found as an addition to the 9 previously reviewed studies. Three out of twelve studies showed that carotid IMT was thicker in the IGT group compared to the normal control group after adjustment for age (Figure 12). The observed variability in study results was greater than expected to occur by chance. The estimated mean difference in IMT, calculated by a random effect model, was 0.03 (95% CI 0.012 to 0.048) mm (Figure 12).

![Carotid Artery IMT in IGT vs Controls](image)

Figure 12. Meta-analysis. Studies comparing intima-media thickness (IMT) between groups with impaired (IGT) and normal (NGT) glucose tolerance.
Discussion

The major cause of death in type 2 diabetes is macrovascular, atherosclerotic disease. From a clinical standpoint it is of great importance to identify individuals at risk for, or suffering from diabetes as correctly and as early as possible, and to clarify when, and how atherosclerosis starts to develop. These issues are addressed in this thesis in the format of a meta-analysis of the current literature followed by a population based cross-sectional study. In order to identify and quantify atherosclerosis we have used measures obtained by B-mode ultrasound examinations of the carotid artery. The IMT of the carotid arteries is since many years an established surrogate measure of atherosclerotic disease, that is related to future cardiovascular diseases independently of traditional risk factors [Bots 1999, O'Leary 1999, Salonen 1991]. In addition, we have also measured the occurrence and characteristics of atherosclerotic plaques and studied the vascular remodelling that may occur as a consequence of atherosclerosis. Our working hypothesis was that there is a gradual enlargement of IMT and an increased occurrence of plaques, especially echolucent plaques, with worsening glucose tolerance, accompanied by a remodelling that might be visible already in subjects with IGT.

Paper I

Carotid artery IMT in type 2 diabetes and IGT a systematic review

The search in the data bases for studies evaluating the difference between type-2 diabetes, IGT and controls resulted in 23 studies. All studies following the inclusion criteria were included. The results obtained in the systematic review showed that type-2 diabetic patients had clearly significant larger carotid artery IMT than control subjects, on average 0.13 mm thicker. Similar results were obtained in men and women, and no obvious difference between ethnicities was found, although Caucasians were in great majority. The only study indicating that
controls had larger IMT than t2D was Finnish [Tuomilehto 1998], however statistically non-significant, and with a wide CI. This study was performed at the 30th year of follow-up of a cohort consisting of men with very high mortality from coronary heart disease. The author speculated that the unexpected result could be due to selective survival of the subjects. A quality scoring between the included studies was not used and the different studies were not weighted differently. Even if the main interest was to summarise the current literature regarding the difference in IMT between diabetes, IGT and controls, the systematic review is also important as a study of heterogeneity and differences between studies.

Heterogeneity

The statistical homogeneity test indicated heterogeneity between the studies examining the difference in IMT between diabetic patients and controls. At a closer analysis it was found that the included studies differed in a number of aspects.

1. *Publication bias?* The 14 smaller studies, with less than 500 subjects, more often showed larger IMT-differences for diabetic patients compared with control subjects than did the larger studies. This may be explained by publication bias, favouring positive studies, but there are also other explanations.

2. *Selection of study groups.* One possibly source of discrepancy between the studies is the selection of study groups. Six out of seven of the larger studies [Folsom 1994, Hedblad 2000, Henry 2004, Ishizaka 2003, Wagenknecht 1998, Wei 1996] included population-based samples, whereas this was the case in only five of fourteen smaller studies [Mohan 2000, Rajala 2002, Sigurdardottir 2004, Temelkova-Kurtschiev 1999, Tuomilehto 1998]. Fifty percent of the smaller studies included only patients with well-established diabetes compared to 14% of the larger studies. Among newly detected t2D IMT was 0.11 (95% CI; 0.095-0.121) mm thicker than controls, compared to
0.13 (95% CI: 0.129-0.139) mm in the known t2D group. However, this obvious statistically significant difference between the groups may not only be related to different durations of t2D but also to different methods to measure IMT by ultrasound.

3. **Ultrasound method.** Measurements of IMT made in segments of the thickest walls yielded larger differences in IMT between diabetes patients and controls [0.21 (95% CI: 0.206-0.219) mm] than assessing mean thickness in predefined segments [0.09 (95% CI: 0.091-0.097) mm]. In addition, measurement of IMT in the thickest wall segments was performed more often in smaller studies with a higher proportion of known diabetes than in larger studies.

