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Preface 

These documents have been produced by the Swedish Criteria Group for Occupational 

Standards, the members of which are presented on the next page. The Criteria Group is 

responsible for assessing the available data that might be used as a scientific basis for 

the occupational exposure limits set by the Swedish Work Environment Authority. It  

is not the mandate of the Criteria Group to propose exposure limits, but to provide  

the best possible assessments of dose-effect and dose-response relationships and to 

determine the critical effect of occupational exposure. 

 The work of the Criteria Group is documented in consensus reports, which  

are brief critical summaries of scientific studies on chemically defined substances  

or complex mixtures. The consensus reports are often based on more comprehensive 

criteria documents (see below), and usually concentrate on studies judged to be of 

particular relevance to determining occupational exposure limits. More comprehensive 

critical reviews of the scientific literature are available in other documents. 

 Literature searches are made in various databases, including KemI-Riskline, 

PubMed and Toxline. Information is also drawn from existing criteria documents, such 

as those from the Nordic Expert Group (NEG), WHO, EU, NIOSH in the U.S., and 

DECOS in the Netherlands. In some cases the Criteria Group produces its own criteria 

document with a comprehensive review of the literature on a particular substance. 

 As a rule, the consensus reports make reference only to studies published in 

scientific journals with a peer review system. This rule may be set aside in exceptional 

cases, provided the original data is available and fully reported. Exceptions may also  

be made for chemical-physical data and information on occurrence and exposure levels, 

and for information from handbooks or documents such as reports from NIOSH and the 

Environmental Protection Agency (EPA) in the U.S. 

 A draft of the consensus report is written in the secretariat of the Criteria Group 

or by scientists appointed by the secretariat (the authors of the drafts are listed in the 

Table of Contents). After the draft has been reviewed at the Criteria Group meetings 

and accepted by the group, the consensus report is published in Swedish and English  

as the Criteria Group’s scientific basis for Swedish occupational standards. 

 This publication is the 32
nd

 in the series, and contains consensus reports approved 

by the Criteria Group from October, 2010 through May, 2012. The consensus reports in 

this and previous publications in the series are listed in the Appendix (page 76). 
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Consensus Report for Ethylamine and 

Diethylamine 

February 16, 2011 

Data search was performed in Toxline, including PubMed, in November 2010. 

This report updates a previous Consensus Report published in Arbete och Hälsa 

1983 (27). 

Chemical and physical data. Use 

Ethylamine 

CAS No. 75-04-7 

Synonyms monoethylamine, ethanamine, aminoethane,  

 1-aminoethane, MEA, EA 

Structural formula CH3-CH2-NH2  

Molecular weight 45.08 

Melting point -81 °C 

Boiling point 16.6 °C 

Vapour pressure 113 kPa (20 °C), 116 kPa (20 °C) 

Density 0.6829 (20 °C) 

Conversion factors 1 ppm = 1.87 mg/m
3
, 1 mg/m

3
 = 0.53 ppm (20 °C) 

Other data May be sold as a 70% aqueous solution.  

 

 

Ethylamine is a colourless, flammable gas or liquid that evaporates at room 

temperature. The odour is described as being sharp, ammonia-like, and fishy (7, 8, 

27). The odour threshold was indicated in one study as 0.95 ppm (geometric mean, 

standard error = 2.6) (2). The substance is miscible with water, ethanol, and ether, 

and is strongly basic in an aqueous solution (pKb = 3.29) (7). Ethylamine is pri-

marily used as an intermediate within the chemical and pharmaceutical industries. 

It is used as an intermediate for dyestuff, as a stabiliser for rubber latex, in the 

manufacture of emulsifiers and detergents, and in oil refining (1, 7, 8). No 

registered use, however, was listed in Sweden in 2008 (SPIN database, KemI 

2010-11-16, http://www.kemi.se/sv/Innehall/Databaser/). Ethylamine occurs 

naturally in various foodstuffs, e.g. oysters, fish, radishes, spinach, lettuce, cheese 

(camembert) and wine (8, 33, 54). Consumption of 400 g dried oysters (average 

concentration 122 ppm) and 0.5 l wine has been estimated to yield a maximum 

intake of 50 mg ethylamine (8). 
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Diethylamine 

CAS No. 109-89-7 

Synonyms N,N-diethylamine, diethamine, N-ethylethanamine,  

 DEA 

Structural formula CH3-CH2-NH-CH2-CH3 

Molecular weight 73.14 

Melting point -38.9 °C, -48 °C, -50 °C  

Boiling point 56.3 °C, 55.5 °C  

Vapour pressure 25.9 kPa (20 °C) 

Saturation concentration 255,700 ppm (20 °C) 

Density 0.7074 

Conversion factors 1 ppm = 3.03 mg/m
3
, 1 mg/m

3
 = 0.33 ppm (20 °C) 

 

 

Diethylamine is a colourless, strongly basic (pKb = 3) and flammable liquid at 

room temperature, and is miscible with water, alcohol and most organic solvents. 

Its odour is fishy and ammonia-like (3, 7, 27, 53). The odour threshold was indi-

cated in one study as 0.13 ppm (geometric mean, standard error = 2.9) (2). In the 

presence of nitrogen oxides, it can form N-nitrosodiethyl-amine (11). Diethyl-

amine is used in synthesis of resins, colours, pesticides and medicines, and in 

electroplating. It can be used as a solvent, as a rubber accelerator, as a poly-

merisation inhibitor/catalyst and a corrosion inhibitor (3, 7). Total use in Sweden 

in 2008 was reported as 15 tons (5 products) (SPIN database, KemI 2010-11-16, 

http://www.kemi.se/sv/Innehall/Databaser/). The substance occurs naturally in 

various foodstuffs, e.g. spinach, smoked herring, and apples (33).  

Uptake, biotransformation, excretion 

The absorption of simple aliphatic amines via the skin, the lungs, and the gastro-

intestinal tract has been reported as high, but quantitative data on ethylamine and 

diethylamine is largely absent (7, 22). Fiserova-Bergerova et al. (15) indicates a 

theoretically estimated value of 3.36 mg/cm
2
/hr for the dermal penetration rate of 

ethylamine. The calculations, however, have been questioned and criticised as 

drastically overestimating skin absorption (5). Data on acute toxicity (LD50) in 

research animals indicate high toxicity for ethylamine and medium to high toxicity 

for diethylamine, both in peroral and dermal administration (see below).  

Few metabolism studies of ethylamine and diethylamine have been found. It 

has, however, been reported that lower aliphatic amines (primary and secondary 

amines) are primarily metabolised into carboxylic acid and urea, which are ex-

creted in the urine (3, 7). Intermediate substances such as aldehydes and ammonia, 

for example, are also formed during metabolism (7, 8). The secondary amine di-

ethylamine is more resistant to metabolism than the primary amine ethylamine, 

and is largely excreted in an unaltered form. In an older study (38) it was reported 

that 32% was excreted in unaltered form in the urine over one day in a test subject 
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who had received 2g ethylamine hydrochloride perorally, while 86% was excreted 

in unaltered form in a person who received 5g diethylamine hydrochloride per-

orally (38). Excretion of ethylamine in 200 test subjects who ate normal foodstuffs 

was reported to be 7.8 mg/day on average with large variations (0.2-35.3 mg) (31). 

Nitrosation 

Formation of nitrosamines is of interest, as this type of compound can cause 

cancer, e.g. liver carcinomas. See also the section on carcinogenicity. Nitrosamine 

formation in the gaseous phase (air) occurs through a reaction between nitrogen 

oxides and certain amines in the presence of water. It has been reported that 

secondary and tertiary amines react rapidly with nitrogen oxides in the dark 

(nitrosamines break down in sunlight) and that up to 3% nitrosamines can be 

formed in 20-50% relative atmospheric humidity. In dry air, on the other hand,  

the reaction between nitrogen oxide or nitrogen dioxide and amines is negligible 

(11, 46). Pitts et al. (37) showed, for example, that 0.5 ppm diethylamine, 0.08 

ppm nitrogen oxide, and 0.17 ppm nitrogen dioxide in an outdoor chamber (50 

m
3
) yielded maximal concentration of diethylnitrosamine, 0.014 ppm (0.06 

mg/m
3
), within 10 minutes in the dark (30-50% relative atmospheric humidity, 

temperature 22-31°C) (37). Based on kinetic models, it has been estimated that 

0.67 ppm (2.84 mg/m
3
) diethylnitrosamine can be formed in a well-ventilated 

room with 16.5 ppm diethylamine, 5.2 ppm nitrogen dioxide and 16 ppm nitrogen 

oxide, assuming 50% relative atmospheric humidity and a temperature of 20°C 

(11). Sources of increased nitrogen oxide levels in the air (and a potential risk for 

nitrosamine formation) can be exhaust from gasoline and diesel engines, as well  

as chemicals that decompose and give off nitrogen oxides. Nitrosamines can also 

be formed in industrial environments from secondary amines and other nitrosation 

agents than nitrogen oxides, for example nitrite salts (within the rubber industry) 

(23, 46).  

Furthermore, nitrosamines can be formed from secondary amines in acidic en-

vironments, for example in the stomach in the presence of nitrite or other nitro-

sation agents. Small amounts of diethylnitrosamine (rabbits: 100-200 µg and 2000 

µg respectively, cats: 60-70 µg) were detected in stomach extracts after peroral 

administration of 450 mg diethylamine hydrochloride and 300 mg sodium nitrite 

(rabbits, cats) and 1000 mg diethylamine hydrochloride and 1000 mg sodium 

nitrite respectively (rabbits). Diethylnitrosamine was also formed in vitro during 

incubation of gastric juices, from humans and other species, with diethylamine 

hydrochloride and sodium nitrite (10, 40).  

Toxic effects 

Animal data 

Ethylamine 

LD50 in rats after peroral administration has been reported to be 400 mg/kg body 

weight (44). LD50 in rabbits after application to the skin over approximately 1/10 
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of the body’s surface (24 hours under plastic film) was 266 mg/kg (0.39 ml/kg) 

(44). In experiments with inhalation exposure of 8000 ppm over 4 hours, 2 of 6 

rats died (within 14 days) (44). An LC50 value (rats, 4 hours) between 4400 and 

6800 ppm has been reported in unpublished experiments (12).  

RD50 – the dose that yields a 50% reduction in respiratory frequency (an 

expression of sensory irritation) – was 151 ppm (282 mg/m
3
) in experiments on 

mice with 15 minutes’ exposure (16). During inhalation exposure at 49 ppm, 7 

hours/day, 5 days/week for 6 weeks (6 animals), irritation effects were observed  

in the respiratory tract (peribronchitis, pneumonitis, thickening of vessel walls in 

the lungs) and the eyes (oedema, multiple corneal erosions) of rabbits (Table 1). 

Corneal injuries were not observed until after 2 weeks of exposure. Focal mus-

cular degeneration in the heart was also noted in some of the animals, but the 

findings were judged to be uncertain. In similar exposures at 100 ppm (6 animals), 

irritation effects in the respiratory tract and light to moderate degenerative changes 

in the renal parenchyma were observed. Effects on heart muscle were not reported 

at 100 ppm. No control group was used in the study (4).  

In an abstract for a conference (30), damage to the nasal cavity, including ne-

crosis, was reported in rats at an exposure of 500 ppm, 6 hours/day, 5 days/week 

for 120 days, while no such effects were demonstrated in similar exposures of 10 

or 100 ppm. Impaired growth (reduced body weight gain) were seen in the high-

dosage group, while no treatment-related effects in haematological or clinico-

chemical examinations, or signs of cardiotoxicity were reported to have occurred 

in any dosage group (no details were reported in the summary).  

An older Russian study describes the effects on experimental animals after 

continual inhalation exposure to ethylamine at exposure levels under the current 

Swedish occupational exposure limit value (10 ppm). Among the effects described 

were changes to chronaxy (measured in time required for nerve reactions) in 

muscles, changes in the lungs and neurons in the cerebral cortex in histochemical 

and pathological examinations, increased excretion of urinary coproporphyrins 

and increased cholinesterase activity in the blood (8, 12). The study was reported 

to lack the relevant methodological descriptions (12) and has not been taken into 

consideration in the previous consensus report (27). 

Ulceration of the duodenum (4 of 8 animals) and necrosis in the adrenal glands 

(3 of 8 animals) were observed in rats when injected subcutaneously with ethyl-

amine 3 times/day for 4 days (does 600 mg/kg body weight). All the experimental 

animals died (47). In a similar experiment on rats, the effect on the duodenum was 

estimated as moderate (superficial erosions). The effect on the adrenal cortex was 

milder. The total dose was stated to be 240 mmol/kg ethylamine (10.8 g/kg body 

weight) (48).  

The application of ethylamine to the eyes of rabbits was reported to produce 

serious eye damage. It was indicated as 9 on a scale of 10 (10 indicates serious 

burn injuries from 0.5 ml of a 1% aqueous or propylene glycol solution) (44). In 

an older study, primary dermal irritation within 24 hours was judged to be very 

mild (1 out of 10) when applying 0.01 ml undiluted ethylamine to rabbits (42, 44). 
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Unpublished studies, however, indicated that a 3-minute semi-occlusive appli-

cation of 0.5 ml undiluted ethylamine resulted in necrosis on intact rabbit skin. 

Furthermore, it was reported that erythema and light oedema were demonstrated 

after 3 minutes, and necrosis after 30 minutes, when applying 0.5 ml as a 70% 

ethylamine solution (semi-occlusive) (13). In other unpublished studies, it was 

reported that necrotic burn injuries were quickly noted when 70% ethylamine 

solution was dropped on guinea pig skin (8). 

 

Diethylamine 

LD50 in rats after peroral administration has been indicated at 540 mg/kg body 

weight (43) and 500 mg/kg in mice (36). LD50 in rabbits upon application to the 

skin was reported as 580 mg/kg (0.82 ml/kg) (7, 43). LC50 over 4 hours inhalation 

exposure was 4000 ppm (3 of 6 rats died within 14 days) (43).  

In a study on mice, the RD50 for sensory irritation was established at 202 ppm 

for 15 minutes exposure (16). In another study on mice, an RD50 value of 184 ppm 

for 30 minutes of exposure was reported, while the threshold concentration for 

reduction of respiratory frequency (RD0) was 32 ppm (34). In the same study,  

the RD50 as a measurement of pulmonary irritation through the used of a tracheal 

cannula (exposure 30 minutes) was established; that value was 549 ppm (Table 2). 

It was reported that the effect on respiratory frequency reached a plateau within  

10 minutes; this applied both to sensory irritation and pulmonary irritation. In 

mice that were not given a tracheal cannula, reduced respiratory frequency was 

due only to sensory irritation (34). 

Upon inhalation exposure to 53 ppm diethylamine (7 hours/day, 5 days/week, 6 

weeks), irritation effects were reported in the respiratory tract (including moderate 

peribronchitis, light thickening of vessel walls) and in the eyes (oedema and 

multiple corneal erosions) of rabbits (6 animals/dosage group). At this concentra-

tion in the air, areas (foci) with moderate degenerative changes were also noted  

in the hepatic parenchyma, and possibly very light cardiac muscle degeneration 

(these later findings were very uncertain). At 109 ppm pneumonitis, marked de-

generative changes in the hepatic parenchyma, and nephritis with light tubular 

changes were seen. No effects on heart muscle were reported at 109 ppm (4). 

Rats were exposed through inhalation to 26 or 251 ppm diethylamine for 6.5 

hours/day, 5 days/week for up to 24 weeks and examined with regard to local 

effects (histopathological examination of nostrils, however, was not done at 26 

ppm). Blood and inner organs such as the heart, liver, and kidneys were also 

studied (EKG, histopathological, clinicochemical and haematological examina-

tion). No clinical signs of irritation were observed at 26 ppm. A somewhat in-

creased incidence (significant) of bronchiolar lymphoid hyperplasia occur in both 

sexes for 120 days exposure at 26 ppm, but the effects was judged by the authors 

as unrelated to exposure (it was also seen among the controls, a non-dose-related 

increase in incidence). Significant increase of creatinine in the blood was also seen 

at this level of exposure (only in females), but no signs of kidney damage were 

observed during histological examination. 26 ppm was not considered as an effect 
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level in the study (Table 2). At 251 ppm, clinical signs of strong irritation in the 

eyes and nose were observed (e.g. teariness, reddened nose), as well as histopatho-

logical changes in the nose. Furthermore, lower body weight (especially in males) 

and an increased level of creatinine (females only) and urea nitrogen in the blood 

were also observed. Kidney damage was not reported in histopathological ex-

amination. No signs of degenerative changes in cardiac muscle, changes in EKG, 

or cardiac-related clinicochemical signs of damage were observer at any level of 

exposure (29).  

In several older Russian studies, effects on liver function and nerve function  

in the muscles (changes to chronaxy), increased excretion of coproporfyrins, in-

creased cholinesterase activity or concentration in the blood, and changes in the 

lungs and neurons in the cerebral cortex (histochemical, pathological examination) 

were reported in experimental animals subjected to continual inhalation exposure 

to diethylamine at exposure levels under the current Swedish occupational ex-

posure limit value (10 ppm). The study is, however, of poor or unclear quality  

and has not been taken into consideration in previous evaluations (10, 27). 

In a study on rats, the effect of diethylamine on the liver was studied through 

histopathological examination and analysis of liver enzymes in serum. Diethyl-

amine was neutralised to pH 7.4 with hydrogen chloride, and the resulting solution 

was administered as a single injection into the abdominal cavity in doses that 

yielded 250, 500, or 1000 mg diethylamine/kg body weight. Significant dose-

dependent increase of liver enzymes (ornithine carbamyl transferase (OCT), 

ASAT, ALAT) was seen. At the lowest dose, however, only a significant increase 

of OCT was noted. At this dose, mild degeneration was seen in the histological 

examination, while both the higher doses resulted in marked degeneration and 

periportal necrosis. The observed effects (impact on enzymes and histology)  

were transient (14). 

A 2% solution of diethylamine (solvent not indicated) was judged to be an 

irritant when applied to the eyes of rabbits. Reddening, swelling, and inflamma-

tion of the conjunctiva, inflammation of the iris, and cloudy cornea were noted. 

The corneal clouding demonstrated was maximal after 3 days (3 out of 4 points 

possible, points according to the Draize scoring criteria) (20, 21). Older studies 

reported serious eye damage in rabbits when diethylamine was applied (grade  

10 out of 10 after 24 hours). An injury grade of 10 means that a 1% solution or 

stronger can result in serious eye damage (6, 43).  

In older studies, it was further reported that diethylamine (undiluted) was a skin 

irritant and resulted in mild erythema (grade 4 out of 10) when applied to rabbit 

skin (42, 43). Other (unpublished) data indicated that undiluted diethylamine in 

contact (occlusive) with undamaged rabbit skin for 3 minutes was corrosive (11). 

Irritation was reported in a study on guinea pigs (in one animal) when a 30% 

diethylamine solution was applied, but no further details were given (51). 

Diethylamine has been reported as a skin sensitiser in the Guinea Pig Maxi-

misation Test (GPMT) with a multiple-dose design (51). In testing the substance 

(in acetone:olive oil, 4:1) in the local lymph node assay (LLNA) on mice, 
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diethylamine has been considered to be a weak skin sensitiser. Increased reaction 

in the LLNA and cytokine production (IFN-γ, IL-4) was seen after pre-treatment 

with an irritant (9, 50). Using a still-unvalidated in vitro method (measurement  

of intracellular production of IL-18 and IL-1α in mouse keratinocytes), the same 

authors noted a similar gradation of the sensitizing potential as in the LLNA (52). 

Human data  

Ethylamine 

No relevant studies have been found.  

Diethylamine 

In a chamber study with 7 test subjects, all of whom were healthy non-smokers 

and who were not exposed to high concentrations of particles, vapour, or smoke in 

their occupations, irritation effects from short-term exposure to diethylamine were 

examined. Nasal irritation, expressed as swelling (acoustic rhinometry), and air 

flow (rhinomanometry) in the nose were measured in 5 test subjects (4 men, 1 

woman) before, during (only acoustic rhinometry) and after exposure to 25 ppm 

diethylamine (15 minutes exposure). No consistent effect on these parameters  

was seen in the group. Odour and subjective nasal and eye irritation were further 

examined in 5 test subjects (5 men) who were exposed to increasing levels of 

diethylamine from 0 to 12 ppm (time-weighted average 10 ppm) over 1 hour. 

Discomfort was evaluated (questionnaire and VAS ratings) among the test 

subjects every five minutes during exposure. Irritation (up to moderately strong)  

of the nose and eyes, as well as odour perception, was reported, but the inter-

individual variation was large. Significant correlations were found between the 

estimates of nasal irritation and eye irritation (r = 0.87, p<0.001) and between the 

estimates of nasal irritation and odour perception (r = 0.71, p<0.001) (28). The 

authors stress that the study has weaknesses, chiefly in the design (knowledge of 

exposure), variation, and the small number of test subjects. They also mention that 

the study does not permit estimating the threshold value for mucous membrane 

irritation (eyes, nose, respiratory tract); at the same time they judge that the data 

suggests sensory irritation at concentrations around the limit value (10 ppm). 

Immediate, intense pain in the eyes and persistent vision impairment after one 

month (despite adequate treatment) was reported in one person who, as the result 

of an accident, received a thin stream of diethylamine in one eye (17). 

Kaniwa et al. (24) investigated 5 cases of allergic contact dermatitis from latex 

gloves. Diethylamine was one of the substances that were patch tested (tested in  

4 of the cases: 1%, 2% or 5% diethylamine in vaseline). In the test, diethylamine 

resulted in a positive reaction in one case and dubious positive reactions in 2 

cases. In another study, positive patch test reactions for diethylamine (1% in 

vaseline) were seen in 1 of 25 patients who have had positive reactions during a 

test for individual rubber accelerators and for rubber materials. No positive patch 

test results for diethylamine were noted in 12 controls without a history of rubber 

allergy or eczema (25). 
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Mutagenicity/genotoxicity 

Ethylamine 

Ethylamine was not mutagenic in vitro in Salmonella TA98, TA100, TA1535  

or TA1537 in testing with or without metabolic activation (32). In another study, 

ethylamine was reported as a very weak mutagen in Salmonella bacteria (strain not 

indicated) in vitro, but no results were shown in the study (35). In an older study, 

it was reported that ethylamine was not mutagenic on E. coli bacteria (Sd-4-73)  

in vitro (49). A later study was also negative in tests with ethylamine alone (0.25- 

1 M) on E. coli (Sd-4), but dose-dependent increase of mutants was seen in tests 

with ethylamine and nitrite in combination (significantly higher mutation fre-

quency than with nitrite alone) (8, 19). Dose-dependent increase of sister chroma-

tide exchange (SCE) was demonstrated in tests with ethylamine hydrochloride on 

rodent cells in vitro (0.1-5 mM) (45). 

Diethylamine 

Diethylamine was not mutagenic in testing on Salmonella typhimurium TA100, 

TA1535, TA1537, or TA98 with or without metabolic activation (18, 55). No 

effect on unscheduled DNA synthesis (UDS) was seen in kidney cells that were 

isolated from rats 12 hours after administration of diethylamine (500 mg/kg per-

orally) (26).  

Carcinogenicity 

Ethylamine 

No studies on the carcinogenicity of ethylamine have been found in the literature.  

