Plastidial Phosphate Transport in Plants

Milton Karlsson

Institutionen för biologi och miljövetenskap
Naturvetenskapliga fakulteten

Plastidial Phosphate Transport in Plants

Milton Karlsson

University of Gothenburg, Department of Biological and Environmental Sciences
Box 461, SE-405 30 Gothenburg, Sweden

ABSTRACT

Phosphorus is an essential element for all living organisms and is central to the genetics and energetics of life. Inorganic phosphate (P_i) is recurrently involved in protein regulation and signal transduction but also in energy transfer as a component of the ATP-molecule. When cells and cell organelles commence a plethora of energy-demanding processes associated with ATP hydrolysis to ADP and P_i, a balancing of the P_i content between compartments is crucial to prevent the ATP hydrolysis to be stalled from accumulation of P_i. The transport of P_i via specialized protein(s) is therefore essential for cellular P_i homeostasis since biological membranes are impermeable to P_i (Paper I, III).

This thesis shows that the plastid-localized P_i transporter PHT4;2 in Arabidopsis thaliana is nearly restricted to roots during vegetative growth, where it regulates plastid homeostasis by a Na^+-dependent P_i efflux. The accumulation of P_i in the root plastids of pht4;2 loss-of-function mutants yields a reduced starch accumulation in roots, which is consistent with the inhibition of starch synthesis by a deficient P_i export. However, the pht4;2 mutants display a 40% increased rosette area and a twofold larger shoot biomass as compared to wild type (WT) plants, indicating an involvement of PHT4;2 in signaling between roots and leaves. The larger leaf area and biomass accounts from an increased cell proliferation in pht4;2 mutants compared to the WT plants. Nevertheless, the cell size and the photosynthetic electron transport rate are similar in all genotypes. (Paper I).

Another P_i transporter, PHT4;1, is located in the chloroplast thylakoid membrane of Arabidopsis. By using homology modeling, site directed mutagenesis and functional characterization in Escherichia coli, several residues important for P_i transport and its sodium dependency have been identified in PHT4;1 (Paper II). Rosette area and biomass of the pht4;1 mutants are reduced to 70-80% of the WT plants. Absence of PHT4;1 does not affect the relative electron transport rates, pigment composition, and the expression of photosynthesis-related proteins. However, the ΔpH contribution to the proton-motive force across the thylakoid membrane is significantly higher in the pht4;1 mutants as compared to the WT plants. Non-photochemical quenching kinetics in pht4;1 mutants is transiently increased at the initial phase and declines to WT levels during the plateau phase. Moreover, the P_i content is elevated in the pht4;1 mutants whereas the total Phosphor content is similar to the WT (Paper III).

This thesis shows that, through their activity, plastidial P_i transporters play role in plant growth and behavior under different environmental conditions. This is a subject still in its cradle of being understood. The data acquired in this work not only strengthen the importance for a normal daily life of plants, but also the relevance of P_i transporters as a research field.