4. **Age.** In eight studies the DM group was older than controls (ranging 1-7 years) but the opposite was seen in three studies (range 2-8 years). Age is a dominant determinant of IMT and this disparity might partly reduce the difference of IMT between t2D and controls. Any adjustment on behalf of differences in age between the groups was however not done in the meta-analysis.

Thus, any firm conclusions of the difference in IMT between known and newly detected t2D versus subjects with NGT cannot be drawn from this review, showing a considerable variability in studied groups and used methods. There is today no consensus how to measure carotid IMT[2007]. We do not know which approach is superior in predicting future cardiovascular disease in diabetic patients, although attempts have been made to clarify this[2002]. Too few studies were available for reviewing differences in plaque occurrence and differences in subjects with impaired fasting glucose in relation to controls.

Clinical relevance

We have tried to estimate the clinical relevance of the difference in carotid artery IMT between diabetic patients and controls. We used the well-known facts that
carotid IMT is associated with increasing age and with future cardiovascular disease in order to perform such estimations [Bots 1997, Chambless 2002, Hedblad 2000, O'Leary 1992, O'Leary 1999]. The results showed that the observed difference in IMT can be interpreted as if the diabetes patients are more than 10 years older than the control groups, and that the relative risks of myocardial infarction and stroke are increased by 38%, and 37%, respectively.

Impaired glucose tolerance (IGT)

IGT is generally considered as a pre-diabetic state. The review showed that in 3/9 identified studies IMT was thicken in those with IGT compared with NGT controls. The summary meta-analysis showed that IGT patients had a carotid IMT that was overall 0.04 (95% CI; 0.01 to 0.07) mm thicker than in the control subjects. However, in six out of nine studies the IGT group was older than the control group indicating that the difference in IMT between IGT and controls might be smaller than calculated [Howard 1993]. This issue will be discussed later (see Page 64).

Paper II

Prevalens of diabetes mellitus and impaired glucose tolerance 64-year-old Swedish women. Experiences of using repeated orol glucose tolerance tests.

In order to study the association between glucose tolerance and subclinical atherosclerosis a population based cohort was examined. We chose 64-year-old women as we wanted to keep the age-, sex- and ethnicity factors constant. Another reason for this age group is the rise in diabetes incidence among women after the age of 60 [Rathmann 2003, Ryden 2007]. The occurrence of subclinical atherosclerosis is also rising [Joakimsen 1999] and there is a high relative risk of cardiovascular disease in this age category of diabetic women [Barrett-Connor 1998, Niskanen 1998]. According to the calculation of study size a sample of 600
women with 200 in each group of of t2D, IGT and NGT were required, indicating a number of screened subjects of 2000-2500.

In the present study, 2595 women were screened with OGTTs. The response rate was initially > 80%, but > 20% refused in the end to participate. The inclusion rate was similar to that in a Danish and a German study [Glumer 2003, Rathmann 2003]. It is generally observed that the non-participants in studies are sicker than the participating study subjects. However, in the telephone interviews of a number of non-participating women we could not obtain any evidence that the non-participating women had higher prevalence of known diabetes. From ethical points of view the health status could not be examined among women refusing to participate.

OGTT

The results showed that repeated OGTTs seem to be needed in order to identify all women with diabetes according to the current WHO-definition in a middle-aged population. Otherwise, more than one third (37%) would have remained unidentified if only fasting blood glucose measurements had been used. Furthermore, the results of the OGTT showed considerable variability as more than 40% of the women with a diabetic OGTT at the first examination did not fulfil this criterion at the second examination. In addition, more than 20% had IGT at the first examination, but in almost 50% of the women there was normalization at the second examination. This high variability, observed in the present study, is a well known problem with the OGTT [McDonald 1965, Rathmann 2005]. As regard the variability of the OGTT test, the coefficient of variation was 12% in the present study. It may also be questioned if the information to the patient of an abnormal result at a first test will not lead to drastic changes in life style, improving the results at the second test. However, it is clearly shown in our study that if subjects fulfil criteria for IGT or diabetes at one OGTT, and then show normal glucose tolerance at a repeated test, such subjects differ from healthy subjects with normal glucose tolerance in several
Discussion

