

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2015

Designing a Decision Support System with

Incorporated Data Mining

A Software Design Project

Bachelor of Science Thesis in the Programme Software Engineering &

Management

CARL BERGLUND

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Designing a Decision Support System with Incorporated Data Mining}

A Software Design project

CARL BERGLUND

© CARL BERGLUND, June 2015

Examiner: Michel R. V. Chaudron

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2015

Designing a Decision Support System with Incorporated Data Mining

Carl Berglund
University of Gothenburg,

gusbercaal@student.gu.se

Abstract— In this paper we propose a software design for
a Decision Support System (DSS) with incorporated Data
Mining (DM), which integrates data mining operations such
as classification and clustering. With the increasing amount of
data available today, decision support benefits greatly from a
stronger data foundation. We introduce a business problem and
propose a simple design solution and evaluate it against a set
of well defined requirements to assess its potential to provide
decision support. The simplistic design proposed in this paper
is a new take on decision support in the fiber market.

I. INTRODUCTION

The aim of this project was to design and evaluate a
Decision Support System (DSS) that will aid the planning
of future fiber infrastructure. A company (hereby referred
to as “client”) is looking to make their process of deploying
fiber technology more efficient and accurate. In order to
provide valuable decision support for client in the planning
process and marketing activities an automated system with
incorporated data mining (DM) was designed. The design
embeds a template profitability scoring model based on
data mining operations such as classification. Furthermore,
clustering activities were employed to identify and return
groups of customers with a high profitability grading.

A. Case Company Description

Client is a large administrator of fiber and cable net-
works in Sweden and plan projects to deploy “fiber areas”
where suitable. In a fiber area, households are offered the
installation of fiber technology at a flat rate, where they
would otherwise pay for installation based on the household
adjacency to nearest connecting point.

Client administrates a large amount of cable in the soon-
to-be outdated cable network. Cable is expensive to maintain
and is outrun by fiber and wireless technologies, thus the
client is interested in replacing copper cables with fiber
technology. However, deploying fiber is costly, and projects
should be planned carefully to ensure efficiency. Carefully,
in this case, means ensuring that residents in a given area
are likely to upgrade to fiber if offered. By considering
factors such as age, average income, current technology,
other technologies, and location, we can estimate how
profitable (probable to purchase) a customer/household is.
By designing a software solution to yield a probabilistic
model of profitability, and render an area with a high density
of profitable customers, the client would have a stronger
basis for their marketing strategies and, consequently, their

deployment projects.

The client have a long standing relationship with Pur-
ple Scout AB, a software consultancy company located in
Gothenburg, with which this project was undertaken. Purple
Scout maintains a larger Business Intelligence (BI)-suite with
numerous applications for the client, on which our proposed
solution was based.

B. Data Mining

The traditional method of extracting knowledge out of
data sets usually means manually inspecting and analyzing
information. With the rapidly growing volumes of data
available, new tools are constantly in demand to make sense
out of the data. This problem is the basis for the emergence
of data mining. Data mining is concerned with making sense
of data in large volumes, finding patterns and discovering
information in data sets that are too big, or too low level,
or too complex for humans to digest [1]. Data mining is
a crucial next-step in the world of data, as the volumes
of data grows and the data itself increases in complexity.
Intelligently analyzed data becomes a valuable resource that
can lead to new understanding and competitive advantages.
Data mining is a general term for this kind of information
discovery in data sets, and consists of a multitude of methods.
A few of those methods are [2][3]:

Classification A predictive learning function that classifies
a data item into one of several predefined classes.
Classifications are discrete and are used to determine
a nominal target for an instance. A predictive model
with a numerical target uses regression instead.

Regression A predictive learning function that maps a data
item to a real-value prediction variable. Regression
is used to predict a numeric value based on other
attributes as well as on historical data.

Clustering A common task in which one tries to identify
a set of categories to describe the data. Clustering is
useful when there is no existing class to be predicted
but the instances need to be divided into natural groups.

Summarizations A descriptive task that involves methods
for finding a description of a data set.

