Kolbottnarnas påverkan på vegetationen i utmarken

I västra Bergslagen

Karin Bäck

Uppsats för avläggande av filosofie kandidatexamen i Kulturvård, Landskapsvårdens hantverk

15 hp

Institutionen för kulturvård
Göteborgs universitet
2014
Kolbottnarnas påverkan på vegetationen i utmarken – I västra Bergslagen

Karin Bäck

Handledare: Eva Gustavsson
Kandidatuppsats, 15 hp
Landskapsvårdens hantverk
Lå 2013/14
Title in English: Impact of charcoal pits on the vegetation in outlying areas - in western Bergslagen, Sweden

ABSTRACT
In this essay the vegetation on six selected charcoal pits that occur in hundreds, perhaps thousands, around Sweden was studied. The question was whether the spot where a charcoal kiln has existed had a flora deviating from the surroundings? And if so, had the concentrated amount of carbon something to do with the plant material at the site?

After an introductory chapter which shows what a charcoal kiln is, its history, where they were located in the countryside and what the literature says about the vegetation on charcoal pits, the investigation itself started. The study deals with how the selection was made and which method the author used. In this case, the six chosen charcoal pits must meet four criteria, including, easy to locate, both on older and more modern maps. The method that was used was visiting the charcoal pits in the field and study the plant material at the site. This was before the flowering season so only trees and shrubs were studied, also cryptogams and remnants of last year´s grass.

In the discussion, it is clear that the results were not as expected. The spruce shrubs that both the author and the literature said to be there were not. Some important observations were made about the blueberry shrubs. The author’s impression was that the amount of blueberry shrubs was more next to the charcoal pit then on it, which is contrary to e.g. Kardell’s view that there would be as much on the pit as outside.

Many new questions arose during this work and much more research must be done before one can answer these questions.

Title in original language: Kolbottnarnas påverkan på vegetationen i utmarken – I västra Bergslagen
Language of text: Swedish
Number of pages: 34, 35 med bilagan
Keywords: biocultural heritage, charcoal kiln, charcoal pit, forest landscape, vegetation change, Bergslagen
Förord

Efter mycket om och men så är nu mitt examensarbete om kolbottnarna äntligen klart! Må hända att jag kanske varit lite för petig som vid vissa tillfällen resulterat i att jag varit mycket nära att ge upp men nu är jag äntligen nöjd och lämnar ifrån mig ett arbete som jag är stolt över!

Jag vill passa på att tacka min handledare Eva Gustavsson vid Göteborgs universitet för en bra handledning med konkreta och konsekventa tips och åsikter. Tack för att du puttade mig i rätt riktning och förstod vad det var jag var intresserad av innan jag själv hade det riktigt klart för mig.

Jag vill även tacka Maria Hörnlund, bibliotekarie på Hantverksbiblioteket i Mariestad, för hjälpen att finna information om mitt något luddiga ämne.

Sist vill jag tacka mina föräldrar Göran och Gunlög Bäck, för ert stöd och tålamod. Jag vill även tacka för chansen att använda er som bollplank vid behov och ett speciellt tack till pappa som var med mig ute i fält.

Jag hoppas att du som läsare finner mitt arbete intressant och lärorikt samtidigt som jag hoppas att det öppnar upp för mer intRESSANT forskning.

Nora, oktober 2014
Karin Bäck
Innehållsförteckning

1. Inledning ... 11
 1.1 Bakgrund ... 11
 1.2 Problemformulering och frågeställning .. 12
 1.3 Syfte och målsättning ... 12
 1.4 Befintlig kunskap ... 12
 1.4.1 Utmarken ... 12
 1.4.2 Biologiskt kulturarv .. 13
 1.4.3 Kolbotten och kolstybben .. 14
 1.4.4 Vegetation på kolbottnar ... 15
 1.5 Avgränsningar .. 16
2 Metod och Material .. 17
 2.1 Studieområde .. 17
 2.2 Urval .. 18
 2.3 Fältarbete .. 19
3 Resultat .. 21
 3.1 Beskrivning av undersökta kolbottnar .. 21
 3.2 Tabell över resultatet ... 28
 3.3 Sammanställning av vegetationen på bottnarna ... 29
4. Diskussion ... 30
5. Sammanfattning .. 32
Tabell- och Figurförteckning .. 33
Käll- och litteraturförteckning .. 34
 Otryckta källor ... 34
 Muntliga källor ... 34
 Tryckta källor ... 34
 Elektroniska källor ... 35
 Arkivkällor ... 36
1. Inledning

1.1 Bakgrund

Det som den moderna människan idag kallar för skog var förr i tiden, för bara 100 år sedan, en livsviktig resurs som tillhandahöll timmer, ved och virke för alla möjliga tänkbara redskap, husgeråd och husbyggen som behövdes i utmarksbygden (Liljewall 1996, s. 8). Utmarken erbjud även foder till djuren och till viss del även föda till människan. Här hämtades material till alla de gruvor och hyttor som fanns runt om i Sverige, främst i Bergslagen.

