
University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2010

Bottlenecks in the
Development Life Cycle of a
Feature
A Case Study Conducted at Ericsson AB

Andrei Antanovich
Anastasia Sheyko
Brian Katumba

Bachelor of Science in Software Engineering and Management Thesis
Report No. 2010:012
ISSN: 1651-4769

2

Abstract— Increase in lead time of software projects has been
mainly attributed to long development cycles and changes in
customer requirements. This has driven the development of a
number of modern software development strategies to address
the issue. Among them is streamline development - an in-house
development framework at Ericsson AB inspired by lean
principles. In this paper we explore the development life cycle of
a feature to identify the possible bottlenecks - a term used in lean
development denoting interruptions, re-work or any activities
that hinder the development process hence an increase in lead
time. This paper is based on a case study carried out at one of the
development unit at Ericsson AB. The results presented here are
after a qualitative interview study with one cross function team
using streamline development framework. Using lean as a
theoretical base, the results show that: task switching,
competence, delayed replies and feedbacks, limited follow ups of
evaluations, long communication chains, limited knowledge on
the feature usage, unclear understanding of the development
process, and lack of documents describing the architecture for
the team are some of the possible bottlenecks that can increase
the lead time of a software project.

Index Terms— streamline development, feature development,
software process improvement, software bottlenecks, lean

I. INTRODUCTION
HE tendency of shifting from hardware to software has
increased the market share of software in the business
environment (Genuchten, 2007). This is leading many

organizations to join the software industry; however software
development organizations are still suffering from the problem
of long development life cycles as well as handling changes in
the customer requirements (Holmström, n.d). These are
causing late deliveries to market and sometimes delivering
products which do not meet the customers expected
requirements. This has called for the different techniques to
improve software quality and to reduce the time to market of
software development.
Recently, lean principles have gained momentum in
addressing the problem of long development life cycles,
rapidly changing customer requirements, slow feedback and
emerging of new technologies in software development

industry. The lean methodology through its core principles of
Providing the highest customer value, Maximizing flow,
Eliminating waste has a significant effect in addressing the
above problems which is leading to increased productivity in
software organizations and reduction of lead time (Mehta, et
al., 2008). The introduction of lean process principles which
originates from the Toyota model of production was first
identified by Womack and Jones (Womack, et al., 1991 and
1990; Womack and Jones 1996a; Womack and Jones 1996b),
in their five year study on why Japan’s automobile industry
was doing better than the American automobile companies.
They revealed that Japan was using fewer resources than
American companies which possibly made their cost of
production low. In the same report, they said Japan was lean
on resources in that they minimized wastes in the consumption
of resources to maximize in their production without
increasing the costs (Womack, et al., 1991 & 1990; Womack
& Jones 1996a; Womack & Jones 1996b).
The Software development industry has picked upon a few
concepts from the Toyota model of production (Womack et al.
1990) hence the emergency of lean software process. It
addresses the principle of reducing the development time by
amplified learning, delay commitment, deliver fast, empower
the team, build integrity in, see the whole, removing non-value
adding wastes in the process (Poppendieck & Poppendieck
2003; Mehta, et al., 2008; Shalloway, et al., 2010). The
principles of lean can be used as one of the best practice a
company can acquire to improve its development process by
reducing wastes as well as delivering fast (Shalloway, et al.,
2010).

Based on a case study, this paper explores the development
life cycle of a feature in one development team at Ericsson AB
– one of the world’s leading providers of telecommunication
and data communication systems. At Ericsson AB,
development teams use a process called ‘streamline
development (SD)’ which is a process developed at Ericsson
inspired by lean principles. The development team in this
study uses the streamline process in order to reduce lead time
and maximize the end-to-end flow so that the customer, in the
end, will receive fast delivery of high-quality software
products. To achieve this, each development team focuses on
one feature at the time, i.e. a distinguished characteristic of a

Bottlenecks in Development Life Cycle of a
Feature – A Case Study Conducted at Ericsson AB

Brian Katumba, Andrei Antanovich, Anastasia Sheyko

T

3

software item (IEEE Std. 829-1998). Within the framework of
‘streamline development’ each development team is
responsible for developing the feature in the shortest time
possible and with as few interruptions as possible.
This research investigates what is involved in developing a
feature, i.e. what is involved in the development life cycle of a
feature. By interviewing the members in one development
team we will identify ‘bottlenecks’ - a term used in lean
development denoting interruptions, re-work or any activities
that hinder the smooth end-to-end flow that is strived for to
reduce lead time.

