

University of Gothenburg

Chalmers University of Technology
Department of Computer Science and Engineering

Göteborg, Sweden, June 2012

A method of selecting appropriate software architecture styles:

Quality Attributes and Analytic Hierarchy Process

Bachelor of Science Thesis in the Programme Software Engineering&Management

Qiushi Wang

Zhao Yang

2

The Authors grant to Chalmers University of Technology and University of Gothenburg the non-exclusive right to

publish the Work electronically and in a non-commercial purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text,

pictures or other material that violates copyright law.

The Authors shall, when transferring the rights of the Work to a third party (for example a publisher or a

company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with

a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission

from this third party to let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

A method of selecting appropriate software architecture style:

Quality Attributes and Analytic Hierarchy Process

Qiushi Wang

Zhao Yang

© Qiushi Wang, May 2012.

© Zhao Yang, May 2012.

Examiner: Helena Holmström Olsson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover picture taken from: http://blog.art21.org/wp-content/uploads/2009/11/Malibu-5-Stephen-Kanner.jpg

Department of Computer Science and Engineering

Göteborg, Sweden, May 2012

http://blog.art21.org/wp-content/uploads/2009/11/Malibu-5-Stephen-Kanner.jpg

3

A method of selecting appropriate software architecture style/pattern: Quality

Attributes & Analytic Hierarchy Process

Qiushi Wang Zhao Yang

Dept.Computer Science and Engineering Dept. Computer Science and Engineering

University of Gothenburg University of Gothenburg

Gothenburg, Sweden Gothenburg, Sweden

Email: guswangqi@student.gu.se Email: joeyzhaozhao@gmail.com

Abstract - Software Architecture Style is a proven reusable

solution for known problems that in order to save huge cost

and reduce risks. Software development can benefit from

correct architecture style. Thus, architecture style selection is

important when design software system. In this research, the

authors devote to create a selection method for people who

lack expertise and experience to select appropriate

architecture style for their software systems. The authors

collect and categorize a number of common architecture

styles, and use Quality Attributes as a criterion to evaluate all

those architecture styles. Moreover, they provide a systematic

selection process powered by Analytic Hierarchy Process

(AHP).

Keywords - software architecture style; software architecture

selection; quality attributes; analytic hierarchy process.

1. INTRODUCTION

Software Architecture is a rising subject of software

engineering to help people to oversee a system in high

level (Qin et al., 2007, p.1). It is a critical aspect in the

design and development of software (Vijayalakshmi et al.,

2010). Software Architecture involves a series of

decisions based on many factors in a wide range of

software development, and each of these decisions can

have considerable impact on the overall success of the

software (Microsoft, 2009, p.3).

Good software architecture can reduce the business risks

associated with building a technical solution (Microsoft,

2012, p.5), and make the system implementation and

testing more traceable as well as achieve higher Quality

Attributes (Qian et al., 2008, p.2). It paves the way for

software success (Northrop, 2003). On the contrary, poor

software architecture makes software production

inefficient in terms of cost and time (Qian et al., 2008,

p.2), and it usually can lead to disaster (Northrop, 2003).

Software architects are the people who take responsibility

to develop the architecture design (Qian et al., 2008, p.2)

and their most important job is to map software

requirements to architecture design and guarantee that

both functional requirements and Quality Attributes are

met (Qin et al., 2007, p.4). Architects might face similar

issues in different software architecture design, and some

of those issues are not new. For saving of huge cost and

the reduction of risks, software architecture can be reused

(Qin et al., 2007, p.1).

Software architecture style (also known as “architecture

pattern”) is a proven reusable solution for known

problems and it is built on tried and tested design

experience (Buschmann et al., 2007). Qian et al (2007,

p.8) states that an architecture style contains a set of rules,

constraints and patterns of how to structure of a system

into a set of elements and connectors. In most cases, a

software system has its own application domain, each

domain has its own reference model and an architecture

style is a viewpoint abstraction for a software structure

that is domain-independent (Qian et al., 2008, p.9).

An appropriate architecture style can improve

partitioning and promotes design reuse by providing

solutions to frequently recurring problems (Microsoft,

2009, p.20). With the development of software

architecture design, a number of architecture styles are

created and used/reused to address various of problems.

Every architecture styles has its own history and certain

context, in other words, each architecture style is

proposed in a certain environment and can solve certain

key problems or satisfy certain requirements (Qin et al.,

2007, p.35).

As we know an architecture style that is proper for all

systems does not exist because systems have different

requirements (Qin et al., 2007, p.35), and as mentioned

above, system can benefit from architecture style (only)

4

when appropriate style is selected. Thus, the choice of

which architecture to go with is an important part in any

software development because this choice affects the

quality of the final software product (Vijayalakshmi et al.,

2010). So selecting an appropriate style for a system is a

question that should be brought up when architects design

the software architecture.

The major focus of our thesis work is about how to select

appropriate style for software system; based on this main

problem we pose such two research questions:

RQ1: What software architecture styles are commonly

used today?

RQ2: How to select proper architecture style?

In order to answer the two research questions we

mentioned above, we are going to gather a number of

commonly used architecture styles at present and

categorise them based on their scope of application, and

then we give a criterion of evaluating/comparing

architecture styles as well as a scientific method to select

the most appropriate one. And in order to help audiences

to understand our selection method we conduct a case

study of a web-based business to business (b2b) system

as an instruction of applying our selection method.