Inom bergsbruket har träkolen alltid haft en viktig roll för bland annat järntillverkningen. Träkolen användes både som bränsle och som en av flera ingredienser i den kemiska förening som behövs för att skapa råmaterialet (järntackan). Träkolen var effektiv, brann jämnt och hade hög värme vilket var till stor fördel vid malmsmältningen (Kardell 2014, s.44).

Det finns mängder med kolbottnar runt om i skogarna i Mellansverige vilket ofta syns på äldre kartor (Gunnarsson 1998, s.76). Det låg inte i lantmätarens uppgift att rita in kolbottnar vid karteringar men många lantmätare tog ändå på sig denna uppgift, ibland kom förfrågan från beställaren. Ofta återanvändes samma kolbotten till flera milor med ett intervall på 40-50 år. Detta gör att spåren efter dessa syns än idag även om det inte har varit någon aktiv mila där på många decennier. En allmän vetskap är att växtligheten på kolbotten skiljer sig från den övriga skogen (Ljung 2011, s.89) och att det straxt under markytan finns stora mängder kolrester.

Kolbottnar benämns som övrig kulturhistorisk lämning och är skyddade enligt skogsstyrslagen. Detta betyder att träd som riskerar att skada lämningen ska tas ned, eventuellt göras om till högstubbar. Man får inte heller köra över kolbottnar under bl.a. skogsavverkningar eller utöva stubbytning på dem. (Skogsstyrelsen 2014)
1.2 Problemformulering och frågeställning
Utmarken med sin varierande användbarhet har haft stor betydelse genom årtusenden som matresurs, både till människan och dennes djur, men även som resurs in ut av byggnadsmaterial till bland annat husbyggen och verktyg, nävertäkt till korgar, skor med mera och som bränsle, både för husbehov och för bergetsbruket.

Studier om vilka värden, både biologiska och kulturella, som förekommer på inhägnan med sin ängs- och åkermark finns väl dokumenterade. Vilka arbetsmoment och insatser som behöver göras för att behålla dessa värden och hur dessa påverkas av moderna ingrepp är även det väl dokumenterat. Utmarken med sin breda användningsmöjlighet är liksom inhägnan en stor del i vårt biologiska kulturav. Vilka värden som skapats och hur de ska tas om hand för att inte försvinna är idag dältigt studerat. Endast ett begränsat material om vilka följer gammat brukande av utmarken och dess resurser har haft på skogslandskapet finns att tillgå.

Denna undersökning utgår från följande frågeställningar:
- Vad har tillverkningen av träkol lämnat för fysiska och biologiska spår (avtryck) i utmarken inom studieområdet och hur kan dessa, om de finns kvar, bevaras och utvecklas?
- Finns det några gemensamma, karaktäristiska kännetecken för vegetationen på kolbottnar, i så fall vilka?

1.3 Syfte och målsättning

1.4 Befintlig kunskap

1.4.1 Utmarken
Idag benämns utmarken ofta som skog och skiljer sig betydligt i ålderssammansättning, artikedom och skötsel mot döttidens utmark. Idag pratar vi om liklådade granäkrar istället för en mer öppen blandskog bestående av en mängd olika arter och åldrar (Jentzen 2014, s. 13). Förr hade utmarken en mängd olika användningsområden och var en livsviktig resurs för landets glesbygdsbefolkning. Utmarken låg avsides från gården och utanför den så kallade inhägnan med sina brukade åkrar och ängar. På utmarken tog man det naturen hade att ge och det var här boskapen betade under sommarhalvåret. Vissa typer av tillfälliga åkrar förekom här i form av bland annat svedjeåkrar. På dessa höggs träden ner och marken brändes innan man sådde råg eller rovor, ibland förekom även korn. Åkern brukades några år innan den flyttades till ett nytt ställe med ny näring i jorden (Hill 2006, s. 19). På den före detta svedjemarken gynnas grassvälen och betet förbättrades. Mycket av det foder som skulle hålla boskapen vid liv under vinterhalvåret kom från utmarken i form av myr- och strandslättar samt från olika former av lövträd. Från utmarken kom även många av våra, genom tiderna, viktigaste exportvaror, till exempel tjära ”som under flera
hundra år näst efter järn och koppar var den viktigaste exportvaran” (Molander 2012, s. 54), Beck och skinn från ekorre, lo, märd och räv. Närman hade stor användbarhet vid tillverkningen av bland annat förvaringskärl, ryggsäckar, skor och som underlag vid taktäckning. Närman hämtades även den på utmarken. Innan det blev möjligt att köpa verktyg och maskiner tog man allt material för tillverkningen av dessa på byns utmark.

Befolkningen på glesbygden fick med andra ord det mesta de behövde, för att bruka marken och självhushållet, från utmarken (Liljewall 1996, s. 8).