The question guiding this research is: What are the possible
bottlenecks in the development life cycle of a feature? This
question will be approached by taking a look at the different
stakeholders involved in the development process, identifying
the practices the feature is exposed for, identifying the queues
i.e. bottlenecks and the milestones and activities during the
process.
By answering this question, it will be possible to identify the
possible bottlenecks in the Ericsson’s development process,
which will be used in the future to improve its end-to-end flow
by removing queues and updating practices which will result
into higher customer value as advocated in lean software
development.

II. THEORETICAL BACKGROUND

A. Lean manufacturing

Since the early days of civilization humans were concerned
with optimizing efficiency and decreasing waste to achieve
better end results. Among theories aimed towards efficiency
improvement are time and motion study, Taylorism and
Fordism (Robins, et al., 2003; Kanigel, 1999; Tolliday &
Zeitlin 1987). In the mid of 1940s, Toyota Motor Company
stood in need of increasing production efficiency in order to
stay competitive. At that time American automotive industry
companies were approximately nine times more productive
than Toyota Motor Company (Ohno, 1988). In order to find
more efficient production ways Toyota looked at American
method of production which was based on traditional thinking
of mass production (Wu and Wee, 2009; Ohno, 1988).
However this approach was not appropriate to Toyota because
of its demand constraints (Ohno, 1988; Harvey, 2004). Using
Fords theories, a new methodology for cars production was
created and named Toyota Production System (TPS). Figure 1
shows 14 fundamental principles of TPS, divided into four
groups by Liker (2004), that have to be considered to achieve
sustainable and effective performance.
As shown on the figure 1 TPS foundation is long-term
philosophy, which assumes prioritization of long term benefits
over short term benefits. The goal of TPS is the “absolute

elimination of waste” (Ohno, 1988; Towill, 2006; Wu and Wee
2009), where waste is anything that does not add customer
value. According to Liker (2004), results that are not waste in
TPS can be achieved by working in a process that follows
certain principles. Principles that have to be followed in the
development process to achieve waste elimination are:
continuous flow, adding value from demand in order to avoid
overproduction, eliminating overburden of process
participants, preventing quality problems as soon as detected,
using stable methods to maintain the predictability, using
robust technology that support peoples’ work, using visual
control to highlight problems.

Two pillars of TPS Management philosophy are ‘Respect for
people’ and ‘Continuous improvement’ (Larman & Vodde
2008; Towill, 2006). The former assumes that to add value to
the organization respect for employees, partners and customers
is required. The latter means that organization adopting TPS
should create a culture of continuous improvement, by
allowing developers to experiment, repeat and learn.

Figure 1: Model of the TPS (Liker, 2004)

B. Lean software development
TPS was formally documented around 1970 in Japanese and
1977 in English, however Western industries did not show
interest in it until the oil crises, when imports from Japan
started to threaten domestic manufacturers (Holweg, 2006). In
1990 as a result of International Motor Vehicle Program, with
the goal of studying the position of automobile industry in the
world economy, term ‘lean’ was introduced in the book ‘The
Machine that Changed the World’ by Womack, Jones and
Roos (Womack, et al., 1990; Harvey, 2004). This books sales
remained slow for a year until the building crisis in Detroit in
1991 (Holweg, 2006).

Similarly in software development industry increasing
globalization has brought out competitors with less costly
development resources, amplifying cost pressure (Harvey,
2004). Software systems growing more complex and

4

development organizations becoming larger require
development process improvements (Berry, 2003; Everett, et
al., 2009). In a need for higher quality, lower cost, shorter
delivery time of software, development organizations are
looking for a process with regard to these characteristics in
order to remain competitive (Harter, et al., 2000).

At the same time among benefits of implementing lean are
lead time reduction, productivity increase and quality
improvement (Kilpatrick, 2003). These are subsequently
driving down the cost. Moreover lean proved to be universal
and has been applied in such fields as health care, logistics and
accounting.(Zidel, 2006; Baundin, 2004; Maskel & Baggaley
2003).