With the increasing complexity of software systems,

multiple architecture styles are usually utilized in the

same project (Qian et al., 2008, p.266). Our selection

method and criteria can be used to find appropriate styles

for single software system as well as the subsystem of

complex/large software systems.

Several similar research articles were found by us in our

literature study, and by comparison with those researches,

our category of architecture styles that is based on scope

of application can offer relatively accurate candidates

styles; and the computing of decision-making process is

less complicated. In a word, it can be an effective method

with ease of use.

We introduce related work in section 2 including Quality

Attributes and a decision-making model named Analytic

Hierarchy Process. Research approaches are described in

section 3, and the collected data is analysed and displayed

in section 4. The case study is in section 5, and in section

6 we recapitulate major findings and position our

contribution. Finally, we make our conclusion as well as

our suggestion to future work in section 7.

2. RELATED WORK

This section explains two important concepts related to

our research, it helps readers to understand and apply the

method we created.

2.1 Quality Attributes

Software architecture is typically specified in different

views to show the relevant functional and non-functional

requirements (also known as Quality Attributes) of a

software system (Buschmann et al., 2001). Functional

requirements deal with a particular aspect of a system's

functionality, and are usually related to a specified

functional requirement such as particular function and

compute algorithm (Buschmann et al., 2001). On the

contrary, Quality Attributes are the overall factors that

affect run-time behaviour, system design, and user

experience (Meier et al., 2009). They represent features

of a system that functional requirements do not cover and

typically addresses aspects related to the reliability,

compatibility, cost, ease of use, maintenance or

development of a software system (Buschmann et al.,

2001). The desired combination of Quality Attributes

indicates the success of the design and quality of the

system. When designing a software application, it is not

enough to merely satisfy functional requirements;

fulfilling the Quality Attributes is also required. It is

necessary to analyse the tradeoffs between multiple

Quality Attributes since the priority of each Quality

Attributes differs from system to system, and has exist the

potential to impact on other requirements as well (Meier

et al., 2009).

2.2 Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is a mathematical

decision-making technique that proposed by Saaty (1980).

The AHP deals with problems of how to measure

intangible criteria and how to interpret correctly

measurements of tangibles; so they can be combined with

those of intangibles to yield sensible, not arbitrary

numerical results (Satty, 2005). It is a widely used theory

and provides a measurement through pairwise

comparisons and relies on the judgments of experts to

derive priority scales (Saaty, 2008).

In order to apply AHP in an organized way to generate

priorities; it needs to break down the decision into a few

steps:

 Define the problems and determine the related

knowledge.

 Structure the decision hierarchy model from the top

with the goal of the decision through the

intermediate levels to the lowest level (a set of the

alternatives).

 Construct a set of pairwise comparison matrices.

 Weigh the priorities for every element by using the

priorities obtained from the comparisons.

5

The mathematics of the AHP and the calculation

techniques are briefly explained in the following. Initially,

assigning a number to each element on a scale that

indicates how many times more important one element is

over another element. The rating scale adapted from

Saatys’ fundamental scale of absolute numbers. These

pairwise comparisons are carried out for all factors to be

considered; after that, the matrix is completed. The next

step is to calculate a consistency ratio (CR) to measure

how consistent comparisons are. If the CR is less than 0.1,

that indicates good consistency. The third step is to

calculate the list of elements’ priority vectors, which

express the relative weight of each element type. The

final stage is to compute the total score by adding the

score of elements’ priority values and the results with the

highest total score is chosen (Coyle, 2004; Saaty, 2005;

Saaty, 2008; Galster et al., 2010).

3. REASEARCH APPOARCH

This research is conducted by two researchers with

education background of Software Engineering &

Management.

As mentioned in the Introduction, the core of our thesis

work is to create a method for selecting appropriate

software architecture style. In order to methodically

conduct the research, we decide to breakdown the

research problem into smaller sequential parts. The

benefit of breakdown is that each smaller part has a clear

objective and characteristic, and we can easily make

changes on specific parts. We divide our research into

five steps:

a. Collecting a number of commonly used software

architecture styles at present.

b. Categorization of collected styles based on their scope

of application.

c. Research on how to select architecture style as well as

evaluation of software architecture and then decide

selection criteria and method.

d. Analysis on collected architecture styles based on our

criteria.

e. Create a selection process.

3.1 Literature Study

Literature review is our major approach for data

collection in this research. Our literature review aims at

three specific aspects: commonly used software

architecture styles at present, methods of

selecting/comparing architecture styles and

research/analysis articles on specific architecture styles.

There are two major sources of literature for us to seek

information: published books and articles published in

well-known electronic databases, listed below:

 IEEEXPLORE http://ieeexplore.ieee.org

 ACM Digital Library http://dl.acm.org/

 Chalmers Library http://www.lib.chalmers.se/

 SCIRUS http://scirus.com/

 SpringerLink http://www.springerlink.com

3.1.1 Commonly used architecture styles

We decided to look for published books what

systematically elaborate software architecture and

architecture styles. After this step, we should give a list

of categorized (based on scope of application, e.g. Web

Service, Distributed system) software architecture styles.

Qian et al.’s (2008) book Software Architecture and

Design Illuminated provides a coherent and integrated

approach to the discipline of software architecture

design. The book also covers a complete set of important

software design methodologies and architecture styles as

well as details of these architecture styles.