Dependency Modeling Finding a model that describes the
dependencies between data or data sets.

Change and Deviation Detection For discovering
significant changes in data sets.

DM is often mentioned together with machine learning,
and vice versa, and definitions may vary. Simplified, one
could say that machine learning is a collective name for
the tools, algorithms, used in DM application [3]. With the
different methodologies of DM listed above comes many
different machine learning schemes. However, no machine
learning scheme is applicable to all data mining problems
[3].

C. Decision Support System

Decision Support System (DSS), is a general term and
does not restrict itself to any particular application or
industry. As the name suggests, is a system that supports
decision making but that definition allows the inclusion
of a lot of different applications. Further refined, a DSS
is a computer-mediated system that provides information
to aid users in their decision making in scenarios that are
long- or short-term, strategical or tactical, and the requisites
behind it can be of various degrees of complexity [4][5].
DDS is usually considered a cornerstone in BI (Business
Intelligence), and the systems typically assist in managerial
decision making [6]. A simple application of a DSS can be
a recipes website, where you filter your results based on
preference, allergies, or how many people you are serving
and for what occasion. More complex applications can
include systems that allows insight in the progress, costs,
inventory, and delays in constructions projects, as in [5].

Classic DSS techniques include sophisticated data
management capabilities, model management systems,
simple but powerful user interfaces that allow interaction
with databases, report generation and analysis tools [4] and
was best defined by Gorry and Scott [7] in 1971 [4]. Since
then DSS have evolved to include several new concepts,
but the four most significant contributions to DSS system
are the techniques of data warehousing, online analytical
processing (OLAP), data mining and the web-based DSS
[4]. In [5] a DSS with support of a data warehouse is
described. The data warehouse is tasked with ensuring the
appropriate data is available at the right time to the right
end. A data warehouse can store raw data, preprocessed data
or both, and allows for powerful querying of data, such as
historical, previous or prejected data. Together with OLAP
this enable some powerful data extraction, used to answer
complex questions such as “What are the supply patterns for
construction projects of type x?”, or “What is the projected
supply demand for project y?”. Generally, data warehousing
is about centralizing processed or unprocessed data to one
domain, reducing the processing and management efforts
and costs [5].

With the use of DM a DSS can benefit from making
sense of larger amounts of more complex data to generate
strong decision support. A powerful application of DM in
decision support could be a system that governs a bank’s
lending policy by judging a loan recipient based on banking
history and credit score, as proposed in [8]. While regarding
the banking industry, their concerns are the same as for any
industry, as are their motivations. A DSS is motivated by
the banks need to make good decisions to minimize risk
associated with the companys activities [8].

This paper contains 5 sections as following: This section
has introduced the reader to the case company, data mining
and decision support systems. Section II, Methodology, will
outline how we developed our design. Section III, Results,
will oresent our findings and motivate the proposed design.
We then discuss the results in Section IV, and lastly we
draw conclusions from this project in Section V.

D. Purpose

This DSS was developed to provide the client with
tools to gain stronger informational basis for their future
deployment projects, as well as their marketing focus.
The research contribution of this paper is the process of
designing a DSS with incorporated DM to be deployed on
an existing system, with the tailored requirements that come
with it. This paper will present the reader with the process
of development and the evaluation of a software design that
serves as a proof of concept for decision support in the
fiber market. The focus will be on how DM technology is
applied in software design deployed on an existing system.
Further, this paper will discuss the design, its development
process, quality, and social utility.

RQ How can we design a Decision Support System with
incorporated data mining?

II. METHODOLOGY

This design assignment was conducted for, and with,
Purple Scout AB. With considerable experience with Open
Source Software, Purple Scout offers a data mining-based
approach for solving the clients problem, using software
embedded in an Open Source business intelligence suite
called Pentaho [9].

This design assignment was motivated by the need to em-
ploy an IT artifact to solve the clients problem, in a field that
to our knowledge had not seen it utilized before. [10] defines
six steps to design science that was deemed a natural course
of action in this exploratory learning-centered endeavorer.
The steps are; Identification of problem, Suggested solution,
Development, Evaluation, Results, and Impact. This paper
will be proceed with the following structure: Identification of
problem, Suggested solution, Development, and Evaluation.