characteristics typical of the metabolic syndrome, i.e. high BMI, increased waist girth, and blood pressure. Thus, already a lone abnormal OGTT is a clear indication of increased risk, although this cross-sectional study provides no prospective information. The variability of the OGTT is related to factors such as duration of fasting, degree of physical activity, smoking, and inter-current diseases. We tried to control for these factors and obtained no indication that the duration of fasting played any major role in the study. Taken together, repeated OGTT is of great value when diagnosing diabetes and IGT, and the results do not indicate that the difference between the first and second OGTT results is primarily explained by changes in lifestyle habits.

Prevalence of diabetes and IGT

To the best of our knowledge there is no previously published study of the prevalence of diabetes and IGT in a cohort of middle-aged women, based on repeated OGTTs and the current definitions of these conditions. Using this approach, we observed a 9.5% prevalence of diabetes in 64-year-old women, whereas the prevalence of IGT was 14.4%. More than 40% of the women showed some impairment of glucose metabolism if impaired fasting glucose was also included. Similar to previous studies, we found that about half of the women with diabetes were newly diagnosed [Glumer 2003, Rathmann 2003]. Taken together these studies emphasise the need for better strategies to identify subjects with diabetes.

Screening method

It has been difficult to find simple and generally applicable methods for screening to identify diabetes [Rathmann 2005]. The results from the present study in combination with experiences from previous studies indicate a screening strategy using FBG ≥ 5.6 mmol/l as a first identification of cases targeted for further examinations with OGTT [Anand 2003, de Vegt 2001].
Paper III

Atherosclerotic plaques and carotid arterial remodelling in women with known and newly diagnosed diabetes.

In this cross-sectional study based on the cohort of 64-year-old women with t2D, IGT, and NGT ultrasound examinations of both carotid arteries were performed. The results of such examinations are dependent on both sonographer skill and patient characteristics.

Missing data

Of the, at screening identified diabetic patients it was not possible to examine 16 women of whom 8 had known diabetes. The non-participating diabetic women were more obese with higher weight, BMI, waist circumference but lower systolic blood pressure (data not shown). In total 626 women were examined with ultrasound, and in 195 women the examination was not complete. These women, with incomplete measurements, were more obese than those with complete examination, demonstrating the well-known fact that obesity is a factor that complicates the examination. In addition, women with incomplete ultrasound data had a more unfavourable risk factor profile and also a thicker mean CCA IMT. This has to be considered in the interpretation of data.

Ultrasound method

In the present study IMT was measured bilaterally in CCA, and the carotid bulb. Measurement of IMT in ICA was avoided due to the difficulty to obtain representative data. A well-validated approach was used, where the measurements of IMT in pre-defined segments from both CCA and the bulb were analyzed in an automated computerized system. This technique has been shown to have a low interobserver variability and a good reproducibility.[Schmidt 2003, Schmidt 1999]. Only the far wall is possible to examine, as previously shown by our group [Wendelhag 1991]. We report data on CCA and carotid bulb IMT and
also give the results of a composite endpoint that is the mean of CCA IMT mean and the bulb mean IMT. The rational is that the carotid bulb is much more a predilection site for atherosclerosis with an annual IMT progression of 0.02 mm compared to 0.01 or less for the CCA IMT [Howard 1993, Mackinnon 2004]. Previous studies have not succeeded to show that CCA IMT is superior or inferior to any other IMT measure to predict future CVD[Chambless 1997, Iglesias del Sol 2002, O'Leary 1999]. The advantage of CCA IMT is that it is the easiest measure to obtain in most subjects.

Assessment of plaque occurrence and size was done in the entire CCA and bifurcation with good reproducibility. The assessment of plaque echogenicity was based on Gray-Weale et al [Gray-Weale 1988] but modified to two classes; 1) dominantly or substantially echolucent plaques, or 2) dominantly or uniformly echogenic. This classification was originally developed for large carotid plaques, but has also been shown to provide valuable information on plaque characteristics in smaller plaques [Schmidt 2005, Schmidt 2003].

