Tumour vasculature, oxygenation and radiosensitivity
A numerical modelling study

Akademisk avhandling

som för avläggande av medicine doktorsexamen vid Sahlgrenska Akademin vid Göteborgs Universitet kommer att offentligen försvaras i Hörsal Arvid Carlsson, Akademicum, Medicinaregatan 3
fredagen den 28 mars 2014, kl. 13.00.

av

Jakob H. Lagerlöf

Fakultetsopponent:
Professor emeritus Jörgen Carlsson
Institutionen för Biomedicinsk Strålningsvetenskap, Uppsala Universitet.

Avhandlingen är baserad på följande arbeten


Listad hos Global Medical Discovery [ISSN 1929-8536]
Listad hos World Biomedical Frontiers [ISSN 2328-0166]

III J.H. Lagerlöf, J. Kindblom and P. Bernhardt, “The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumour oxygenation models on predicted radiation sensitivity”, accepterad för publicering i Medical Physics, februari 2014


UNIVERSITY OF GOTHENBURG
Title
Tumour vasculature, oxygenation and radiosensitivity – a numerical modelling study

Abstract
This thesis aims to investigate theoretically how parameters such as vessel density, blood oxygenation, blood velocity, spatial oxygen variation along vessels, tissue oxygen consumption and their distributions influence the radiosensitivity of tumours.

Numerical calculations are made in MATLAB using voxel-based models. Direct and indirect Monte Carlo based methods are used, e.g. kernels for dose calculations and random-based models for simulation of oxygen and activity distributions in tumours. Oxygen diffusion is calculated using a Green’s function based method and oxygen consumption follows the Michaelis-Menten kinetic model. Cryosectioning and immunostaining of insulinoma from mouse is done for model development. The linear quadratic cell survival model, including the oxygen effect, is used to calculate tumour control probability (TCP) and absorbed doses. Convolutions, with diffusion and dose kernels, are preferably made in frequency space for computational reasons.

By raising the oxygen pressure (pO2), through antiangiogenic treatment, in tumours and retaining TCP, radiation damage to normal tissues can be strongly reduced. Variation of blood pO2 affects the position of the pO2 distribution while altered vessel density affects the distribution shape. The greatest increase in radiosensitivity by increased pO2 is achieved for 50% relative vessel density. In tumour oxygenation modelling, pO2 of the blood must vary along the vessel and a random distribution of pO2 in incoming blood is used to get realistic results.

Combining improved oxygenation and radionuclide uptake shows great potential of improving radionuclide treatment. There is an optimum region of vessel density where the highest increase in radiosensitivity is achieved by increasing blood pO2. It appears to be possible to determine the cause of hypoxia from the shape of the pO2 distribution. To make a good estimate of treatment result, it is crucial to know the full pO2 distribution and not only the mean or the hypoxic fraction. Improving oxygenation of partly necrotic tumours is not always beneficial for radiation treatment. Small spherical tumours are more sensitive than larger ones to the shape of the pO2 distribution. This is likely because a hypoxic region of a small tumour is more affected by its location relative to the tumour centre, given constant thickness, due to the relatively greater difference in radius and therefore volume.

Keywords: Angiogenesis, Dosimetry, Hypoxia, Modelling, Radionuclide therapy, Radiotherapy, Tumour Control Probability

URL http://hdl.handle.net/2077/34840