4

Results is then presented in Section III, and Impact in Section
IV.

A. Identification of Problem

The client expressed their concerns about the process of
zeroing in on a particular area of operations. Their concerns
regarded the process not being satisfyingly intelligent, nor
was it efficient or easy to evaluate. Their main concern
was that projects were planned based on some polling and
qualified guesses of interest in areas that were investigated.

B. Suggested solution

As suggested by Purple Scout, the artifact is a DSS that
performs data mining operations on data supplied by client.
Initially, we knew very little about DM and how to use it,
and so the suggested solution would come to change many
times over the course of this project. Once the problem was
identified, the client was not involved much in the process.
Our solution would change, but the problem remained
the same. Considering requirements for the software, the
representative from client had very little to say regarding
technology. Purple Scout offered their idea using data
mining and the motivation for this approach originated both
from their perception of data mining as a sound approach
to a data heavy problem, but also from their want to learn
more about data mining. The software in mind was Weka,
a data mining framework in the PentaHo suite.

Further, we decided to design a component that could be
deployed in Purple Scouts existing BI-system, a Business
Intelligence platform developed and maintained for other
business needs of the client. Therefore, we determined that
the DM component should be a black box component that
should impose no dependencies on Purple Scout’s system
(hereby referred to as PSBI for Purple Scout BI System).
By developing our artifact on their existing architecture we
would save considerable amount of time, but it would also
mean some constraints to our design. The main constraint to
the design were programming language, external packages,
and interfaces to the PSBI. With external packages and
interfaces we mean that we could use external packages, but
the interface must of of a data type that PSBI can accept.

C. Development

Weka is a state-of-the art machine learning workbench
developed at the University of Waikato, New Zealand
[3] and the name stands for Waikato Environment for
Knowledge Analysis. It is written in Java and provides two
tools important for this project; the Weka Explorer, and
the Weka library. In Weka explorer, a user can get hands
on with pre-processing tools as well as machine learning
schemes. In the Weka explorer the user can pre-process
data, apply a machine learning scheme, and analyze the data
without writing any code at all. The Weka library is a .jar
file that can easily be included in any Java application and
contains all the tools available in the explorer. The explorer
would prove very useful in getting familiar with Weka,

and how and when to apply which algorithm. With each
pre-processing filter comes numerous settings than can be
applied, and same goes for each machine learning algorithm.

Once we knew what we could do with Weka, and how
to do it, we transferred our knowledge to our software
design. We created an Software Requirements Specification
(SRS) to establish a general direction for our design, and by
considering our vision and our restrictions, we developed
requirements. The client delivered the problem rather than
the solution, and was thus part of defining the output of the
system, but less of the how-to. Together with Purple Scout,
we reasoned about how the system should work, yielding
requirements. At a later stage of the project we produced
user stories with acceptance criterias in order to properly
evaluate the design. These stories and criterias were written
to be tightly coupled with the requirements in order to
evaluate of the requirements based on fulfilled acceptance
criterias. As our system have no explicit user interaction,
we would consider PSBI our user. The SRS was refined
many times over during the steps mentioned in this section.
The evaluation of the artifact would result in renewed
requirements, and discoveries by prototyping would impact
how we perceived the system. A typical process for carving
out the requirements would be to discuss what we wanted
to do, to take on a partial problem and discuss what we
needed to do to solve it. By studying methods of data
mining and testing theories in Weka Explorer we would find
a suitable solution and refine that solution into a requirement.

Parallel to the design development we produced some
code. While our goal was not to deliver a runnable software,
testing our theories in code helped us understand DM
better, as well as it provided us with instant feedback that
would impact our design. As DM was a very new to us,
our research was very much exploratory, and rather than
having the design as basis for our code production, it was
the other way around for most of the time. Trying, testing
and evaluating code executions played a part in exploring
what machine learning can be used for, and how to interpret
the results.