Diethylamine 

A few studies of diethylamine exist (see below). These studies have relatively few 

animals, and reporting on histopathological examinations is limited. In one study 

(20 animals in the group at the start) diethylamine hydrochloride was given in 

drinking water (4 g/l) to guinea pigs for up to 30 months. The uptake was esti-

mated to equal 290 mg/animal per day on average (150-420 mg/animal per day), 

which very roughly calculated corresponds to approximately 400 mg/kg body 

weight per day (200-600 mg/kg body weight per day). Growth (weight increase)  

in this group was poorer than for the unexposed group. Furthermore, no animal 

receiving only diethylamine developed liver carcinomas (histological examination 

of various organs including the liver). Nor were liver carcinomas seen with 

administration of diethylamine hydrochloride mixed with sodium nitrite (20 

animals: 2 + 0.4 g/l, 20 animals: 4 + 0.8 g/l) in drinking water (pH 7.5). The 

animals in both these groups were estimated to have consumed an average of 210 

mg and 250 mg respectively of diethylamine/animal per day, and 40 mg and 50 

mg respectively of sodium nitrite/animal per day. The authors conclude that the 
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formation of diethylnitrosamine in the stomach was insufficient to induce 

carcinomas (41).  

In a study of 15-day-old mice (30-35 animals/group), liver tumours (of the 

adenomatous or trabecular type) were seen in 5 of 15 animals (of which 2 were 

trabecular carcinomas) after a single peroral administration of diethylamine 

hydrochloride in distilled water (dose: 50 mg/kg body weight). 2 of 17 controls 

had liver tumours (both were trabecular carcinomas). Upon administration of 

diethylamine hydrochloride immediately followed by sodium nitrite (single 

peroral dose, 50 mg/kg body weight of each substance, in distilled water), liver 

tumours were seen in 14 of 23 animals (of which 4 were trabecular carcinomas). 

The animals were euthanised in batches for up to 110 weeks. The results of the 

study suggest the formation of carcinogenic nitrosamine through interaction 

between diethylamine hydrochloride and sodium nitrite (39).  

Effects on reproduction 

In a poorly reported study a somewhat increased occurrence (unclear statistical 

significance) of histological changes in the testicles (including degenerative 

changes, impaired spermatogenesis) of rats after inhalation exposure to 251 ppm 

diethylamine for 6.5 hours/day, 5 days/week for up to 24 weeks was seen. The 

effects, however, were normally unilateral and judged not to be related to diethyl-

amine. Ovaries and uteri were also reported to have been studied in histological 

examinations, but no effects were reported (29).  

Dose effect/dose response relationships 

Ethylamine and diethylamine have alkaline properties, which is why direct contact 

with substances in liquid form (also as diluted solution) can induce local tissue 

damage. Ethylamine and diethylamine appear to be equally potent irritants, based 

on alkalinity (pKb) and animal experiments (irritation/erosion of the eyes and 

respiratory tract, RD50). See Tables 1 and 2.  

Ethylamine 

No relevant human studies have been found.  

In inhalation studies on rabbits, pronounced irritation effects on the eyes 

(oedema and corneal erosion) and the respiratory tract were demonstrated at 49 

ppm. Lower levels were not tested. At 100 ppm changes in the kidneys were also 

seen (4). RD50 in mice at 15 minutes exposure was 151 ppm (282 mg/m
3
) (16),  

see Table 1.  

Diethylamine 

Subjective effects of irritation in the eyes and nose were reported in five male  

test subjects at exposures to increasing levels of diethylamine, from 0 to approxi-

mately 12 ppm (time-weighted average 10 ppm) over 1 hour. No objective signs 
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of nasal swelling were seen, however, in one group of test subjects (4 men, 1 

woman) exposed to 25 ppm for 15 minutes (28). The authors stress that the study 

has weaknesses, chiefly in the design (knowledge of exposure), variation, and the 

small number of test subjects. They also mention that the study does not permit 

estimating the threshold value for mucous membrane irritation; at the same time 

they judge that the data suggests sensory irritation at concentrations around  

10 ppm. 

26 ppm was regarded as the NOEL in an experimental study in animals, but 

histopathological examination of nostrils was not done at this concentration (29). 

Pronounced irritation effects in the eyes (oedema and corneal erosion) and the 

respiratory tract, as well as focal, moderate degenerative changes in the hepatic 

parenchyma were observed in another study on rabbits after repeated exposure  

at 53 ppm. Lower levels were not tested. At 109 ppm, changes in the kidneys were 

also reported (4). RD50 in mice at 30 and 15 minutes exposure was 184 ppm and 

202 ppm respectively (16, 34), see Table 2. 

A 2% solution of diethylamine was reported to result in serious eye irritation 

when applied to the eyes of rabbits. Reddening, swelling, and inflammation of  

the conjunctiva, inflammation of the iris, and cloudy cornea were noted (20, 21). 

Animal experiments show that diethylamine can induce contact allergies (9, 50, 

51). The occasional cases of contact allergy with diethylamine described have 

been related to the use of protective rubber gloves (24, 25).  

There is no support for diethylamine being carcinogenic, but carcinogenic 

nitrosamines, including diethylnitrosamine, can be formed in industrial environ-

ments through reactions between secondary amines and various nitrosation agents, 

for example nitrite or nitrogen oxides in the air (23, 39, 41, 46). Formation of di-

ethylnitrosamine from the secondary amine diethylamine and nitrogen oxides in 

the air has been demonstrated experimentally (11, 37). The formation of diethyl-

nitrosamine can also occur during simultaneous exposure to diethylamine and 

nitrite in the stomach (10, 40). In a study on mice, this mixture has increased  

the development of liver cancer (39).  

Conclusions  

The critical effect of occupational exposure to ethylamine and diethylamine is 

considered to be mucous membrane irritation of the eyes and respiratory tract.  

The critical effect level cannot be established, but a study with a few test subjects 

reports eye and respiratory tract irritation at exposure to 10 ppm diethylamine as  

a time-weighted average over 1 hour (increasing concentrations from 0 to approxi-

mately 12 ppm during exposure). Ethylamine and diethylamine appear to be 

equally potent irritants.  

In liquid form, ethylamine and diethylamine can cause serious eye damage 

(even in diluted solution).  

Animal experiments indicate that diethylamine is a weak contact allergen.  

The risk for formation of carcinogenic nitrosamine should be taken into 

consideration in simultaneous exposure to diethylamine and nitrogen oxides. 
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Table 1. Effects on laboratory animals upon inhalation exposure to ethylamine. 
 

Air level 

(ppm) 

Exposure Species  Effects Ref. 

 

49 7 hrs/day,  

5 days/wk, 

6 wks 

Rabbit LOAEL. Irritation effects in the respiratory tract 

(peribronchitis, pneumonitis, thickening of 

vessel walls in the lungs) and the eyes
1
 (oedema 

in cornea and nicitating membrane, multiple 

corneal erosions). 

4 

100 7 hrs/day,  

5 days/wk, 

6 wks 

Rabbit Irritation effects in the respiratory tract (small 

haemorrhages, peribronchitis, thickening of 

vessel walls in the lungs), light to moderate 

degenerative changes in the renal parenchyma. 

4 

151 15 min Mouse RD50 16 

8000 4 hours Rat 2 of 6 animals died. 44 
 

1 
Corneal injuries were not observed until after 2 weeks of exposure. 

 

 
Table 2. Effects on laboratory animals upon inhalation exposure to diethylamine. 
 

Air level 

(ppm) 

Exposure Species  Effects Ref. 

 

26 6.5 hrs/day,  

5 days/wk, 

up to 24 wks 

Rat NOAEL
1
 

 

29 

53 7 hrs/day,  

5 days/wk, 

6 wks 

Rabbit LOAEL. Irritation effects in the respiratory tract (including 

moderate peribronchitis, light thickening of vessel walls) 

and in the eyes (oedema and multiple corneal erosions), 

occasional foci with moderate degenerative changes in 

hepatic parenchyma.  

4 

109 7 hrs/day,  

5 days/wk, 

6 wks 

Rabbit Irritation effects in the respiratory tract (including broncho-

pneumonia), marked degenerative changes in hepatic 

parenchyma (also regeneration), nephritis with light tubular 

changes. 

4 

184 30 min Mouse RD50 34 

202 15 min  Mouse RD50 16 

251 6.5 hrs/day,  

5 days/wk, 

up to 24 wks 

Rat Clinical signs of strong irritation in eyes and nose, histo-

pathological changes in nose (squamous metaplasia, lym-

phoid hyperplasia, rhinitis); lower body weight increase, 

significantly increased level of urea nitrogen in the blood.  

29 

549 30 min Mouse Halved respiratory frequency upon exposure via tracheal 

cannula (tRD50)
2
. 

34 

4000 4 hours  Rat LC50 43 
 

1 
26 ppm was not considered as an effect level by the authors (no histopathological examination, 

  however, of nostrils at this concentration). 
2 
Measurement of irritation in the lungs. 
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Consensus Report for Carbon dioxide 

June 15, 2011 

This consensus report is primarily based on a criteria document from 1976 by 

NIOSH (64) and a report from EPA published in 2000 (22). A comprehensive 

literature search was conducted in 2005; this has been supplemented with litera-

ture searches in PubMed, most recently in January 2011. References have also 

been taken from a, as yet unpublished, guidance document for determining 

emergency limit values (Acute Exposure Guideline Levels) from ORNL-

Toxicology & Hazard Assessment Group/March 2010. 

Chemical and physical data 

CAS number  124-38-9 

Synonyms carbon dioxide, carbonic acid, carbon dioxide 

 snow, dry ice 

Molecular formula CO2 

Molecular weight  44.01 g/mol 

Melting point  -78.5 °C, sublimates into gas 

Solubility in water 71 mg/100 ml (0 °C), 36 ml/100 ml (60 °C)  

Relative gas density 1.53 

Conversion factors (at 25 °C) 1 ppm = 1.80 mg/m
3
; 1 mg/m

3
 = 0.556 ppm  

Conversion to %-units: 10,000 ppm = 1%, 

 1 kPa = 1% 

 1 mmHg (torr) = 0.13% 

 

 

 

Carbon dioxide is a colourless, odourless and non-flammable gas. The gas is 

heavier than air, which implies a risk of accumulation at low levels in confined 

spaces and at ground level. Carbon dioxide in solid state can cause frostbite upon 

contact. 

Occurrence Application Exposure 

Carbon dioxide is normally present in outdoor air at a concentration of 0.03-0.04% 

(3). In the "clean" air of Hawaii, the annual average value increased from 0.03% 

(316 ppm) in 1959 to 0.04% (385 ppm) in 2008 (44). Measured indoor levels of 

carbon dioxide in 1991 were reported to be 0.035-0.25% (350-2500 ppm) (84). 

When people are present in a room, the concentration of carbon dioxide increases, 

as the carbon dioxide produced endogenously in our metabolism is exhaled. The 
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carbon dioxide concentration has therefore been used as an indicator substance for 

testing the effectiveness of ventilation in relation to the number of people present 

in a room. The recommendation of the Swedish Work Environment Authority is 

for the average concentration of carbon dioxide during one day not to exceed 0.1% 

(1000 ppm) in non-industrial premises, such as conference halls, office space and 

classrooms, to prevent the air from being perceived as uncomfortable (3). 

The use of snorkels (89, 94) or face masks (69) increase the exposure to carbon 

dioxide through the increase of the dead space
1
 and thus the re-inhalation of a 

larger volume of air containing endogenously produced carbon dioxide. In a study 

which sought to compare three different standard methods (artificial physiological/ 

anatomical models) to test respiratory protective devices, the average inspired 

concentration of carbon dioxide was stated to be just over 1% (range 0.9-2.06) for 

three gas masks (2 full face masks, 1 half mask) (9). Unpublished data, described 

in the same reference (9), indicate an increase in the average concentration of 

carbon dioxide in the air in the magnitude of 0.2-3.6% for different respiratory 

protective devices measured in the simulator. The results are summarised in Table 

1. In addition, the use of welding helmets (98) and motorcycle helmets, known as 

integral helmets (6), increase the dead space to the extent that the concentration  

of carbon dioxide in the inspired air is affected. When using integral helmets, the 

average concentration of carbon dioxide in the inspired air is reported to be around 

1.3% when stationary. 

Divers and astronauts are usually referred to as professions with an increased 

risk of exposure to elevated concentrations of endogenously produced carbon 

dioxide. In addition, submarine personnel have been studied in several cases and 

the concentration on board nuclear submarines has been stated to amount to 0.7-

1% (75) and, in snorkel-type submarines, as high as 3% (76). 

Carbon dioxide is used as a propellant in spray cans for food and cosmetics,  

as well as in the extraction of beer from kegs. It is also used in fire extinguishers, 

both in hand-held extinguishers and fixed installations. Carbon dioxide is used in 

the form of carbonic acid in beer and soft drinks. In solid form (carbon dioxide 

snow), it is used as a coolant for the refrigeration of food, for example, as well  

as in the form of pellets in connection with blasting. Carbon dioxide is used as  

a protective gas during welding and in health care, for example to expand the 

abdominal cavity during keyhole surgery. Carbon dioxide can also be added  

to oxygen since it stimulates breathing (54, also see the AGA gas website 

20/05/2010: http://www.aga.se). 

In the petroleum industry, carbon dioxide is a by-product of the manufacturing 

of, for example, ammonia, methanol and hydrogen, as well as in processes where 

carbon monoxide is used, such as hydrogen cracking of petroleum products (38, 

54).  

                                                 
1
 The dead space constitutes the volume in the respiratory tract where no gas exchange occurs. The 

normal volume of the dead space for a man weighing 70 kg is approximately 150 ml (25). 
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Table 1. Average concentration of carbon dioxide in the inspired air of different 

respiratory protective devices measured in a simulator. Unpublished data, described  

in reference (9). 
 

Type of respiratory protective  

device  

Number of tested 

respiratory protective 

 devices within type  

Average carbon dioxide 

concentration in the 

inspired air (%) 
 

Powered air-purifying respirators 11 0.2-0.8 

Supplied air respirators 20 0.4-0.5 

Gas masks 6 0.9-2.6 

P-100 air-purifying respirators 27 0.6-2.6 

N95 filtering face piece respirators 26 2.3-3.6 
 

 

 

Another area of application is supercritical fluid extraction. In this method carbon 

dioxide is the most used supercritical fluid (7). The technique can be used for 

extraction of food and drink, for example, to produce decaffeinated coffee or low-

fat food products, extract flavour and aromatic substances, analyse the fat content 

in food or remove harmful substances, e.g. pesticides (7). 

High levels of carbon dioxide have been measured when dry ice is used for 

refrigeration, for example in the poultry industry. Concentrations of 50,000 ppm 

(5%) were measured in areas with poor ventilation and approximately 5,000 ppm 

(0.5%) in areas with good ventilation. In a factory where daily measurements were 

performed over a two month period, carbon dioxide concentrations were found to 

be 11,500-96,000 ppm, with an average value of 34,000 ppm (1.2-9.6%, and 3.4% 

respectively) in an area with poor ventilation. Exposure measurements showed 

consistent values above 0.5% (8 hour time-weighted average) (40). Elevated levels 

of carbon dioxide are found in fermentation processes, as those in breweries and 

bakeries (2). 

High concentrations of carbon dioxide can be formed in closed spaces associ-

ated with the prolonged storage of organic material, e.g., silos and cargo holds. 

Carbon dioxide is formed when organic material decomposes via microbiological 

or autooxidative processes. Other gases can also be formed in these processes, 

such as carbon monoxide (CO), hydrogen sulphide (H2S), ammonia and other 

amines, and different hydrocarbons. What is formed and in which proportions 

depends on several factors, such as the type of organic material, temperature, 

humidity, size of the storage space and the amount of space filled, which micro-

organisms are present in the material, ventilation, etc. The repression of oxygen 

and the consumption of oxygen during the decomposition of the organic material 

leads to reduced oxygen levels and, in some cases, entirely anoxic conditions (11, 

50, 91, 92). In a study, carbon dioxide concentrations of between 0.5% and 15% 

and oxygen concentrations between 0% and 20.9% were reported in stairwells 

adjacent to the cargo hold in a ship transporting timber and wood chips. A strong 

negative correlation was found between carbon dioxide and oxygen levels and the 

slope of the regression line indicated that approximately 70% of the oxygen loss 
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was recovered as CO2 in the gas phase. Carbon monoxide concentrations were 

reported to be between 2 and 174 ppm (92). In addition to the transport of wood 

products, high levels of carbon dioxide have been reported in cargo space con-

taining onions (99) and fish (11). In the case of the latter, low levels of oxygen  

and high levels of hydrogen sulphide, ammonia and other amines were also 

reported. 

Buildings where high concentrations of carbon dioxide have been measured  

are also described, with particularly high levels in the basement area. For example, 

in a building built on top of a former coal mine, concentrations of approximately 

10% were measured in the crawl space. These measurements were carried out 

because the owners had repeatedly sought medical attention for various symptoms 

associated with periods spent in the basement and crawlspace. Prior investigations 

of possible causes revealed decreased oxygen levels in the crawl space (14%) 

which initiated the carbon dioxide measurements, as carbon dioxide was suspected 

to be the cause of this reduction (49). Even buildings in geothermal areas have 

been reported to have elevated carbon dioxide concentrations in basement areas 

(5), sometimes in combination with other gases such as H2S (20). In the village  

of Furnas, located in an old volcano crater in the Azores, elevated levels of carbon 

dioxide have been measured at floor level in several houses, particularly at ope-

nings for drainage or cracks in the floor. Levels as high as 10-30% were found in 

floor cupboards or other unventilated areas. Many bedrooms were located on the 

ground floor. In these rooms concentrations of approximately 1% carbon dioxide 

were found early in the morning at a height of around 1 metre, thus at the height 

where people slept (5). Before the measurements were conducted people living  

in Furnas were not aware of the of high carbon dioxide levels 

Tobacco smoke has been reported to contain 12.5% carbon dioxide in the pri-

mary smoke, smoke from the combustion of fuel gas approximately 8.8% and 

smoke from coal plants 13.7% (1). 

Recycling and disposal of carbon dioxide is being discussed as a possible means 

of reducing carbon dioxide emissions to the atmosphere, from the combustion of 

fossil fuels and renewable fuels in combined power and heating plants (46). Tran-

sport and storage of large amount of carbon dioxide can be expected to lead to 

leakage and emissions associated with accidents, and the need for accurate risk 

analysis has recently been expressed (23). 

Uptake, biotransformation, excretion  

Carbon dioxide is normally produced during cellular respiration (oxidative 

metabolism). The carbon dioxide formed diffuses freely through biological 

membranes and is transported with the blood to the lungs where it diffuses 

through the alveolo-capillary membrane to the alveoli and is then exhaled. This 

diffusion is rapid and takes place along a concentration gradient. Typically, carbon 

dioxide concentration in the venous blood is, when it reaches the alveoli, approxi-

mately 6% (PCO2 ~46 mm Hg) and the carbon dioxide concentration in the alveoli 
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is approximately 5% (PCO2 ~40 mm Hg). The arterial blood normally has the 

same carbon dioxide content as the air in the alveoli (25, 52). 

The carbon dioxide is transported dissolved directly in the blood (approximately 

5%), bound to proteins (primarily haemoglobin) in the form of carbamino groups 

(approximately 5%) and as hydrogen carbonate (approximately 90%). Hydrogen 

carbonate is formed when carbon dioxide reacts with water and forms carbonic 

acid, a weak acid (pKa = 6.1), which dissociates into hydrogen carbonate (bicarbo-

nate) and protons (hydrogen ions) in accordance with chemical equilibrium 

CO2 + H2O  ↔  H2CO3  ↔  H
+
 + HCO3

‒
 

The first step (the chemical equilibrium between carbon dioxide, water and carbo-

nic acid) is catalysed by the enzyme carbonic anhydrase, which has an extremely 

high activity and is found in large quantities in red blood cells (25, 52). 

In addition to transporting away carbon dioxide, the carbon dioxide/hydrogen 

carbonate system acts as a buffer system which maintains the acid-base balance  

in the body and stabilises the pH level, both in the short- and long-term. Normal 

serum pH ranges from 7.35 to 7.45
2
 and deviations from this range can be an 

indicator of a life-threatening condition in the acid-base and electrolyte balance. 

Chemoreceptors in the arteries and in the respiratory centre in the medulla oblong-

gata detect carbon dioxide in the blood and affect the respiratory centre that ad-

justs pulmonary ventilation and exhalation of carbon dioxide so that the balance  

is maintained (25, 52, 53, 67, 100). 

An increase in carbon dioxide in the air, will interfere with the elimination  

of endogenously produced carbon dioxide from the lungs and thus increase the 

carbon dioxide in the arterial blood (hypercapnia
2
 = carbon dioxide concentration 

in arterial blood >5,85%). As a result, the above equilibrium shifts to the right 

with an increase in hydrogen ion concentration and a pH decrease (respiratory 

acidosis
2
 = the blood's pH value below the normal value of 7.35-7.45). This is 

counteracted by increased pulmonary ventilation and the exhalation of carbon 

dioxide. Compensatory mechanisms are also activated in the kidneys so as to 

increase the excretion of hydrogen and chloride ions and the re-absorption of 

hydrogen carbonate and sodium. The effect on the breathing is instantaneous, 

while the effect on the kidneys is slower (10, 25, 53). 

Toxic and physiological effects 

In addition to a suffocating effect caused by the displacement and reduction  

of oxygen during moments of increased carbon dioxide concentration, carbon 

dioxide has been reported to cause both direct and indirect respiratory and cardio-

vascular effects. Many of the effects are mediated via the autonomic and central 

nervous systems and can be considered physiological adjustments (adaptations). 

They could be regarded as "non-adverse effects" in a short-term perspective, but 

                                                 
2
 The values of what can be considered as acidosis, hypercapnia and normal pH, vary slightly in 

different sources. In literature, the terms acidosis and hypercapnia are often used to describe 
small (within normal range) decreases in pH and increases in carbon dioxide in the blood. 
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may possibly affect disease processes at prolonged exposure. ACGIH have chosen 

to designate these effects as “metabolic stress” (2).  

Several studies indicate that it takes 3-5 days for the adaptation and compensa-

tion of plasma pH after exposure to 3% or higher carbon dioxide concentrations. 

Following lower exposure (≤2%) however, 2-3 weeks was required for compensa-

tion (75, 79). The author hypothesized that the rapid compensation occurs via 

renal regulation but compensation at low exposure levels of carbon dioxide is 

primarily due to a buffering capacity in osseous tissues.  

In order for carbon dioxide to cause suffocation by displacing oxygen in the air 

relatively high concentrations are required. An increase of carbon dioxide by, for 

example, 5%, results in an oxygen decrease of 1%, i.e., if the carbon dioxide level 

increases from 0.04 to 5.04% then the oxygen level decreases from 21 to 20% and 

the nitrogen content from 78 to 74% (36). 

A large number of not entirely consistent studies, both peer reviewed and non-

peer reviewed, have been published on the subject of how carbon dioxide concen-

trations in the air affect people. The inter-individual variation seems to be large. 

Table 2 gives a rough idea of which concentrations and exposure times result in 

acute effects on the lungs/breathing, blood circulation and CNS (22). When the 

carbon dioxide concentration in the inspired air is close to 7%, the elimination  

of carbon dioxide becomes difficult and, when the level exceeds approximately 

7%, there is a steep increase in carbon dioxide in the arterial blood, regardless of 

hyperventilation. This results in an accumulation of carbon dioxide which causes 

headache, CNS depression, confusion and ultimately coma and death (25).  

 

 
Table 2. Approximate effect levels in humans following short-term exposure to carbon 

dioxide (22). 
 

Carbon dioxide 

concentration (%) 

Time Effect 

 

2 several hours Headache, dyspnea upon mild exertion. 

3 1 hour Mild headache, sweating and dyspnea at rest. 

4-5 within a few 

minutes 

Headache, dizziness, increased blood pressure, 

uncomfortable dyspnea. 