Qin et al.’s (2007) book Software Architecture provides

introduction to the theory foundations, various sub-fields,

current research status and practical methods of software

architecture. It can be used as a learning material for

accessing software architecture. In this book, readers can

acquire the basic knowledge of software architecture,

including what architecture styles are popular for

practice use and how we can apply software architecture

into the development of systems; the information about

popular architecture styles is quite valuable for us.

Zhu Hong’s (2005) book Software Design Methodology:

from principles to architectural styles is based on the

author’s lecture notes prepared for teaching a Software

Design module at Oxford Brookes University to

software engineering students over 6 years. In one

section he introduce and analyse 5 groups of typical

architecture styles.

We also found a book named Microsoft Application

Architecture Guide (Microsoft, 2009). It is a Microsoft

Press book available on the MSDN library, it provides

guidance for using architecture principles, design

principles, and software architecture patterns/styles that

are tried and trusted.

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://www.lib.chalmers.se/
http://scirus.com/
http://www.springerlink.com/

6

The four books gather a number of main architecture

styles as well as their strengths, limitations, and

applicable domains that is helpful for us to conduct

analysis on these styles later. The method of

categorizing architecture styles is that we extract helpful

information from four books and list all architecture

styles, and then we discuss to decide what category each

of them belong.

3.1.2 Criteria and methods of selecting/comparing

architecture styles

In this part we seek articles about selecting or comparing

software architecture styles or evaluation of software

architecture. After reviewing selected articles, we should

conclude the factors for comparing and evaluating

architecture styles as criteria for selection. Besides, we

are trying to find a systematic method for

decision-making from found articles.

Search Terms:

We defined a number of keywords for the search

engines of the electronic database. The following five

different combinations of keywords returned significant

results:

 software architecture styles

 evaluating software architecture

 software architecture selection criteria

 software architecture analysis

 comparing architecture styles

 selecting software architecture style

Included criteria:

 The articles refer to theoretical concepts in context

of software architecture domains

 The articles illustrate software architecture styles

selection criteria

 The articles provide an methodologies of

evaluating different architectural styles

 Chapter of published books

Number of relevant

articles

After applying

included criteria

Actually used

articles

56 29 11

Table 3.1 Literature on criteria of selecting architecture style.

3.1.3 Research on specific architecture styles

We get a criterion in the last step, and then we need to

conduct analysis on collected architecture styles and

measure each of them. After this step, all collected

architecture styles are measured and marked so that we

can horizontally compare each candidate’s style and

make a decision.

Four books mentioned in section 3.1.1 not only list

commonly used architecture styles but also provide a

few analysis, so we treat the four books as the major

data source in this step.

3.2 Data Analysis

In the data analysis, the outcome of each data collection

step will be integrated as a whole to be analysed. The

data from each collection step will affect each other and

cause modification and elimination in order to improve

reliability of our research.

4. RESULT

This section presents the collected data by conducting our

research approaches. All data displayed here have been

analysed by the two authors.

4.1 Commonly used architecture styles in category

We extract information from the four books listed in

section 3.1.1 and combine the data; and then we eliminate

architecture styles what are relatively uncommon, for

instance, some styles are mentioned in only one book.

Moreover, for some architecture styles that we could not

find ample information to support their applicable

domain, benefit and limitation, we eliminate them as well

in order to improve reliability of this thesis. All collected

architecture styles are represented in Table 4.2 (in page

8).

4.2 Selection method

The selection method includes two parts: evaluation

criteria and selection process. The evaluation criteria are

factors we used to measure each architecture style in

order to compare them horizontally; the selection process

is a designed series of steps to find out the most

appropriate style. We recommend using Quality

Attributes as evaluation criteria and Analytic Hierarchy

Process (AHP) for selection process.

4.2.1 Quality Attributes

In order to select correct architecture style, we should

consider different aspects that related to this objective, for

instance, functional requirements and nonfunctional

requirements (also known as Quality Attributes),

architect’s priorities and the system domain, thus,

choosing architecture styles has been defined as a multi

criteria decision-making problem (Moaven et al., 2008a;

Babu et al., 2010; Vijayalakshmi et al., 2010). Due to the

limitation of resource, it is difficult to take into account

7

all criteria related to problem at once in our research,

therefore we attempt to find the critical element.

In recent years, a number of studies (Svahnberg et al.,

2002; Moaven et al., 2008a; Moaven et al., 2008b; Babu

et al., 2010; Vijayalakshmi et al., 2010) proposed that

satisfying Quality Attributes is propounded as a key

element in design or selection of appropriate architecture

for systems. Hence, we determine Quality Attributes as

the criterion of measuring architecture styles.

Quality attributes can be categorized based on their

nature, effect and context. Both Qian et al (2008, p9) and

Microsoft Application Architecture Guide (2009, p.192)

conclude a number of common Quality Attributes in

groups, however their own listed Quality Attributes and

categories are not the same, hence we combine the data

and create a table with all mentioned Quality Attributes

what are recategorized after group discussion. We

eliminate relatively uncommon Quality Attributes for

reliability of evaluation.

Category Quality Attributes Description

Implementation attributes

(not observable at runtime)

Maintainability The ability to modify the system and conveniently the system and conveniently

extend it.