D. Evaluation

[11] states that quality, utility, and efficacy of the design
are three requirements that must be evaluated in order
to assess rigorousness. “A design artifact is complete and
effective when it satisfies the requirements and constraints
of the problem it was meant to solve” [11]. With this quote
in mind, we verify the solutions efficacy, quality and its
utility based on the designs ability to solve the problem.
We evaluated the artifact based on the conformity of the
design with its requirements - the quality notions that the
design must be proven to fulfill. To yield tangiable argument
to a requirements fulfillment, we added acceptance criteria
with hard requirements. Each requirement is related to one or
several acceptance criteria of a user story, and would together

5

build a stronger confirmation of its validity. We used the
descriptive evaluation method as proposed by [11] to build
a convincing reason for the fulfillment of each acceptance
criteria in order to give substance to the argument of a
requirement’s fulfillment.

Furthermore, we performed a design review, an informal
peer-based review of the design as suggested in [12]. We
produced a checklist, based on a template from the University
of Minnesota [13] that was altered to be used in our scope.
The design was presented and explained to a software
developer from Purple Scout who would then part-take in
a walk-through, a review session where we explained the
flow of the system and the attendant evaluated the design
based on bullets in the checklist. The checklist, attached
in the appendix of this paper, is a guide for evaluating
the design and its coherence with the requirements, ranging
from naming convention and syntactical correctness to design
completion. Another purpose of this review was to allow
the attendant to trace each requirement through acceptance
criteria to design and point out potential weaknesses and
question marks and ultimately pass or fail its fulfillment.

III. PROPOSED DESIGN

This section will explain the design, explore the
requirements that led to this solution and present the reader
with finalized design in diagrams. The design will then be
explained and motivated.

1) Concept: The proposed system serves the purpose of
generating a cluster representing an area with a high density
of highly profitable customers. To do this, we needed to
identify high profitability customer and produce a natural
grouping of profitability. A customer will be ranked based on
following attributes; income, current connectivity, and age.

We would leave the exact values and scoring scheme to
the relevant business managers at client, but one can argue
that a customer that receives a high rating is a 30 year old
person with high income, currently connected to older cable
protocols, and currently uses IP-TV, while a customer that
receives a lower rating is over 65, with low income and no
current uplink at all.

When high profitability customers are identified, the
system will return a list of clusters with high profitability
customers. A cluster is a natural grouping of elements
based on mean values of selected attributes [3]. In our case,
we want to find natural groups of customers with a high
profitability grade, based on their geographic location, their
x/y-coordinates.

2) Requirements: In the out forming of an SRS we
established requirements that would have to be fulfilled in
order to accept the design. The requirements are as follows;

REQ-1 The system shall be able to load a dataset with
customers.

REQ-2 The system shall apply a scoring model to establish
profiles of high to low profitability in customers.

REQ-3 The system shall perform a classification task on a
dataset to determine each customers profitability.

REQ-4 The system shall output the classification results in
a new class attribute.

REQ-5 The system shall perform clustering operations on
dataset.

REQ-6 The system shall return data to its caller as clusters
of customers.

REQ-7 The system must not impose any commercial
licenses on PSBI.

3) Acceptance Criteria: Below are criteria that must be
accepted for the design to be considered validated. Within
square brackets, such as [REQ-1] is the relevant requirement
that the criteria relates to.

AC-1 [REQ-1] A customer is of type Java Object and as
specified in the interface from PSBI.

AC-2 [REQ-2] The scoring model is applied to a set
percentage of the entire dataset.

AC-3 [REQ-2] The scoring model is only used if scores
are not present in the dataset.

AC-4 [REQ-3] Classification is called using a subset of the
data as training set.

AC-5 [REQ-4] A new class attribute profitability is created
for all entries in the dataset. This class represents
profitability and range between A - J, where A is the
most profitable.

AC-6 [REQ-5] The clusters are generated from customers
with different profitability ranking.

AC-7 [REQ-5] The clustering is based on a customers
x/y-coordinates and its profitability class.

AC-8 [REQ-6] The clusters are returned in a generic data
type.