6 1-2 minutes Hearing and visual disturbances. 

6 ≤16 min Headache, dyspnea. 

6 several hours Tremors. 

7-10 a few minutes Near unconsciousness, unconsciousness. 

7-10 1.5 minutes to  

1 hour  

Headache, increased heart rate, shortness of 

breath, dizziness, sweating, rapid breathing.  

>10-15 1 to several hours Dizziness, drowsiness, muscle twitching, 

unconsciousness. 

17-30 within 1 minute Loss of controlled and purposeful activity, 

unconsciousness, convulsions, coma, death. 
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The focus in the following summary is on studies that describe the effects of 

carbon dioxide at concentrations of 3% and below. 

Human data 

Short-term exposure 

Deaths associated with carbon dioxide exposure have been reported in connection 

with the handling of carbon dioxide (e.g., fire extinguishers or dry ice) in small 

confined spaces (54). According to the EPA, 51 incidents with a total of 145 

carbon dioxide-related injuries and 72 fatalities were reported internationally 

between 1975-2000 (22), all of them associated with maintenance and accidents 

with carbon dioxide-based fire extinguishing systems (also see ref. 19, 28). 

In the case of storage and transport of organic material in confined spaces, 

several accidents have occurred in these areas as well as in adjoining rooms, 

sometimes with deadly outcome. This has been reported in conjunction with  

the handling of organic material (e.g., wood chips and fish), on and during the 

unloading of ships, during cleaning and maintenance of wine vats and cleaning of 

sewers and sewage treatment plants, as well as during the production of silage (11, 

54, 91, 92, 99). Several toxic substances can be formed in these environments, 

such as carbon dioxide, carbon monoxide, hydrogen sulphide and ammonia, and 

these, in combination with lowered level of oxygen caused by the displacement 

and consumption of oxygen, result in a potentially life-threatening atmosphere. 

The accidents and fatalities reported were most likely due to a combination of  

two or more of these factors (11, 54, 91, 92). The formation of substances in each 

environment is dependent on several different factors, see above under the heading 

Occurrence Application Exposure. 

In some of natural disasters, deaths have been attributed to carbon dioxide 

exposure. At Lake Nyos in Cameroon, it was estimated that 10
9
 m

3
 of volcanic 

gases were released from the volcanic lake in 1986, resulting in the deaths of 

1,700 people. Similar but smaller scale emissions have occurred at Lake Monoun 

in Cameroon with a fatality rate of 34, as well as in Dieng, Java, where 142 

fatalities were recorded (52). 

Carbon dioxide has a potent effect on respiration, with both tidal volume and 

respiratory rate being stimulated. It should be noted that data from experiments 

with concentrations of 7-10% are uncertain due to the limited time periods that  

are possible when studying subjects at these high concentrations (51). 

In a study, 10 test subjects were exposed to 1.1% carbon dioxide and 5 subjects 

to 0.8%, for a period of 30 minutes (55). The minute volume increased by 18% 

and 10%, respectively, and the alveolar carbon dioxide concentration increased  

by 0.2% and 0.17%, respectively, compared to prior exposure. 

In a figure, Guillerm & Radziszewski summarise acute pH changes in four 

different experiments, at exposure levels of 2%, 2.8%, 3.7% and 4.2% carbon 

dioxide. After two hours of exposure, the ΔpH in the arterial blood was 0.00,  
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-0,02, -0.04 and -0.06, respectively, and, after 24 hours, -0.01, -0.035, -0.03 and  

-0.04 (30). 

Eight fit young men were exposed to 0% (control), 1%, 2%, 3% and 4% carbon 

dioxide at rest and during exercise (1/2 and 2/3 of the maximal oxygen uptake 

ability as well as during maximal oxygen uptake on an exercise bike). The indi-

viduals were exposed for 15 minutes prior to and during the exercise, which lasted 

30 minutes. The respiratory minute volume increased as the exposure and exercise 

increased, and the arterial pH underwent a linear decrease (at 4% carbon dioxide 

exposure with 0.034 pH units at rest and 0.102 pH units during exercise at 2/3 of 

the maximal oxygen uptake ability), when compared to the control level. During 

exercise several of the subjects experienced dyspnea and pains in the intercostal 

muscles at the two highest exposure levels. At 4% carbon dioxide, six out of seven 

test subjects got a headache. The headache usually appeared at the end of a session 

and dissipated within one hour after exposure (59). 

Systemic effects have been reported such as increased heart rate, systolic and 

diastolic blood pressure, mean arterial blood pressure and stroke volume, as well 

as an increased variability in the QT interval on the ECG (determination with a  

12 lead ECG as a measure of regional repolarisation). Also arterial blood pressure 

and vascular resistance in the lungs increased. These effects were experienced by 

the test subjects after 30 minutes of exposure. The gas mixture was adjusted to 

give an end-tidal (occurring at the end of exhalation of a normal tidal volume) 

carbon dioxide concentration of 7 kPa (approximately 7%, versus normally 5%). 

Respiratory rate increased 62% during exposure (47). An end-tidal carbon dioxide 

concentration of 7 kPa (approximately 7%) and a respiratory rate increase of 62% 

suggest that the inhaled concentration of carbon dioxide was about 6%. 

In a study, test subjects (16 individuals who participated in 72 experiments)  

re-inhaled exhaled air (the oxygen level was maintained at 30%). After 17-32 

minutes, the carbon dioxide concentration was 5.7-9.3%. This showed that 1-8% 

carbon dioxide resulted in an increase in systolic and diastolic blood pressure and 

an increased heart rate. A slight increase in pulse was noted already at 1-2% (3-6 

minutes) and in blood pressure at 2-3% (6-9 minutes), but an obvious effect 

(greater than 10% difference with respect to control values) was first noted at 

exposure levels of 5% carbon dioxide (15 minutes). At 1% (3 min), pulmonary 

ventilation increased by 32% and subsequently increased steadily until the end of 

the experiment (8% carbon dioxide). At 5%, the increase was 308%. At this 5% 

level, several individuals got a headache, sometimes intense, which disappeared 

within 20 minutes after exposure. Great intra-individual and inter-individual 

differences were noted in the study (80). 

The effect of exposure to 2.5% and 3.5% carbon dioxide for 15-20 minutes  

on cerebral blood vessels (as measured by inert gas) was examined in 12 and 11 

individuals, respectively. A weak/absence of effect was recorded at 2.5%. At 3.5% 

carbon dioxide, a 10% increase was shown in cerebral blood flow but no increase 

in blood pressure was noted. Deeper breathing and increased respiratory rate with 

mild dyspnea were also commonly noted within 10-15 minutes of exposure. The 
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authors' conclusion was that the threshold concentration for an increase in the 

cerebral blood flow is above 2.5% carbon dioxide in the air (0.59% increase in 

arterial carbon dioxide concentration) (66).  

In three healthy test subjects, a significant impairment of vision was noted 

(coherent motion perception) following exposure to 2.5% carbon dioxide over  

1 hour (102). The authors commented on the few subjects examined in the study, 

that in studies of the basic functions of the nervous system one can assume small 

inter-individual variation and therefore it is preferable to collect a large amount  

of data from a relatively small number of subjects. The variation between the test 

subjects was small in the study and no learning effect was noted (102). In another 

study by the same research group (90) and with the same exposure level and time 

frame, decrease in stereoacuity (deterioration of stereoscopic depth perception) 

was recorded in the three test subjects. In both studies, the effects were reversible, 

and normal vision had returned within two hours after exposure (90, 102). In an 

older study, a deterioration of vision was noted in an intensity discrimination test 

involving exposure to 6% carbon dioxide for 3 minutes (27). 

In an old study (26) the effects on hearing, measured with an audiometer, were 

investigated using 6 test subjects. The exposure levels were between 2% and 8.4% 

carbon dioxide and the exposure time frame was between 5 and 22 minutes. Slight 

hearing impairment was recorded in one subject at 3.5% and in others at approxi-

mately 4%. The hearing impairment worsened with increasing exposure. The im-

pairment was reversible and, in less than 10 minutes following exposure, hearing 

had returned to normal and, in some cases, even slight short-term improvements 

were measured. At 2.5% carbon dioxide, no hearing impairment was noted, but a 

significant effect on respiratory functions was recorded (no further details given). 

Short-term memory and logical reasoning were tested in 10 healthy test subjects 

(3 women and 7 men) during exposure to 0% (control), 4.5%, 5.5%, 6.5% and 

7.5% carbon dioxide over 5-20 minutes via a mouthpiece (71). At the two highest 

exposure levels, a significant increase in the time it took to solve logical problems 

was noted after 5 and 15 minutes´ exposure, but the answers had the same degree 

of accuracy as those given during the control exposure. No significant difference 

was found between men and women nor was there any effect on short-term me-

mory. No effects were seen at the two lowest exposure levels. 

In 8 out of 14 patients who had been diagnosed with a panic anxiety disorder 

(with or without agoraphobia), a 15 minute exposure to 5% carbon dioxide 

induced a panic attack. Patients who had previously suffered from more frequent 

panic attacks were those who tended to exhibit a more severe reaction to the 

carbon dioxide exposure. Placebo exposures with air did not result in any panic 

attacks in the patients. In experiments where 8 healthy test subjects were exposed 

to 5% and 7.5% carbon dioxide, 3 experienced panic attacks at 7.5%, but none at 

5% (101). Those experiments with healthy test subjects revealed a dose-dependent 

increase in anxiety, somatic symptoms and plasma cortisol levels. A higher in-

crease in anxiety and somatic symptoms were seen in the patients exposed to 5% 

carbon dioxide than in the healthy subjects. The plasma cortisol levels were also 
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significantly higher at 5% carbon dioxide exposure in the sub-group of 8 patients 

that had reacted with panic attacks than those given placebo and the healthy 

subjects (101). 

A large number of different models of respiratory protective devices, from 

heavy portable breathing apparatuses (e.g. self-contained breathing apparatus used 

in firefighting tasks) to simple surgical masks, are used to protect people from 

harmful substances and particles in the work environment. All types of respiratory 

protective devices in some way affect the user (56) and result in various types of 

physiological/psychological stress, including increased expiratory and inspiratory 

resistance, an increase in dead space, stress due to elevated temperature and humi-

dity, visual field limitation and impaired ability to communicate. The physio-

logical/psychological effects that have been reported to occur during the use of 

respiratory protective devices include changes in breathing patterns, increased 

respiratory work, changes in heart rate and cardiac output, changes in tidal volume 

as well as respiratory rate and minute volume, increased inspiration/expiration 

time, changes in oxygen consumption and carbon dioxide production, increased 

anxiety and subjective discomfort and reduced maximal physical work capacity  

(4, 33, 34, 42, 56, 61, 65). These unwanted effects are often accentuated with 

increased exercise (56). However, it is not possible to determine to what extent  

an increase in carbon dioxide concentration, due to increased dead space and/or 

hypoventilation, contributes to inducing these effects. 

The use of respiratory protective devices increases the dead space and it has 

been shown that an increase in the dead space results in an increase in the end-

tidal carbon dioxide concentration (41). One study reports that the use of a di-

sposable mask (N95) for up to one hour results in an increased carbon dioxide 

concentration in the blood of approximately 0.15% during moderate exercises,  

but no effects were noted on, for example, respiratory minute volume or heart rate. 

Respirator fit testing showed a leakage of ≤1% (68). Elevation of arterial carbon 

dioxide concentrations of the same magnitude has also been reported with the  

use of welding helmets (98). 

Long-term exposure 

Long-term studies have been conducted in order to define harmless carbon dioxide 

levels for living in submarines or space capsules, wherein subjects were exposed 

twenty-four hours a day. Whether the results from these studies with continuous 

exposure can be converted to an 8-hour exposure a day is not known. 

In a joint project between NASA, ESA and DARA (National Aeronautics and 

Space Administration, the European Space Agency, Deutsche Agentur für Raum-

fahrtangelegenheiten), the effects of exposure to 0.7% and 1.2% carbon dioxide 

were investigated over a period of 23 days in an exposure chamber. In the first 

study, four healthy young men were exposed to 0.7% carbon dioxide. The men 

were sealed into the chamber for a total of 26 days. During the first two days, base 

data were collected from before the exposure was initiated and, on the final day, 

measurements were made when the exposure had ended. Some base data were 
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also collected before the men entered the chamber. In the second study, 3 months 

later, the experiment was repeated with exactly the same design and the same  

four men that had been exposed in the first study. However, this time the carbon 

dioxide level was increased to 1.2% (97). Several different examinations were 

performed, including studies on pulmonary function, physical and mental per-

formance, cerebral blood flow and autoregulation of cerebral vasculature, calcium 

metabolism and circadian rhythm and sleep, resulting in several publications (18, 

21, 31, 32, 39, 58, 70, 85, 88). These 9 studies are briefly described below. 

Sexton et al. investigated different pulmonary function parameters (85). No 

significant effects were noted at the group level in spirometry, lung volumes, dead 

space, closing volume or gas mixing in the lungs. However, a gradual reduction in 

the diffusion capacity for carbon monoxide was consistently noted (measured with 

the "single and multi-breath wash-out" method) as well as a decrease in cardiac 

output (measured with the "inert gas technique") during the exposure period. The 

size and time frame of the changes were not dose-dependent, but roughly the same 

regardless of the level of exposure (0.7% or 1.2% carbon dioxide) as well as 

proving reversible (the day after the end of exposure). The authors concluded that 

small changes can occur in gas exchange in the lungs, but this was not associated 

with any adverse health effects, and that the risk of pathophysiological effects on 

pulmonary function at these exposure levels and time periods is low (85). 

Manzey et al. examined the four test subjects' cognitive and visuo-motor 

performance (58). The test battery included grammatical reasoning, memory 

search and unstable tracking, as well as a subjective assessment of alertness  

and mood. Significantly poorer results were observed at both exposure levels  

in tracking performance. In the case of exposure to 0.7% carbon dioxide, the 

course of the deterioration was such that it could be attributed to the effects of 

confinement in an exposure chamber. At 1.2%, however, the time frame for the 

deterioration was such that the effect was related to the carbon dioxide exposure  

in every case during the first half of the exposure time, and it covaried with 

decreased subjective alertness. A control group consisted of 4 subjects who 

underwent the same battery of tests during the same time period, but who were  

not exposed to carbon dioxide, nor confined. The authors' conclusion was that 

prolonged exposure to 1.2% carbon dioxide results in a deterioration in visuo-

motor performance and alertness, but that the level of deterioration does not 

appear to be of operational relevance. 

Drummer et al. examined the effects on calcium metabolism (18). During  

their time in the chamber, the test subjects received a well-controlled diet with  

a constant calcium and phosphate intake, enriched in vitamin D. The serum level 

of calcium and urinary and faecal calcium excretion were measured. The data 

measured during exposure to 0.7% was used in this investigation as control. 

Serum calcium was significantly lower at the higher exposure level (1.2%) 

compared with the lower (0.7%), at 7 and 23 days of exposure. Measurement  

of biomarkers of bone metabolism (alkaline phosphatase, carboxyterminal 

procollagen type I propeptide (CPIP) in serum and deoxypyridinoline (DPD)  
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in urine) indicated reduced bone formation and stimulation of bone resorption at 

exposure to 1.2% carbon dioxide compared with 0.7% (18). 

Cerebral blood flow increased by as much as 35% during the first three days of 

exposure at both 0.7% and 1.2% carbon dioxide, when compared with the control 

measurements. Hereafter, the blood flow continually decreased to the control level 

towards the end of the exposure period. Cerebral blood flow induced by visual 

stimulus also increased during both exposure levels, while cerebral vascular auto-

regulation was not affected. Headaches were reported during the start of the ex-

posure to 1.2% carbon dioxide (88). 

When exposed to 1.2%, the respiratory minute volume increased by 5% after 

two days of exposure in relation to the control period, and after 5 days signify-

cantly by 22%. Hereafter, the minute volume decreased continually, so that it had 

almost reached the control level when the exposure ended. Changes in the minute 

volume at the 0.7% exposure could not be assessed, since too few measurements 

were made. The end-tidal carbon dioxide concentration increased by 0.9% (1.2% 

exposure) and 1.0% (0.7% exposure) after two days of exposure. From day 5 until 

the end of the exposure period, the increase was somewhat lower. The authors 

stress that, during the control measurements prior to the commencement of the 

exposure period, the respiratory minute volume was somewhat higher (approxi-

mately 11 l/min for both exposure experiments) than that which was previously 

documented. This may have led to the increase in the minute volume being 

underestimated and the increase of the end-tidal carbon dioxide concentration 

being overestimated in the study (21). 

During exercise (30 and 80 W), the minute and tidal volume increased signi-

ficantly more during both exposure levels when compared with the increase 

measured during the control period. No effect on oxygen uptake ability related  

to exposure was noted (37). 

In the study by Gundel et al., heart and respiratory rate were measured during 

deep sleep ("slow wave sleep", SWS) (32). A gradual decrease in respiratory rate 

was observed over time (exposure to 1.2% carbon dioxide) and an increased heart 

rate after 2 days of exposure (both exposure levels), which then decreased gra-

dually. The decrease in heart rate never plateaued, but continued to decrease until 

the end of the exposure period. In the case of all four test subjects, a decrease in 

arousal was noted (during sleep stage 2 and REM sleep) with an increased carbon 

dioxide concentration, and two subjects had a reduced occurrence of apnea. The 

authors conclude that exposure to carbon dioxide up to 1.2% does not have any 

dramatic effects on the cardio-respiratory system during sleep, but that negative 

health effects cannot be excluded with regard to longer periods of exposure. 

No effects on the circadian rhythm (body temperature, sleep-wake cycle, sub-

jective fatigue, activity) or sleep (quality, quantity or pattern) were observed that 

could be attributed to carbon dioxide exposure (31, 70). 

The results of the NASA/ESA/DARA project are summarised in an overview 

article by Frey et al. (24). 
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Sinclair et al. (87) examined how acute (1 hour) or prolonged (15-20 days) 

exposure to 3% carbon dioxide affected 4 healthy young men during different 

levels of exercise (none, low, moderate and heavy exercise; heart rate approxi-

mately 55, 95, 135 and 158 beats/minute, respectively) in an exposure chamber.  

As a control, the test subjects breathed normal air. The difference in respiratory 

minute volume between air and carbon dioxide exposure more than doubled 

during the low level exercise compared to at rest, and was approximately 15 l/min 

lower in air. This difference remained relatively constant for the two higher levels 

of exercise. Both tidal volume and respiratory rate increased with an increase in 

exercise, but the prolonged exposure gave a lower respiratory rate and a higher 

tidal volume than the short-term exposure. Lower arterial pH levels were mea-

sured during carbon dioxide exposure and decreased further during exercise. In  

the case of heavy work, however, the pH levels were the same regardless of the 

carbon dioxide exposure, which was explained by a reduction in induced meta-

bolic acidosis during carbon dioxide exposure compared with air. Mild headaches 

and awareness of increased respiratory effort were sporadically reported by the  

test subjects in connection with exercise and exposure to carbon dioxide (87). 

In an exposure chamber, 6 healthy test subjects were examined over a total of 

46 days: 8 days prior to exposure (control period), 30 days during exposure to 2% 

carbon dioxide and 8 days following exposure (30). The minute volume increased 

rapidly and, after 2 hours of exposure it was 60% higher than before exposure. 

This gradually decreased so that it reached an average increase level of 42% 

during the second half of the exposure period. The increase in minute volume was 

largely due to an increase in tidal volume. No difference was observed between 

the carbon dioxide concentration in the alveoli and the arterial blood during the 

control period, nor during or following the exposure period. During exposure, 

both increased by 0.33% (2.5 torr) and the increase was relatively constant during 

the entire exposure period. The physiological dead space increased by 8% without 

causing any alveolar-arterial difference in the carbon dioxide concentration, 

suggesting that the increase in carbon dioxide concentration does not affect gas 

exchange in the lung qualitatively. At the beginning of the exposure, a slight pH 

decrease (ΔpH~0,01) was noted, which was significant day 3. No change in the 

plasma cortisol levels or electrolytes (Na, Ca, Mg, P) were observed, with the 

exception of a small decrease in potassium concentration. Oxygen uptake and 

carbon dioxide excretion increased by approximately 10% due to the increased 

respiratory work during hyperventilation. According to the authors, no differences 

were observed in the ECG, EEG, heart rate, blood pressure, psychomotor test or 

biorhythms, which could be attributed to the exposure. After the exposure was 

completed, the minute volume quickly returned to the control levels and the 

alveolar carbon dioxide concentration decreased after approximately one day (30). 

At 1% carbon dioxide exposure ("chronic hypercapnia", time frame details not 

stated), the minute volume increased by 10% and the alveolar carbon dioxide con-

centration increased by 0.33% (Guillerm et al., unpublished data cited by Guillerm 

& Radziszewski 1979 (30)). Exposure to 0.5% carbon dioxide resulted in an in-
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significant increase in minute volume and an increase in alveolar carbon dioxide 

concentration of 0.26% (personal communication, Davis 1976, cited by Guillerm 

& Radziszewski 1979 (30)). In another unpublished study described in ref. (30), 

headaches and abdominal pains were reported during exposure to 3.6% carbon 

dioxide (which equals 1% increase in alveolar carbon dioxide concentration). 

In a submarine used as an exposure chamber, 21 healthy test subjects were 

exposed to 1.5% carbon dioxide over 42 days, as well as to air for 9 days (control 

period) prior to the exposure period and 9 days after the carbon dioxide exposure 

(recovery period) (72, 73, 74). The minute volume increased by 39% during day 1-

23 ("uncompensated respiratory acidosis"), which then decreased to 34% during 

day 24-42 ("compensated respiratory acidosis"). Respiratory acclimatisation to 

carbon dioxide exposure included a continuous increase of the tidal-volume, while 

respiratory rate decreased following an initial increase. After 40 days of exposure, 

the respiratory response (minute volume) decreased during a short-term exposure 

(15 minutes) to 5% carbon dioxide, compared to during the control period. The 

effect was observed only in those individuals (n=14) that responded most (>20 

l/min) during the control period. Venous plasma calcium concentration and pH 

were reduced (ΔpH~0.06) during the uncompensated phase but return to normal 

levels during the compensated phase; alveolar carbon dioxide concentration was 

increased by approximately 0.33% (2.5 torr) for the entire carbon dioxide ex-

posure period as compared with the control period. The physiological dead space 

increased by approximately 60% during exposure and the arterial carbon dioxide 

concentration was higher than the alveolar level, while the converse was true for 

the oxygen level, suggesting the development of an alveolar dead space. Accor-

ding to the authors, this indicates a deteriorated gas exchange in the lungs and it 

was calculated that, towards the end of the exposure period, 10% (compared to the 

normal 3%) of the alveoli were poorly perfused and 9% were poorly ventilated. 

The authors pointed out that these observed changes in the arterial-alveolar carbon 

dioxide and oxygen gradients are not dramatic, but that they correspond in terms 

of size to what is seen when a person rises from a lying position to standing. 

During the recovery period, the minute volume was somewhat decreased but the 

alveolar carbon dioxide concentration was still elevated, suggesting a release of 

stored carbon dioxide from, for example, the osseous tissue (72, 73, 74). 

In an overview article, several physiological studies (13 in total) aboard nuclear 

submarines on patrol are summarised (75). The average concentration of carbon 

dioxide was between 0.7% and 1.0% and the exposure period was 50-60 days. The 

respiratory minute volume increased by 40-60% due to increased tidal volume, 

and the physiological dead space increased by 60%. Studies of acid-base balance 

revealed cyclical changes in blood pH levels and bicarbonate concentration, with 

approximately 20 day intervals. Both decreased during the first 17 days after 

which they increased in the days that followed, and decreased again after 40 days. 