Despite uniqueness of lean, to apply it in particular field its
ideas adoption to the new field is needed. In 2002 four lean
manufacturing principles were translated by Mary
Poppendieck into software development area (Poppendieck,
2002). As a result of further lean translation, seven most
relevant to software development principles have been
defined. For this research seven principles of lean software
development are presented under the four initial categories
defined by Poppendieck in 2002 (Poppendieck, 2002).

1) Add nothing but value.

a) Eliminate waste.

In order to add nothing but value and find wastes in software
development, Poppendieck (2002) adopted seven wastes of
manufacturing, identified by the creator of TPS (Ohno, 1988),
into software development area. Overproduction, inventory,
extra processing steps, motion, defects, waiting and
transportation are all wastes found by Ohno (1988). According
to Poppendieck (2002) features that lose its relevance and not
used by the customer – extra features are the source of
overproduction. Another waste is an inventory or partially
done work. For instance unfinished or never used design
documentation, ties up the resources and does not bring
customer value (Poppendieck, 2002). Transportation is
presented in software development in form of task switching.
Searching for information process is a motion. Production of
documentation with little use is an example of extra
processing steps. Waiting and delays prevent customer from
realizing what is valuable. The later customer gets software
with necessary functionalities, the later he realizes that there
are no need in some of previously requested .Defects
introduced in the initial stages of development require more
complex fixes as time goes by, therefore defects which are not
caught by testers are wastes in software development.

b) Build quality in.

Shalloway (2010) claims that in lean software development
quality should be build in both the code and the process. In
order to build quality in code lean approaches simultaneous
production of code and tests for the software and coding
according to standards (Hibs, et al., 2009; Shalloway, 2010). It
minimizes occurrence of initial error related defects (Hibbs, et
al., 2009). Among the ways to reduce defects impact is to find
them as soon as they occur (Poppendieck & Poppendieck,
2003). Existence of tests subsequently prevents defects
introduction during changes implementation. Another way to
reduce defects is frequent integration of small parts. This is
because smaller parts are less vulnerable to defects than huge
amount of code. Quality in process can be build by defining
acceptance test early in the development process; it improves
developers understanding about requirements and final
product.

2) Center on people who add value

a) Empower the team.
Each member of development should be able to influence the
process, make decisions on what to do and take
responsibilities for these decisions. Poppendieck (2003) says
that people involved in the process are “better equipped to
make decisions”, however they should be supported and
guided by management.

b) Create knowledge.
Shalloway (2010) argues that software development is more a
discovery process than a building process, therefore creating
knowledge that continuously perfect the product is essential.
One way to amplify knowledge is to allow developers to
experiment and improve relying on feedback obtained from
iterations of the process. Learning to understand the process in
which the work is done should be encouraged, so that the
process can be improved by its users.

3) Flow value from demand

a) Deliver early and often.
Often and short iterations and subsequently earlier feedback
allow developers to learn more and to discover more often,
therefore make more product improvements and lead to better
quality. With early and often deliveries, value can be delivered
to the customer early on the development stage. It increases
customer satisfaction, eliminates such waste as unnecessary
features. For instance after getting the most necessary features
customer may realize that he or she does not need others.
According to Shalloway (2010) early releases provide early
revenue, it can cover later development costs.

5

b) Delay commitment.

Delay commitment assumes giving a response in the moment
when no more information can become available, still not too
late to cause cost increase because of delays (Harvey, 2004).
The main idea behind deferring commitment, is to allow
changes in development project without negative
consequences. Among the ways to delay commitment are:
starting to discuss requirements from the most important to the
customer and crucial for design solutions, constraining the
implementation of design patterns to only those features that
are current.

4) 4. Optimize across organization

a) See the whole.
Instead of each step optimization, Shalloway (2010), suggests
to focus on flow in its entirety. Sub-optimization may hide
systems constructional errors, for instance measuring
performance of working individuals may not reflect overall
system performance, since problems may be due to the way
the whole system works (Poppendieck, 2003). Problems that
can arise in transition process in between phases, such as
poorly written design documents or integration errors, are
most probably to be undiscovered when sub-optimizing.