Utmarken har genom tidernas berörts av olika lagar och regler. I Magnus Erikssons landslag från 1350 finns en ekregale som går ut på att inga ekar eller bokar fick avverkas av någon annan än kronan om de inte hindrade brukandet av åkeren (Molander 2012, s. 16). Under Gustav Vasas tid på 1500-talets första hälft tillkom fler lagar. Han utökade Magnus Erikssons ekregale till att innefatta alla bärande träd på kronans marker (Liljewall 1996, s. 9). Med bärande träd menas ek, apel, hassel, rönn och hägg (Molander 2012, s. 16). Även en jaktregale för allt högvilt infördes (Liljewall 1996, s. 9). Denna innefattade även tillverkningar av bl.a. förvaringskärl, ryggsäckar, skor och som underlag vid taktäckning. Denna regel hade kronan redan på medeltiden gjort anspråk på men Gustav Vasas bestämmelser var mera radikala och omfattande. I princip blev all mark där ingen ägare kunde bevisas, kronans (Liljewall 1996, s. 9f)

1.4.2 Biologiskt kulturarv
Riksantikvarieämbetet definierar biologiskt kulturarv som förekomst av ekosystem, biotoper, djur- och växtarter som uppstått, utvecklats, eller gynnats genom människans nyttjande av landskapet och vars långsiktiga fortlevnad och utveckling förutsätter eller påverkas positivt av brukande och skötsel. (Lennartsson 2010, s. 313)

Det biologiska kulturarvet kan enligt ovan både vara knuten till en specifik individ och då finnas med i Fornminnesregistret i form av en fornlämnings och det kan även vara ett större område ”vanlig skog” (Emanuelsson 2003, s.11). Lennartsson (2010) delar in det biologiska kulturarvet i olika undergrupper, den största undergruppen består av så kallade halv-naturliga biologiska kulturarv (”semi-natural”) där vilda arter koloniserat miljöer som

Det biologiska kulturarvet har bildats både avsiktligt och oavsiktligt. Införandet av lärken på 1700-talet var helt klart avsiktligt medan det ökade mängden Svampar som blir följd av skogsbesete var oavsiktligt (Emanuelsson 2003, s.11). Många av de arter som tillhör det biologiska kulturarvet återfinns långt efter det att deras livsmiljö försvunnit. De indikerar vad området tidigare använts till och är i sig ett biologiskt kulturarv (Gustavsson 2007, s. 47). Arterna kan även flytta när deras ursprungliga livsmiljö succesivt försvinner och kan på så sätt återfinnas på en plats där de egentligen inte ska förekomma (Lennartsson 2010, s. 317). Detta kan leda till förvirring om vilka åtgärder som behöver göras för att dessa arter ska överleva om det i dagsläget inte finns någon kännedom om tidigare eller pågående störningar på platsen. Dessa åtgärder är dock mycket viktiga att identifiera så att arterna kan behållas även i framtiden (Axelsson Linskowski 2010, s. 4). Ett biologiskt kulturarv behöver inte nödvändigtvis vara knuten till en specifik art och är med andra ord inte samma sak som den biologiska mångfalden, eller som Emanuelsson (2003, s.14) skriver:

Den avgörande skillnaden mellan det biologiska kulturarvet och den biologiska mångfalden är att kulturarvet definitionsmässigt knyts till människans nyttjande av skogslandskapet. Resursutnyttjande och markanvändning har format det biologiska kulturarvet i skogen.

För att bevara det biologiska kulturarvet måste platsen fortsätta brukas med liknande metoder som de som från början formade platsen (Dahlström 2013, s. 10). Det går sällan att separera själva kulturarvet från dess funktion och pågående process då detta avr ständigt är i förändring (Emanuelsson 2003, s. 14). Hela sammanhanget är det biologiska kulturarvet. Ett biologiskt kulturarv kan med andra ord vara mycket svårt att ta på och svårt att känna igen samtidigt som det finns överallt omkring oss.

1.4.3 Kolbotten och kolstybben

Platsen för en resmila valdes ut med stor noggrannhet. Den skulle ligga bra till, i närhet till vatten (Kardell 1982, s. 76), färdvägar och ha bra tillgång på kolningsvirke då den förväntades användas flera gånger (Kort handledning i skogshushållning 1923, s. 360). Den skulle även ligga i ett skyddat läge på torr, fast mark utan för mycket vattengenomströmning. På en gynnsam plats kunde vattnet ledas bort för att skapa optimala förhållanden. Området röjdes från sten och stubbar innan det med stor noggrannhet jämnades till (Kort handledning i skogshushållning 1923, s. 360, Nordisk familjebok s.571, Kardell 2007, s.7). För att bli av med så kallat ”milvatten” lades botten antingen på svagt sluttande mark så att ena kanten på botten blev 40-80cm högre än den andra eller så ordnades botten så att centrum låg ca 30cm högre än kanterna runt omkring. Bestod marken av för mycket grus, tätades den med ett lager lera som toppades med sand för att minska genomströmningen av luft (Nordisk familjebok s. 571). Kolbotten ställdes ofta i ordning året innan den tänkta kolningen för att den skulle hinna sätta sig ordentligt (Kort handledning i skogshushållning 1923, s.360). Efter första kolningen bilades en så kallad brandskorpa som vid nästa tillfälle förbättrade kolningen. Den bestod till största delen av tjärämen och andra mineralsämen som runnit ner under kolningen, denna skorpa tätade botten underifrån och skyddas noga vid rivning av milan (Kort handledning i...