Plasma levels of calcium were also shown in several studies to follow approxi-

mately the same cycle. The author argues that these respiratory changes and 

changes in acid-base balance were fairly congruent with the results of a 42 day 
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"laboratory simulated" exposure to 1.5% carbon dioxide (72, 73, 74), see above, 

and that these cycles are not seen with carbon dioxide exposures above 1.5% (75, 

79). The explanation could be that the renal regulation of respiratory acidosis 

(reabsorption of bicarbonate) does not fully take effect until exposure to carbon 

dioxide reaches concentrations of 3% and higher, and the authors present the 

hypothesis that these cyclical changes in acid-base balance are caused by cyclical 

uptake and release of carbon dioxide from bone tissue (75, 79). 

Several long-term studies on humans, both experimental chamber studies and in 

submarines on patrol, have shown a dramatic decrease (50%) of calcium excretion 

in urine only a day/few days after the start of exposure to slightly elevated (0.5-

1.5%) carbon dioxide levels. Davies & Morris have summarised these studies in  

a review article from 1979 (12). Referring to an unpublished report, Davies writes 

in a later publication from 1985 that he considers the observed decrease in calcium 

excretion to be largely artifactual, and due to crystal formation in 24-hour urine 

collections stored under hypercapnic conditions (13). 

An effect on calcium levels in plasma and urine has been reported (79) and a 

connection between the absorption of carbon dioxide in bone, reduced calcium 

levels and osteoporosis has been discussed (see Animal data). These studies have 

been referred to in later studies involving chronic obstructive pulmonary disease 

(COPD) patients with osteoporosis. The fact that many COPD patients retain 

carbon dioxide and have elevated levels of carbon dioxide in their blood is pre-

sented as one of several possible explanations for their osteoporosis (14, 16). At 

least one study showed a correlation between the carbon dioxide concentration in 

their blood and osteoporosis (16), but another did not (48). In a more recent study 

on submarine personnel (57), which also refers to Schaefer's hypothesis, reduced 

bone strength was observed (as measured by acoustic velocity in the tibia which, 

according to the authors, reflects "bone strength") after 30 days under water with  

a carbon dioxide concentration of 0.8-1.2%. Former strength was regained after  

6 months on land. In addition to the increased level of carbon dioxide as a cause, a 

lack of sunlight is also mentioned, as well as limited physical mobility, nutritional 

factors and high coffee consumption.  

An illness such as COPD can give rise to an accumulation of carbon dioxide in 

the body despite normal levels in the inspired air, and the negative effects of this 

have been discussed in some studies. For example, it was found in a cell study that 

carbon dioxide inhibits IL-6 and TNF-alpha expression, and reduces the phago-

cytic activity of macrophages. The authors present the hypothesis that hypercapnia 

in COPD patients can reduce their resistance to pulmonary infections (96). 

It has been hypothesized that there is a connection between prolonged exposure 

to slightly elevated levels of carbon dioxide and kidney stones in the ureters, as 

well as infections of the upper respiratory tract (75, 60, 93). A point of departure 

for this hypothesis is, among other things, that the occurrence among submarine 

personnel of infections in the upper respiratory tract and kidney stones was 80 

cases/1000 individuals and 0.007 cases/1000 man-days, respectively, from 1963-

1967. 60% of the days in the underwater environment showed carbon dioxide 
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concentrations of over 1%. Subsequently, from 1968-1973, the levels were higher 

than 1% for less than 20% of the days, and the incidences were lower: 30 cases per 

1000 individuals and 0.005 (a level equivalent to that of the normal population) 

cases per 1000 man-days, respectively (93). 

Animal and in vitro data 

Direct carbon dioxide-dependant toxic effects, even without a hypoxic effect, are 

indicated by a 20% oxygen and 80% carbon dioxide mix, which quickly leads to 

respiratory failure within 1 minute in exposed dogs and circulatory collapse within 

a few of minutes (39). A 50% oxygen/50% carbon dioxide mix also leads to de-

creased respiratory movements, pauses in breathing and death after approximately 

1.5 hours, following an initial acute respiratory increase of 1-2 minutes (39).  

Two weeks exposure to 8% and 12% carbon dioxide affected the expression of 

acid-base transporters in the heart, kidneys and brain in mice. No differences were 

detected for five of the examined transporters, while the increased expression of 

three acid extruders (NHE1, NBCe1, NBCn1) and reduced expression of an acid 

loader protein (AE3) were reported. Weight loss was observed in both adult and 

neonatal mice exposed to 12% (7% and 15% weight reduction, respectively, 

compared to control animals). Exposure to 8% gave no weight reduction (43). 

Mice were exposed to 0%, 5%, 10% or 15% carbon dioxide (with a constant 

oxygen level of 21%) for 1 hour. Four hours after exposure, lung cells were 

isolated and a number of proinflammatory cytokines were analysed. An induction 

and increased secretion of cytokines (RANTES, MIP-1α and β, MIP-2, IP-10, 

MCP-1, TCA-3 and IL-6) were observed in cells isolated from mice exposed to 

10% and 15% carbon dioxide. This presumably occurs via the activation of a 

phosphatase (PP2A) which in turn activates signalling pathways mediated by NF-

кB. The results indicate the presence of a threshold effect, and that levels above 

5% carbon dioxide (corresponding to the normal concentration in the alveoli) are 

required to induce a proinflammatory/inflammatory response (1). Exposure of cell 

lines to carbon dioxide at a constant oxygen level (21% O2) induced chemokines 

involved in the immune response. MCP-1 and proinflammatory cytokines (e.g. IL-

8) were also induced. Exposure to 5% carbon dioxide for 48 hours had no effect 

(which corresponds to the normal concentration in the alveoli and is also the 

concentration normally used in cell cultivation), while concentrations above  

10% caused a dose-dependent induction (1). 

Recently published data from the same research group indicates that carbon 

dioxide (approximately 12.5%) in cigarette smoke causes inflammation of the 

lung mucosa in mice, and it has been suggested that carbon dioxide in the smoke 

is a major cause of the smoke's proinflammatory/inflammatory effect (82).  

In experiments on guinea pigs (63), the animals were subjected to continuous 

(24 hours a day) exposure to 1.5% and 3% carbon dioxide for 42 days and up to  

6 months (only 1.5% carbon dioxide). On histological examination of the lungs, 

hyaline membranes and atelectasis were observed in the group exposed to 3%. 

Incidences were higher at the beginning ("uncompensated respiratory acidosis") 
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than towards the end of the exposure ("compensated respiratory acidosis"). At 

exposure to 15% carbon dioxide, incidences at the beginning of the exposure  

were higher. The authors reached the conclusion that the induction of hyaline 

membranes is a non-specific effect of decreased pH induced by carbon dioxide 

rather than a specific effect of carbon dioxide. When exposed to 1.5%, some of the 

animals exhibited atelectasis but no hyaline membranes − 1 out of 2 animals after 

23 days, 2 out of 6 animals after 42 days and 3 out of 4 animals after 6 months of 

exposure. In contrast to the guinea pigs, neither hyaline membranes nor atelectasis 

were observed in rats exposed to up to 50% carbon dioxide. 

Exposure of female mice to 3% carbon dioxide for 5 hours/day, or 12 hours/day, 

resulted in effects on the olfactory organ, both behavioural (increased repulsion to 

the smell of predators) and histological/immunohistochemical (increased number 

of cells and decreased thickness of the olfactory neuroepithelium/increased num-

ber of olfactory neurons and reduced number of mitoses in basal cells), after 2 and 

4 weeks. Rodents have been reported to detect carbon dioxide concentrations of 

~0,5% and it has also been shown that carbon dioxide concentrations in rat holes 

are normally approximately 1.4%, which has been cited as an indication that 

rodents have a high carbon dioxide tolerance (8). 

Rats and guinea pigs that underwent continuous exposure to 1.5% carbon 

dioxide for 91 days and 42 days, respectively, showed morphological changes in 

their kidneys in the form of an increased incidence of focal calcification, primarily 

in the tubules of the renal cortex. The incidences increased with the exposure time 

and reached 100% in rats by the end of the exposure periods and 66% in guinea 

pigs (5-6 animals were examined at each time point). No calcification was ob-

served in the control group (5 animals were examined at each time point). Guinea 

pigs were also subjected to continuous exposure to 1% carbon dioxide for 6 

weeks. An increased carbon dioxide concentration in the arterial blood and a 

decrease in pH and bicarbonate concentration were observed during the entire 

exposure period. After one week of exposure, a significant reduction in calcium 

level was noted in the bone, followed by an increase to normal levels after 3 

weeks, and a subsequent larger reduction after 6 weeks. The reverse was true for 

the calcium level in plasma. Phosphate concentrations in bone and plasma showed 

the same changes as calcium. The calcium level in the kidneys increased slightly 

after one week and then continued to increase (after 3 weeks the level was 27% 

higher in the exposed animals). No major changes were noted in the control 

animals (77, 79). 

In guinea pigs subjected to continuous exposure to 1% carbon dioxide for up  

to 6 weeks, an increase in carbon dioxide concentration was observed with an 

average of 0.5%, as well as a decrease in pH compared to the control animals. 

Electron microscopic analyses of lung tissue showed no changes after 21 days  

of exposure. After 28 days, changes were observed, in particular a hypertrophy  

of alveolar type II cells, and an increase in the size and number of osmiophilic 

lamellar bodies in these cells. Clusters of type II cells were observed in exposed 

animals, but not in control animals. Corresponding changes were also noted after 
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six weeks of exposure. In guinea pigs exposed for 4 weeks to 1% carbon dioxide, 

the changes persisted after a 2 as well as 4 week recovery period (15, 79). 

In a follow-up study, guinea pigs were subjected to continuous exposure to 

0.5% carbon dioxide for up to 8 weeks (6 exposed and 4 control animals were 

examined at each time point). An increase in arterial carbon dioxide by an average 

of approximately 0.3% was observed, as well as a decrease of pH during exposure, 

compared to control animals. After 8 weeks of exposure, a significant increase of 

calcium in the plasma and kidneys was noted, and a non-significant decrease in 

bone tissue. Following an 8 week recovery period, the concentrations had returned 

to normal. No ultrastructural changes in type II cells were seen in the lungs (78, 

79). The author points out that the guinea pigs used in the study are more sensitive 

than rats with regard to physiological and histopathological effects, and a refe-

rence is made to an unpublished report. An abstract, by partly the same authors, 

states that even 0.3% carbon dioxide causes elevated calcium levels in the kidneys 

of guinea pigs after 13 weeks of continuous exposure. The increase was reversible 

(86). 

Mutagenicity Carcinogenicity  

No data on mutagenic or carcinogenic effects of carbon dioxide have been 

found in the literature. 

Effects on reproduction 

The testicles of rats exposed to 2.5%, 5.0% and 10.0% carbon dioxide for 1, 2, 4 

and 8 hours were histologically examined and compared with those of a control 

group. Degenerative changes were observed after 4 hours at all exposure levels. 

Consistent findings at 2.5% exposure revealed fragments of spermatids and Sertoli 

cells in the lumen of seminiferous tubules and degenerative changes of the epi-

thelium. No mature spermatids were observed in the tubules. Sloughing of tubular 

components and lack of luminal definition were observed at 5%, and all tubules 

lacked spermatids in advanced stages of spermatogenesis. The changes were more 

pronounced at 10%. The histological picture did not change significantly after  

8 hours of exposure. Testicles examined 36 hours after exposure had a normal 

histological appearance. The authors discussed the possibility that carbon dioxide 

regulates the release of spermatozoa from Sertoli cells, and that this may explain 

the results (95). 

Female rats exposed once to 6% carbon dioxide for 24 hours, between day 5 

and 21 of pregnancy, gave birth to young with a significantly higher birth weight 

(18.9%), more females than males and more young with skeletal malformations 

compared with the control group. Also, several heart malformations, including 

septal defects, overriding aorta, partial transposition of the great vessels and 

stenosis, were seen in the exposed group. The type of heart malformation de-

pended on which days of the gestation period the exposure occurred (35). This 

study is difficult to assess, as potential maternal toxicity is not commented on. 



33 

An increased degree of skeletal malformations in rabbits has been reported, 

following exposure to 10-13% carbon dioxide (29). Weight loss and changes in 

the lungs of rabbit foetuses have also been reported after exposure to 8% carbon 

dioxide for 8 hours a day, from day 21-28 of pregnancy (62). 

Dose-effect/dose-response relationships 

Dose-effect/dose-response relationships observed with exposure to carbon  

dioxide in humans are summarised in Table 3 and in animals in Table 4. The 

human studies presented were conducted on healthy test subjects or selected 

groups (submarine crews), and one can expect that adverse effects may occur  

at lower levels in individuals with moderate respiratory insufficiency or heart 

disease. In the prolonged studies presented, continuous (24 hours a day) exposure 

was employed. How the results from these studies can be converted to an 8 hour 

exposure time frame is unclear. It should also be noted that the use of various 

types of respiratory protective devices increases the dead space. This can increase 

the carbon dioxide concentration in the inspired air and further increase the 

concentration in the inspired air in an environment with elevated carbon dioxide 

levels. 

When humans are exposed to slightly elevated levels of carbon dioxide (≤1.5%), 

a continuous increase in respiratory minute volume is observed, beginning just 

above 0.5%. In the case of, for example, prolonged exposure to 1.5%, the increase 

was 38% (72, 73) and for short-term exposure 10%, and 32% during exposure to 

0.8% and 1% carbon dioxide respectively (55, 80), see Table 3. The increase in 

the end-tidal carbon dioxide level (approximately equal to the arterial carbon 

dioxide level) remains relatively constant, about 0.2-0.3% in the exposure interval 

0.5-2% carbon dioxide, as well as a small pH drop in the blood of approximately 

0.01-0.06 pH units, see Table 3. Whether these effects should be regarded as 

physiological adjustments (adaptations) without negative health consequences  

is unclear. 

Acute visual disorders have been reported in test subjects after approximately  

1 hour of exposure to 2.5% carbon dioxide (90, 102). Reversible hearing impair-

ment was observed at 3.5-4% carbon dioxide, but not at 2.5%, during exposures 

lasting 5-22 minutes (26). 

At an exposure level of 0.7% carbon dioxide over 3 days, an increased cerebral 

blood flow has been reported (88) and after 23 days of exposure, a reduction of  

the diffusion capacity for carbon monoxide in the lungs and a decrease in cardiac 

output (85). At somewhat higher exposure levels (1.2%), deterioration in visuo-

motor ability and subjectively perceived alertness were reported during 5-23 days 

of exposure (58), and at 7 and 23 days of exposure, lowered serum calcium levels 

and indications of decreased bone formation and stimulation of bone resorption 

(18). These effects occur during prolonged, continuous exposure (≥ 3 days), but  

it has not been shown, or it is unclear, if they have any impact on health, affect 

performance ability, or occur at more regular occupational exposure, i.e., 8 hours 

per day, 5 days a week. 
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A hypothesis has been put forward that slightly elevated levels (0.5-1.5%)  

of carbon dioxide affect, among other things, calcium homeostasis, so that the 

incidence of infections of the upper respiratory tract increases. Thus, it is reported 

that the incidence of infections in submarine crews in the USA during the years 

1963-1967 was 80 cases per 1000 individuals. The carbon dioxide concentration 

was over 1% during 60% of the days. For the period 1968-1973, the incidence was 

30 cases per 1000 individuals, and the carbon dioxide concentration was higher 

than 1% less than 20% of the days (93). The results from studies on guinea pigs 

have been presented to support this hypothesis and showed hypertrophy of type II 

cells in the guinea pigs lungs after exposure to 1% carbon dioxide (15). Cell and 

animal studies show that elevated carbon dioxide levels can cause inflammatory 

effects. It is not possible to determine, given current knowledge, whether elevated 

carbon dioxide levels give rise to inflammation in humans. 

A related discussion is that changes in calcium homeostasis may increase 

calcium levels in the kidneys and increase the risk of kidney stones. Thus, the 

incidence of kidney stones in submarine crews decreased from 0.007 cases per 

1000 man-days from 1963-1967 to 0.005 from 1968-1973 (the 0.005 incidence 

level is equivalent to that of the normal population) (93). An increase in the 

incidence of focal calcification in the tubules of the renal cortex of rats and guinea 

pigs exposed to 1.5% carbon dioxide has also been observed (77), as well as 

increased calcium levels in the kidneys of guinea pigs exposed to concentrations 

as low as 0.5% carbon dioxide (78). Inter-species variation and a greater sensi-

tivity to the effects of carbon dioxide have been reported in guinea pigs when 

compared to rats. 

Guinea pigs exposed to 1% carbon dioxide exhibited decreased levels of 

calcium in their bones. The effect was most pronounced after 6 weeks (77, 79). 

During exposure to 0.5% for a period of up to 8 weeks, a significant increase  

of calcium in the plasma and kidneys was observed, as well as a non-significant 

decrease in the bone tissue (78, 79). This has given rise to the hypothesis that high 

carbon dioxide levels can cause osteoporosis. As COPD patients retain carbon 

dioxide, an increased carbon dioxide level has been mentioned as one of several 

possible explanations for the osteoporosis seen in these patients (14, 16). Sub-

marine personnel exposed to 0.8-1.2% carbon dioxide for 30 days show decreased 

bone strength, but several factors other than elevated carbon dioxide levels may 

have caused this (57). 

In guinea pigs exposed to 3% carbon dioxide, hyaline membranes and atelec-

tasis were observed in the lungs. Only atelectasis was observed at 1.5% (63).  

In rats exposed to 2.5% carbon dioxide for 4 hours, degenerative changes in  

the testicles were observed (95). The authors discuss the possibility that carbon 

dioxide regulates the release of spermatozoa from Sertoli cells, and that this may 

explain the results.  
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Conclusions 

There are no data from which to determine a critical effect or effect level for 8-

hours occupational exposure to carbon dioxide. The critical effect of continuous 

(24 hours a day) exposure is considered to be effects on calcium/bone metabolism. 

Laboratory animals are affected (calcium/bone metabolism) after 8 weeks of 

continuous exposure to 0.5% (5,000 ppm) carbon dioxide and human test subjects 

are affected after 7 days at 1.2% (12,000 ppm). Other effects on human test 

subjects during continuous exposure to 0.7-1.2% (7,000-12,000 ppm) include 

effects on the diffusion capacity in the lungs, cerebral blood flow, visuo-motor 

functions and subjective perceived alertness. Whether any of these effects occur in 

daily 8 hour exposure is unclear. During short-term exposure, effects on vision 

have been reported after 60 minutes of exposure to 2.5% (25,000 ppm). 

Exposure to high concentrations of carbon dioxide can be fatal. When exposed 

to approximately 7% (70,000 ppm) and higher, there is an accumulation of carbon 

dioxide that causes CNS depression and confusion, and eventually coma and 

death. 

The use of protective equipment (respiratory protective devices, welding 

helmets, integral helmets) can lead to increased exposure due to increased re-

inhalation of exhaled carbon dioxide. This can further increase exposure in 

environments that already have elevated carbon dioxide concentrations. 
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Table 3. Dose effect/dose-response relationships in humans exposed to carbon dioxide. 
 

CO2 

conc. 

(%)  

Exposure 

time 

Number 

exposed 

Effect Ref. 

 

0.5 unclear time
1
 - Slight increase in respiratory minute volume, increase of 

alveolar carbon dioxide concentration by 0.26%. 

Davis 

1976
2
  

0.7 3 days 4 Increased (35%) cerebral blood flow and increased 

cerebral blood flow induced by visual stimulus. 

88 

0.7 23 days 4 Decreased diffusion capacity for carbon monoxide in the 

lungs and reduction of cardiac output. 

85 

0.7 23 days 4 Increase (0.6-1.0%) of end-tidal carbon dioxide level 

during the entire exposure period.  

21 

0.7-1.0
3
 50-60 days - Increase in respiratory minute volume by 40-60% and the 

dead space by 60%. Cyclical changes in blood pH, 

bicarbonate and calcium concentration in plasma. 

75 

0.8 30 min 5 Increase in respiratory minute volume, increase of 

alveolar carbon dioxide concentration by 0.17%. 

55 

1.0 unclear time
1
 - Increase in respiratory minute volume by 10%, increase 

of alveolar carbon dioxide concentration by 0.33%. 

Guillerm 

et al.
2
 

1.0 3 min 16 Increase in respiratory minute volume by 32%.  80 

1.1 30 min 10 Increase in respiratory minute volume by 18%, increase 

of alveolar carbon dioxide concentration by 0.2%. 

55 

1.2 5-23 days 4 Deterioration in visuo-motor ability and subjectively 

perceived alertness.  

58 

1.2 7 and 23 

days 

4 Lower serum calcium levels. Indications of decreased 

bone formation and stimulation of bone resorption. 

18 

1.2 23 days 4 Headaches were reported at the beginning of the 

exposure. 

88 

1.2 23 days 4 Increased (22%) respiratory minute volume after 5 days 

of exposure. Increase (0.6-0.9%) of end-tidal carbon 

dioxide level during the entire exposure period.  

21 

1.5 42 days 21 Increase in respiratory minute volume by 38%, increase 

of alveolar carbon dioxide concentration by 0.33%. 

Lowered pH (ΔpH ~ 0.06) during the first half of the 

exposure. 

72, 73, 

74 

2.0 2 hours 6 Increase in respiratory minute volume by 60%. 

Reduction of arterial pH after 24 hours (ΔpH = 0.01). 

30 

2.0 30 days 6 Increase in respiratory minute volume by 42%, increase 

of alveolar carbon dioxide concentration by 0.33%. 

Increased oxygen uptake by 10% due to increased 

respiratory effort. Lowered pH (ΔpH~0,01) at the 

beginning of the exposure. 

30 

2.5 15-20 min 12 No effect on cerebral blood flow. Arterial carbon dioxide 

concentration increased by 0.59%. 

66 

2.5 5-22 min 6 No hearing impairment.  26 

2.5 about 60 min  3 Visual impairment (decreased stereoscopic sensitivity 

(depth perception)). 

90 
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Table 3. Continued.  
 

CO2 

conc. 

(%)  

Exposure 

time 

Number 

exposed 

Effect Ref. 

 

2.5 about  

60 min  

3 Visual impairment (perception of coherent motion). 102 

3.5 15-20 min 11 10% increase of cerebral blood flow. Within 10-15 

minutes of exposure increased respiratory minute volume 

with mild dyspnea.  

66 

3.5-4 5-22 min 6 Hearing impairment. 26 

3.6 - 15 Headache and abdominal pains, 1% increase in alveolar 

carbon dioxide concentration. 

Guillerm 

et al.
2
 

4 45 min 7 pH reduced by -0.034 pH units at rest and by -0.102 at 

work (2/3 of the maximal oxygen uptake ability), when 

compared to the control level. Headaches experienced by 

6 out of 7 test subjects during exercise. 

59 

5 15 min 14 Triggered panic attacks in 8 out of 14 patients with panic 

anxiety disorders, but in none of the eight healthy control 

subjects. 

101 

5 15 min 16 Increase in respiratory minute volume of 308%. 

Increased systolic and diastolic blood pressure and 

increased heart rate (greater than 10% difference from 

control values). Headaches, sometimes intense, which 

passed off within 20 minutes after exposure. 

80 

5 15-30 min 6 59% increase of cerebral blood flow. 45 

6 3 min - Impairment of vision in a contrast sensitivity test. 27 

about 6 30 min 8 Increased respiratory rate (62%), heart rate, systolic and 

diastolic blood pressure, and increased dispersion of the 

QT interval on the ECG.  