AC-9 [REQ-7] The system only uses software that complies
with the GNU General Public License.

4) Design: A generalization of the system as shown in
Figure 1 provides an overview of the design. From this view
the system is of course largely abstracted, so what can it tell
us? What we can see are the two interfaces that the system

6

Fig. 1. UML: Component Diagram of PSBI and the proposed system

Fig. 2. UML: CustomerInterface and Customer class

uses to interface with PSBI. The CustomerInterface, which
is the input of the system and detailed further in Figure 2,
and ClusterInterface.

The ClusterInterface is the output generated by the DM
System, as seen in Figure 3 on page 8. The output of our
system holds attribute profitability, which makes out the
basis for each cluster, and is not available in the (from
PSBI) provided class Customer. By extending Customer to
ClassifiedCustomer we wrap the new attribute in a wrapper
that is recognized by PSBI. The Cluster is a generic typed
list and contains ClassifiedCustomers. The motivation for the
ClassifiedCustomer is as mentioned the need to provide a
profitability attribute, this is done with Enum Profitability.

The classes that make out the system are modeled in
Figure 4 on page 9. Weka compromised the object oriented
solution for their own interface Instance on grounds of gained

performance [14]. The class DataParser is thus needed to
convert the list of Customers to a dataset Instances.

The class Classifier is used to assign profitability
attributes. A training set must be supplied, which is based
on a subset of the dataset with each instance’s profitability
assigned already. The reason for this is that while a classifier
is used to predict an instance’s class, the classifier need
a model to apply to the set. With model, we refer to a
set of rules built upon another dataset that have that class
assigned. In this case, the model must be based on a dataset
of customers with a set profitability class, and then apply
that model to the test set. This division of the data is done
in PreProcessing, where the dataset is first split into training
and test set by percentageSplit and returned as an array
with two sets of Instances. We apply the scoring model
to the first subset in applyScoringModel which takes data

7

Fig. 3. UML: ClusterInterface interface

type Instances as its input. For each Instance in that set
of Instances, a score can be calculated on the instance’s
attributes via getScore. The returned score is then used with
getProfitability and mapped to a Profitability Enum using
the map scoreToProfitability.

The scoring model is defined in this paper as a necessity
for the classification tasks. However, a scoring model as
such would be established by business managers or other
professionals with insight of what parameters are in play
when determining a customer’s profitability. A scoring model
could work like the following example;

• age, lower is better. Based on the assumption that
younger people are more interested in stronger tech-
nology for browsing, streaming, online gaming, etc.

• income, higher is better.
• current technology, where lesser technology is better,

but no uplink is worse than fiber. Based on the
assumption that a person with lesser technology and
lower speed is more likely to upgrade than some
with a lesser technology but with high speed. For
example, a customer with cable technology that gets
24 Mbit/s(megabit per second) is assumed to be more
likely to upgrade than someone who also is connected
through cable, but get 200 Mbit/s.

So why not do this on the entire dataset? The assumption
that the model is bulkier and less performance effective
than a proven machine learning algorithm is basis for this
approach. To keep things swift, the subset should not be
too large, but a subset too small could yield insufficient

experience for the model, where it has not encountered
enough instances to build a reliable model. Before the model
is called however, a check is performed with the method
getProfitability which checks if the subset already has the
profitability attribute set and returns a double representing
the percentage of the set that owns said attribute. If that
percentage is larger than field splitAttribute in PreProcess,
the model is not called since there is already a model for
profitability within the dataset, and the execution continues
with classification.

As an alternative to building this primitive scoring model,
one could argue that clustering is the logical choice as it
is designed for finding natural groups in data. However,
clustering, as we know it, finds natural groups based on
mean values of instances attributes. Simply put, this would
not generate ten distinct groups of profitability as we want,
but rather produce ten natural groups found in the set. Thus
we build our own model, however, it is possible that this can
be done with other clustering schemes, but if that is the case
it is beyond our knowledge.