Thus, successful application of lean in automotive industry,
logistics and accounting was followed by its translation and
usage in the software development field. Lean ideas have been
transferred and formed into seven main principles that should
be considered during software development improvement.
Waste elimination, respect for people, pulling value form
demand and optimization across organization are fundamental
to lean in software development (Poppendieck, 2002).

III. ERICSSON CASE: BACKGROUND AND RESEARCH
METHODOLOGY

A. Streamline development
Ericsson is one of the world’s leading providers of
telecommunication and data communication systems among
software development organizations. For the purpose of this
research, a study was carried out at one development unit.
The purpose of the study was to follow the life cycle of a
feature in order to identify possible bottlenecks that can be
hindering or slowing down the development process. One
feature was chosen and investigated throughout the
development life cycle stages. At this development unit the
work is organized in cross function teams where one of these
teams was interviewed by the researchers while developing
the feature. The team interviewed is using streamline
development framework which is an in house development
process.

The introduction of streamline development framework was
an inspiration from the core value of lean and agile
(Holmström, n.d; Tomaszewski, et al., 2007) i.e. providing the
highest customer value, maximizing flow and eliminating
waste. In this Ericsson considered the following agile and lean
principles;“(1) satisfying customer needs through iterative
development and continuous delivery, (2) welcoming
changing requirements, (3) short timescale frequent deliveries,
(4) motivated individuals in project building and face-to-face
communication, (5) simplicity and (6) teams involvement on
the reflection of the development process” (Holmström, n.d).

Streamline development was developed and tailored to meet
particular needs for Ericsson i.e. to address the problems they
experienced when using traditional software development
process. Traditional software development methods are
characterized with long development life cycles resulting in
late deliveries to customers, failure to deliver the actual
customer until late in the process (MacCormack et al.2003,
Tomaszewski et al. 2007, Holmström, n.d). In addition,
Ericsson was finding it difficult to handle customer changing
requirements since they were exposed to changing market
demands due to long duration of the projects (Holmström,
n.d). In case of any customer changes in the requirements it
would result into high cost of handling requirement changes.
This is because; it was hard to deal with changes of already
implemented functions (Tomaszewski et al. 2007).

In order to deal with the fore mentioned problems, SD was
developed as a process and a working framework. Its main
objectives are; to reduce the time to market, having a flexible
development set up, more research and development during
the project, having a better mechanism for scope setting and
planning of the projects, creating a possibility to re-prioritize

Figure 2. Streamline development

6

and re-plan at any time in the project and a greater focus on
developing the right things.

As part of this study, the researchers followed the
development life cycle of a feature which was developed using
streamline development framework as shown in figure2.

In the development lifecycle of a feature using streamline
development as shown in figure 2, a feature is exposed to
different states and decisions from inception to release. As
shown in figure 2, the project requirements are gradually and
continually gathered in the requirement repository. These
requirements come from either the customer, identified needs,
change in needs, within the company or from standards. In the
“early phase loop”; a phase of feature identification and
prioritization in streamline development. The requirements are
identified, prioritized and divided into requirement packages
called feature projects as in figure 2. These projects last for an
approximate of eight weeks. This phase is characterized by
continuous and bi-weekly analysis of the features in order to
know which feature needs to be prioritized first. This
continuous analysis allows a possibility to re-prioritize and re-
plan in the requirements, something that makes streamline
development interesting as compare to the traditional
development. Although it is the system owner responsible for
this phase, the analysis is a combination of designers, testers,
architects and PIDs inputs. The main goal here is to get which
feature to start with without a consideration of resource
constraints i.e. to come up with a feature priority list.

Once some features are prioritized and identified, they go into
the “the activity and release planning loop” after “tentative”
decision from the system owner. This phase is also
characterized by continuous and bi-weekly analysis and
coordination of input to be put in the projects as in figure 2.
The main goal for this phase is to analyze and plan for the
features, to get to know what resources they require i.e. what
competence is needed for the feature, what tools. It is also in
this phase the plan of integration and the releasing of the
feature drawn. During this stage, decisions are made by the
product activation team weather a feature should be
implemented or not. It is the head of the product activation
team responsible for this phase and is the one who gives a
“GO” decision a term used in streamline development to
mean, the feature is planned and there are resources for it to be
executed or developed. In streamline development, a feature is
given a “GO” decision when there is a development team also
known as cross function team and there are available highly
prioritized requirements (Tomaszewski et al. 2007).