Testability The degree to which the system facilitates the establishment of test cases.

Testability usually requires a complete set of documentation accompanied by

system design and implementation

Portability The system's level of independence on software and hardware platforms.

Flexibility The ease of system modification to cater to different environments or problems for

which the system was not originally designed.

Reusability Reusability defines the capability for components and subsystems to be suitable for

use in other applications and in other scenarios. Reusability minimizes the

duplication of components and also the implementation time.

Simplicity Those attributes of the software products that provide maintenance and

implementation of the functions in the most understandable manner.

Runtime attributes (observable at

run time)

Availability Availability defines the proportion of time that the system is functional and

working. It can be measured as a percentage of the total system downtime over a

predefined period. Availability will be affected by system errors, infrastructure

problems, malicious attacks, and system load.

Security A system's security's to cope with malicious attacks from outside or inside the

system.

Performance Increasing a system's efficiency with regard to response time, throughput, and

resource utilization, attributes which usually conflict with each other.

Concurrency Concurrency is a property of systems in which several computations are executing

simultaneously, and potentially interacting with each other. The computations may

be executing on multiple cores in the same chip, preemptively time-shared threads

on the same processor, or executed on physically separated processors.

Reliability The failure frequency, the accuracy of output results, the Mean-Time-to-Failure, the

ability to recover from failure, and the failure predictability.

Scalability A system's ability to adapt to an increase in user requests

Business attributes Cost The expense of building, maintaining, and operating the system.

Lifetime The period of time that the product is alive before retirement.

User attributes Usability The level of human satisfaction from using the system. Usability include matters of

completeness, correctness, compatibility, as well as friendly UI, complete

documentation, and technical support.

System attributes Supportability It refers to the ability of technical support personnel to install, configure, and

monitor computer products, identify exceptions or faults, debug or isolate faults to

root cause analysis, and provide hardware or software maintenance in pursuit of

solving a problem and restoring the product into service. Incorporating

serviceability facilitating features typically results in more efficient product

maintenance and reduces operational costs and maintains business continuity.

Table 4.1 Common Quality Attributes with brief description (Qian et al., 2008; Microsoft Application Architecture Guide, 2009).

http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Execution_(computing)
http://en.wikipedia.org/wiki/Multi-core
http://en.wikipedia.org/wiki/Computer_chip
http://en.wikipedia.org/wiki/Preemption_(computing)
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Technical_support
http://en.wikipedia.org/wiki/Debugging
http://en.wikipedia.org/wiki/Root_cause_analysis
http://en.wikipedia.org/wiki/Software_maintenance

8

Table 4.1 includes most common Quality Attributes. We

strongly recommend that when architects and key

stakeholders prioritise Quality Attributes for their

software system, they should use Quality Attributes listed

in Table 4.1 as candidates because we measure each

architecture style with all these Quality Attributes in

following section. If a system with Quality Attributes that

do not exist in Table 4.1, our selection method would be

hard to give accurate result.

4.2.2 Architecture Styles Evaluation

As we mentioned before, we have categorized all

collected architecture styles based on their scope of

application, so a system can get a number of candidate’s

styles dependent on its nature, and then we should

compare candidates to make a correct decision. In the

evaluation process we measure each architecture style

with all Quality Attributes listed in Table 4.1.The

evaluation results are displayed in Table 4.2. We replicate

the method of measuring architecture styles utilized by

Galster et al., (2010). “++” represent a architecture style

perform very well with some specific Quality Attribute;

“+” stands for some support; “−” indicates that the style

has negative impact on some specific Quality Attributes;

“--” indicates that very negative impact on a Quality

Attributes; “o” means no support, neutral or unsure.

 QAs

STYLES

M
ain

tain
ab

ility

Testab
ility

Po
rtab

ility

Flexib
ility

R
eu

sab
ility

Sim
p

licity

A
vailab

ility

Secu
rity

Perfo
rm

an
ce

C
o

n
cu

rren
cy

R
eliab

ility

Scalab
ility

C
o

st

Life Tim
e

U
sab

ility

Su
p

p
o

rtab
ility

Data Flow System Batch Sequential o ++ o o + + o o o − o o o o - - o

Pipe & Filter + + o + + + o o o ++ o + o o - - −

Process control o o + o o o o o o o o o + o o o

Centralized Data

Store System

Repository Arch − o o − + o + o o o − + − o − o

Blackboard Arch − − − o + o o o + ++ o + o o o o

Large/

Complex System

Repository Arch − o o − o o + o o o − + − o - o

Blackboard Arch − − − o + o o o + ++ o + o o o o

Main-subroutine − o o o − o o - o o + o o o o o

Master-slave o o o o o o o o o + ++ o o o o o

Layered Arch ++ + ++ + + − + o - - − o + o o o o

Web Service Service-Oriented + o o o ++ − + o o o o + + o o o

MVC + o o + o + + o o o o - - o o + +

Distributed

System

Client Server − − o o + + − ++ − o − + o o o o

Broker Arch ++ − + + + + o − − o o o o o o o

Service Oriented + o o o ++ − + o o o o + + o o o

User-Interaction

Oriented

System

MVC + o o + o + + o o o o - - o o + +

Presentation

Abstraction

Control (PAC)

+ o + + + − + o − + o o o o + o

Table 4.2 Commonly used architecture styles in category and evaluation (Qian et al., 2008; Microsoft Application Architecture Guide, 2009

; Qin et al., 2007; Zhu, 2005)

9

4.2.3 Selection Process

This section displays and explains the selection method

we designed.