Materialet som täcker milan under kolningen ska vara luftigt så det släpper igenom gaserna som bilda sig under kolningen på milan (Kort handledning i skogshushållning 1923, s.370). Vid första kolningstillfället använde sänd eller sand från omgivningen. Denna form av grus- och sandtäkt syns ibland som ett par gropar mitt i skogen och de indikerar att det finns en kolbotten i närheten (Kardell 2007, s. 8). Sanden och gruset blandades under rivningen med restprodukter som tjära och kol och bildar då så kallad kolstybb. Stybben är bättre för ändamålet än ren sand eller grus men blir efter hand mättat på kol. Denna så kallade stark rensades bort efter hand. (Kort handledning i skogshushållning 1923, s.370f; Kardell 2007, s. 8).

Kolstybben som blev kvar efter den sista kolningen på en kolbotten fick med tiden andra användningsområden. Så länge milkolning pågick tog man ofta med sig stybben till nästa mil vid flytt eller använde det som vägfyllnad. I senare tid försvann behovet av milkolning, dels på grund av minskat behov av träkol och dels på grund av att nya modernare metoder uppfanns för kolning. Stybben kunde då användas vid jordförbättring, som täckmaterial vid sådd och som markunderlag vid anläggning av motionsspår då den blir mycket hård vid packning (Kardell 2007, s. 8, 34). De gamla kolbottnarna med sina stybbrester används ofta som kontrollplats vid orientering då de är markerade på moderna kartor (Informant 3).

1.4.4 Vegetation på kolbottnar

Det sägs mycket lite om vilka växter som förekommer på gamla kolframställningsplatser. Ofta nämns bara att kolbottnar är enkla att se då vegetationen på dessa skiljer sig från den övriga skogen (Gunnarsson 1998, s.76, Ljung 2011, s. 89), det står sällan hur den skiljer sig. I Ljung (2011 s. 89) nämns dock att det förekommer högvuxen ljung och mjölonris samt att en del örter med kryptisk ekologi, som skogsfru, höstlåsbräken och ryl, verkar trivas på de gamla kolbottnarna. Alla dessa tre är rödlistade, Ryl är starkt hotad och de andra två är nära hotade (Hagenfors 2010, s. 205, 210, 211). Enligt Kardell (2007 s. 24) har ljungen svårt att etablera sig på kolbottnar men förekom i hans undersökning på 30% av bottornas och återfanns på 43% av kontrolllytorna. Ett kännetecken som de flesta som lever och brukar i före detta kolningsbygder känner till är att det förekommer täta granuppslag inom området för gamla kolbottnar (Informant 2 och 4), detta stärks av Ljung (2011 s.89) som skriver att frögrönningen hos gran gynnas på kolbottnar och av Emanuelsson (2003 s.11) som nämner att ”kolbottnar växer igen med ett tätt uppslag av gran”.

lika förekommande på bottnarna som på kontrollytorna. Dock var blåbärsriset glesare på yngre bottnar där bottenskiktet ännu inte riktigt hunnit växa ihop ordentligt. Lingonriset däremot verkade gynnas av markförhållanden på kolbottnarna där det endast uteblev med 3% på Kardells bottnar. Motsvarande siffra för kontrollytorna var hela 52%. Även gräset kruståtel var mer förekommande på botten (79%) jämfört med kontrollytorna (Kardell 2007, s.152). Örter som verkade gynnas av markförhållena var kolvall, harsyra, skogsstjärna och linnea. Linnea hade fem gånger så hög täckning på bottnarna som på kontrollytorna (Kardell 2007, s.24f).

I äldre tider kombinerades ofta svedjebruket med kolningen, efter att man huggit kolveden till milorna svedjades och såddes landskapet (Gunnarsson 1998, s. 81). Enligt Kardell (1982 s.152) förekommer än idag en relativt rik gräsväxt på dessa svedjefaller. I vissa regioner tog kolningen över svedjandets roll, framförallt i Mellansverige där milkolningen var stor (Gunnarsson 1998, s. 81). I Drott och Klangs (1994 s. 86) text om ”Svedjebruket i Småland” näms ett kort stycke om växtlighetens påverkan vid svedjebruk. De säger att året efter svedjandet kom smultronen, sedan hallonen och sist efter fyra till fem år vandrade linonen in med rikliga mängder bär.

Skogen etablerade sig snabbt på svedjelandet, då mineraliseringen av näringsämnen gjorde att groningsbetingelserna var goda. Detta sågs som mycket positivt, och bidrog till att man kunde förnya svedjan efter cirka trettio år igen. (Drott och Klang 1994, s.86)

1.5 Avgränsningar
2 Metod och Material

2.1 Studieområde

De sex kolbottnarna som undersöks i det här arbetet ligger i ett område som sträcker sig från Kilsbergen upp till Nora stad i Örebro län (Figur 1.). Två av kolbottnarna ligger i närheten av Getdalen (förre detta Getingdalen) i Kils församling. På kartan nedan syns dessa två i närheten av Bocksboda på kanten av Kilsbergen. Resterande kolbottnar hör till Nora bergsförsamling. Två av dessa ligger i närheten av sjön Dammsjön söder om Pershyttan, en på sjön Vikerns östra sida och den sista ligger i skogen mellan samhällena Ås och Stirberg.

![Figur 1. Karta över studieområdet. Örebro ligger sydost om kartbilden.](image-url)
2.2 Urval

I studieområdet finns otaliga kolbottnar och andra kolframställningsplatser. För att kunna bestämma vilka kolbottnar som skulle undersökas närmre studerades olika sorters källor och material om kolbottnarna.