47 

6.5 5 and 15 min  10 Increase in time taken to solve logical problems.  71 

7 15-30 min 2 130% increase of cerebral blood flow. 45 

7.6 2.5-8.5 min 42 Minute volume increased to 52 l/min (range 24-102). 

Headaches (55% of the test subjects), dizziness (33%), 

dyspnea (31%). One person became unconscious.  

17 

10.4 2.5-6.0 min 31 Minute volume increased to 76 l/min (range 40-130).  

29 people could not handle 5 minutes exposure due to 

dyspnea, headaches, dizziness, light-headedness and 

fainting. Three people became unconscious. 

17 

7-14 10-20 min 12 Headaches, visual and auditory hallucinations, dyspnea, 

sweating, dizziness, seizures, nausea and vomiting. 

Suffocating feelings and agony of death. Upon exposure 

>10.4% most subjects lost consciousness. 

83 

20-30 <1 min - Loss of controlled and purposeful activity, 

unconsciousness, convulsions, coma. 

22, 51 

 

Conc. = concentration; - = data not available; days = continuous (24 hours a day) exposure; min = minutes 
1 
Probably prolonged continuous exposure. "Chronic hypercapnia" mentioned in the article (30). 

2 
Unpublished data cited in reference (30). 

3 
Several studies in submarines on patrol. 
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Table 4. Dose effect/dose-response relationships in animals exposed to carbon dioxide. 
 

CO2 conc. 

(%) 

Exposure 

time 

Number of 

animals 

Species Effect Ref. 

 

0.5 8 weeks* 6/time point, 

4 control 

animals 

guinea 

pigs 

Increase in arterial carbon dioxide 

concentration by an average of 

approximately 0.3% and slightly 

decreased pH. Increase of calcium in 

plasma and kidneys and a non-

significant decrease in bone. No ultra-

structural changes in type II cells 

were seen in the lungs. 

78, 

79 

1 6 weeks* 6/time point, 

3-4 control 

animals 

guinea 

pigs 

Hypertrophy of alveolar type II cells, 

increase in the size and number of os-

miophilic lamellar bodies and clusters 

of type II cells. 

15, 

79 

1 6 weeks* 6/time point, 

3-4 control 

animals 

guinea 

pigs 

Reduced calcium levels in bone. 77, 

79 

1.5 6 weeks* 6/time point, 

5 control 

animals 

guinea 

pigs 

Increasing incidence (up to 66% of 

animals) with exposure time of focal 

calcification in the kidneys.  

77, 

79 

1.5 13 weeks* 5-6/time 

point,  

5 control 

animals 

rats Increasing incidence (up to 100% of 

animals) with exposure time of focal 

calcification in the kidneys. 

77, 

79 

1.5 6 months* 2-6/time 

point,  

4 control 

animals 

guinea 

pigs 

Atelectasis in the lungs, 1 out of 2 

animals day 23, 2 out of 6 animals 

day 42, 3 out of 4 animals at 6 

months. No atelectasis was observed 

in control animals. 

62 

3 6 weeks* 8, 7 control 

animals 

guinea 

pigs 

Hyaline membranes and atelectasis in 

the lungs of 25% of the exposed 

animals. 

 

2.5 4 hours - rats Degenerative changes in the testicles. 95 

3 5 hours per 

day,  

for 2 or  

4 weeks 

 mice Effects on the olfactory organ, both 

behavioural (10 exposed and 10 

control animals) and 

histological/immunohistological  

(2 exposed animals/time point). 

8 

10 1 hour - mice Increase in proinflammatory 

cytokines in lung cells ex vivo. 

1 

 

Conc. = concentration; - = data not available 

*Continuous (24 hours a day) exposure. 
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Consensus Report for n-Butyl acrylate 

September 28, 2011 

Literature search was performed in PubMed and Toxline in September 2011. This 

report updates a previous Consensus Report published in Arbete och Hälsa 1985 

(31). 

Chemical and physical data, Use 

CAS No. 141-32-2 

Synonyms butyl-2-propenoate, n-butyl propenoate,  

 acrylic acid n-butyl ester 

Formula  C7H12O2 

Structural formula CH2=CH-COO-CH2-CH2-CH2-CH3 

Molecular weight 128.17 

Density 0.8986 (25 °C) 

Melting point -64 °C 

Boiling point 145-148 °C 

Vapour pressure 0.53 kPa (20 °C), 0.57 kPa (20 °C) 

Saturation concentration 5232 ppm 

Log Koctanol/water 2.38 (25 °C) 

Conversion factors 1 mg/m
3
 = 0.19 ppm; 1 ppm = 5.32 mg/m

3
 (20 °C) 

Other data Polymerises easily under the influence of heat, light,  

 and catalytic agents 

 

 

n-Butyl acrylate is a colourless, inflammable, highly reactive liquid (3). The 

substance is poorly soluble in water (0.14% at 20 °C), but soluble in ethanol, 

ether, and acetone (21). Its odour is described as fruity and pungent. The odour 

threshold has been reported to be 0.035 ppm (2).  

The substance is used as a precursor in the manufacture of polymers and resins, 

and can form part of copolymers, for example with acrylic acid, acrylates, styrene, 

butadiene, and unsaturated polyesters. Emulsion polymers, formed through the 

polymerisation of n-butyl acrylate with water, are a common form of use. Emul-

sion polymers containing n-butyl acrylate can be part of paints and bonding agents 

(e.g. for use in seams) or used in surface and paper coatings, textiles, leather, ad-

hesives, and in polish (1, 3, 20, 21). In 2007, 18,500 tonnes of n-butyl acrylate 

were imported into Sweden as raw materials. That year, the substance formed part 

of 916 products, of which 241 were available to consumers (Swedish Chemicals 

Agency, product registry, 2007 http://www.kemi.se/sv/Innehall/Databaser/). 
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A great deal of exposure data for n-butyl acrylate indicates an 8-hour mean 

value of <2 ppm in occupational exposure, but brief peak exposures of >2 ppm 

(occasionally >10 ppm) have been reported (40). In one study, over 196 American 

monomer production workers (1993-1995), the geometric mean values for labora-

tory technicians and production operators were <0.4 ppm. American data on 354 

polymer production workers (1993-1995) showed geometric mean values for n-

butyl acrylate (different people and activities) of <1.12 ppm. Data collected in 

2002 from European producers mentioned concentrations (8-hour time weighted 

average, TWA) of n-butyl acrylate ≤1.6 ppm during production (77 samples), ≤0.8 

ppm in laboratories (49 samples), ≤2.25 ppm during drumming (2 samples), ≤0.24 

during maintenance and cleaning (5 samples) and ≤1.26 ppm during manufactu-

ring and preparation processes (245 samples) (40).  

Uptake, biotransformation, excretion 

The uptake of n-butyl acrylate via the gastrointestinal tract is rapid and complete 

(38, 39). No exposure data on skin absorption has been found. According to 

theoretical calculations by Fiserova-Bergerova et al. skin absorption of n-butyl 

acrylate could be considerable (12). The calculations, however, have been 

questioned and criticised as drastically overestimating skin absorption (5). Skin 

absorption for a saturated water solution (1.4 mg/ml) can, with the use of the 

NIOSH calculator (http://www.cdc.gov/niosh/topics/skin/skin PermCalc.html, 

2011-06-16) be calculated to 1.6-3.3 x 10
-2

 mg/cm
2
 per hour (different calculation 

models). If ECETOC criteria for a skin notation are applied – that is, exposure of 

2000 cm
2
 of skin (equivalent to the hands and underarms) over 1 hour – the dose 

absorbed via the skin is 32-66 mg, which corresponds to 13-26% of the dose 

absorbed through inhalation at the current Swedish threshold limit value of 50 

mg/m
3
 (assuming inhalation of 10 m

3
 of air over 8 hours and 50% uptake). 

Studies on rats have shown that n-butyl acrylate is metabolised and excreted 

rapidly, primarily as carbon dioxide in exhaled air. The principal path for meta-

bolism involves hydrolysis by carboxylesterases into acrylic acid and butanol. 

Acrylic acid is broken down in normal metabolism via hyrdoxyproprionate and 

malonate semialdehyde into acetyl-CoA, which oxidizes into carbon dioxide  

in the Krebs cycle. To a lesser extent, n-butyl acrylate can be conjugated with 

endogenous glutathione and be excreted as mercapturic acids in the urine (15, 30, 

38, 39). Metabolism of n-butyl acrylate via epoxide formation has not been proven 

and is considered to be unlikely (15, 30).  

The distribution and excretion of 
14

C has been studied in rats after adminis-

tration of radioactively labelled n-butyl acrylate (peroral administration 4-400 

mg/kg body weight) (38, 39). The radioactivity decreased in most organs studied 

within 24 hours. During measurements after peroral administration (24 hours), 

approximately 2-3% of the radioactivity was found in the liver, 5-6% in the 

muscles, and 2-9% in fat. After 48 hours the radioactivity had decreased further;  

in the liver to approximately 1% from 6% after 0.5 hours. However, somewhat 

increased 
14

C activity was measured in epididymal fat and the sciatic nerve, and 
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largely unchanged activity was measured in red blood cells after 48 hours com-

pared with after 0.5 hours. The radioactivity measured in all three locations was 

nevertheless low. After injection into the abdominal cavity, the 
14

C activity mea-

sured in red blood cells, epididymal fat and the sciatic nerve was also low and 

approximately the same after 0.5 and 48 hours (38, 39). 

After peroral administration (4-400 mg n-butyl acrylate/kg body weight) around 

65-85% of the radioactivity was excreted in exhaled air within 24 hours as 
14

CO2, 

approximately half of this within 4-6 hours (38, 39). Around 10-15% of the radio-

activity was excreted in the urine and approximately 1-2% in faeces over 24 hours. 

The metabolites N-acetyl-S-(2-carboxyethyl)cysteine and N-acetyl-S-(2-caroboxy-

ethyl)cysteine-S-oxide were identified in the urine (38). Other urinary metabolites 

such as 3-hydroxyproprionate, citric acid, and isocitric acid have also been identi-

fied after injection of n-butyl acrylate into the abdominal cavity of rats (30).  

In one inhalation study, rats were exposed to 190, 380, 760, and 1520 ppm 

(1000, 2000, 4000 and 8000 mg/m
3
) of n-butyl acrylate over 6 hours. A dose-

related increase of thioethers in the urine was observed, and in total approximately 

2.5% of the dose was excreted as thioethers within 24 hours (1000-4000 mg/m
3
; 

50% lung retention and ventilation volume 0.6 l/kg/minute assumed). Significant 

decrease of sulfhydryl content in non-protein fractions from the blood, the liver, 

the lungs and the brain was demonstrated at concentrations ≥2000 mg/m
3
 (380 

ppm) in measurements after 6 hours of inhalation. When the chemical reactivity  

of n-butyl acrylate with glutathione was studied in vitro, it was discovered that n-

butyl acrylate resulted in a rapid decrease in glutathione concentration. The results 

of the study indicate that glutathione depletion can contribute to the toxic effects 

at high doses (49).  

Several in vitro studies have shown that n-butyl acrylate disappears quickly 

from tissues and the blood. Rapid hydrolysis of butyl acrylate by carboxylesterase 

from the nasal mucosa of mice was reported in one study (high butyl acrylate con-

centrations, >5 mM, produced a loss of enzyme activity) (42). Rapid hydrolysis to 

acrylic acid was further indicated when n-butyl acrylate was added to liver homo-

genate from rats (33). Only limited conversion of n-butyl acrylate to acrylic acid 

was noted, however, in rat blood, and binding to red blood cells (a reaction with 

sulfhydryl groups) was considered likely (33).  

Toxic effects 

Human data 

n-Butyl acrylate has been reported to be a skin irritant in patch testing. Kanerva  

et al. (24) reported, for example, skin irritation in 11 of 46 patients in patch testing 

with 0.5% or 1% n-butyl acrylate in vaseline. Furthermore, contact allergy for n-

butyl acrylate (butyl acrylate) has been demonstrated in patch testing on about 50 

persons, primarily in persons exposed to acrylates in their occupations, such as 

dental care staff, but positive reactions have also been reported in persons with 

allergic contact eczema that was sensitized through the use of acrylic nails and 
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eyeglasses. Normally, 0.1-0.5% n-butyl acrylate in vaseline was used for testing. 

In isolated cases sensitization occurred in connection with the testing (4, 10, 16, 

17, 19, 24, 25, 27, 28, 29, 45). Kanerva et al (24) reported that 5 of 46 patients had 

positive results (1982-1986) indicative of sensitization in patch testing with 0.5% 

or 1% n-butyl acrylate in vaseline. In later studies, the authors reported that in total 

12 of 242 patients (1985-1995) with previous exposure to (meth)acrylate com-

pounds had positive reactions when patch tested with 0.1-0.5% n-butyl acrylate 

(25, 27). A British study reported that 9 of 244 patients who had occupational or 

other types of acrylate exposure (e.g. acrylic fingernails) were positive in patch 

testing with 0.5% butyl acrylate (45). Cross-reactions with other acrylates have 

however been reported (23, 26), which makes it difficult to conclude what persons 

with positive patch test reactions to n-butyl acrylate were originally sensitized to. 

No studies of n-butyl acrylate and asthma have been found in the literature.  

Animal data 

n-Butyl acrylate has low acute toxicity. The LD50 for peroral administration has 

been reported to be between 3.7 and 8.1 g/kg body weight (rats) and 7.5 g/kg body 

weight (mice) in published studies (6, 41, 43, 48). The LD50 for skin application 

(rabbits) has been reported to be between 1.8 and 5.7 g/kg body weight (6, 41, 48). 

LC50 for rats over 4 hours of exposure (mortality within 24 hours) was calculated 

in one study as 2730 ppm. 9/10 animals survived exposure at 2035 ppm and all 

animals survived at 1990 ppm (34). In an unpublished study, LC50 (4 hours)  

for rats with exposure via head and nose was reported to be 1957 ppm (10,300 

mg/m
3
). No clinical symptoms were observed at an exposure level of 513 ppm 

(2700 mg/m
3
) (40).  

In a briefly described inhalation study on rats and hamsters, distinct clinical 

signs of toxicity (e.g. dyspnoea, bloody secretion from eyes and nose) and death 

were reported in connection with exposure to average concentrations of 817-820 

ppm n-butyl acrylate for 5-6 hours per day over 4 days (11).  

Increased blood glucose was seen at all concentrations in an inhalation study on 

rats with exposures to 190, 380, 760, and 1520 ppm (1000, 2000, 4000 and 8000 

mg/m
3
) of n-butyl acrylate over 6 hours. The increase was significant and dose-

dependent, compared with an unexposed control group, at levels >190 ppm (49).  

In a long-term study, male and female rats (172 animals per dose group) were 

exposed to n-butyl acrylate through whole-body inhalation exposure for 6 hours 

per day, 5 days a week for up to 24 months (Tables 1 and 2). For the first 13 

weeks the concentration in the air was 0, 5, 15, and 45 ppm. For the remainder  

of the experiment the exposure levels were 0, 15, 44, and 134 ppm. Histopatho-

logical examinations of many organs and tissues, ophthalmological observation 

(external changes, pupil reflexes), recording of body weights and organ weights, 

haematological examinations, urine analysis and clinical observations were part  

of the study (the animals were euthanized after 12, 18, 24 or 30 months). No 

exposure related signs of systemic toxicity were seen. In some of the animals 

(number of animals not stated) lower organ weights (kidneys, liver, heart, thyroid 
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gland) were seen, but the findings did not correlate with histopathological changes 

in these organs and were deemed not toxicologically relevant. Irritation effects 

(expressed as histological changes, see below) were detected in nasal mucosa and 

corneas, while no irritation-related changed were observed in larynges, tracheae, 

or lungs. A dose-related increase in the number of animals with hyperplasia of 

reserve cells (basal cells under the olfactory epithelium) and loss of olfactory  

and other cells (ciliated cells) in the nasal mucosa was noted in the study. A dose-

related increase of the number of animals with atrophy of the olfactory epithelium 

(reported to be very mild at 15 ppm) was seen during the follow-up period. In 

many animals, damaged olfactory epithelia were thus replaced with respiratory 

epithelia. A significantly increased number of rats with clouding of, or new vessel 

formation in, the cornea was reported to be 134 ppm, while no significant increase 

in such effects was noted at lower exposure levels. Partial regression of new vessel 

formation in the cornea was detected during the recovery period (9, 36). In sum-

mary, the authors of the study (36) considered 15 ppm as a concentration that pro-

duced no effects in the nasal mucosa (NOEL). The results were not fully reported 

in the article but do, however, indicate a significant effect at that level, and the 

Swedish Criteria Group considered 15 ppm to be a LOAEL. DFG (9), who had 

access to supplementary information from BASF, is also of the opinion that no 

NOAEL existed in the study. DFG (9) also made Benchmark Dose calculations, 

 

 
Table 1. Number of rats with pathological findings in nasal mucosa after inhalation exposure to 

n-butyl acrylate (9, 36). 
 

Effects Months 

 

Males  Females 

0 ppm 15 ppm 44 ppm 134 ppm  0 ppm 15 ppm 44 ppm 134 ppm 
 

Hyper- 

plasia
a
 

12 0/10 0/11 0/13 0/12 0/11 0/10 0/10 0/10 

18 0/16 0/18 1/15 0/18 0/17 0/20 1/16 0/19 

24 0/19 0/19 2/16 0/15 0/16 1/19 1/18 0/23 

24 + 6 0/41 1/36 17/40 3/40 0/41 0/36 2/42 7/33 

Total 0/86 1/84 20/84
d
 3/85 0/85 1/85 4/86 7/85

c
 

          

Hyper- 

plasia
b
 

12 0/10 0/11 0/13 5/12 0/11 0/10 0/10 9/10 

18 0/16 0/18 8/15 18/18 0/17 0/20 3/16 18/19 

24 0/19 2/19 11/16 15/15 0/16 6/19 5/18 20/23 

24 + 6 0/41 0/36 10/40 16/40 0/41 0/36 4/42 4/33 

Total 0/86 2/84 29/84
d
 54/85

d
 0/85 6/85

c
 12/86

d
 51/85

d
 

          

Atro-

phy 

12 0/10 0/11 0/13 0/12 0/11 0/10 0/10 0/10 

18 0/16 4/18 0/15 0/18 0/17 0/20 3/16 0/19 

24 0/19 0/19 0/16 0/15 0/16 0/19 0/18 0/23 

24 +6 0/41 6/36 13/40 16/40 1/41 1/36 2/42 2/33 

Total 0/86 10/84
d
 13/84

d
 16/85

d
 1/85 1/85 5/86 2/85 

 

a 
without loss of olfactory cells or ciliated cells. 

b 
with loss of olfactory cells or ciliated cells. 

c 
p<0.05 

d 
p<0.01 
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which resulted in the following values on the lower (95%) confidence interval  

for the Benchmark Dose (for a 5% increased incidence compared with the control 

group): 2.7 ppm (males) and 2.8 ppm (females) for loss of olfactory cells or 

ciliated cells in combination with hyperplasia of reserve cells after 24 months 

exposure and 6.9 ppm (males) for atrophy of the olfactory epithelium after 24 

months exposure and 6 months follow-up time. 

Effective local hydrolysis and associated high concentration of acrylic acid have 

been reported to be a possible cause of the lesions (e.g. in the nasal mucosa) that 

were observed in experimental animals during exposure to n-butyl acrylate (21, 

42). 

In an unpublished study, male and female rats (40 animals per dose group)  

were exposed to 21, 108, 211, and 546 ppm n-butyl acrylate for 6 hours per day,  

5 days a week over 13 weeks (1, 40). In ACGIH (1), 21 ppm was reported to be  

a NOAEL in the study, based on the absence of both irritation effects (eyes and 

airways) and indications of systemic toxicity. Furthermore, smaller changes – e.g. 

influence on body weight gain and relative liver weight were reported, but no 

histopathological changes were found at an exposure level of 108 ppm. Irritation 

of nasal mucosa and eyes was reported at 211 ppm, while exposure to 546 ppm 

was reported to produce severe irritation effects (such as bloody excretions from 

the eyes and nose, metaplasia of the olfactory epithelium, pneumonitis and ex-

tensive necrosis in the lungs) and many deaths (31/40 animals) (Klimisch et al., 

1978, cited in ref. 1). The same study was referred to in a summarizing report  

(40). There, however, the NOAEL in the study was reported to be 108 ppm and 

the LOAEL to be 211 ppm. Irritation of the eyes and mucous membranes and 

significant reduction in body weight gain were reported at 211 ppm. In females 

there were also reduced potassium values and increased activity of alkaline 

phosphatases (40). 

Unpublished data show that eye effects of widely different degrees of severity 

(no damage to severe effects, e.g. iritis) were observed in rabbit eyes after appli-

cation of 0.5 ml undiluted n-butyl acrylate (5 rabbits; exposure time 24 hours) 

(40). Degrees of damage rating 2 or 3 out of 10 from application of butyl acrylate 

to rabbit eyes were reported in published studies (6, 41). 

Primary skin irritation in rabbits rated at 2 or 3 out of 10 was reported in two 

older studies (6, 41). In another study, it was reported that n-butyl acrylate was  

not a skin irritant when a 30% solution was applied to the ears of mice (the highest 

tested concentration) over 4 days in a test that measures ear swelling (18). A 

newly-published study on n-butyl acrylate investigated cytotoxicity in vitro  

(two different models of cultured skin from humans) and skin irritation in vivo 

(rabbits). A weak cytotoxicity was demonstrated in the in vitro experiment. In  

the experiment on rabbits, 0.32 ml of solution (various concentrations) was 

applied to the skin and the area was covered (24 hours). Skin irritation was 

evaluated according to Draize scoring criteria and the index for primary skin 

irritation was calculated. The lowest concentration that produced erythema was 
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calculated at 0.6%, that is, the substance was shown to have low skin-irritant 

activity (44). 

In an unpublished study, moderate to strong erythema and oedema was reported 

after 24 hours in all exposure groups from application of n-butyl acrylate (99% 

purity) to rabbit skin (occlusive over 1, 5, or 15 minutes, or 20 hours). The 20-

hour exposure also caused “mild necrosis”. The effects were reversible and much 

weaker 8 days after the exposure (40).  

n-Butyl acrylate was demonstrated to be a potent contact allergen on guinea pigs 

in the Guinea Pig Maximization Test (GPMT) and Freund’s Complete Adjuvant 

Test (FCAT). Butyl acrylate has been reported to sensitize skin in other tests as 

well (35, 47). In tests on mice, n-butyl acrylate was reported to sensitize skin in 

the local lymph node assay (LLNA), but was judged to have weak skin-sensitizing 

properties. The EC3 value (the estimated concentration needed to triple cell pro-

liferation in lymph nodes, relative to controls) was reported by Dearman et al. as 

11.2% n-butyl acrylate, and in the Hayes & Meade study was around 30% (7, 18). 

n-Butyl acrylate was negative in another skin sensitization test on mice (Mouse 

Ear Swelling Test, MEST) (18). MEST is a considerably less sensitive test than 

GPMT, FCAT, and LLNA and is not included in the OECD guidelines for pre-

dictive testing of contact allergy. Cross-reactions between n-butyl acrylate and 

other acrylates have been reported. In a very few cases, sensitization to meth-

acrylates has also led to cross-reactivity against n-butyl acrylate (18, 46). 