 Figure 4.1 Workflow of Selection process

I. Analysis target system category

As shown in Table 4.2, all architecture styles have been

categorized with their applicable domain. In this step, we

should determine which group the target system belongs

with and then we can get several candidates styles.

II. Prioritise Quality Attributes

In this step, architect and key stakeholders should

prioritise a number of Quality Attributes what they hope

the system could achieve.

III. Make Decision with AHP

We have measured and marked each architecture style in

previous steps, each style is marked at 5 different levels

with every Quality Attributes. In order to improve

reliability of the selection, we need a systematic decision

making model to support. When facing similar problem,

Galster et al. (2010) utilized AHP model to solve it in

mathematic way. The architecture styles selection

process based on the AHP model consists of a number of

architecture styles that are evaluated in terms of multiple

Quality Attributes. The main steps are summarized as

following.

(i) Pair-wise comparison of each element and

estimation of relative importance

The determination of pair-wise comparisons between

Quality Attributes has to be performed by various

stakeholders (architects, domain experts, programmers

etc.). These comparisons are conducted based on the

rules prescribed by AHP and using Satty’s (2008)

fundamental scale (from 1 to 9) to measure the relative

importance of each element.(in Table 4.3)

Intensity of

Importance

Definition Explanation

1 Equal Importance Two activities contribute equally to the objective

2 Weak or slight Experience and judgement slightly favour one activity over another

3 Moderate importance

4 Moderate plus Experience and judgement strongly favour one activity over another

5 Strong importance

6 Strong plus An activity is favoured very strongly over another, its dominance demonstrated in practice

7 Very strong or demonstrated

importance

8 Very, very strong The evidence favouring one activity over another is of the highest possible order of

affirmation 9 Extreme importance

Table 4.3 The fundamental scale of absolute numbers (Adapted from Saaty, 2008)

(ii) Construction of the weighted matrix

The Quality Attributes are denoted by Cj (j = 1,2…n).

Each Quality Attribute is associated with a scale of

absolute numbers. The initial matrix A for the pair-wise

comparison is presented below. In a matrix, for instance,

when comparing two Quality Attributes C1/C2, a value

of 1 is assigned if C1 is equally important as C2, if C1 is

absolutely more important than C2, it should be rated at

9; conversely, the C2 is valued at 1/9.

I. Analysis target system category

II. Prioritise Quality Attributes

III. Make decision with AHP

10

(iii) Calculation of the consistency of the matrix

After weighted matrix is completed, the crucial thing

about measuring the consistency ratio of the matrix

could be calculated by the following way:

 ⁄

where:

 : the consistency index

 : the largest eigenvalue of matrix

n: the order of comparison matrix

CR: the consistency ratio

RI: the random consistency index (see Table 4.4)

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Table 4.4 Random Consistency Index (Adapted from Satty, 2004)

 is the largest eigenvalue of matrix, which can be

calculated through the eigenvalue calculator, we found

two online available calculators:

1MATRIX CALCULATOR APPLET and BLUEBIT

The consistency ratio (CR) is calculated to measure how

consistent the judgements have been relative to large

samples of purely random judgements (Coyle, 2004). If

the CR is in an excess of 0.1 the judgements are

untrustworthy because they are too close to randomness

and the assigned value of each Quality Attribute must be

reassigned (Satty, 2004; Satty, 2005; Satty, 2008; Coyle,

2004). In general, if CR is less than 0.1, the judgments

can be considered as good consistency (Satty, 2004;

Satty, 2005; Satty, 2008).

(iv) Determination of the priority vectors

Saaty (2004, 2005) proposed the eigenvalue approach to

determine the desired priority vectors. The process of

deriving the priority vectors refers to Ishizaka & Lusti

(2006) and Saaty (2004, 2005). The priorities are

derived as follow:

Step 1. Square the pair-wise matrix

The initial matrix is given below (Figure 4.1), after the

step of square; the value of the matrix is shows on

Figure 4.2.

1http://www.bluebit.gr/matrix-calculator/default.aspx

 http://www.math.ubc.ca/~israel/applet/mcalc/matcalc.html

1(𝑎) 6 2

1/6 1(𝑎22) 1/2

1/2 2 1(𝑎33)

 Figure 4.1 Initial matrix

 

3(𝑏) 16(𝑏 2) 7(𝑏 3)

0.583(𝑏2) 3 1.333

1.333(𝑏3) 7 3

 Figure 4.2 Squared matrix

For instance, in figure 4.2, the value a22 is calculated by

sum of all squared b22 values from initial matrix in figure

4.1, b22 = 3:

b22 = a21 * a12 = 1/6 * 6 = 1;

b22 = a22 * a22 = 1 * 1 = 1;

b22 = a23 * a32 = 1/2 * 2 = 1;

The squaring of the matrix takes the sum of all the three

lines values; the result is displayed on figure 4.2.