Den viktigaste saken att ta hänsyn till vid valet av kolbottnar var att de skulle ligga inom något av de områdena som de moderna orienteringskartorna berör. Detta för att kunna lokaliserera kolbottnarna ute i fält. Även närheten till farbar väg togs med i beräkningen för att spara in tid om kolbottnarna eventuellt skulle besökas fler gånger. Till min hjälp hade jag informant 1 och 2.

Utifrån dessa kriterier studerades sedan äldre kartor (Enskiftes kartan, Laga skiftes kartan, Stor skiftes kartan och Häradsekonomiska kartan) över studieområdet och huruvida kolbottnar fanns utmärkta på dessa. På ett par kartor inom studieområdet fanns det markeringar sammankopplat med ordet ”botten”, vilket här tolkades vara markering för kolbotten. På andra kartor fanns en ring med ett nummer som i protokollet gick att utläsa som kolbotten.

![Figur 2](image)

Ett tredje steg i att hitta lämpliga undersökningsobjekt gjordes med hjälp av informant 3 som äger den lokala fotoaffären i Nora. Han har ett stort arkiv av gamla fotografier. Många av dessa fotografier har uppgifter om vart de är tagna, vilket är de togs, vilka som är med på fotografierna och i vissa fall även fotografens namn. I arkivet sökte vi efter äldre fotografier på milor med omgivande vegetation som man med säkerhet visste vart de var tagna. Tanken med dessa var att man skulle kunna jämföra landskapet nu och då, se vilken förändring som syns på platsen.

En fjärde sak som var intressant vid valet av kolbottnarna var om man hade vetskap om när milan började, respektive slutade kolas. Detta diskuterades med informant 1 och 3.
Utifrån denna förundersökning tillsammans med ett första besök valdes sex kolbottnar ut för att studeras närmre. De benämns härefter nr. 1 till nr. 6.

2.3 Fältarbete

Undersökningen i fält gjordes under två dagar i slutet på mars, 2014 och då besökte de sex kolbottnarna för att i första hand studera eventuella skillnader i vegetationen på och bredvid kolbotten.

Vid undersökningen av marksiktet användes delar av Lars Kardells (2007) metod. Därefter lade vi ut två måttband så ett kors bildades. Det ena låg alltid i nord-sydlig riktning och det andra vinkelrätt mot detta … På halva avståndet mellan kolbottens centrum och dess periferi lade vi efter måttbandet ut fyra stycken rockringsytor om vardera 0,5m². På dessa småutor avtecknades den del av markytan som eventuellt saknade vegetation samt förekomst av avfall, dvs nedfallna grenar och annat. Därefter noterades samtliga förekommande växter samt dess täckning. … På de utvalda kontrolllytorna genomfördes exakt samma mätningar. (Kardell 2007, s.16f)

Då undersökningen gjordes under vårvintern var det svårt att göra en ordentlig florainventering och därför studerades i första hand antal arter, antal individer och diametern på de vedartade växterna. Där det var möjligt undersökt även den procentuella närvaron av bärri, mossor och rester av fjolårs gräs samt andra örter på kolbotten. Växtmaterialet bestämdes till släkt och där det var möjligt även till art enligt Bergenstål och Söderström "Fältbiologernas mossflora" och Mossbergs och Stenberg's "Den nya nordiska floran".

Kardell (2007 s. 18) studerade 61 stycken kolbottnar under sin undersökning medan det här arbetet endast behandlar sex stycken. Utrustningen bestod av kamera, måttband, jordspjut, tumstock, karta, kompass, lupp, elrör för att markera kolbottens cirkelform, rockring och en GPS.

3 Resultat

3.1 Beskrivning av undersökta kolbottnar

Resultatet från fältundersökningen redovisas kortfattat i Tabell 1 (avsnitt 3.2) och i en sammanställning av vegetationen (avsnitt 3.3). De mossor som behandlas i det här arbetet hör med största sannolikhet till släkterna Hylocomium sp. (husmossor), Pleurozium sp. (väggmossor) och Dicranum sp. (kvastmossor) och Sphagnum sp. (vitmossor). De röda sträcken som förekommer i figurerna nedan indikerar författarens egna tolkningar av var bottnarna börjar och slutar, där det varit möjligt att identifiera dessa.

Knapptorp nr.1

Figur 4. Bilden visar Knapptorps kolbotten taget från kojruinen i söder mot norr. Till vänster syns klungan av granar som nämns ovan.
Ströbäckstorp nr.2
Kolbotten vid torpet Ströbäckstorp (Figur 5) finns med på Laga skiftes karta över Norra Ås från 1845. Stigen som enligt kartan ska gå förbi botten finns kvar än idag. Vallen är på sina ställen mycket tydlig medan den på andra är svår att skilja från den övriga marken. Denna botten har ingen kojruin. Den ligger i ett mycket flackt landskap, i medelning tall-blanskog (*Pinus sylvestris*) med inslag av yngre gran. På västra vallen växer det en samling smågranar och på botten förekom en del ungt lövsly och fläckvis täta bestånd av blåbärsris (*Vaccinium myrtillus*).