Carotid plaques

The occurrence and increasing size of plaques are definite measures of atherosclerosis. Almost 60% of the women with known t2D had plaques in their carotid arteries compared to 40% in those in the NGT group. Almost all plaques were echolucent and there was no obvious increase in the proportion of echolucent plaques in parallel with worsening glucose tolerans. There was a gradual increase in echolucent plaque area that was lowest in NGT women, intermediate in new t2D and highest in known t2D. Our finding, that t2D is associated with increased occurrence of echolucent plaques, is in line with both accumulated data showing that echolucent plaques are associated with increases risk of cardiovascular disease [Grogan 2005, Honda 2004], and the association between diabetes and atherosclerotic disease [Kannel 1979]. However, the absolute majority of all plaques were echolucent. It may be assumed that small and early plaques contain less of fibrous tissue and calcium causing high echo-
density. In the Tromsø study, increasing serum HbA1c concentrations across the cohort were also associated with increased risk of carotid plaques [Jorgensen 2004], but the association was only apparent with echogenic and not echolucent plaques. However, in that study all patients with diabetes were excluded, and there were also other methodological differences, such as only including plaques protruding into the lumen. In the present study a multivariate analysis showed that known t2D was associated with increased echolucent plaque area after adjustment for BMI, height, systolic blood pressure, smoking and LDL cholesterol in comparison to the NGT group. This result supports the concept that t2D causes atherosclerosis also by other mechanisms than those mediated by traditional risk factors.

Vascular remodelling

In comparison between groups, vascular features such as IMT and lumen diameter may differ by other causes than atherosclerosis. IMT is steadily increasing by age, and may also increase because of structural changes related to adaptation to wall stress and other causes [Bots 2005]. Lumen diameter is related to body size measured as height, body weight, BMI, and to blood pressure [Bonithon-Kopp 1996, Henry 2004].

Post-mortem studies performed by Glagov et al showed that human coronary arteries enlarge in relation to plaque area during the early phase of atherosclerosis, and that the lumen area is preserved or even overcompensated [Glagov 1987]. A few cross-sectional and one prospective studies have demonstrated that plaque occurrence or diffuse atherosclerosis in the carotid arteries is associated with enlarged vessel diameters [Bonithon-Kopp 1996, Kiechl 1999, Montalcini 2007, Steinke 1994]. The same seems to hold true for patients with known diabetes [Henry 2004].

In the present study clear proofs were found of vascular remodelling that had already occurred in women with screening detected t2D. Hence, CCA IMT, assessed as circumferential area was enlarged in combination with preserved or
Discussion

Discussion

even enlarged lumen diameter, remaining after adjustment for confounders such as height, obesity or differences in blood pressure. Further evidence that this was associated with the atherosclerotic burden in the carotid artery was obtained in the t2D women in whom lumen diameter increased by plaque burden after adjustment for differences in BMI and blood pressure. However in the subgroup of women without atherosclerotic plaques we found no differences in carotid artery diameters after adjustment for body size compared to the normal control group, indicating that remodelling is not related to diabetes per se. An intriguing fact is that we related the plaque area, measured in plaques that usually occur in the carotid bulb, to the lumen diameter in the CCA. However, other studies have shown that atherosclerosis in one part of the artery tree could affect another part of the artery [Montalcini 2007].

All used measures of IMT in the carotid arteries showed that both known and new t2D were enlarged in comparison to women with NGT. It should however, be kept in mind that as a consequence of the study design the women in the NGT group were free of cardiovascular disease and used no medication against hypertension or hyperlipidemia. Women on statin treatment had increased IMT in the different sections of the carotid arteries compared to t2D without medication, thus including them in the measurements did not reduce the differences seen between t2D and NGT.

In the present study the difference between known t2D and controls was 0.09 mm (95% CI, 0.04 - 0.14) compared to 0.13 mm (95% CI, 0.129– 0.139) in the meta-analysis. The corresponding results for new t2D were 0.06 mm (95% CI, 0.01 – 0.11) and 0.11 (95% CI, 0.095 – 0.12). The confidence-intervals were, however overlapping between this study and the meta-analysis. The mean difference in reviewed studies measuring the IMT in predefined segments was 0.09 mm (95% CI, 0.091-0.097) even though 20% of these studies were including just new t2D. This difference is in harmony with our result. A former study in our group
between men with known t2D and controls showed a difference of 0.10mm [Sigurdardottir 2004].