Further, the classification operation is performed through
the function call assignProfitabilityClass in the Classifier
class. This method takes two arguments of type Instances,
which are our trainingData, and dataSet[1], the other
return from percentageSplit. In this method, every Instance
is classified using a Classification scheme J48 and a
profitability attribute is set. J48 is an algorithm used to
generate a decision tree on classification tasks[3]. The
returned data is a set of classified Instances.

Considering clustering - as we want to base our clustering

8

Fig. 4. UML: Class diagram of the DM component

operations on profitability and x/y-coordinates, we filter
out the other attributes with ignoreAttributes which takes a
Filter as an argument. This Filter is provided in the class
and specifies the attributes that need be filtered out. Note
that the attributes are still in the set, but invisible to the
clustering methods. The returned filteredData is then the
argument for getCluster method from the Clustering class.
In getCluster, a clustering algorithm called simpleKMeans is
used to group the Customer instances based on their filtered
attributes. This is also where the instances are made into
Customer objects again, but Customer with the profitability
set, namely ClassifiedCustomers. Each ClassifiedCustomer
is created within respective cluster, and the clusters are re-
turned to DataMining where it is made available to interface
ClusterInterface.

IV. RESULTS

The results of this article is the finalized artifact and its
potential to answer the research question. At a Minimum
Viable Product (MVP), the design does fulfill this criteria.

The research contribution is the artifact and the consider-
ations that led to its completion. To add quality to that
contribution, further research will be recommended in its
respective section. When the design passes our evaluation
efforts, we consider it a suitable design for a MVP.

A. Design Decisions

An important design decision that emerged from our
increasing understanding of DM was the removal of the user
interaction. Initially, we intended to also develop our own
user interface with controls that would govern the machine
learning algorithms at play. Over the course of the project,
the user came to play a smaller role in the system, and
was ultimately removed from our component. Our reasoning
behind this decision was the gained understanding of the
complexity behind the operations performed with use of the
Weka library. To allow satisfying interaction with the system,
a user would be expected to truly understand the data, the
algorithms, and the output. To be able to use the system
with ease the user would need considerable proficiency with

9

Fig. 5. UML: Classification

statistics or machine learning. Since our user profile was
a business strategist rather than a statistical analyst, we
opted out user interaction and decided to tailor a solution
to the identified problem. This was the result of gained
knowledge of DM, but also a choice based on what we
considered vital for the MVP. Such alterations to the scope
occasionally appeared in this project due to our initially
limited understanding of the field of DM.

B. Evaluation

The design review yielded the notion of “Accepted with
minor changes”. We did the review at a late stage but
the changes suggested were insignificant enough to correct
without the need of further validation. The most significant
suggestion that the review yielded regarded the scoring
model, and resulted in the creation of acceptance criteria
AC-4 as well as the alternative fragment in Figure 5. The
expressed suggestion regarded the inefficiency of calling the
scoring module every time, even when the dataset could
consist almost entirely of customers with their profitability
attribute already set. Thus we created the conditional frag-

ment. Once the changes were made we considered the design
accepted.

The reviewer of the review concluded the design to be
well defined, with a clear aim and purpose. Simplistic and
efficient, and overall correct. In order for a requirement
to be considered fulfilled, the acceptance criteria that are
related to it must be fulfilled. During the design review we
would let the reviewer trace each requirement to design
entities to confirms its fulfillment.

REQ-1
AC-1 Figure 2 depicts the interface offered from PSBI

as well as the class that represents each customer.
REQ-2

AC-2 Figure 5, action 1.7 depicts how the scoring
model is called using the subset dataSet[0] yielded
by action 1.3, percentageSplit.

AC-3 Figure 5, the “alt” fragment is conditional, where
the scoring is only performed when the dataset holds
a lesser percentage of entities with a profitability

10

Fig. 6. UML: WekaInterface

Fig. 7. UML: Clustering

attribute than the constant splitPercentage in PrePro-
cess.

REQ-3
AC-4 Figure 5, action 1.8 / 1.10, method assignProf-

itability is called with separate datasets for training
and test data.