Nordvästra Dammsjön nr.3
Övre stampen nr.4

Figur 8. Bilden visar samma vy som figur nr. 7 men denna bild är tagen i mars, 2014.

Norra Getdalen nr.5

Figur 11. Kolbotten nr. 5 vid norra Getdalen. Taget från öst mot väst. Författaren står på botten mitt.

Nordöstra Getdalen nr.6

Figur 17. Bilden visar samma vy som figur nr. 16 men denna bild är tagen i mars, 2014.
3.2 Tabell över resultatet

Tabell 1. Nr. 1 = Knapptorp, Nr. 2 = Ströbeckstorp, Nr. 3 = Nv Dammsjö, Nr. 4 = Övre Stampen, Nr. 5 = N Getdal, Nr. 6 = NÖ Getdal. Kodinatsys. WGS 84, A = *Pleurozium sp.* (väggmossor), B = *Hylocomium sp.* (husmossor), C = *Dicranum sp.* (kvastmossor).

<table>
<thead>
<tr>
<th></th>
<th>Nr. 1</th>
<th>Nr. 2</th>
<th>Nr. 3</th>
<th>Nr. 4</th>
<th>Nr. 5</th>
<th>Nr. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (N), Koordinat</td>
<td>5929205</td>
<td>5932675</td>
<td>5959132</td>
<td>5928802</td>
<td>5924156</td>
<td>5954192</td>
</tr>
<tr>
<td>Y (E), Koordinat</td>
<td>10457303</td>
<td>10457744</td>
<td>1459956</td>
<td>01500793</td>
<td>01459205</td>
<td>01459648</td>
</tr>
<tr>
<td>Höjd över havet (m)</td>
<td>192</td>
<td>148</td>
<td>152</td>
<td>154</td>
<td>216</td>
<td>224</td>
</tr>
<tr>
<td>Diameter (m)</td>
<td>12-13</td>
<td>8-9</td>
<td>8-9</td>
<td>6-7?</td>
<td>12</td>
<td>6-8</td>
</tr>
<tr>
<td>Stybbtjocklek (cm)</td>
<td>23</td>
<td>14</td>
<td>21</td>
<td>17?</td>
<td>11</td>
<td>≤ 26</td>
</tr>
<tr>
<td>Tydlig vall/dike</td>
<td>Ja</td>
<td>Delvis</td>
<td>Ja</td>
<td>Nej</td>
<td>Ja</td>
<td>Nej</td>
</tr>
<tr>
<td>Närhet till vatten</td>
<td>Mindre båck</td>
<td>Mindre båck</td>
<td>Sjö</td>
<td>Större båck</td>
<td>Båck + mosse</td>
<td>Mosse</td>
</tr>
<tr>
<td>Kojruin + vädersträck</td>
<td>Ja, S</td>
<td>Nej</td>
<td>Nej</td>
<td>Ja, S</td>
<td>Ja, NO</td>
<td>Ja, NO</td>
</tr>
<tr>
<td>Antal granar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤5cm</td>
<td>17</td>
<td>15-tal</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td><>6-10cm</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td><> 10-20cm</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>≥21cm</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Antal Lövträd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art</td>
<td>Rönn</td>
<td>Björk, Rönn</td>
<td>Rönn</td>
<td>Al, Björk, Sälg</td>
<td>Björk</td>
<td>Björk</td>
</tr>
<tr>
<td><10cm</td>
<td>3</td>
<td>10-tal</td>
<td>3</td>
<td>40-tal</td>
<td>4</td>
<td>15-tal</td>
</tr>
<tr>
<td>≥10cm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10-tal, Al</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Antal tallar, storlek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2, 20cm</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Antal stubbar</td>
<td>0</td>
<td>13</td>
<td>12</td>
<td>0</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Antal högstubbar</td>
<td>1, (ruin)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Förekomst av blåbärsris på botten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Förekomst av blåbärsris utanför botten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Förekomst av linnoris på botten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalt antal mossarter på botten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mossa i rockringen, A, B, C, på botten</td>
<td>A=60%</td>
<td>B=50%</td>
<td>A=10%</td>
<td>B=80%</td>
<td>A=40%</td>
<td>A=25%, B=25%, C=20%</td>
</tr>
<tr>
<td>Mossa i rockringen, A, B, C, utanför botten</td>
<td>A=10%</td>
<td>B=80%</td>
<td>C=10%</td>
<td>B=70%</td>
<td>A=15%</td>
<td>Vitmossa = 10%</td>
</tr>
<tr>
<td>Gräs i rockringen, på botten</td>
<td>30%</td>
<td>40%</td>
<td>10%</td>
<td>60%</td>
<td>5%</td>
<td>Finns, %?</td>
</tr>
<tr>
<td>Gräs i rockringen, utanför botten</td>
<td>20%</td>
<td>20%</td>
<td>0%</td>
<td>50%</td>
<td>20%</td>
<td>70%</td>
</tr>
</tbody>
</table>
3.3 Sammanställning av vegetationen på bottnarna

Vid en sammanställning visade det sig att på bottnarna nr. 1, 2 och 3 var träd- eller buskskiktet sparsamt. På botten nr. 6 förekom det inte något träd- eller buskskikt, endast några betade björkar i utkanten. På tre av sex bottnar, nr 1, 2 och 5, förekom det tättare granbestånd. Dessa hade även delvis bevuxna vallar. Alla undersökta bottnar hade, med undantag från nr. 4, glesare träd- eller buskskikt än skogen runt omkring. På botten nr. 1 fanns fyra stycken mycket grova granar (Picea abies ssp. abies), några lika grova träd fanns inte att finna utanför bottenområdet.