Interpretation

Type 2 diabetes diagnosed by best available methods in a population sample is associated with carotid plaques seemingly increasing by diabetes duration. Apart from confirming results from the Horn study that t2D is associated with preserved carotid lumen diameter at increased IMT [Henry 2004] the present study also provides the new information that this has occurred already in subjects with very early t2D, detected by screening, and that this is related to the atherosclerotic burden. Complete ultrasound examinations were difficult to obtain in some women, who were associated with an increased occurrence of cardiovascular risk factors and indications of thicker IMT. It is reasonable to assume, that the exclusion of these women reduced the differences in atherosclerotic measures between women with and without diabetes.

Paper IV

IGT and subclinical atherosclerosis in the carotid arteries

IGT is generally regarded as a transient metabolic state occurring during the disease process leading to overt diabetes [Alberti 1996]. IGT is as such also a risk factor for future CVD [Coutinho 1999]. By defining IGT, as we did, by using a doubled OGTT, IGT would be a more selected group with an even higher risk factor for CVD. We included two healthy NGT groups; one randomly selected and one matched to the IGT group for body fat and body fat distribution. The assessment of subclinical atherosclerosis was based on measurements of IMT in CCA, the carotid bulb and the means of these measures. The carotid bulb is a predilection site for atherosclerotic process and shows a larger annual increase in IMT than the CCA [Howard 1993]. We also assessed the occurrence of plaques,
Discussion

especially echolucent plaques which are known to be associated with increased risk of CVD in prospective studies [Gronholdt 2002, Honda 2004].

Missing data

In the screening process 269 women with IGT were identified after a doubled OGGT. The 212 first selected were further examined with ultrasound measurements. In seven women it was not possible to obtain readable ultrasound images, resulting in 205 women completing the study. The IGT women with incomplete ultrasound data (n=74 out of 205) were, as expected, more obese and had a thicker mean CCA intima-media.

Carotid IMT and plaque

In our population sample, none of the ultrasound measures indicated atherosclerotic disease associated with IGT. Hence, there was no difference in IMT measured in the CCA or carotid bulbs between the IGT group and the NGT groups. There was neither any indication of difference in the occurrence or size of carotid plaques. This was an unexpected finding given the fact that the IGT women were characterised by a more unfavourable cardiovascular risk profile with higher blood pressure, higher serum triglyceride levels and HDL cholesterol concentrations compared to the NGT group (Table 7). Potential confounders were concomitant treatment with statins, antihypertensive treatment and hormone replacement therapy. Adjusting for these variables or excluding women on such treatments did not change the results. A post-hoc analyse indicated that family history of maternal diabetes might be a confounder, as it was associated with an increase in common carotid artery IMT independently of the degree of glucose tolerance, and traditional cardiovascular risk factors. This observation is supported by results from previous studies showing that family history of diabetes is associated with CCA IMT enlargement in healthy subjects with normal glucose tolerance [Kao 2005, Pannacciulli 2003].
Given the original power-calculation of the entire study and the results regarding
IMT in the IGT and NGT groups, it is obvious that the study had an insufficient
size to identify very small differences. In order to summarise the current data a
new meta-analysis was undertaken including the present study, recently, and
previously published reports.

**Meta-analysis of studies measuring difference in intima-media thickness
between IGT and normal glucose tolerance.**

Our former meta-analysis was completed with the present study and two recently
published studies [Mohan 2006, Zhang 2006]. In 2/3 of previously published
studies the IGT group was older than the control group, the difference ranging
from 1-6 years. We adjusted for age, as the annual increase in CCA IMT is
calculated to 0.01mm [Hedblad 2000, Howard 1993, Le Gal 2003]. After
adjustment for this difference, we found that in 3 out of 12 studies IGT was
associated with a significant increased IMT compared to NGT [Henry 2004,
Temelkova-Kurktschiev 2000, Zhang 2006]. In the meta-analysis IMT was
overall 0.030 (95% CI 0.012 to 0.048) mm larger in the IGT group as if there was
a difference of three years of age. Although heterogeneity was found, no obvious
patterns of differences in IMT between IGT and NGT groups related to the
different ultrasound methods could be discerned. Many of the studies were not
performed in population-based samples, but represented varying selection criteria
[Ishizaka 2003, Keven 1999, Snehalatha 2001, Temelkova-Kurktschiev 2000,
Zhang 2006]. The possibility of publication bias of positive results must also be
considered.