When a feature is planned and given a GO decision, it goes to
the” program execution phase”. This is the phase when the
feature is assigned to a specific cross function team. The cross
function team (XFT) is composed of all the core competences
ranging from design, architecture, test and system
management (Holmström, n.d). It is in this phase when the
actual execution or implementation of the feature occurs. After
the GO decision from the product activation team, a “started”
decision is made by the team leader to imply that the team has
started working with feature. It is in this phase when the
system manager introduces feature requirements to the rest of
the team members after having participated earlier in the “the
activity and release planning loop”.

In the “program execution phase”, a feature goes through two
phases i.e. the feasibility and execution phase. The
“feasibility phase” starts as soon as the “started” decision is
made by the program execution manager (team leader).
During the feasibility phase, the feature is further analyzed by
the team and broken down into “anatomy” a term used in SD
to denote the breaking down of the feature into smaller tasks.
In the feasibility phase, the total test scope of the feature is
also drawn and the roll-out plan (release) is made. The team
studies the feature in details and confirms that they can
implement it in a given time with the available resources. As a
means of guarantee that team can implement the feature, a
“commit” decision is made which is then followed by the
“execution” phase. It is in the execution the testing and the
designing of the feature is done. When the feature is fully
implemented and fully tested, a “ready” decision is made,
implying that the feature is ready to be integrated in the Latest
System Version (LSV) as shown in figure 2. However in
streamline development, there is always one version of the
product, when a feature is integrated, it sets a basis for the
next feature to be integrated in LSV (Tomaszewski et al.
2007).
After integration, a feature can be released to the customer or
maintained in the LSV. While a feature is at this point in
streamline development is said to be in the “release project”
state.

All in all a feature is exposed to four states i.e. (1) the early
phase loop where feature identification and prioritization is
made and it is the system owner responsible for this phase. (2)
The activity and release planning loop state where the
planning and feature decision is, it is the head of the product
activation team responsible. (3) The program execution state
where the actual execution of the feature is done, here all the
cross function team members participate, it’s the team leader
responsible for this phase. And (4) finally the project release
state where the feature is integrated in the LSV or released to
the customer, the release manager is responsible for it.

7

B. Feature team roles

For the purpose of this research, a study was carried out to
know the possible bottlenecks a team may be exposed to
during the program execution state. As earlier mention the
program execution phase is where all the team members
(cross-functional team) are involved. As in streamline
development, a cross functional team has the opportunity to
have all core competences such as design, test and system
management with an architect, a team leader, system manager,
function and system testers and designers as in figure 3. Each
of these members has got core roles in the team as explained
below. It is also important to note that the team takes full
responsibility of the project during the program execution
state. In this way, SD gives the teams more responsibility as
well as freedom in their activities. This way of working
creates an opportunity to share knowledge in the team and also
the feedback loop in the team is shortened since all people are
working together. The ability to re-prioritize and re-planning
streamline development framework makes the team flexible to
what is urgently required by the customer.

The role of the team leader is to coordinate the work of the
team and to ensure that the development is going in the right
direction. The team leader also checks that all team members
are working according to the agreed process.

Figure 3: Feature team

Providing the team with the time plan which has to be
followed or in case of necessary changes being modified
according to the needs is also one of the core responsibilities
of the team leader. The team leader also focus on removing
all the barriers which can stop or negatively influence the team
from achieving the goal and tries to find possible solutions to
the problems.

System manager’s main tasks include setting up the
requirements for the feature which should be developed.
Requirements either come from customers, standards or
internally (for example implementing improvements to the
functionality). However the system manager does not have a
direct contact with the customers who ordered a feature,
instead there is company’s sales representative who is
transferring customer’s requirements to the system manager.
When the system manager has got all the requirements, they
have to be analyzed to make sure they are all testable and do
not conflict with other features. In case of some uncertainties
(vague requirements), all the questions are sent back to the
internal sales representative who either has to clarify them or
communicate back to the customer. And after the requirements
are specified and clarified by the system manager, the
customer has to approve it to ensure that there are no gaps in
understanding the specifications and behavior of the feature.