Mutagenicity/genotoxicity 

n-Butyl acrylate was not mutagenic in germ cells in the sex-linked recessive lethal 

(SLRL) test on fruit flies using exposure via oral administration or injection into 

adult flies (13). Nor was significant increase of chromosomal aberrations demon-

strated in cytogenetic examinations of bone marrow from hamsters and rats after 

inhalation exposure to an average of 817 ppm and 820 ppm respectively for 5-6 

hours per day over 4 days (euthanasia 5 hours after completed exposure) (11). In  

a Russian study cited in IARC (21) it was reported that n-butyl acrylate induced 

chromosomal aberrations in the bone marrow of rats from injecting the substance 

into the abdominal cavity (300 mg/kg body weight; single injection). 

n-Butyl acrylate was not mutagenic in testing on bacteria (Salmonella typhi-

murium TA1535, TA1537, TA1538, TA98, TA100) with or without metabolic 

activation (40, 50, 52). Furthermore, no mutagenic or genotoxic potential of n-

butyl acrylate was reported in in vitro tests on hamster cells (SHE cells) in studies 

of micronuclei, DNA repair (UDS) or morphological cell transformation (14, 51). 

Chromosomal aberrations were induced in vitro in tests on CHO cells, but only at 

cytotoxic concentrations without metabolic activation (1, 40). 

In an inhalation study (whole-body exposure), rats of both sexes (172 animals 

per dose group) were exposed to n-butyl acrylate for 6 hours per day, 5 days a 

week for up to 24 months. For the first 13 weeks the concentrations in the diffe-

rent exposure groups were 0, 5, 15, and 45 ppm, and thereafter 0, 15, 44, and 134 
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ppm. The authors’ opinion was that no exposure-related increase of tumours was 

demonstrated in the study (21, 36).  

No epidermal tumours were found after application of 25 µl of a 1% solution  

of n-butyl acrylate in acetone to the skin of male mice 3 times weekly throughout 

their lifespan (0.2 mg/mouse per application, 40 animals). One mouse in the butyl 

acrylate group had epidermal hyperplasia, and one mouse in the group was dia-

gnosed with a fibrosarcoma (localized outside the treated area). The authors con-

cluded that n-butyl acrylate was not carcinogenic in this study (8).  

IARC concluded in 1986 that there is inadequate evidence for the carcino-

genicity in experimental animals and made the overall evaluation that n-butyl 

acrylate is not classifiable as to its carcinogenicity to humans (group 3) (21). 

Effects on reproduction 

In an inhalation study on rats (30 animals per group) with exposures of 0, 25,  

137, and 251 ppm of n-butyl acrylate 6 hours per day, days 6-15 of gestation, the 

proportion of resorptions per female was significantly increased in both high-dose 

groups (23.6%, 31% against 11.6% in the control group). No teratogenic effects  

or impaired foetal growth was demonstrated in the groups exposed to n-butyl 

acrylate. Dose-dependent maternal toxicity (significantly impaired weight gain, 

secretions from eyes and nose) was seen during the exposure period at the two 

highest exposure levels (32).  

In another study on rats (27-29 animals per group) with inhalation exposure  

to an average of 103, 203, and 303 ppm n-butyl acrylate, 6 hours per day, days 6-

20 of gestation, significant and concentration-dependent reduction of both food 

consumption and absolute weight gain was reported among dams in all dosage 

groups (especially in both high-exposure groups) compared with the control 

group. Furthermore, dose-dependent significantly lower body weight in foetuses in 

the two highest exposure groups was observed. No treatment-related increase of 

embryo or foetal mortality or foetal malformations was demonstrated in the study. 

103 ppm was judged as the NOAEL for developmental toxicity (37). 

In an unpublished study, it was reported that no effects on the prostate, testicles, 

epididymis, seminal vesicles, uterus, or ovaries were demonstrated in microscopic 

examinations of rats exposed to 21, 108, 211, or 546 ppm n-butyl acrylate for 6 

hours per day, 5 days a week, for 13 weeks (40).  

In another unpublished study, 100, 1000, 1500, 2000, 2500, 3000, and 4000 

mg/kg bodyweight of n-butyl acrylate was administered in cottonseed oil to  

mice (approximately 27-30 animals per group) daily via gavage on days 6-15 of 

gestation (deaths at dosage levels ≥1000 mg/kg per day: 1/30, 1/27, 1/29, 2/30, 

2/30, all). Maternal toxicity, expressed as significantly reduced weight gain, was 

reported at doses ≥1500 mg/kg per day (significant increase of relative liver 

weight was found at 1000 mg/kg per day). Significantly reduced foetal weights 

was also seen at doses ≥1500 mg/kg per day. Significant increase in resorptions 

and embryo toxicity, e.g. cleft palate, exencephaly, cardiovascular lesions and 

fused ribs, was reported at dosage levels ≥2500 mg/kg per day. Only slightly 
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increased toxicity, primarily expressed as a small increase in skeletal variations 

(delayed ossification) in the offspring, was noted at 1000 mg/kg per day (1, 22, 

40). ACGIH considered 100 mg/kg body weight per day as a NOAEL for both 

maternal toxicity and effects on the foetuses (1). 

Dose-effect/dose-response relationships 

There is no data for evaluating the dose-effect/dose-response relationships in 

humans from exposure to n-butyl acrylate. Effects on laboratory animals upon 

inhalation exposure is summarised in Table 2.  

Dose-dependent irritation effects in nasal mucosa were demonstrated in histo-

pathological examinations in an inhalation study on rats with long-term exposure 

to n-butyl acrylate. At 15 ppm, a slight increase in animals with hyperplasia of 

basal cells under the olfactory epithelium and loss of olfactory and other cells 

(ciliated cells) in the nasal mucosa was noted after 2 years of exposure. Very mild 

atrophy of the olfactory epithelium was also reported at this concentration, mainly 

among males (p<0.01). At 44 ppm, these effects were more frequent (hyperplasia 

and loss of cells also appeared earlier) and at 134 ppm effects on the cornea were 

also observed. Benchmark Dose calculations produced the following values on  

the lower (95%) confidence interval for the Benchmark Dose (for a 5% increased 

incidence compared with the control group): 2.7 ppm (males) and 2.8 ppm 

(females) for loss of olfactory cells or ciliated cells in combination with hyper-

plasia of basal cells after 2 years exposure and 6.9 ppm (males) for atrophy of the 

olfactory epithelium after 2 years exposure and 6 months follow-up time (9, 36). 

ACGIH regarded 21 ppm as the NOAEL in an unpublished study on rats, based on 

the absence of irritation effects, among other things (1). In a study on rats no overt 

signs of irritation were observed at an exposure level of 25 ppm (32). Effective 

local hydrolysis and associated high concentration of acrylic acid may be a cause 

of the lesions seen, for example in the nasal mucosa, after inhalation exposure to 

n-butyl acrylate (21, 42). 

A NOAEL of 103 ppm for developmental toxicity was reported in a study with 

inhalation exposure of rats during a part of gestation (37). In an older study on rats 

with exposures to 0, 25, 137, and 251 ppm of n-butyl acrylate during a part of 

gestation, the proportion of resorptions per female was significantly increased in 

both high-dose groups (32). Some maternal toxicity was seen at 137 ppm (about 

25% decreased weight gain and irritation), but it is uncertain whether this could 

explain the increase of resorptions in this exposure group. (More pronounced 

maternal toxicity in the form of irritation and impaired weight gain was observed 

at 251 ppm).  

Animal experiments show that n-butyl acrylate is a skin sensitizer (7, 18, 35, 

47). Contact allergy to n-butyl acrylate has also been reported in humans (4, 10, 

16, 17, 19, 24, 25, 27, 28, 45). It can, however, be difficult to determine what 

persons with positive patch test to n-butyl acrylate were originally sensitized to. 

Cross-reactions between n-butyl acrylate and other acrylates have been reported. 
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In a very few cases, sensitization to methacrylates has led to cross-reactivity to  

n-butyl acrylate (18, 23, 24, 46). 

Conclusions 

Based on animal studies, the critical effect of occupational exposure to n-butyl 

acrylate is considered to be mucous membrane irritation. In long-term exposure  

on rats, changes to mucous membranes in the respiratory tract occurred, indicating 

irritative effects at an airborne concentration of 15 ppm.  

In an older study, an increase was seen in resorptions in rats at exposure to 137 

ppm during gestation. Effects on mothers in the form of impaired weight gain and 

irritation occurred at this level of exposure, but it is uncertain whether this could 

explain the increase of resorptions. 

Exposure of skin to n-butyl acrylate can cause contact allergy. Theoretical 

calculations indicate that exposing skin to n-butyl acrylate in liquid form can 

result in significant skin absorption.  

 

 

 
Table 2. Effects on laboratory animals from inhalation exposure to n-butyl acrylate. 
 

Air level 

(ppm) 

Exposure Species Effects Ref. 

 

15
1
 

 

6 hrs/day,  

5 days/wk,  

24 months 

Rat Hyperplasia of nasal mucosa, very mild atrophy of 

olfactory epithelium; no increase in frequency of 

tumours. 

9, 36 

21 6 hrs/day,  

5 days/wk,  

13 wks 

Rat NOAEL in the study (irritation effects, systemic 

toxicity). 

1
5
 

44
2
 

 

6 hrs/day,  

5 days/wk,  

24 months 

Rat Hyperplasia of nasal mucosa, atrophy of olfactory 

epithelium; no increase in frequency of tumours. 

9, 36  

103 6 hrs/day,  

days 6-20 of 

gestation 

Rat NOAEL in the study for developmental toxicity; poorer 

weight gain in dams. 

37 

108 6 hrs/day,  

5 days/wk,  

13 wks 

Rat Effect on body weight gain and relative liver weight. 1
5
 

134
3
 

 

6 hrs/day,  

5 days/wk,  

24 months 

Rat Hyperplasia of nasal mucosa, atrophy of olfactory 

epithelium clouding and new vessel formation in 

cornea; no increase in frequency of tumours. 

9, 36 

137 6 hrs/day,  

days 6-15 of 

gestation 

Rat Increased proportion of resorptions; maternal toxicity 

(poorer weight gain, signs of irritation in eyes and 

nose). 

32 

190 6 hours Rat Increase of blood glucose (not significant).  49 

203 6 hrs/day,  

days 6-20 of 

gestation 

Rat Lower body weight in foetuses; poorer weight gain in 

dams. 

37 
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Table 2. Continued. 
 

Air level 

(ppm) 

Exposure Species Effects Ref. 

 

211 6 hrs/day,  

5 days/wk,  

13 wks 

Rat Irritation of mucous membranes in eyes and nose, 

significantly lower body weight gain; clinical and 

chemical analysis: effect on potassium and alkaline 

phosphatases in females. 

1
5
, 40 

251 6 hrs/day,  

days 6-15 of 

gestation 

Rat Increased proportion of resorptions; maternal toxicity 

(poorer weight gain, signs of irritation in eyes and 

nose). 

32 

303 6 hrs/day,  

days 6-20 of 

gestation 

Rat Lower body weight in foetuses; poorer weight gain in 

dams. 

37 

380 6 hours Rat Increase of blood glucose.  49 

546 6 hrs/day,  

5 days/wk,  

13 wks 

Rat Many deaths, severe irritation effects in eyes and 

respiratory tract (e.g. bloody secretions from eyes and 

nose, pneumonitis, necrosis in lungs). 

1
5
 

817-820 5-6 hrs/day, 

4 days 

Rats, 

hamsters 

Dyspnoea, bloody secretions from nose and eyes, 

death; no increase in chromosomal aberrations in bone 

marrow cells
4
. 

11 

1990 4 hours Rat 10/10 animals survived. 34 

2730 4 hours Rat LC50 34 
 

1
5 ppm for the first 13 weeks.  

2
15 ppm for the first 13 weeks.  

3
45 ppm for the first 13 weeks.  

4
Euthanasia 5 hours after completed exposure.  

5
BASF report (Klimisch et al., 1978) cited in refs. 1 and 40, and others (effects/effect levels are 

reported differently in refs. 1 and 40; figures from ref. 1 have been given preference in use).  
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Consensus Report for Ethanolamine 

May 30, 2012 

This report updates a previous Consensus Report published in Arbete och Hälsa 

1992 (38). Literature search was performed in PubMed and Toxline in November 

2011. 

Chemical and physical data, EU classification 

CAS No. 141-43-5 

Synonyms 2-ethanolamine, monoethanolamine,  

 2-aminoethanol, 2-hydroxy ethylamine,  

 1-amino-2-hydroxyethane 

Structural formula HO-CH2-CH2-NH2 

Molecular weight 61.08 

Melting point 10.3 ºC 

Boiling point 170.8 ºC 

Vapour pressure 0.05 kPa (20 ºC) 

Saturation concentration 490 ppm  

Log Pow  -1.91 

Density 1.02 g/ml 

Conversion factors 1 ppm = 2.53 mg/m
3
; 1 mg/m

3
 = 0.39 ppm 

 

EU classification:  

Acute toxicity - hazard category 4
1
; H332, harmful if inhaled. 

Acute toxicity – hazard category 4
1
; H312, harmful in contact with skin. 

Acute toxicity – hazard category 4
1
; H302, harmful if swallowed. 

Corrosive on skin – hazard category 1B; H314, causes severe skin burns and eye 

damage.  

Concentration ≥5%: Specific target organ toxicity – single exposure (STOT-SE)  

– hazard category 3; H335, may cause respiratory irritation. 

 

At room temperature, ethanolamine is a clear, colourless hygroscopic liquid with a 

mild, ammonia-like odour (30, 38). The odour threshold was reported in one study 

to be 2.6 ppm (52). The substance is miscible with water, methanol and acetone, 

easily forms salts with inorganic and organic acids, and can be esterified (30, 36, 

 

      
1
 higher classification may be used if access to other data exists; 1=highest hazard classification 
and 4=lowest hazard classification (http://www.kemi.se/Documents/Publikationer/Trycksaker/ 
Faktablad/FbCLPdecember2011.pdf) 
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38). A 10% aqueous solution of ethanolamine has a pH of 12.1 (9). The pH value 

for a 30% aqueous solution has been reported to be 12.75 (52). 

Use/occurrence 

Ethanolamine can be found in different types of detergents, for example wax re-

movers. It is also used as rustproofing and an emulsifier, for example in cutting 

fluids. Ethanolamine additionally occurs as an absorber, for example in natural  

gas to remove carbon dioxide and hydrogen sulphide, and as a dispersant for agri-

cultural chemicals. It is also used industrially in organic synthesis. Ethanolamine 

can be added to cosmetics, for example hair dyes, home permanents, and hair care 

products (2, 3, 6, 7, 16, 26, 34, 35, 38, 43). 

The median concentration of ethanolamine in the respiratory zone of workers  

in machinery workshops was reported in a Finnish study to be 57 µg/m
3
 (the mea-

sured values varied between 4 and 345 µg/m
3
; 29 samples) during 2 hours of 

work. The cutting fluids used were miscible with water, and the concentration  

of ethanolamine in diluted cutting fluid was around 0.2-1.5%. Skin exposure was 

estimated based on the amount of ethanolamine washed off (one hand). A com-

parison between skin and inhalation exposure showed that skin exposure was 

approximately 50 times higher than inhalation exposure for those workers who 

only used cutting fluids containing ethanolamine. A median value was used in the 

calculation of the amount of ethanolamine on the skin of one hand and in inhaled 

air (median: 54 µg/m
3
) for 2 hours and ventilation was assumed to be 30 l per 

minute (25).  

Uptake, biotransformation, excretion  

Ethanolamine can be taken up through the skin and the gastrointestinal tract (31, 

37, 46). There is no reliable quantitative data on uptake via the gastrointestinal 

tract or lungs. According to theoretical calculations by Fiserova-Bergerova et al. 

skin absorption of ethanolamine could be considerable (13). The calculations in 

the study, however, have been questioned and criticised as drastically overestima-

ting skin absorption for many of the reported substances (5). One in vitro study 

compared the skin absorption (6 hours) of radioactively labelled ethanolamine  

in humans and different animal species. The absorptions decreased as follows: 

mice>rabbits>rats>humans. Skin absorption on 1.8 cm
2
 of human skin was 0.6% 

(undiluted) and 1.1% (22% aqueous solution) respectively, and the steady-state 

rate of penetration was 7.9 µg/cm
2
/hr (undiluted) and 9.7% µg/cm

2
/hr (22% 

aqueous solution) respectively (46). If the ECETOC criteria (12) for a skin 

notation are applied – that is, exposure of 2000 cm
2
 of skin (equivalent to the 

hands and underarms) over 1 hour – the dose absorbed via the skin is approxi-

mately 16 mg for undiluted ethanolamine, which corresponds to 40% of the dose 

absorbed through inhalation at the current Swedish threshold limit value of 8 

mg/m
3
 (assuming inhalation of 10 m

3
 of air over 8 hours and 50% uptake). 

According to data from Sun et al. 19.4 mg should be absorbed upon skin 
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application of a 22% aqueous solution (46), which corresponds to approximately 

50% of the dose absorbed through inhalation. Skin exposure to ethanolamine in 

liquid form can thus result in significant skin absorption. There is, however, some 

uncertainty in calculating skin uptake, as poor mass balance was reported in the 

study by Sun et al. (46). 

In experiments where 
14

C-labbeled ethanolamine (in ethanol) was applied to 

human skin transplanted onto mice or directly to mouse skin, it was reported that 

just over 50% of the radioactivity in both cases had penetrated the skin after 24 

hours – that is, it had been excreted or was found in different organs. The distri-

bution of radioactivity to different organs, exhaled air, urine and faeces were also 

similar for both experiments. In the application of 
14

C-labelled ethanolamine (in 

ethanol) to transplanted human skin, 24.3% of the radioactivity remained in the 

liver after 24 hours, 2.5% in the kidneys, and 1% in the lungs, brain, and heart 

combined. 18.5% of the dose was found in exhaled air (CO2); 4.6% and 1.8% of 

the radioactivity was found in the urine and faeces, respectively. The study further 

demonstrated that ethanolamine could be metabolised to a certain extent in the 

skin, but more comprehensive metabolism took place in the liver. The main meta-

bolites in the urine were urea and glycine. Of the excreted radioactivity in the 

urine, approximately 10% was recovered in ethanolamine; 40% in urea; 20% in 

glycine; 4-6% in serine, uric acid and choline, respectively; and 12% as unidenti-

fied metabolites (31). There was no clear difference, for example in the exhalation 

of radioactive carbon dioxide, between mice that were given ethanolamine on 

transplanted skin and directly on their own skin respectively, and it cannot be 

ruled out that the animals took in an amount of ethanolamine via the gastrointes-

tinal tract (through grooming). The estimations of skin absorption in the study  

by Klain et al. (31) are thus considered uncertain. 

In a poorly described study on rats excretion of ethanolamine in urine (3 days) 

was reported to be 6.3%, 37% and 48% after peroral administration of 33, 330, 

and 530 mg/kg body weight. At the higher doses, almost all was excreted within 

the first 24 hours (37). 

Ethanolamine is found in the normal metabolism of humans and animals. The 

substance is part of lipid and protein metabolism (it can be formed from the amino 

acid serine and converted to choline) and is incorporated into phospholipids in the 

cell membrane (6, 7, 9, 31, 37, 38, 52). Normal excretion of ethanolamine in the 

urine (24 hours) was reported in one study to be 12.2 (range: 4.8 - 22.9) mg/day in 

men and 29.9 (range: 12.9 - 57) mg/day in women. The average value for men and 

women, expressed in terms of body weight, was reported to be 0.16 mg/kg/day 

and 0.49 mg/kg/day respectively. These values for normal excretion of ethanol-

amine in the urine was lower than the corresponding values reported for rats (1.46 

and 1.26 mg/kg body weight per day for males and females, respectively) and 

rabbits (approximately 0.9 mg/kg body weight per day) (37).  
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Toxic effects 

Human data 

A few studies (see below) describe the development of asthma, asthma-like symp-

toms and damage to airways upon exposure to products that contain ethanolamine 

(29, 43, 44). Since these studies deals with mixed exposures and provocation tests 

(when performed) being carried out with the products in question and not ethanol-

amine per se, its role in the observed effects is unclear. 

In a suicide attempt, a man ingested 600 ml of an alkaline laundry detergent  

(pH 11.7) containing 3.3% ethanolamine. The patient vomited and had asthma-

like symptoms, and was diagnosed with corrosive esophagogastritis and bronchial 

asthma. He died after several days due to his breathing problems, despite treat-

ment. Serious damage (such as necrosis) in the respiratory mucus membranes 

were seen in the histological examination (29).  

A case of asthma linked to a job, and considered to be ethanolamine-related, 

was reported in Savonius et al. (44). The patient had worked 18 years cleaning 

floors, and was exposed to various cleaning chemicals, including a wax remover 

containing 8% ethanolamine and 9% sodium metasilicate. She had been working 

for more than 10 years when she started displaying symptoms. When using the 

wax remover (in hot water) she began to wheeze, her nose began to run, and she 

developed an irritating cough. She also occasionally noticed a fever during work. 

Spirometry showed normal values, and the patient had no bronchial hyperreac-

tivity. The asthma diagnosis was based on provocation tests with the wax remover. 

Provocation induced an immediate, long-lasting asthmatic reaction and fever (38 

ºC after 7 hours). FEV1 decreased by 27%. Maximal PEF-reduction was 24%. 

Moreover, PEF measurements over 2 weeks were reported to show a pattern typi-

cal of occupational asthma (44). A later study (43) reported work-related cases of 

asthma which had been diagnosed at the Finnish Institute of Occupational Health 

between 1994 and 2004. Specific provocation tests with different agents and mea-

surements of lung function (FVC, FEV1, FEV%, PEF) were performed. The study 

included twenty women with cleaning work (“patients”) who had symptoms in 

their airways (including dyspnea and cough; 3 with no asthma diagnosis). Provo-

cation tests with products containing ethanolamine (5 patients) precipitated asthma 

in four cases, and it was concluded that either ethanolamine or triethanolamine 

was the most likely cause. (The fifth patient reacted only in testing with pure 

triethanolamine.) 15 of 20 patients experienced either no or mild bronchial hyper-

reactivity in histamine provocation tests, but it is not stated which patients were 

tested with products containing ethanolamine. Prick tests with ethanolamines  

(n = 9; how many were tested with monoethanolamine is unclear) were reported  

to be negative.  

Suuronen et al. (47) investigated the incidence of occupational allergic respira-

tory disorders in people who worked in the manufacture of metal products, for 

example machine fitters, grinders, and machine tool workers. Finnish registry  

data of occupational illnesses from 1992 to 2001 were analysed. No cases of 

ethanolamine-related asthma were reported (47).  
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In recent years, ethanolamine has been reported to be a common cause of 

allergic contact eczema in metalworkers exposed to water-based cutting fluids. 

Positive patch test results have been demonstrated in tests using 2% ethanolamine 

in vaseline in several large studies with patch testing of metalworkers who had 

work-related eczema (15, 16, 17, 18, 19). Suspicions have been expressed that the 

positive results of testing with 2% ethanolamine in vaseline indicate irritation 

owing to alkalinity rather than contact allergy. The fact that the portion of positive 

patch test reactions was significantly higher in people who had been exposed to 

cutting fluids than in people without known occupational exposure to ethanol-

amine has been interpreted to mean that this test preparation could detect contact 

allergy, even if a number of weak positive test responses may be false positives 

(16, 18). Lessmann et al. (35) reported that the reaction index (RI) did not indicate 

alkalinity as a primary cause of the irritation or inconclusive reactions to ethanol-

amine (2% in vaseline). 