Interpretation

Our conclusion is that the present study was underpowered to identify small
differences in IMT between the IGT and NGT groups. However, combining the
present results with data from previous studies, a meta-analysis clearly shows
that common carotid artery is slightly larger in IGT groups than that in subjects
with NGT. However the atherosclerotic process does not seem to be pronounced, as large studies are needed to identify a minor increase in IMT. A family history of maternal diabetes seemed to be associated with increases in CCA IMT, independently of current glucose tolerance, given support to previous studies showing similar findings. Hence, it can be assumed that the increased risk of future cardiovascular disease associated with IGT is related to early sub-clinical atherosclerosis, and to impaired glucose tolerance as a marker of subsequent metabolic aberrations, including diabetes, hypertension, and dyslipidemia as powerful risk factors.

Limitations

The limitations of the present study are that only 64-year-old women were examined, that representativity may be questioned, and that exclusion criteria were used. The criteria used in the inclusion of women in the study excluded subjects with severe or inflammatory diseases. Hence, the results cannot be generalised to women with such diseases. The present study is further a cross-sectional study and no conclusion can be drawn regarding causality. Another limitation is that a larger sample size seems to be needed in order to identify sub-clinical atherosclerosis in women with IGT.

Complete ultrasound examinations were not possible in some subjects with increased risk of atherosclerosis. As a result the measured differences between the groups with glucose tolerance impairment and controls were probably less than the real differences if all measurements had been complete. The ultrasound technique does not allow a complete characterisation of the carotid artery geometry. As regards vessel geometry only lumen diameter and the far wall IMT measurements are representative of the underlying histology, necessitating calculations assuming symmetric wall changes in the common carotid arteries [Wendelhag 1991]. This seems to be the case as it has been shown that the increase in intimal thickness is uniform around the circumferences in the
common carotid artery, in which there is an axial, symmetric blood flow [Zarins 1983]. Another limitation is that only the carotid artery has been examined but measurements from this artery segment is an established surrogate measure of atherosclerotic disease [Salonen 1991].

Clinical implications

The results from this thesis indicate a screening strategy for diabetes using FBG \(\geq 5.6 \text{ mmol/l} \) (Fasting plasma glucose \(\geq 6.1 \text{ mmol/l} \)) as a first identification of cases targeted for further examinations with OGTT. A family history of diabetes among parents is important information as regards future diabetes and cardiovascular risk. The fact that IGT does not seem to be associated with very accelerated atherosclerosis, in combination with previous knowledge that lifestyle modifications reduces the risk for transition to diabetes, strongly indicate that IGT should be identified in order to start preventive measures. Our observation that already screening detected t2D has established atherosclerotic disease underlines the importance of early detection of diabetes and the need to start optimal risk factor reducing treatment.

Future perspectives

This study is a solid platform for a prospective study in order to follow the development of atherosclerotic disease in relation to characteristics at baseline and treatment efforts during follow-up.
Conclusions

Paper I. A systematic review of published studies using ultrasound to measure intima media thickness (IMT) in the common carotid artery (CCA) in type 2 diabetes and controls was performed, showing that in 20 out of 21 studies diabetic patients had greater carotid artery IMT than the subjects in the control groups. The meta-analysis demonstrated that type 2 diabetes was associated with an increase in common carotid artery IMT, which was 0.13 mm larger in diabetes groups than in control groups. This difference corresponds to a 10-year increase in age compared with age-matched controls and is associated with a nearly 40% increase in cardiovascular risk. The systematic review revealed heterogeneity between the different studies due to differences in the selection of study groups and also to methodological differences in assessing ultrasound measurements. The method to measure carotid IMT should be better standardised.