Step 2. Sum and normalise the rows

(a) Sum of the elements of each row, use the value of

squared matrix (Figure 4.2)

r1 = 3 + 16 + 7 = 26;

r2 = 0.583 + 3 + 1.333 = 4.916;

r3 = 1.333 + 7 + 3 = 11.333;

(b) Normalisation of each row. Using each element

divide the sum value of each row:

{

 (3 26⁄)，(16 26⁄)，(7 26⁄)

(0.583 4.916⁄)，(3 4.916⁄)，(1.333 4.916⁄)

(1.333 11.333⁄)，(7 11.333⁄)，(3 11.333⁄)

{

(0.115, 0.615, 0.269)
(0.118, 0.610, 0.271)
(0.117, 0.617, 0.264)

Step 3. Get the approximation of priority vectors

Calculate the mean value of each column, and then get

the final result of approximate priority vector (𝑝).

c1 = 0.115 + 0.118 + 0.117 = 0.35;

c2 = 0.615 + 0.610 + 0.617 = 1.842;

c3 = 0.269 + 0.271 + 0.264 = 0.804;

Thus, the approximate priority vector is 𝑝 = (0.116,

0.614, 0.268).

http://www.bluebit.gr/matrix-calculator/default.aspx
http://www.math.ubc.ca/~israel/applet/mcalc/matcalc.html

11

(v) Computation of the total scores for each

architecture styles and suggest the appropriate style

The priority vectors and the Table 4.2 are the input to the

computation of the total scores for each architecture

styles. The weighted score method (WSM) are utilized

to weight the priority of each Quality Attribute (Galster

et al., 2010). Firstly, the discrete ordinal integer values

𝜒 ∈ [−2, 2] represent the symbols from Table 4.2 to

numerical values based on the following (Adapted from

Galster et al., 2010):

𝜒

{

 −2 𝑖𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 ′ − −′

 −1 𝑖𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 ′ − ′

 0 𝑖𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 ′𝑜′

 1 𝑖𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 ′ + ′

 2 𝑖𝑓 𝑠𝑦𝑚𝑏𝑜𝑙 ′ + +′

Secondly, each element in the priority vectors is

multiplied with the respective row in the Table 4.2. For

instance, the value of priority vectors for maintainability

of layered architecture style is multiplied with the

weight of maintainability that symbols as ‘++’ in Table

4.2.

Thirdly, compute the total score of each candidate

architecture style. Architects and key stakeholders

already prioritised a number of Quality Attributes in the

pervious step. The weighted scores of all Quality

Attributes have been set before (see Table 4.2). The

scores for each prioritised Quality Attributes are

calculated in the last step, and then we sum up all the

scores to obtain the total score for each architecture style

by using the formula:

𝜔𝑡𝑜𝑡 𝑙 𝜔 + 𝜔2 +𝜔3 +⋯ + 𝜔

Finally, the architecture style with the highest total score

in 𝜔𝑡𝑜𝑡 𝑙 is suggested as the appropriate architecture

style.

5. CASE STUDY

In the following we conduct a case study that illustrates

our selection method in order to help audience

understanding. It is necessary to mention that the studied

case here is a hypothetical case. It exactly follows the

designed workflow of selection process and provides an

instruction of how to apply it to audiences. The input of

selection method is a software system or subsystem

within some specific application domain. The expected

output is the total scores with satisfaction value of each

candidate style. The architecture style with the highest

total score is the suggested appropriate style.

The studied system is a web-based b2b (business to

business) application. The following applies each step of

selection method designed in section 4.2.3.

5.1 Analysis target system category

This b2b application is a web-based system and offers

various services to customers via the internet. According

to characters of b2b application the category goes to

WEB SERVICE (see Table 4.2). There are two

candidates’ architecture styles belonging to this category:

service orientated architecture (A) and MVC (B).

5.2 Prioritise Quality Attributes

From the Table 4.1, the overview of candidates Quality

Attributes are described, and then we prioritise four

Quality Attributes that are important to this b2b

application: Usability, Maintainability, Cost and

Scalability.

5.3 Make decision with AHP

(i) Construct pair-wise comparison of weighted matrix

 Usability Maintainability Cost Scalability

Usability 1 2 5 3

Maintainability 1/2 1 3 2

Cost 1/5 1/3 1 1/3

Scalability 1/3 1/2 3 2

Figure 5.1 Pair-wise comparison matrix of each Quality Attribute

(ii) Calculate the consistency ratio of matrix

 =
 .

3
 = 0.0197,

 =
 .

 .
 = 0.022 0.1

(iii) Determine the priority vector of Quality Attributes.

According to the selection process, we need square the

initial matrix first, and then calculate the priority vector.

1 2 5 3

0.5 1 3 2

0.2 0.333 1 0.333

0.333 0.5 3 1

Figure 5.2 Initial weighted matrix



4 7.167 25 11.667

2.267 4 14.5 6.5

0.678 1.233 4 1.933

1.517 2.667 9.167 4

Figure 5.3 Squared weighted matrix

12

{

 . 3
,
 .

 . 3
,
2

 . 3
,
 .

 . 3
2.2

2 .2
,

2 .2
,
 .

2 .2
,
 .

2 .2
 .

 .
,
 .233

 .
,

 .
,
 . 33

 .
 .

 .3
,
2.

 .3
,
 .

 .3
,

 .3

 = =

{

0.084, 0.15, 0.523, 0.244
0.083, 0.147, 0.532, 0.238
0.086, 0.157, 0.51, 0.246

 0.087, 0.154, 0.528, 0.231

Based on the above schema, the approximate priority

vector 𝑝 = (0.085, 0.152, 0.523, 0.24).