REQ-4
AC-5 Figure 7, action 2.2 and 2.3. For each instance

in the dataset, a ClassifiedCustomer is created and

the attribute profitability is set. This attribute is mod-
eled in the interface ClusterInterface as design entity
Profitability.

REQ-5
AC-6 Figure 7, action 1 and 2, 2.1, and 2.4.
AC-7 While what actual attributes used could be con-

sidered implementation details, the class Clustering in
the class diagram in Figure 4 do contain the method
ignoreAttribute which allows filtering of all attributes

11

not relevant for the clustering. This is done prior
to execution of getClusters as specified in sequence
diagram Clustering (Figure 7), action 1.

REQ-6
AC-8 As seen in Figure 3, the clustered are offered

in interface ClusterInterface as Cluster, a generic
Collection type.

REQ-7
AC-9 With Weka as the only external library, we are

not imposing any licenses on the PSBI except for
GNU General Public License [15].

V. DISCUSSION

A. RQ: How can we design a Decision Support System with
incorporated data mining?

We presented the design as a Minimum Viable Product
(MVP), a bare minimum of what could be integrated in a
system of this sort, with the intention of proving a concept.
With all the requirements fulfilled, we consider the design
to be what we set out to do - a black box component that
provide decision support when integrated in PSBI.

When a component is designed to be used with an
existing system, one conclusion from this project is that the
integration is an essential matters that must be paid attention
to. In our case that concern boiled down to two important
design aspects; interfaces and external dependencies. In
this case they are very much related, as we needed the
Weka library there was no question we needed to work
around the data casting to meet the requirement on the
interface(REQ-6). It might seem myopic to evaluate a design
based on such few requirements, but we judge that with our
clear definition of the problem, the resulting design may
be evaluated on requirements that are equally well defined,
and rich in purpose rather than numerous. With that said
we consider the design evaluated on fair grounds.

As stated in the Section II, one of the main motivators
for this DM approach to the identified problem was Purple
Scout’s ambition to learn more about DM. Thus, the setting
of this project has been largely exploratory, but still we
make the argument that the proposed design is a suitable
and appropriate solution to the problem at hand, a proof
of concept. We motivate this conclusion with the relative
simplicity of the design in respect to the problem. The
powerful library that is Weka enabled us to perform complex
operations with a modest share of time and effort spent on
actual development. However, significant time was spent
exploring Weka and studying data mining, and even so we
are convinced that we have merely scratched the surface of
this exciting technology.

B. Impact

The vision of this project was to provide a simple solution
for a complex task. As the client still, in 2015, has not yet
incorporated an intelligent manner of planning fiber areas,

it is possible that providers in other countries have not yet
done so either. A simple design that proves effective and
that was developed and assessed in less than 3 months could
entice colleges to follow. The process of deploying fiber is
likely a large and bureaucratic process, but if this design
yields satisfying results for a market strategy, then the full
process could be sped up and thus made cheaper. This could
have a great impact on connectivity, where both provider and
customer benefit alike from fiber installed faster and cheaper.

VI. CONCLUSIONS

We have developed a design solution to enable decision
support by performing data mining operations on customer
data in the field of fiber infrastructure. Our aim was to
develop a system to help address the problem of identifying
profitable areas to deploy fiber, and our design was
developed for this purpose. The design was evaluated
against a set of well defined criterias and through a review
process, and serves as a simplistic proof of concept to
answer the identified problem. By profiling customers
based on a simple profitability model and classification
methods, and by generating clusters of customers with high
profitability, our design offers a simple yet suitable approach
to decision support in the market specified.

A. Limitations

On a related note, a limitation of this paper is the narrow
scope we resorted to as our understanding of data mining
grew. Admittedly, the design is evaluated for a very specific
business need and while it is of desired quality, it tells us only
about designing a specific component for a specific problem,
based on the requirements of a specific system. With that
we conclude that any conclusions on general DSS with DM
design based on the findings in this paper would be vague.