Paper II. The cohort of 64-year-old women in Göteborg was screened, and the prevalence’s of known and new diabetes and impaired glucose tolerance (IGT) at both oral glucose tolerance tests (OGTT) s, were 4.7, 4.8 and 14.4 % respectively (n=2595). Half of the women with diabetes were previously undiagnosed and 37% of the diagnoses were based on a repeated OGTT. The degree of glucose tolerance impairment and the number of abnormal OGTTs were directly associated with occurrence of components of the metabolic syndrome. In future screening, impaired fasting glucose i.e. plasma-glucose ≥6.1 – 6.9 mmol/l might be useful in selecting subjects for further examinations with OGTT.

Paper III. In this cohort of 64 years old Swedish women with known (n=99) and new type-2 diabetes (n=106) and healthy subjects with normal glucose tolerance (n=99), ultrasound examinations showed that both new and known type 2 diabetes were characterised by enlarged IMT CCA compared to the women with normal glucose tolerance. Atherosclerotic plaques, which in general were echolucent, increased gradually in occurrence and size from controls, to new, and known type 2 diabetes. This difference remained after adjustment for
Conclusions

Cardiovascular risk factors. Carotid artery plaque areas were associated with an increase in lumen diameter independently of blood pressure and BMI. This carotid vascular remodelling with enlargements in IMT and lumen diameter had occurred already in the women with new type 2 diabetes. The remodelling process occurred only in women with atherosclerotic plaques and was not associated to type 2 diabetes per se.

Paper IV. In the cohort of 64-year old women, IGT, as defined by repeated OGTT, was not associated with increased occurrence of sub-clinical atherosclerosis measured as IMT or plaque occurrence or size compared to healthy control women with normal glucose tolerance. As the study was under-powered to identify small differences in IMT a meta-analysis of 11 previously published studies, using only one OGTT for diagnosing IMT, and this study was performed. In three out of 12 reviewed studies IMT was larger in IGT groups than in control groups. A meta-analysis of the studies indicated a difference in IMT of 0.03 mm between IGT and controls and heterogeneity was shown. The 95% confidence interval of the present study (-0.03 to 0.03 mm) was within the confidence interval of the meta-analysis (0.012-0.048 mm), indicating that IGT is associated with a small increase in IMT in the CCA.
Populärvetenskaplig sammanfattning

Hjärtkärlsjukdom beror nästan alltid på åderförkalkning (ateroskleros) som i allmänhet utvecklas under lång tid utan några symptom. Ateroskleros uppträder oftast i vissa pulsådror, t.ex. i hjärtats kransväg eller i halspulsådern. Med hjälp av ultraljudet kan man mäta kärlväggens tjocklek och även se eventuell förtjockning i kärlväggen ”plack”. Det har visat sig att dessa mätningar kan förutsäga risken för framtida kärlsjukdomar som stroke och hjärtinfarkt. Man kan också på detta sätt få en bild över vilka riskfaktorer som bidragit till aterosklerosutvecklingen.

Denna avhandling handlar om riskerna med diabetes och förstadiet till diabetes för utvecklandet av ateroskleros.
I) I det första delarbetet identifieras och sammanfattas tidigare studier som jämfört vägg tjocklek i halsartären (IMT) mellan typ 2 diabetiker, IGT och kontrollpersoner. Av 21 funna studier visade alla utom fyra att diabetiker hade tjockare kärlvägg än icke-diabetiker och den genomsnittliga skillnaden i meta-analysen uppmättes till 0,13 mm. Vad gäller förstadiet till typ 2 diabetes (IGT) var skillnaden inte så tydlig. I enbart tre av nio funna studier såg man en skillnad som i genomsnitt uppmättes till 0,04 mm. Översätter man skillnaden som uppmättes mellan diabetiker och icke-diabetiker till risker för framtida kärlsjukdomar så betyder detta att diabetikerna hade 38 % ökad risk för hjärtinfarkt och 37 % ökad risk för hjärninfarkt. Då vägg tjocklek ökar normalt med åldern kan skillnaden sägas motsvara 10 års ökad ålder till diabetikernas nackdel. Vi fann dock att det förelåg en större skillnad i resultaten mellan studierna än vad som kunde förväntas vara en slumpmässig skillnad. Denna skillnad mellan studierna kunde bl.a. förklaras av olika mätmetoder vid ultraljudsundersökningarna, olika sätt att samla in studiedeltagare och kanske också av att det är lättare att få ett positivt resultat publicerat.