On the other hand the architect’s main role in SD process
framework for this team is to help the team with support in
architecture related questions. In this, the architect interacts
with designers (as they are responsible for writing the code)
and system managers (as requirements are main priorities in
their work). Architect also helps to identify dependencies
between the teams. If the team is implementing a feature
which will influence another team’s work, architect should
identify possible dependencies and give support to the teams,
mainly with guidelines on how to implement it in the correct
way.

The main role of the designer in the project execution is to
implement the feature in terms of actual code. As well as
implementing the design test cases. As soon as the
requirements are clear enough the designer should start the
implementation.

Function testers in the beginning of the development process
are responsible for validating the requirements specified by
the system manager. They are also responsible for creating
main flow and exceptional flow test cases. On the later stages
when the implementation of the feature has started, function
testers are interacting mostly with the designer. This kind of
work style allows designers to react on the faults discovered
by the function testers almost immediately. Even though
designers do their own testing on the code they are focusing
on testing boundary values (i.e. if the input is supposed to be
in the range from 1 to 10, it is tested with 0 or 11). On the
other hand, function testers; focus on doing tests inside those
limits and trying to find faults.

8

The system tester is also another member of the team; the
system tester studies the feature, write test analysis on what
kinds of tests to conduct like capacity tests or hardware.
By analyzing what is involved in this way of working of the
team, this study will identify the bottlenecks that can be
hindering or slowing down the development process hence
improve its end-to-end flow by implementing new metrics,
removing queues and updating practices which will result into
higher customer value as advocated in lean software
development.

C. Research method
This research is approached by a case study method. A case
study is “an investigation of a contemporary phenomenon in
depth and within a real life context, where the boundaries
between the phenomenon and the context are unclear” (Yin
2009; Walsham 1993). With the above definition, the study is
based on real life experiences of the feature team using
Streamline development framework to develop software
features.
A case study method has been chosen because identifying
bottlenecks in a process requires an in-depth investigation of
the process from the beginning to the end to understand the
underlying principles and the problem that may be involved.
Similarly Yin (2009), suggests using a case study method,
because it allows investigators to retain the holistic and
meaningful characteristics of real life events such as
individual life cycles, group behaviors, organizational and
managerial processes which can augmented to fit the domain
of this research. In addition, Dubé and Paré (2003) argue that,
case study method is well suited for information system
domain because it reveals patterns in an organizational
environment. Although the question to this research does not
explicitly talk about the patterns in the organization’s
environment, finding bottlenecks in the process requires
researchers to find matching patterns in the data collected to
give a clear analysis of the problems.

This study was carried out with the main aim of identifying
the bottlenecks that may be hindering the feature development
cycle from an idea until when the feature has passed the
development stages. In this way, the study is expected to be
used to improve the end-to-end flow by implementing new
metrics, removing queues and updating practices in the
development cycle.

 Collecting data means to get the relevant information which
can be used to address the research topic (Ricker T., et al.
1998). According to Yin (2009), there are six main sources of
data: documentation, archival records, interviews, direct
observations, participant observations and physical artefacts.

For this particular study the interviews were taken as the
primary sources of data and company presentations were the
secondary source. In addition, company documentations and
literature reviews helped in the validation of the results from
the primary and secondary sources.
The information collected during the entire research served as
evidence of the report’s credibility. However on beforehand
the un-disclosure agreement was signed in order to protect
company’s sensitive data from outside world.

D. Research process

a) Phase 1: Literature Review.
During the first phase of the research, the researchers
identified the topic on which this research is based. After
identifying the topic, it was important to get the context and
positioning of the research in relation to similar studies. This
called for a literature review on similar researches carried out.
The literature review was based on articles and books which
focus mainly on lean and agile principles. The purpose (see
table 1) for this was to refine the research goals, to develop the
realistic and relevant research question, select an appropriate
method and identify potential validity threat of the research
conclusion (Maxwell, 2005). In addition the literature review
helped in the validation of the collected data in the interviews
and presentations. This is argued by Bernd Heinrich (1984, pp.
151) that, even carefully collected results can be miss leading
if the underlying context of assumptions is wrong”.