(iv) Calculate the total scores for each architecture styles

and suggest the appropriate style

 QAs

Arch Styles
Usability Maintainability Cost Scalability

SOA (A) 0 1 1 1

MVC (B) 1 1 0 -2

Figure 5.4 The weighted value of each Quality Attribute based on
Table 4.2

The result of total score for each style are calculated by

using the following formula

𝜔𝑡𝑜𝑡 𝑙 𝜔 + 𝜔2 +𝜔3 + 𝜔

The total score for SOA style is:

𝜔𝑡𝑜𝑡 𝑙 (𝐴) = (0 0.085) + (1 0.152) + (1 0.523) + (1

0.24) = 0.915

The total score for MVC style is:

𝜔𝑡𝑜𝑡 𝑙 (𝐵) = (1 0.085) + (1 0.152) + (0 0.523) + (−2

0.24) = – 0.243

From the total scores of two architecture styles, it is

clear that SOA gets a higher score than the other, thus,

SOA is the appropriate style for the b2b application.

6. DISCUSSION

In the Result section, we have presented a complete

selection process, which is supported by sufficient

literature data and effective mathematical model.

After reviewing several literature (Moaven et al., 2008a;

Babu et al., 2010; Vijayalakshmi et al., 2010; Galster et

al., 2010) about architecture styles evaluation and

selection, we adopt Quality Attributes as the criterion for

measuring software architecture styles. We gather 16

common Quality Attributes with brief descriptions in

Table 4.1 and it covers most quality requirements of a

software system. All these Quality Attributes would be

indicators for measuring each architecture style, and we

recommend our audiences read it before prioritising

Quality Attributes for their software system.

A precondition of selecting proper architecture style is

collecting a number of architecture styles that are

commonly used today. We collect 14 common

architecture styles and categorize them in 6 groups based

on their applicable domain. And then each architecture

style are measured with every Quality Attribute listed in

Table 4.1, we can see any style’s performance with any

single Quality Attribute. In order to represent information

in a more readable way, we integrated data of architecture

styles collection and architecture style evaluation, and

then we put them in Table 4.2. We can see that both

benefits and limitations are being quantified for later

comparison. All the measurement is based on literature

study on each architecture style.

Software architects and key stakeholders are the people

who consider what Quality Attributes should the system

achieve (Bass et al., 2003, p.15). It is unlikely that all 16

Quality Attributes are considered, so they should

prioritise a number of attributes. Thus, when measuring

whether a style is proper to the system or not, the marks

of unconsidered Quality Attributes should not affect the

selection when marks of considered Quality Attributes do.

Moreover, we can have a mathematical model to help

with decision making since there are quantified marks in

Table 4.2. The AHP model is a proper model that can

address the problem. Hence we design a selection process

where all mentioned factors are in consideration. With

this selection method, we can easily select an architecture

style that is probably the best appropriate style for the

target system.

6.1 Positioning contribution

The selection of architecture styles is usually based on the

expertise and experience of software architects (Qian et al.

2008, p.270). We believe that there is a criteria as well as

a process within architects’ mind when they deal with

architecture style selection. Our major contribution is that

we provide a visible criterion and selection process with

ease of use to help people who lack expertise and

experiences to select an appropriate architecture style

systematically.

Some researches has investigated this area, but by

comparison with some similar researches, our research

have three advantages:

First, we collected more number of common architecture

styles. It means that we offer more options to the

13

audiences. On the contrary, several researches (Moaven

et al., 2008a; Babu et al., 2010; Vijayalakshmi et al., 2010;

Galster et al., 2010) did not provide over five typical

candidate styles for their audience. Clearly our research

focuses more on the availability of the selection.

Second, a special point of our research is that we

categorize collected architecture styles based on their

applicable domain. With these categories, when the

audiences understand the nature of the target system, they

already got several candidate styles that possibly fit their

system’s requirements. It means that we avoid

unnecessary comparison and computation. We have seen

that in some articles (Galster et al., 2010; Moaven et al.,

2008a), researchers put 5 architecture styles together

without category, which contains Pipe&Filter

architecture and Layered architecture (quite different

styles), and then they calculate scores for all 5 styles and

the one with the highest score turns out to be the most

appropriate style, their selection has faults sometimes. In

our research, this issue is naturally addressed because of

our categorization.

Last but not least, we provide more clear process to apply

the AHP model. Each step of our selection process with

AHP model is explained quite clearly in our paper. An

audience with certain mathematical knowledge can easily

utilize our method without checking other articles about

the AHP model. We simplified formulas and represent

steps in a readable way, so that we have less complexity

than others.

6.2 Limitation of our study

The major limitations of our study are that we depend on

literature too much so that the reliability is affected in the

following ways.

One of the limitations is that the categorization was based

on literature study and lack of practical experience.

Despite that our categorization avoid some issues that can

be met by other researches, however if the categorization

is not accurate enough, it will lead to that improper styles

become candidates, and then the selection result has

lower reliability.

In order to achieve high reliability, we eliminate some

Quality Attributes and Architecture styles before

displaying them because of a lack of literature support.

This elimination reduces the range of our research.

Moreover, because the limitation of time, we do not

conduct validation with experts to correct our data. For

example, in Table 4.2, all marks are depends on our

literature study, it lacks some realistic with practical

experience.