B. Further Research

As we concluded that this design assignment arrived at
a narrow scope, we would recommend further research on
similar design solutions in different scopes. An example for
such research could be the implementation of this design in
a fully equipped DSS with a data warehouse and a front
end with OLAP functionalities. With similar logic, the DSS
could then produce historical data for projects employed
in its designated industry, which could prove powerful for
evaluation of the projects as well as the theories that founded
the design.

VII. ACKNOWLEDGEMENTS

Special thanks to Jan-Philipp Steghfer for his extensive
support in writing this thesis.

REFERENCES

[1] Usama Fayyad, Gregory Piatetsky-Shapiro, and
Padhraic Smyth. “From data mining to knowledge
discovery in databases”. In: AI magazine 17.3 (1996),
p. 37.

12

[2] Mehmed Kantardzic. Data mining: concepts, models,
methods, and algorithms. John Wiley & Sons, 2011.

[3] Ian H Witten and Eibe Frank. Data Mining: Practi-
cal machine learning tools and techniques. Morgan
Kaufmann, 2005.

[4] Jung P Shim et al. “Past, present, and future of
decision support technology”. In: Decision support
systems 33.2 (2002), pp. 111–126.

[5] Kwok-Wing Chau et al. “Application of data ware-
house and decision support system in construction
management”. In: Automation in construction 12.2
(2003), pp. 213–224.

[6] Fan Zhang et al. “Intelligent decision support system
based on data mining: Foreign trading case study”.
In: Control and Automation, 2007. ICCA 2007. IEEE
International Conference on. IEEE. 2007, pp. 1487–
1491.

[7] G Anthony Gorry and MS Scott Morton. “A frame-
work for management information systems”. In: Sloan
Management Review 30.3 (1989), pp. 49–61.

[8] Irina Ionita and Liviu Ionita. “A decision support
based on data mining in e-banking”. In: Roedunet In-
ternational Conference (RoEduNet), 2011 10th. IEEE.
2011, pp. 1–5.

[9] Pentaho. URL: http : / / www . pentaho . com/
(visited on 03/19/2015).

[10] Salvatore T March and Veda C Storey. “Design sci-
ence in the information systems discipline: an in-
troduction to the special issue on design science
research”. In: Management Information Systems Quar-
terly 32.4 (2008), p. 6.

[11] R Hevner von Alan et al. “Design science in informa-
tion systems research”. In: MIS quarterly 28.1 (2004),
pp. 75–105.

[12] I. Sommerville. Software Engineering, 9th ed. Pear-
son, 20011.

[13] University of MinnesotaDesign Review: Checklist.
www . uservices . umn . edu / pmo / assets /
docs / 04 _ Design / CHECKLIST _ Design _
Review.doc. Accessed: 2015-05-20.

[14] Weka Sourceforge Weka Documentation. http://
weka.sourceforge.net/doc.dev/weka/
core/Instance.html. Accessed: 2015-05-20.

[15] Can I use WEKA in my commercial applications?
URL: https : / / weka . wikispaces . com /
Can + I + use + WEKA + in + commercial +
applications%3F (visited on 06/01/2015).

APPENDIX

13

General Design OK Comment
Does the design support both product and project goals? �
Is the design feasible from a technology standpoint? �
Does the design support proceeding to the next development step? �
Design Considerations OK Comment
Is the design as simple as possible? �
Does the design have conceptual integrity (i.e., does the design tie together)? �
Can the design be implemented within technology and environmental constraints? �
Is the design lean(i.e., are all parts strictly necessary)? �
Does the design allow for scalability? �
Design Convention OK Comment
Are the following attributes well-defined for each design entity?
Identification �
Type �
Purpose �
Function �
Interface �
Design Completeness OK Comment
Are all interfaces described in detail? �
Have implementation details been avoided? �
Are the relationships between entities described? �
Are all relevant architectural views documented? �
Requirements Traceability OK Comment
Does the design address all issues from the requirements? �
Does the design add features or functionality that was not specified by the requirements? �
Are all the assumptions, constraints, design desicions and dependencies documented? �
Have all interfacing systems been identified? �
Compliance OK Comment
Have all legal requirements been assessed and accounted for? �

14