In a large German study the patch test results (1999-2001) from 20 dermatology 

departments (part of IVDK, the Information Network of Departments of Derma-

tology) were analysed. Positive reactions to 2% ethanolamine in vaseline were 

obtained in 13 of 119 metalworkers who were exposed to cutting fluid and who 

had work-related eczema (17). The same authors reported positive test results with 

ethanolamine (2% in vaseline) during the period from April 2000 to July 2002 in 3 

of 53 metalworkers exposed to cutting fluids (5 dermatology departments, IVDK) 

(15). An analysis that included metalworkers who were patch tested at 31 derma-

tology departments in 2002 and 2003 because of eczema that was suspected to be 

related to cutting fluids reported positive test reactions to ethanolamine (2% in 

vaseline) in 23 of 199, while “doubtful” reactions were found in 16 people; a 

reaction due to irritation was seen in one person (16). A later study conducted a 

retrospective analysis of IVDK patch test results (2% ethanolamine in vaseline) 

from 1999 to 2003 for 370 metalworkers with suspected cutting oil-related eczema 

and 452 patients with no known occupational exposure to ethanolamine (age-

matched control group). Positive results were seen in 45 metalworkers and 6 

subjects in the control group; “doubtful” reactions were seen in 26 and 18 people, 

respectively. Additional reactions caused by irritation were reported for 2 subjects 

in the control group (18). A study published in 2006 reported positive patch test 

reactions to 2% ethanolamine in vaseline in 11 of 99 metalworkers with suspected 

occupational eczema from cutting oil (19).  

A German multi-centre project (about 50 clinics within IVDK) collected data 

from 1992 to 2007 on patients with suspected allergic contact eczema. Of 9,602 

patients, 8,830 had negative results, 335 questionable results and 19 follicular 

reactions in patch tests with ethanolamine (2% in vaseline). 363 patients had 

positive reactions and 55 were reported to have irritant reactions. Metalworkers 

were the dominant occupational group among ethanolamine-positive patients. 118 

of the 363 ethanolamine-positive patients either had been or were metalworkers 

occupied in cutting, grinding, drilling or similar work. The prevalence of positive 

reactions in patch tests using ethanolamine in sub-groups consisting of men (5,884 
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in total) was also reported in the study. The prevalence for men who did not work 

in the metallurgical industry (n=2,866), men who worked in the metallurgical 

industry (n=3,018) and men who worked in the metallurgical industry and who 

were also exposed to water-based cutting fluids (n=632) were 2.9%, 7.0%, and 

15.2% respectively. Many patients with positive patch test reactions to ethanol-

amine also had positive reactions to diethanolamine. In summary, the authors 

concluded that damage to the skin barrier (caused by ‘wet’ work, skin irritation 

from alkaline cutting fluids or solvents, and possibly mechanical effects) may be  

a contributing factor to ethanolamine sensitization in workers exposed to water-

based cutting fluids (35).  

In a Finnish study that, among other things, investigated work-related skin 

disorders in people working in the manufacture of metal products (for example 

machine setters, grinders, machine tool workers), two cases of allergic contact 

eczema related to ethanolamine were reported. The results were based on registry 

data from 1992 to 2001 for occupational diseases and patch testing, but the 

authors reported that there may be an underdiagnosis of contact allergy to ethanol-

amine, since it was not always used in the patch tests (47). In some further studies 

on metalworkers (about twenty people with eczema in total), positive patch test 

results for ethanolamine were reported in a few of them (3, 4, 28, 33, 35).  

Ethanolamine has also been reported to cause allergic contact eczema in 

association with other forms of exposure, for example to hair dyes. A German 

study reported on patch test results from about forty clinics within IVDK from 

2003 through 2006. Positive patch test results were obtained for ethanolamine  

(2% in vaseline) in 11 of 595 female hair salon clients and 7 of 401 female hair-

dressers. A significant change over this period of time (4 years) was observed, 

with a higher prevalence of positive reactions to ethanolamine during 2005 and 

2006 (49). Earlier data (1998-2000) registered at IVDK showed that 4 of 22 

patients with suspected sensitivity to the contents of hair dye reacted positively  

in patch tests with ethanolamine (2% in vaseline), which was part of the products 

(10).  

Positive reactions to ethanolamine (2% in vaseline), as well as to other sub-

stances, was also reported in a dental assistant with work-related hand eczema. 

Ethanolamine was part of a disinfectant she used that also contained other 

sensitizing substances (48). 

Based on the data for human sensitization reported above, the conclusion is  

that ethanolamine is a weak contact allergen. 

Animal data 

Ethanolamine is moderately acutely toxic in peroral administration or skin appli-

cation. The LD50 for peroral administration in rats was reported in some studies  

to be between 1.7 and 3.3 g/kg (21, 45, 50). Unpublished data indicates an LD50  

of around 1 g/kg for skin application (rabbits) (1). 

In an older inhalation study (52), dogs were exposed to 6, 12, 26, or 102 ppm; 

guinea pigs to 15 or 75 ppm; and rats to 5, 12, or 66 ppm of ethanolamine (Table 
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1). Exposure (whole-body exposure) was mainly continuous and lasted for up to 

90 days. Mild changes in behaviour and a certain amount of skin irritation were 

reported at an exposure of 5-6 ppm (see below). Rats exposed to 5 ppm were 

somewhat slower in their movements and had thinner fur on certain parts of their 

body after 3 weeks of exposure. Discoloured fur was seen in all rats after 12 days. 

The dogs exposed (6 ppm) also became somewhat less active after a couple weeks 

of exposure, but no abnormal values for pulse, temperature, or heartbeat or res-

piratory sounds were noted (recorded only in dogs). The dogs’ fur gradually be-

came more yellow and a little greasy, something which was reported to cause dis-

comfort and skin irritation. Hair loss and small scabs were observed in skin that 

came in contact with the floor. A somewhat thicker epithelium, with an increase in 

the amount of exfoliated cells, was seen in histological examinations of both dogs 

and rats. At exposures to 12-15ppm, the laboratory animals became less alert and 

sunk into lethargy. This occurred in rats and guinea pigs after 3 to 10 days, while 

no changes in behaviour were seen in dogs at the beginning of the exposure. After 

several days of exposure, the dogs’ fur became dingy and their skin became irri-

tated (especially skin areas that came in contact with the floor). Depression and 

lethargy were observed later, but the dogs recovered their normal behaviour after 

approximately 3 weeks. Histological examinations (12-15 ppm) reported the same 

type of changes to the skin as for exposure to 5-6 ppm. Dogs exposed to 26 ppm 

of ethanolamine displayed immediate signs of restlessness and discomfort. Their 

respiration became rapid and shallow. Within a few days they were less alert, and 

after that in a condition bordering on lethargy. Their fur became wet and greasy 

within 2 days; skin that came in contact with the floor became irritated and de-

veloped small ulcers within 1 week. No treatment-related histopathological 

changes in other tissues than the skin were reported; nor were any noteworthy 

effects reported in biochemical/haematological parameters (5-26 ppm). At higher 

levels of exposure (66-102 ppm) both rodents and dogs were markedly affected. 

83% of the rats and 75% of the guinea pigs died within 3-4 weeks. The dogs 

became apathetic within a few days and one dog (of three) died. Ulcers on the skin 

and areas with necrosis (all the way down to the underlying muscles in certain 

cases) were observed. Inflammatory changes in the lungs, and changes in the liver 

and kidneys (histopathology) were also seen at these air levels (66-102 ppm). 

Furthermore, at 102 ppm mild corrosive injuries in the mucous membranes of the 

upper respiratory tract, histopathological changes in the spleen and effects on the 

blood (lower Hb and hematocrit, increased number of white blood cells, relative 

decrease in lymphocyte, altered albumin/globulin ratio) were reported. In sum-

mary, the authors concluded that continual exposure to 12-15 ppm ethanolamine 

over a longer period caused skin irritation and lethargy, and exposure to 5 ppm 

produced minimal effects. They calculated that the retained dose in rats at 12 ppm 

corresponded to 36-48 mg/kg body weight per day (it was assumed that ventilation 

was 0.3-0.4 m
3
/day, body weight 250 gram and uptake 100%) (52). Some skin 

exposure to the substance in liquid form may have occurred, however. The study 

reported that ethanolamine condensed on all surfaces in the exposure chamber at 
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102 ppm, making the fur wet and greasy. Wet/greasy fur and small ulcers on  

the skin that came in contact with the floor were also seen at lower air levels. 

The summary of an unpublished inhalation study with ethanolamine (Exp key 

repeated dose toxicity: inhalation.001) is available (2012-05-15) as part of the 

industry’s registry dossier from the ECHA homepage, http://echa.europa.eu/.  

The results and conclusions of the study are difficult to evaluate, however, as  

they have not been completely reported. 

An older, briefly described study in which ethanolamine was administered in 

food (doses 160-2670 mg/kg per day) to rats for 90 days reported that changed 

liver or kidney weights were noted at daily doses of 640 mg/kg and death at 1280 

mg/kg. The maximum daily dose that produced no toxic effects (NOAEL) was 

reported to be 320 mg/kg (45).  

In experiments on rats with injections of neutralised ethanolamine into the 

abdominal cavity (500 mg/kg body weight), a 50% inhibition of GABA amino-

transferase activity in the brain was detected. Significantly increased GABA 

(gamma-aminobutyric acid, a signalling substance) content in the brain was 

reported (the GABA aminotransferase enzyme breaks down GABA). During in 

vitro experiments, the IC50 (the concentration that produces 50% inhibition) for 

the inhibition of GABA aminotransferase in rat brains was 3.9 mmol/l, and sig-

nificant inhibition of the enzyme appeared at concentrations of >0.5 mmol/l. The 

authors reported that ethanolamine inhibited GABA aminotransferase more 

effectively than the antiepileptic (GABA-increasing) medicine Valproat, but  

also reported that ethanolamine was a relatively weak inhibitor of GABA amino-

transferase (39). Another in vitro experiment showed that ethanolamine (neutral-

lised) inhibited the enzyme acetylcholinesterase at high concentrations (50% in-

hibition at 40 mmol/l) (21). 

A study on guinea pigs using inhalation through tracheal cannula of an aerosol 

of an ethanolamine solution (3.3% solution, pH 12.0) or of an aerosol of a potas-

sium hydroxide solution (pH 12.0) reported that bronchial contractions were most 

pronounced upon exposure to ethanolamine. Different methods were used to fur-

ther investigate whether substances known for inducing bronchial contractions 

(e.g. histamine, acetylcholine) were involved in ethanolamine-induced bronchial 

constriction. The authors report that the results indicate that asthma-like symptoms 

induced by ethanolamine aspirated into the lungs could be partially due to a stimu-

lating effect of ethanolamine on histamine-H1 and muscarinic receptors (30). 

A French study showed that undiluted ethanolamine was highly irritating  

when instillated into rabbit eyes. Bleeding that lasted for several days began 

approximately 30 minutes after instillation (11). An older study reported that one 

drop of ethanolamine in the eye of a rabbit could cause damage corresponding to  

9 on a scale of 10 after 24 hours (20). Mild eye irritation was reported for a 10% 

ethanolamine solution in an in vivo Draize test (41). One in vitro test (EYTEX) 

roughly classified both undiluted ethanolamine and a 10% aqueous solution of 

ethanolamine as a severe to extreme eye irritant, while a 1% aqueous solution  

was classified as a moderate to severe eye irritant (41).  
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Undiluted ethanolamine has been reported as highly irritant to skin in experi-

ments on rabbits (index: 7 of a maximum of 8). Necrotic changes were seen in 

histological examinations. (11). No skin damage was reported from the appli-

cation of a 1%, 5%, or 10% ethanolamine solution (in acetone) to the skin of mice 

and histological evaluation under a light microscope after 20 hours. In vitro tests 

on mouse skin, however, indicated a mild toxic effect in the form of increased 

lactate dehydrogenase activity from 5% and 10% ethanolamine solutions in 

acetone (but not from the 1% solution) (24). Unpublished data (cited in Reference 

32) reports that aqueous solutions containing 25%, 50% or 75% ethanolamine are 

corrosive to rabbit skin.  

Two experiments on guinea pigs (GPMT) using induction and subsequent pro-

vocation with ethanolamine (provocation with 0.41%, 2.05%, and 4.1%) produced 

3, 2, and 3 positive reactions out of 15 and 0, 1, and 1 positive reaction out of 15 

respectively after 3 days. In experiment I, 2 out of 15 animals reacted to the 

vehicle (water). In experiment II, no animals reacted to the vehicle (physiological 

saline). There were no positive reactions after 3 days from provocation with 

ethanolamine, water or physiological saline in the control animals, who were  

not induced with ethanolamine (1 of 12 control animals had a reaction to the 

physiological saline after 2 days) (35, 51). Nor were any clear skin sensitizing 

effects reported in tests with 10%. 30%, or 70% ethanolamine as a hydrochloride 

in the local lymph node assays (LLNA) on mice. The study from 2007 is un-

published, but it was reported that it had been carried out according to OECD 

guideline 429 (35).  

Mutagenicity/genotoxicity 

Ethanolamine was not mutagenic in different in vitro tests on bacteria (Salmonella 

typhimurium TA1535, TA1537, TA1538, TA98 or TA100, Escherichia coli WP2 

och WP2 uvrA) with or without metabolic activation. Nor were mitotic gene con-

versions induced in the Saccharomyces cerevisiae yeast fungus in tests with or 

without metabolic activation. Neither induction of structural chromosome damage 

in rat liver cells nor morphological cell transformations in hamster embryo cells 

were seen in other in vitro experiments (8, 22, 27, 42).  

Carcinogenicity 

No cancer studies of ethanolamine in experimental animals have been found in the 

literature.  

A retrospective cohort study of auto workers investigated the relationship 

between the incidences of bladder or lung cancer (1985-2004) and exposure to 

cutting fluids. No relationships were demonstrated between bladder or lung cancer 

and any of the types of cutting fluids that may have contained ethanolamines (it 

was unclear which ethanolamines). Nor was the duration of exposure to ethanol-

amines (no exposure, >1 year, ≥1 year) associated with increased risk of bladder 
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cancer or lung cancer (safety data sheets were used to identify exposure to 

ethanolamines) (14).  

Effects on reproduction 

An older, poorly documented inhalation study reported that spermatogenesis 

appeared to decrease in guinea pigs exposed to 75 ppm for up to 24 days (75%  

of the animals died) and that spermatogenesis was suppressed in dogs exposed  

to 102 ppm for up to 30 days (one of three dogs died) (52).  

Reproductive effects in rats and rabbits were investigated in a study with appli-

cation of ethanolamine to skin during gestation. Ethanolamine was applied to the 

surface of the skin (6 hrs/day under occlusion) as a 1% - 22.5% (rats) and 0.5% - 

3.75% (rabbits) aqueous solution. The ethanolamine exposure in the groups was 

10, 25, 75, or 225 mg/kg per day (rats) and 10, 25, or 75 mg/kg per day (rabbits); 

the animals were exposed on days 6-15 (rats) or 6-18 (rabbits) of gestation. The 

parameters evaluated included number of implantations, resorptions and dead 

foetuses, litter size, foetal body weight, foetal sex ratio and variations/malforma-

tions. No statistically significant effects on reproduction in rats or rabbits were 

found. Significantly reduced body weight gain (not significantly decreased food 

intake) was noted in dams (rat) at exposure to 225 mg/kg per day; skin irritation 

and necrosis of the exposed surfaces were seen in this exposure group. Weight 

gain for dams (rabbit) in the high-dosage group (75 mg/kg per day) was also im-

paired during gestation, though not significantly. The rabbits in the high-dosage 

group developed severe skin irritation with necroses, while milder skin irritation 

was observed in several rabbits exposed to 25 mg/kg per day. No significant 

treatment-related effects on liver and kidney weights was noted in rats or rabbits  

at any level of exposure. Nor were significant effects seen for haematological 

parameters in any group (only rabbits were evaluated) (36). 

A study on rats using gavage with 40, 120 or 450 mg ethanolamine/kg per day 

(in aqueous solution) for days 6-15 during gestation (40 animals per group) re-

ported no significant and clearly treatment-related reproductive effects (number  

of implantations, resorptions, living foetuses, litter size, sex ratio, foetal weights 

and variations/malformations were among the outcomes studied). The NOEL for 

developmental toxicity was reported to be 450 mg/kg per day. Treatment-related 

toxicity was seen, however, in mothers in the high-dosage group in the form of 

decreased weight gain and poorer food intake; the NOEL for maternal toxicity  

was reported to be 120 mg/kg per day (23). 

In an older study, rats were administered an aqueous solution of ethanolamine 

(0.25-2.5%) via gavage during days 6-15 of gestation. The ethanolamine doses in 

the groups (10 animals per group, 34 in the control group) were 0, 50, 300 or 500 

mg/kg body weight per day. No significant effect on the number of implantations 

were reported for any group. The sum total of dead or malformed foetuses per 

female, however, was dose-dependent and increased significantly in all exposed 

groups (4.7, 6.1 and 6.4 respectively vs. 1.6). There was a significant increase  

in embryolethality solely in the high-dosage group. An increase in malformed 
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foetuses (including variation and small foetuses) was seen in all dosage groups, 

but without a dose-response relationship. The increased incidence of small 

foetuses was reported as an expression of intrauterine growth inhibition (this 

seems to have particularly affected some females in the medium-dosage group). 

Impaired weight gain in mothers (group average) was not demonstrated in any  

of the exposed groups. Signs of maternal toxicity (initially lethargy, followed by 

increased activity and “agitation”) was seen, however, in some rats in the high-

dose group within 1 hour after gavage, but all animals appeared normal after 8 

hours (40). The study has been criticised regarding its design (it was not designed 

for risk assessment), the number of animals in the exposed groups and the classi-

fication of malformations, and because there was no dose-response relationship 

for any of the reported malformations (23, 36).  

The summary of an unpublished multigenerational study with ethanolamine 

hydrochloride (Exp key toxicity to reproduction.001) is available (2012-05-15)  

as part of the industry’s registry dossier from the ECHA homepage, http://echa. 

europa.eu/. The results and conclusions of the study are difficult to evaluate, 

however, as they have not been completely reported. 

Dose-effect/dose-response relationships 

There are no human data on which to base a dose-effect or dose-response re-

lationship for occupational exposure to ethanolamine. The odour threshold for 

ethanolamine has been reported to be 2.6 ppm (52).  

An older experimental study on animals (52) with mainly continual inhalation 

exposure to ethanolamine reported mild behavioural changes and a certain amount 

of skin irritation after exposure to 5-6 ppm for some time. At 12-15 ppm, serious 

behavioural changes (lethargy) and skin irritation were reported. The theoretically 

calculated dose taken up during inhalation exposure to 12 ppm was 36-48 mg/kg 

body weight per day (rats). Reduced spermatogenesis was reported at air levels 

around 75-102 ppm. Many animals died at these air levels, however, and the study 

was inconclusively reported as regards effects on sperm. Skin exposure to the sub-

stance in liquid form (especially at higher air levels) cannot be ruled out. Further-

more, the extent to which the observed behavioural changes depended on irritation 

cannot be evaluated (52).  

Increased embryolethality was observed in experiments on animals using per-

oral administration of high doses of ethanolamine (500 mg/kg body weight per 

day) during gestation. Transient effects on behaviour, but no effect on weight  

gain, were observed in dams in this dosage group (40).  

Normal excretion of ethanolamine in the urine (24 hours) in humans has been 

reported to be 5-57 mg/day. Average values of 0.16 and 0.49 mg/kg body weight 

per day for men and women respectively have been reported. These values for 

normal excretion of ethanolamine in the urine were lower than the values reported 

for rats and rabbits (37). 
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Conclusions 

There are no human data from which to derive a critical effect for occupational 

exposure to ethanolamine, but based on the chemical properties of the substance, 

the critical effect is considered to be irritation of the mucous membranes. An older 

study on laboratory animals with mainly continual exposure reported a certain 

amount of skin irritation and mild effects on behaviour at air levels of 5-6 ppm 

and serious changes in behaviour (lethargy) at 12 ppm. Skin exposure to the 

substance in liquid form cannot be ruled out; this could have influenced the 

results. 

Direct contact with ethanolamine as a liquid (even as a diluted solution) can 

result in corrosive injuries to eyes and skin. Exposing skin to ethanolamine in 

liquid form can result in significant skin absorption. Skin contact with ethanol-

amine can also induce allergic contact eczema. 
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Table 1. Effects on laboratory animals from inhalation exposure
1
 to ethanolamine (52). 

 

Exposure  Species Effects 

ppm time
2
    

 

5 24 hrs/day, 

7 days/wk,  

40 days 

Rat Discolouration of fur after 12 days; subsequent partial hair 

loss and somewhat slower movements; somewhat thicker 

skin epithelium with increased amount of exfoliated cells. 

6 24 hrs/day,  

7 days/wk,  

60 days 

 

Dog Fur became slightly greasy and gradually more yellow; 

animals somewhat less alert/active after a couple of weeks;  

a certain amount of skin irritation, hair loss and small scabs 

on the skin that came in contact with the floor; a somewhat 

thicker epithelium, with an increase in the amount of 

exfoliated cells. 

12  24 hrs/day, 

7 days/wk,  

90 days 

Dog Dingy fur after some time; skin irritation (in particular skin 

that came in contact with the floor) and temporary (3 weeks) 

listlessness/lethargy; a somewhat thicker skin epithelium, 

with an increase in the amount of exfoliated cells. 

12 24 hrs/day,  

7 days/wk,  

90 days 

Rat Less active after approximately 3 days, lethargy after 10 

days; approximately 10% lower weight gain; temporarily 

thinned fur (certain areas); a somewhat thicker skin epi-

thelium, with an increase in the amount of exfoliated cells. 

15 24 hrs/day,  

7 days/wk,  

90 days 

Guinea 

pigs 

Less active after approximately 3 days, lethargy after 10 

days; approximately 10% lower weight gain; a somewhat 

thicker skin epithelium, with an increase in the amount of 

exfoliated cells. 

26 24 hrs/day,  

7 days/wk,  

90 days 

Dog Immediate signs of restlessness and discomfort; rapid and 

shallow respiration; listlessness/lethargy after a couple of 

days; mild tremors in the back legs; wet/greasy fur; small 

ulcers and thinned fur on skin that came in contact with  

the floor.  

66
3
 24 hrs/day,  

7 days/wk,  

30 days 

Rat 37 of 45 died; restlessness, apathy, wet/greasy and thinned 

fur; scabs on the skin; heavy breathing effort; histopatho-

logical changes in the skin, lungs, liver, and kidneys. 

75 24 hrs/day,  

7 days/wk,  

24 days 

Guinea 

pigs 

17 of 22 died; clear effects (see rats, 66 ppm); 

histopathological changes (see rats, 66 ppm); decreased 

spermatogenesis. 

102
3
 

 

  

24 hrs/day, 

7 days/wk,  

30 days 

Dog 1 of 3 died; restlessness, vomiting, apathy/lethargy, fever; 

wet/greasy fur, ulcerations on the skin; histopathological 

changes in the skin (inflammation, necrosis), airways (mild 

burns, inflammation, haemorrhage), liver, kidneys, and 

spleen; haematological changes; suppressed spermatogenesis 

in the testicles.  
 