7. CONCLUSION & FUTURE WORK

Software Architecture style has been mentioned more

and more in software development today. Architecture

style selection is the crucial phase in software design

because satisfying Quality Attributes is one important

issue in software system design that suitable software

architecture can fulfill it (Moaven et al., 2008a). This

paper exposes a key element of architecture design:

Quality Attributes, and uses Quality Attributes as the

criterion to measure a number of commonly used

architecture styles in categories; with a systematic

selection process powered by Analytic Hierarchy Process

(AHP) and ends by finding out an appropriate style for

target system. It is an effective method with ease of use

for people who lack expertise and experience to get

proper architecture style for their software system.

Although this paper has some limitations, it paves a way

to continue our work with the same research questions. In

the future, we would like to extend the number of both

Quality Attributes and Architecture Styles, so that this

research can cover larger range and be available for more

researchers and types of system. We also want contact

experts within this domain, e.g. software architects, and

conducts interviews with them in order to validate and

correct our data, especially the way of categorization and

marks in Table 4.2. In addition, we want to include more

criteria besides Quality Attributes in order to improve the

reliability of selection, since architecture styles is not

only decided with Quality Attributes.

ACKNOWLEDGEMENT

The authors of this paper would like to thank all teachers

of SE&M for three years support and help. Special

thanks to Lennart Petersson for his time and help to this

thesis work.

14

REFERENCES

Babu, D., K., Rajulu, G., P., Reddy, R., A., Kumari, A.,

A., N., 2010. Selection of Architecture Styles using

Analytic Network Process for the Optimization of

Software Architecture. International Journal of

Computer Science and Information Security, Vol. 8, No.

1, April 2010.

Bass, L., Clements, P., Kazmen, R., 2003. Software

Architecture in Practice. 2nd ed. Boston:

Addison-Wesley. Ch.1.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,

Stal, M., 2001. Pattern-Oriented Software Architecture,

A system of Patterns. Vol. 8, Siemens AG, Germany.

Coyle, G., 2004. The Analytic Hierarchy Process (AHP).

Practical Strategy, Open Access Material, AHP.

Available at

<http://www.booksites.net/download/coyle/student_files

/AHP_Technique.pdf> [Assessed 6 May 2012].

Galster, M., Eberlein, A., Moussavi, M., 2010.

Systematic selection of software architecture styles. IET

Softw., 2010, Vol. 4, lss. 5, pp. 349-360.

Ishizaka, A., Lusti, M., 2006. How to derive priorities in

AHP: a comparative study.

Microsoft, 2009. Microsoft Application Architecture

Guide. 2nd ed. Microsoft Press. Ch.1; Ch.3; Ch.16.

Moaven, S., Habibi, J., Ahmadi, H., Kamandi, A., 2008a.

A Decision Support System for Software

Architecture-Style Selection. Sixth International

Conference on Software Engineering Research,

Management and Applications.

Moaven, S., Habibi, J., Ahmadi, H., Kamandi, A., 2008b.

A Fuzzy Model for Solving Architecture Styles

Selection Multi-Criteria Problem. Second UKSIM

European Symposium on Computer Modeling and

Simulation.

Northrop, L., 2003. The Importance of Software

Architecture. Software Engineering Institute, Carnegie

Mellon University.

Available at

<http://csse.usc.edu/gsaw/gsaw2003/s13/northrop.pdf>

[Accessed 5 May 2012].

Qian, K., Fu, X., Tao, L., Xu, C., Diaz-Herrera, J., 2008.

Software Architecture and Design Illuminated. Sudbury,

Mass.: Jones and Bartlett Publishers. Ch.1; Ch.5; Ch.6;

Ch.7; Ch.9; Ch.10; Ch.12.

Qin, Z., Xing, J., Zheng, X., 2007. Software Architecture.

Zhejiang University Press. Ch.1; Ch.2; Ch.3.

Saaty, T.L., 1980. The Analytical Hierarchy Process,

McGraw-Hill, New York, NY.

Satty, T. L., 2004. Decision making - The analytic

hierarchy and network processes (AHP/ANP). Journal

of systems science and systems engineering, Vol. 13, No.

1, pp. 1-35.

Satty, T. L., 2005. Making and validating complex

decisions with the AHP/ANP. Journal of systems science

and systems engineering, Vol. 14, No. 1, pp. 1-36.

Satty, T. L., 2008. Decision making with the analytic

hierarchy process. Int. J. Services Science, Vol. 1, No. 1,

2008.

Svahnberg, M., Wohlin, C., Lundberg, L., Mattsson, M.,

2002. A Method for Understanding Quality Attributes in

Software Architecture Structures. SEKE '02, July 15-19,

2002, Ischia, Italy.

Vijayalakshmi, S., Zayaraz. G., Vijayalakshmi. V., 2010.

Multicriteria Decision Analysis Method for Evaluation

of Software Architecture. 2010 International Journal of

Computer Applications (0975 - 8887) Vol.1, No. 25.

Zhu, H., 2005. Software Design Methodology: from

principles to architectural styles.

Butterworth-Heinemann. Ch.7.

http://www.booksites.net/download/coyle/student_files/AHP_Technique.pdf
http://www.booksites.net/download/coyle/student_files/AHP_Technique.pdf
http://csse.usc.edu/gsaw/gsaw2003/s13/northrop.pdf