Av bärrisen dominerade blåbär (Vaccinium myrtillus) som återfanns på fyra av fem bottnar. (Botten nr. 6 kunde inte studeras på grund av snö.) Jämför man procentsatserna av blåbärsris, på bottnarna respektive på marken runt omkring, visar de att det alltid fanns en större mängd blåbärsris utanför bottnarna än på. Det förekom även mycket sparsamma mängder med lingon (Vaccinium vitis-idaea) på fyra av fem bottnar. Runt botten nr. 3 växte en del Ljung (Calluna vulgaris).

Den vanligaste förekommande mossan på bottnarna var väggmossa (Pleurozium sp.) som fanns på fyra av fem bottnar. (Botten nr. 6 kunde inte studeras på grund av snö.) På två av dessa fyra bottnar fanns även husmossa (Hylocomium sp.), som var den enda växande arten på botten nr. 2. På botten nr. 5 påträffades kvastmossa (Dicranum sp.) (förekom endast här), väggmossa och husmossa. Jämför man dessa observationer med vilka arter och i vilken utsträckning dessa fanns utanför botten så kan man generellt säga att det ofta förekom samma arter utanför botten men att täckningsgraden var större på bottnarna. På botten nr. 4 påträffades någon form av levermossa (Marchantiophyta sp.).

Spår efter gräs, rester av tort fjölgräs, var övervägande mer på än utanför på fyra av fem bottnar. För botten nr. 5 var det tvärtom, där var det mer gräs utanför botten.
4. Diskussion

Denna undersökning utgick från följande frågeställningar:

- Vad har tillverkningen av träkol lämnat för fysiska och biologiska spår (avtryck) i utmarken inom studieområdet och hur kan dessa, om de finns kvar, bevaras och utvecklas?
- Finns det några gemensamma, karaktäristiska kännetecken för vegetationen på kolbottnar, i så fall vilka?

Min tidigare personliga föreställning om att kolbottnar lätt kunde identifieras i fält med hjälp av de tät granuppslagen och den artfattiga markvegetationen, som jag tidigare trodde mig veta finnas på platsen, har fått revideras. Av de sex kolbottnar jag undersökt så är den ena inte den andra lik. Jag kan efter den här undersökningen inte alls hålla med Ljung (2011 s.89), Emanuelsson (2003 s. 11) och mina informanter om att kolbottnar lätt känns igen på det tät granuppslaget. Visst är det övervägande gran som växer på kolbottnarna och ibland förekommer någon enstaka granrugge (botten nr. 5 och 1) eller en vall med massa små granar på (botten nr. 2) men så vitt jag kunde se så förekommer inte dessa tydliga, återkommande granruggar som nämns i litteraturen. Det finns heller ingen tydlig avvikelse i trädarter eller avvikande storlek på bottnarna jämfört med övriga skogen med undantag från botten nr.1. Troligtvis måste ett större antal bottnar undersökas för att hitta något sådant samband.

Det jag däremot observerat är att blåbärsriset verkar ha en ökad täckningsgrad utanför bottnarna. Vid botten 1, 3 och 5 var andelen blåbärsris betydligt större utanför botten än på botten. Botten nr. 2 hade även den större mängd blåbärsris utanför botten, om än inte i riktigt lika hög grad som de föregående. Botten nr.4 hade inget blåbärsris varken på botten eller bredvid och nr. 6 var täckt med snö. Enligt Kardell (2007 s.22f) ska det finnas lika mycket blåbärsris på bottnarna som bredvid. Eventuellt är ”mina” bottnar fortfarande i Kardells ”igenväxningsfas”, vilket skulle förklara bortfallet. Å andra sidan, med tanke på grovleken på granarna, på exempelvis botten nr. 1, borde riset haft god tid på sig för etablering. Visserligen är det svårt att åldersbestämma granarna då det är oklart om de vuxit snabbare på grund av gynnsamma förutsättningar eller inte men de bör i alla fall vara minst 60år och då har kommit ur ”igenväxningsfasen”.

En annan fråga som har formats under undersökningens gång är om stybbtjockleken har haft någon betydelse för antalet och storleken på träden som växer på bottan. Jämför man tjockleken på stybben med föremobsten av arter på bottnarna i den här undersökningen verkar det inte finnas något samband. Botten nr. 1, 3 och 6 har alla en stybbtjockleke på över 20cm men på nr. 6 växer det ingenting medan det växer gran på de andra två. Kan
vegetationen istället höra ihop med när milorna slutade kolas? Nr. 6 vet vi slutade kolas 1955 och nr. 4 slutade kolas 1995 men inte heller här verkar det finnas något samband. På nr. 4 växer idag ett 50-tal, 5-6m höga alar medan det på nr. 6 inte växer något alls.