1 
There may have been skin exposure to ethanolamine in liquid form. Ethanolamine condensed on 

  all surfaces in the exposure chamber at 102 ppm, which was reported as having caused the wet  

  and greasy fur. Wet/greasy fur and small ulcerations on the skin that came in contact with the  

  floor were also seen at lower exposure levels.  
2 
Number of days indicates maximum exposure time – that is, the time for the animals that survived 

  the whole period. 
3 
The standard deviation (air level) for these exposures was approximately 30%. 
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APPENDIX 
 

Consensus reports in this and previous volumes 
 

 
Substance Consensus  

date 
Published in  
Arbete och Hälsa 
year;volume(No) 

No. in series  
of Consensus 
Reports 

 
Acetaldehyde February 17, 1987 1987;39 VIII 
Acetamide December 11, 1991 1992;47 XIII 
Acetic acid June15, 1988 1988;32 IX 
Acetone October 20, 1987 1988;32 IX 
Acetonitrile September 12, 1989 1991;8 XI 
Acrylamide April 17, 1991 1992;6 XII 
Acrylates December 9, 1984 1985;32 VI 
Acrylonitrile April 28, 1987 1987;39 VIII 
Aliphatic amines August 25, 1982 1983;36 IV 
Aliphatic hydrocarbons, C10-C15 June 1, 1983 1983;36 IV 
Aliphatic monoketons September 5, 1990 1992;6 XII 
Allyl alcohol September 9, 1986 1987;39 VIII 
Allylamine August 25, 1982 1983;36 IV 
Allyl chloride June 6, 1989 1989;32 X 
Aluminum April 21, 1982 1982;24 III 
      revised September 14, 1994 1995;19 XVI 
Aluminum trifluoride September 15, 2004 2005;17 XXVI 
p-Aminoazobenzene February 29, 1980 1981;21 I 
Ammonia April 28, 1987 1987;39 VIII 
      revised October 24, 2005 2006;11 XXVII 
Ammonium fluoride September 15, 2004 2005;17 XXVI 
Amylacetate March 23, 1983 1983;36 IV 
      revised June 14, 2000 2000;22 XXI 
Aniline October 26, 1988 1989;32 X 
Anthraquinone November 26, 1987 1988;32 IX 
Antimony + compounds December 8, 1999 2000;22 XXI 
Arsenic, inorganic December 9, 1980 1982;9 II 
      revised February 15, 1984 1984;44 V 
Arsine October 20, 1987 1988;32 IX 
Asbestos October 21, 1981 1982;24 III 
Asphalt fumes April 14, 2010 2011;45(6) XXXI 
    
Barium June 16, 1987 1987;39 VIII 
      revised January 26, 1994 1994;30 XV 
Benzene March 4, 1981 1982;9 II 
      revised February 24, 1988 1988;32 IX 
Benzoyl peroxide February 13, 1985 1985;32 VI 
Beryllium April 25, 1984 1984;44 V 
Bitumen fumes April 14, 2010 2011;45(6) XXXI 
Borax October 6, 1982 1983;36 IV 
Boric acid October 6, 1982 1983;36 IV 
Boron Nitride January 27, 1993 1993;37 XIV 
Butadiene October 23, 1985 1986;35 VII 
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1-Butanol June 17, 1981 1982;24 III 
Butanols June 6, 1984 1984;44 V 
Butyl acetate June 6, 1984 1984;44 V 
Butyl acetates February 11, 1998 1998;25 XIX 
n-Butyl acrylate September 28, 2011 2013;47(6) XXXII 
Butylamine August 25, 1982 1983;36 IV 
Butyl glycol October 6, 1982 1983;36 IV 
γ-Butyrolactone June 2, 2004 2005;7 XXV 
    
Cadmium January 18, 1980 1981;21 I 
      revised February 15, 1984 1984;44 V 
      revised May 13, 1992 1992;47 XIII 
      revised February 5, 2003 2003;16 XXIV 
Calcium fluorid September 15, 2004 2005;17 XXVI 
Calcium hydroxide February 24, 1999 1999;26 XX 
Calcium nitride January 27, 1993 1993;37 XIV 
Calcium oxide February 24, 1999 1999;26 XX 
Caprolactam October 31, 1989 1991;8 XI 
Carbon dioxide June 15, 2011 2013;47(6) XXXII 
Carbon monoxide December 9, 1981 1982;24 III 
Cathecol September 4, 1991 1992;47 XIII 
Chlorine December 9, 1980 1982;9 II 
Chlorine dioxide December 9, 1980 1982;9 II 
Chlorobenzene September 16, 1992 1993;37 XIV 
      revised April 2, 2003 2003;16 XXIV 
o-Chlorobenzylidene malononitrile June 1, 1994 1994;30 XV 
Chlorocresol December 12, 1990 1992;6 XII 
Chlorodifluoromethane June 2, 1982 1982; 24 III 
Chlorophenols September 4, 1985 1986;35 VII 
Chloroprene April 16, 1986 1986;35 VII 
Chromium December 14, 1979 1981;21 I 
      revised May 26, 1993 1993;37 XIV 
      revised May 24, 2000 2000;22 XXI 
Chromium trioxide May 24, 2000 2000;22 XXI 
Coal dust September 9, 1986 1987;39 VIII 
Cobalt October 27, 1982 1983;36 IV 
Cobalt and cobalt compounds October 22, 2003 2005;7 XXV 
Copper October 21, 1981 1982;24  III 
Cotton dust February14, 1986 1986;35 VII 
Creosote October 26, 1988 1989;32 X 
      revised December 5, 2007 2009;43(4) XXIX 
Cresols February 11, 1998 1998;25 XIX 
Cumene June 2, 1982 1982;24 III 
Cyanamid September 30, 1998 1999;26 XX 
Cyanoacrylates March 5, 1997 1997;25 XVIII 
Cycloalkanes, C5-C15 April 25, 1984 1984;44 V 
Cyclohexanone March 10, 1982 1982;24 III 
      revised February 24, 1999 1999;26 XX 
Cyclohexanone peroxide February 13, 1985 1985;32 VI 
Cyclohexylamine February 7, 1990 1991;8 XI 
    
Desflurane May 27, 1998 1998;25 XIX 
Diacetone alcohol December 14, 1988 1989;32 X 
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Dichlorobenzenes February 11, 1998 1998;25 XIX 
1,2-Dibromo-3-chloropropane May 30, 1979 1981;21 I 
Dichlorodifluoromethane June 2, 1982 1982;24 III 
1,2-Dichloroethane February 29, 1980 1981;21 I 
Dichloromethane February 29, 1980 1981;21 I 
Dicumyl peroxide February 13, 1985 1985;32 VI 
Dicyclopentadiene March 23, 1994 1994;30 XV 
Diesel exhaust December 4, 2002 2003;16 XXIV 
Diethanolamine September 4, 1991 1992;47 XIII 
Diethylamine August 25, 1982 1983;36 IV 
      revised February 16, 2011 2013;47(6) XXXII 
2-Diethylaminoethanol January 25, 1995 1995;19 XVI 
Diethylene glycol September 16, 1992 1993;37 XIV 
Diethyleneglycol ethylether + acetate December 11, 1996 1997;25 XVIII 
Diethyleneglycol methylether + acetate March 13, 1996 1996;25 XVII 
Diethyleneglycol monobutylether January 25, 1995 1995;19 XVI 
Diethylenetriamine August 25, 1982 1983;36 IV 
      revised January 25, 1995 1995;19 XVI 
Diisocyanates April 8, 1981 1982;9 II 
      revised April 27, 1988 1988;32 IX 
      revised May 30, 2001 2001;20 XXII 
Diisopropylamine February 7, 1990 1991;8 XI 
N,N-Dimethylacetamide March 23, 1994 1994;30 XV 
Dimethyl adipate December 9, 1998 1999;26 XX 
Dimethylamine December 10, 1997 1998;25 XIX 
N,N-Dimethylaniline December 12, 1989 1991;8 XI 
Dimethyldisulfide September 9, 1986 1987;39 VIII 
Dimethylether September 14, 1994 1995;19 XVI 
Dimethylethylamine June 12, 1991 1992;6 XII 
Dimethylformamide March 23, 1983 1983;36 IV 
Dimethyl glutarate December 9, 1998 1999;26 XX 
Dimethylhydrazine January 27, 1993 1993;37 XIV 
Dimethyl succinate December 9, 1998 1999;26 XX 
Dimethylsulfide September 9, 1986 1987;39 VIII 
Dimethylsulfoxide, DMSO December 11, 1991 1992;47 XIII 
Dioxane August 25, 1982 1983;36 IV 
      revised March 4, 1992 1992;47 XIII 
Diphenylamine January 25, 1995 1995;19 XVI 
4,4'-Diphenylmethanediisocyanate (MDI) April 8, 1981 1982;9 II 
      revised May 30, 2001 2001;20 XXII 
Dipropylene glycol May 26, 1993 1993;37 XIV 
Dipropyleneglycol monomethylether December 12, 1990 1992;6 XII 
Disulfiram October 31, 1989 1991;8 XI 
    
Enzymes, industrial June 5, 1996 1996;25 XVII 
Ethanol May 30, 1990 1991;8 XI 
Ethanolamine September 4, 1991 1992;47 XIII 
      revised May 30, 2012 2013;47(6) XXXII 
Ethylacetate March 28, 1990 1991;8 XI 
Ethylamine August 25, 1982 1983;36 IV 
      revised February 16, 2011 2013;47(6) XXXII 
Ethylamylketone September 5, 1990 1992;6 XII 
Ethylbenzene December 16, 1986 1987;39 VIII 
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Ethylchloride December 11, 1991 1992;47 XIII 
Ethylene December 11, 1996 1997;25 XVIII 
Ethylene chloride February 29, 1980 1981;21 I 
Ethylene diamine August 25, 1982 1983;36 IV 
Ethylene glycol October 21, 1981 1982;24 III 
Ethylene glycol ethylether + acetate February 6 2009;43(4) XXIX 
Ethylene glycol methylether + acetate June 2, 1999 1999;26 XX 
Ethyleneglycol monoisopropylether November 16, 1994 1995;19 XVI 
Ethyleneglycol monopropylether + acetate September 15, 1993 1994;30 XV 
Ethylene oxide December 9, 1981 1982;24 III 
Ethylenethiourea September 27, 2000 2001;20 XXII 
Ethylether January 27, 1993 1993;37 XIV 
Ethylglycol October 6, 1982 1983;36 IV 
    
Ferbam September 12, 1989 1991;8 XI 
Ferric dimethyldithiocarbamate September 12, 1989 1991;8 XI 
Flour dust December 10, 1997 1998;25 XIX 
Fluorides September 15, 2004 2005;17 XXVI 
Formaldehyde June 30, 1979 1981;21 I 
      revised August 25, 1982 1983;36 IV 
      revised June 9, 2010 2011;45(6) XXXI 
Formamide December 12, 1989 1991;8 XI 
Formic acid June 15, 1988 1988;32 IX 
Furfural April 25, 1984 1984;44 V 
Furfuryl alcohol February 13, 1985 1985;32 VI 
    
Gallium + Gallium compounds January 25, 1995 1995;19 XVI 
Glutaraldehyde September 30, 1998 1999;26 XX 
Glycol ethers October 6, 1982 1983;36 IV 
Glyoxal September 13, 1996 1996;25 XVII 
Grain dust December 14, 1988 1989;32 X 
      revised February 4, 2009 2010;44(5) XXX 
Graphite December 10, 1997 1998;25 XIX 
    
Halothane April 25, 1985 1985;32 VI 
2-Heptanone September 5, 1990 1992;6 XII 
3-Heptanone September 5, 1990 1992;6 XII 
Hexachloroethane September 15, 1993 1994;30 XV 
Hexamethylenediisocyanate (HDI) April 8, 1981 1982;9 II 
      revised May 30, 2001 2001;20 XXII 
Hexamethylenetetramine August 25, 1982 1983;36 IV 
n-Hexanal March 29, 2006 2006;11 XXVII 
n-Hexane January 27, 1982 1982;24 III 
2-Hexanone September 5, 1990 1992;6 XII 
Hexyleneglycol November 17, 1993 1994;30 XV 
Hydrazine May 13, 1992 1992;47 XIII 
Hydrochloric acid June 3, 2009 2010;44(5) XXX 
Hydrogen bromide February 11, 1998 1998;25 XIX 
Hydrogen cyanide February 7, 2001 2001;20 XXII 
Hydrogen fluoride April 25, 1984 1984;44 V 
      revised September 15, 2004 2005;17 XXVI 
Hydrogen peroxide April 4, 1989 1989;32 X 
Hydrogen sulfide May 4, 1983 1983;36 IV 
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Hydroquinone October 21, 1989 1991;8 XI 
    
Indium March 23, 1994 1994;30 XV 
Industrial enzymes June 5, 1996 1996;25 XVII 
Isocyanic Acid (ICA) December 5, 2001 2002;19 XXIII 
Isophorone February 20, 1991 1992;6 XII 
Isopropanol December 9, 1981 1982;24 III 
Isopropylamine February 7, 1990 1991;8 XI 
Isopropylbenzene June 2, 1982 1982;24 III 
    
Lactates March 29, 1995 1995;19 XVI 
Lactate esters June 2, 1999 1999;26 XX 
Laughing gas June 7, 2006 2006;11 XXVII 
Lead, inorganic February 29, 1980 1981;21 I 
      revised September 5, 1990 1992;6 XII 
      revised December 8, 2004 2005;17 XXVI 
Lithium and lithium compounds June 4, 2003 2003;16 XXIV 
Lithium boron nitride January 27, 1993 1993;37 XIV 
Lithium nitride January 27, 1993 1993;37 XIV 
    
Maleic anhydride September 12, 1989 1991;8 XI 
Manganese February 15, 1983 1983;36 IV 
      revised April 17, 1991 1992;6 XII 
      revised June 4, 1997 1997;25 XVIII 
Man made mineral fibers March 4, 1981 1982;9 II 
      revised December 1, 1987 1988;32 IX 
Mercury, inorganic April 25, 1984 1984;44 V 
Mesityl oxide May 4, 1983 1983;36 IV 
Metal stearates, some September 15, 1993 1994;30 XV 
Methacrylates September 12, 1984 1985;32 VI 
Methanol April 25, 1985 1985;32 VI 
Methyl acetate March 28, 1990 1991;8 XI 
Methylamine August 25, 1982 1983;36 IV 
Methylamyl alcohol March 17, 1993 1993;37 XIV 
Methyl bromide April 27, 1988 1988;32 IX 
Methyl chloride March 4, 1992 1992;47 XIII 
Methyl chloroform March 4, 1981 1982;9 II 
4,4´-methylene-bis-(2-chloroaniline) February 4, 2004 2005;7 XXV 
Methylene chloride February 29, 1980 1981;21 I 
4,4'-Methylene dianiline June 16, 1987 1987;39 VIII 
      revised October 3, 2001 2002;19 XXIII 
Methyl ethyl ketone February 13, 1985 1985;32 VI 
Methyl ethyl ketone peroxide February 13, 1985 1985;32 VI 
Methyl formate December 12, 1989 1991;8 XI 
Methyl glycol October 6, 1982 1983;36 IV 
Methyl iodide June 30, 1979 1981;21 I 
Methylisoamylamine September 5, 1990 1992;6 XII 
Methylisoamylketone February 6, 2002 2002;19 XXIII 
Methylisocyanate (MIC) December 5, 2001 2002;19 XXIII 
Methyl mercaptane September 9, 1986 1987;39 VIII 
Methyl methacrylate March 17, 1993 1993;37 XIV 
Methyl pyrrolidone June 16, 1987 1987;39 VIII 
α-Methylstyrene November 1, 2000 2001;20 XXII 
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Methyl-t-butyl ether November 26, 1987 1988;32 IX 
      revised September 30, 1998 1999;26 XX 
Mixed solvents, neurotoxicity April 25, 1985 1985;32 VI 
MOCA February 4, 2004 2005;7 XXV 
Molybdenum October 27, 1982 1983;36 IV 
      revised Februari 4, 2009 2010;44(5) XXX 
Monochloroacetic acid February 20, 1991 1992;6 XII 
Monochlorobenzene September 16, 1993 1993;37 XIV 
Monomethylhydrazine March 4, 1992 1992;47 XIII 
Mononitrotoluene February 20, 1991 1992;6 XII 
Monoterpenes February 17, 1987 1987;39 VIII 
Morpholine December 8, 1982 1983;36 IV 
      revised June 5, 1996 1996;25 XVII 
    
Naphthalene May 27, 1998 1998;25 XIX 
Natural crystallinic fibers, except asbestos June 12, 1991 1992;6 XII 
Nickel April 21, 1982 1982;24 III 
Nicotine June 2, 2004 2005;7 XXV 
Nitric acid June 3, 2009 2010;44(5) XXX 
Nitric oxide December 11, 1985 1986;35 VII 
      revised June 13, 2007 2008;42(6) XXVIII 
Nitroethane April 4, 1989 1989;32 X 
Nitrogen dioxide December 11, 1985 1986;35 VII 
      revised September 12, 2007 2008;42(6) XXVIII 
Nitrogen oxides December 11, 1985 1986;35 VII 
Nitroglycerin February 13, 1985 1985;32 VI 
Nitroglycol February 13, 1985 1985;32 VI 
Nitromethane January 6, 1989 1989;32 X 
Nitropropane October 28, 1986 1987;39 VIII 
2-Nitropropane March 29, 1995 1995;19 XVI 
Nitroso compounds December 12, 1990 1992;6 XII 
Nitrosomorpholine December 8, 1982 1983;36 IV 
Nitrotoluene February 20, 1991 1992;6 XII 
Nitrous oxide December 9, 1981 1982;24 III 
      revised June 7, 2006 2006;11 XXVII 
    
Oil mist April 8, 1981 1982;9 II 
Organic acid anhydrides, some September 12, 1989 1991;8 XI 
      revised June 4, 2008 2009;43(4) XXIX 
      revised September 29, 2010 2011;45(6) XXXI 
Oxalic acid February 24, 1988 1988;32 IX 
Ozone April 28, 1987 1987;39 VIII 
      revised February 7, 2007 2008;42(6) XXVIII 
    
Paper dust February 7, 1990 1991;8 XI 
Penicillins November 23, 2005 2006;11 XXVII 
Pentaerythritol November 16, 1994 1995;19 XVI 
1,1,1,2,2-Pentafluoroethane February 24, 1999 1999;26 XX 
Pentyl acetate June 14, 2000 2000;22 XXI 
Peroxides, organic February 13, 1985 1985;32 VI 
Phenol February 13, 1985 1985;32 VI 
Phosphoric acid June 3, 2009 2010;44(5) XXX 
Phosphorous chlorides September 30, 1998 1999;26 XX 
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Phosphorous oxides February 11, 1998 1998;25 XIX 
Phthalates December 8, 1982 1983;36 IV 
Phthalic anhydride September 12, 1989 1991;8 XI 
Piperazine September 12, 1984 1985;32 VI 
Plastic dusts December 16, 1986 1987;39 VIII 
Platinum June 4, 1997 1997;25 XVIII 
Polyaromatic hydrocarbons February 15, 1984 1984;44 V 
Polyisocyanates April 27, 1988 1988;32 IX 
Potassium aluminium fluoride June 4, 1997 1997;25 XVIII 
Potassium cyanide February 7, 2001 2001;20 XXII 
Potassium dichromate May 24, 2000 2000;22 XXI 
Potassium Fluoride September 15, 2004 2005;17 XXVI 
Potassium hydroxide Marsh 15, 2000 2000;22 XXI 
2-Propanol December 9, 1981 1982;24 III 
Propene September 13, 1996 1996;25 XVII 
Propionic acid November 26, 1987 1988;32 IX 
Propylacetate September 14, 1994 1995;19 XVI 
Propylene glycol June 6, 1984 1984;44 V 
Propylene glycol-1,2-dinitrate May 4, 1983 1983;36 IV 
Propylene glycol monomethylether October 28, 1986 1987;39 VIII 
Propylene oxide June 11, 1986 1986;35 VII 
Pyridine May 13, 1992 1992;47 XIII 
    
Quartz March 13, 1996 1996;25 XVII 
    
Resorcinol September 4, 1991 1992;47 XIII 
    
Selenium December 11, 1985 1986;35 VII 
      revised February 22, 1993 1993;37 XIV 
Sevoflurane May 27, 1998 1998;25 XIX 
Silica March 13, 1996 1996;25 XVII 
Silver October 28, 1986 1987;39 VIII 
Sodium cyanide February 7, 2001 2001;20 XXII 
Sodium Fluoride September 15, 2004 2005;17 XXVI 
Sodium hydroxide August 24, 2000 2000;22 XXI 
Stearates, metallic, some September 15, 1993 1994;30 XV 
Stearates, non-metallic, some November 17, 1993 1994;30 XV 
Strontium January 26, 1994 1994;30 XV 
Styrene February 29, 1980 1981;21 I 
      revised October 31, 1989 1991;8 XI 
      revised April 1, 2009 2010;44(5) XXX 
Sulfur dioxide April 25, 1985 1985;32 VI 
Sulfur fluorides March 28, 1990 1991;8 XI 
Sulfuric acid June 3, 2009 2010;44(5) XXX 
Synthetic inorganic fibers March 4, 1981 1982;9 II 
      revised December 1, 1987 1988;32 IX 
      revised December 3, 2003 2005;7 XXV 
Synthetic organic and inorganic fibers May 30, 1990 1991;8 XI 
    
Talc dust June 12, 1991 1992;6 XII 
Terpenes, mono- February 17, 1987 1987;39 VIII 
Tetrabromoethane May 30, 1990 1991;8 XI 
Tetrachloroethane June 4, 1997 1997;25 XVIII 
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Tetrachloroethylene February 29, 1980 1981;21 I 
1,1,1,2-Tetrafluoroethane March 29, 1995 1995;19 XVI 
Tetrahydrofuran October 31, 1989 1991;8 XI 
Tetranitromethane April 4, 1989 1989;32 X 
Thioglycolic acid June 1, 1994 1994;30 XV 
Thiourea December 1, 1987 1988;32 IX 
      revised June 2, 1999 1999;26 XX 
Thiram October 31, 1989 1991;8 XI 
Thiurams, some October 31, 1989 1991;8 XI 
Tin and inorganic tin compounds October 22, 2003 2005;7 XXV 
Titanium dioxide February 21, 1989 1989;32 X 
Toluene February 29, 1980 1981;21 I 
      revised February 6, 2002 2002;19 XXIII 
Toluene-2,4-diamine November 1, 2000 2001;20 XXII 
Toluene-2,6-diamine November 1, 2000 2001;20 XXII 
Toluene-2,4-diisocyanate April 8, 1981 1982;9 II 
      revised May 30, 2001 2001;20 XXII 
Toluene-2,6-diisocyanate April 8, 1981 1982;9 II 
      revised May 30, 2001 2001;20 XXII 
1,1,1-Trifluoroethane February 24, 1999 1999;26 XX 
Trichlorobenzene September 16, 1993 1993;37 XIV 
1,1,1-Trichloroethane March 4, 1981 1982;9 II 
Trichloroethylene December 14, 1979 1981;21 I 
Trichlorofluoromethane June 2, 1982 1982;24 III 
1,1,2-Trichloro-1,2,2-trifluoroethane June 2, 1982 1982;24 III 
Triethanolamine August 25, 1982 1983;36 IV 
      revised October 23, 2002 2003;16 XXIV 
Triethylamine December 5, 1984 1985;32 VI 
Trimellitic anhydride September 12, 1989 1991;8 XI 
Trimethylolpropane November 16, 1994 1995;19 XVI 
Trinitrotoluene April 17, 1991 1992;6 XII 
    
Vanadium March 15, 1983 1983;36 IV 
Vinyl acetate June 6, 1989 1989;32 X 
Vinyl toluene December 12, 1990 1992;6 XII 
    
White spirit December 16, 1986 1987;39 VIII 
      revised November 13, 2006 2008;42(6) XXVIII 
Wood dust June 17, 1981 1982;9 II 
      revised June 25, 2000 2000;22 XXI 
    
Xylene February 29, 1980 1981;21 I 
      revised September 14, 2005 2005;17 XXVI 
    
Zinc April 21, 1982 1982;24 III 
Zinc chromate May 24, 2000 2000;22 XXI 
Zinc dimethyl dithiocarbamate September 12, 1989 1991;8 XI 
Ziram September 12, 1989 1991;8 XI 
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