68
Populärvetenskaplig sammanfattning

III) I det tredje delarbetet mätte vi väggtjocklek, plackförekomst och diameter i halspulsådror hos diabetiker och friska kontroller i vårt eget material. Vi fann att kända diabetiker hade tjockast vägg; i genomsnitt 0.09 mm tjockare än kontroller. De nyupptäckta diabetikerna hamnade ungefär på halva skillnaden i väggtjocklek gentemot kontroller. Omkring 60 % av kända diabetiker hade plaque mot 40 % av kontrollerna. Vi såg också att plaquetrytan var större hos de kända diabetikerna. Kärldiametern var dock bevarad eller kompensatoriskt förstorad hos diabetikerna trots att kärlvägen var tjockare och att där förelåg plaque. Denna kompensatoriska kärlombyggnad var tydlig även när vi tog hänsyn till andra faktorer som övervikt, längd och blodtryck. Kärlombyggnaden var tydligast hos de diabetiker som hade plaque och förklaras därigenom av aterosklerosutvecklingen och inte av diabetessjukdomen i sig. Diabetes bidrar till ateroskleros men först när aterosklerosplack har uppkommit, ser vi den kompensatoriska kärlombyggnaden.

IV) I det fjärde delarbetet undersöcktes IGT i jämförelse med de friska kvinnorna. Här sågs igen skillnad vare sig i väggtjocklek eller i plaqueförekomst. En uppdaterad sammanställning av alla gjorda publicerade studier med tillägg av vår egen genomfördes, en s.k. metaanalys. Den förnyade utökade metaanalysen som omfattade 12 studier och 5787 individer visade en skillnad på 0,03 mm mellan IGT och kontroller. Vid beräkningar framkom att vår studie hamnade inom konfidensintervallet (sannolikhetsintervallet) för meta-analysen.

Sammanfattningsvis framkommer det att redan vid nyupptäckt diabetes ses ateroskleros i form av förtjockad kärlvägg, ökad mängd plack och därmed sammanhängande kärlombyggnad. Det är därför viktigt att upptäcka förstadierna till diabetes för att försöka förhindra uppkomsten av sjukdomen. Det är också viktigt att vid nyupptäckt diabetes tidigt och aktivt bekämpa höga blodsockernivåer, blodfetter och högt blodtryck.
Acknowledgements

This research program was conducted at the Wallenberg Laboratory for Cardiovascular Research and I wish to express my gratitude to all who have contributed and made this thesis possible. In particular I want to thank:

Min handledare och vän, professor Björn Fagerberg för ovärderligt stöd och beundransvärd generositet vad gäller tid och råd vid genomförandet av detta arbete. Din breda kunskap och erfarenhet har varit ledfyren som visat framåt i trygga vatten. För all hjälp, tid och uppmuntran tackar jag varmt.

Min rådgivare, professor John Wikstrand för entusiasm och konstruktiv hjälp. Du har varit ”en vän i nöden väl beprövd” den där ”extra” att vända sig till när det blåser emot.

Min medförfattare, docent Johannes Hulthe för goda råd och uppmuntran samt skojfriska diskussioner. Professor Anders Odén för medförfattarskap och för hjälp med statistiska frågor.

Kollegorna Vilborg Sigurdardottir och Karin Wallenfelt för fint samarbete

Mina tidigare samarbetspartner; Magdalena Göthberg, Marie Jonasson, Christina Claesson och Pia Lindén för screeningsarbete i DIWA-studien.
Acknowledgements

Mina korridorgrannar Margareta Scharin Täng och Bente Grüner Sveälv för många tips från några som precis seglat i farvattnet.

Alla vänner och kolleger på medicinkliniken för glada tillrop.

Min kära Mystique för avkoppling och ljuva drömmar.

Min moder Hanna-Maria Brohall för all omsorg. Min Carina och mina barn Rebecca och David för att ni finns och att ni har härdat ut.

Till sist vill jag tacka alla Er ”DIWA - damer” för all tid ni lagt ned både på undersökningar och enkäter. Er är denna bok tillägnad. Utan Er hade inget varit möjligt.
References

References

Chambless LE, Heiss G, Folsom AR, et al. Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the
References

References

References

References

References

References

References

85