För att återgå till stybben så fortsatte tankarna vandra tillbaka till varför det var så varierande tjocklek på de olika bottnarna. Botten nr. 5 hade endast ett stybbblager som var 11cm tjockt medan lagret på nr. 6 upp till 23cm. Hänger det ihop med när milorna slutade kolas? När. 6 vet vi slutade kolas 1955 och när. 4 slutade kolas 1995 men inte heller här verkar det finnas något samband. På nr. 4 växer idag ett 50-tal, 5-6m höga alar medan det på nr. 6 inte växer något alls.

Under tiden som mer kunskap växer fram bör man vara rädd om det vi känner till och vara försiktig med att sätta in för stora åtgärder som senare visar sig vara felaktiga. Att underhålla bottnarna genom att se till att inte markbereda dem vid avverkning och förhindra att stora träd växer upp (dessa kan då blåsa omkull och förstöra brandskorpan) kan jag tycka är en bra början (Skogsstyrelsen 2014). Det kan finnas likhet/olikheter mellan kolbottnarna och övrig utmark som jag i brist på tid och fel säsongs för inventering inte hunnit/kunnat studera, speciellt i markskiktet och örtfloran. Jag skulle gärna se att någon vidare studerar markskikten under säsongs för att få en tydligare bild av det biologiska kulturarvet som kolbottnarna utgör och huruvida de har en unik flora eller inte.
5. Sammanfattning

I det här arbetet studerades vegetationen på sex stycken utvalda kolbottnar som förekommer i hundratals, kanske rent av tusentals, runt om i Sverige. Frågan var om man på platsen där en kolmila existerat kunde se någon avvikande flora, hade den koncentrerade mängden kol något att göra med växt materialet på platsen.

Efter ett inledande kapitel där det framgår vad en kolmila är, dess historia, var de ligger i landskapet och vad litteraturen säger om vegetationen på kolbottnar kommer själva undersökningen. Undersökningen tar upp hur urvalet gått till och vilken metod som används. I detta fall skulle de sex kolbottnarna som valts ut uppfylla fyra kriterier, bland annat var det viktigt att de fanns med på både äldre och modernare kartor. Metoden som användes var besök ute i fält där de vedartade växternas antal, art och diameter studerades. Även procentuell förekomst av bärris, mossor och rester av fjolårsgräs togs med i undersökningen.

Många nya frågor uppstod under arbetets gång och mycket mer forskning måste göras innan man kan svara på dessa frågor.
Tabell- och Figurförteckning

Omslagsbilden är tagen av författaren och visar kolrester vid Knapptorps kolbotten i mars, 2014.

Tabell 1 är skapad av författaren och visar delar av resultatet från den här undersökningen.

Alla fotografier utom de i figurerna nr. 7, 9, 12, 14 och 16 är tagna av författaren under mars månad 2014.

Figur 1, karta över studieområdet. Egendesignad karta av författaren med hjälp av hitta.se:s karttjänst. 14 april 2014.
Figur 2, Exempel på hur kolbottnarna kunde vara markerade på äldre kartor. Utsnittet ur Enskifteskartan över Knapptorps hämmans ägor är skapad av författaren men tillåtelse av Lantmäteriet i Gävle.
Figur 3, Inventeringsytor på och utanför norra Getdalens kolbotten.
Figur 4, Knapptorps kolbotten.
Figur 5, Ströbackstorps kolbotten.
Figur 6, Kolbotten vid Damsjöns nordvästra sida.
Figur 8, Kolbotten efter milan vid Övre stampen. Återfotografering av figur nr. 7.
Figur 10, Kolbotten efter milan vid Övre stampen. Återfotografering av figur nr. 9.
Figur 11, Kolbotten vid norra Getdalen.
Figur 13, Kolbotten efter milan vid nordvästra Getdalen. Återfotografering av figur nr. 12.
Figur 14, se figur 12.
Figur 15, Kolbotten efter milan vid nordvästra Getdalen. Återfotografering av figur nr. 14.
Figur 16, se figur 12
Figur 17, Kolbotten efter milan vid nordvästra Getdalen. Återfotografering av figur nr. 16.
Käll- och litteraturförteckning

Otryckta källor

Muntliga källor

Informant 1: Rolf Pettersson, skogsägare vid Getdalen, personligt samtal vid besök den 29 mars 2014
Informant 2: Göran Bäck, ingenjör, orienterare och jägare
Informant 3: Åke Mossberg, fotograf, orienterare och ägare till fotoaffären i Nora
Informant 4: Per-Erik Spjuth, egen företagare inom skogssektorn

Tryckta källor

Tillgänglig på Internet: http://www.raa.se/publicerat/9172093005.pdf

Tillgänglig på Internet: http://dx.doi.org/10.1016/j.biocon.2007.04.004

Kort handledning i skogshushållning. 3. uppl. (1923). Umeå:

Lindman, Kristian (1941). *Handbok i kolning.. Bodafors: G. A. Pettersson

Molander, Leif (2012). *Något om utmarkens betydelse för allmogen*. Uddevalla:

Miljöinformation i Väst

Wahlström & Widstrand

Elektroniska källor

Arkivkällor