b) Phase 2: Company Presentations
To get a clear understanding of the working process of the
team members, the researchers were introduced to the working
process of the feature team through company presentations.
This took five weeks of which the researchers had a chance to
spend at least one day at the research site each week. During
this time, the researchers met the feature team members with a
main aim of knowing their roles in the team as shown in table
1 and their perspective on the feature development cycle i.e.
the architect presented the architecture of the feature, team
leader presented how cross function teams work and the
different roles of each team member, and system manager
presented how feature requirements are handled. Still in the
same five weeks, the researchers also met the Operational
Development engineer who presented the streamline
development framework and the process, methods and tools.
Researchers were also got an overview of the technical
product under development and its context, as well as were
familiarized with the feature that was under development. It is
important to note that on each presentation, there was time for
interaction through questions and discussions.

9

c) Phase 3: Interview study
Interviews were considered to be the primary source of data of
this study. Six interviews were carried out with each lasting
for 1 hour and 30 minutes. Before the interviews it was
essential to determine the right interviewees (Boyce and
Neale, 2006) because interviews are perceived to be very
effective when getting feedback or opinion on the developing
processes from different perspectives, as well as activities,
problems or other issues (Boyce and Neale, 2006). These were
chosen based on the activities and roles in the process. Among
the informants were: the architect, the team leader, system
tester, designer, functional tester and the system manager. The
reason for this, the researchers wanted to get different
perspectives of the informants on the development life cycle
of the feature. During the interviews the researchers shared the
roles; one was conducting the interview while the other two
were taking notes which were manually transcribed
immediately after the interview. This structure was chosen
because it’s not easy to keep track of the interview at the same
time take notes.

d) Phase 4: Analysis
Although literature reviews were taken first, it can be argued
that data collected in this research emerged as an iterative
process between theoretical conceptions and empirical

data (Klein and Myers 1999). This means that during
empirical data collection, the researcher could review it in
accordance to the lean principles as well as contacting the
interviewees in case there was something which was not clear.

All the data collected was categorized into four categories i.e.
‘organization work and roles in the team’, ‘development
process and phases’, ‘lean principles’ and ‘reflection on
streamline development framework’.These categories emerged
during the interview process. The reason for this is that,
knowing the organizational roles in the process would help the
researchers understand the activities in the process during each
phase and focusing on lean principles would further reinforce
theoretical background on which this study is based on. It was
also the idea of the researchers to have a category on reflection
on streamline development for the purposes of knowing the
team’s percepective towards the process. Data gathered was
used as an input in the analysis which however helped in
answering the research question.

10

IV. RESULT

This chapter describes the results gathered from the interviews
and presentations after Phase 3 (mentioned above), which will
then be analyzed in order to get the answer to the research
problem. To describe the results in the most efficient way it is
categorized in the same way as interview questions:

o organization of work and roles in teams;
o development process and phases;
o lean principles;
o reflection on streamline software development;

The reason for having these categories is first to identify each
member’s role in a team, dependencies on each other and
external factors. Second is to understand the development
process which will allow mapping it and see the pattern in it.
Next two categories were created with the purpose to get the
team members’ understanding of lean and streamline software
development. Each category includes perspectives of six roles
in the team, i.e. team leader, system manager, operational
architect, designer, system and functional testers’ perspectives.

A. Organization of work and roles in teams
The idea of having cross functional teams is to provide each
team with core competences which allow focusing on a
specific feature and being responsible for it. The team which
was investigated consists of: team leader, system manager,
architect, designer, three function testers and system tester.
To improve the process flow in a team, the team leader has to
identify dependencies of each team member this ensures that
the development process is going in the right direction as well
as every team member is working according to the agreed
strategy. Providing the team with the time plan which has to
be followed or in case of necessary changes being modified
according to the needs is also one of the core functions of the
team leader which is aimed to improve work flow and to have
a good overview of the project. Finding dependencies and
having a good overview will in a way empower the team
leader to remove some barriers which can stop or negatively
affect the team in sense of achieving the main goals of the
project.
In the feasibility phase of development, one of the main
contributions of the system manager includes analyzing,
describing and formalizing the requirements in a clear way for
the team. The source of the requirements, come either from
customers, standards or internally. If the requirements came
from outside the company (i.e. customer) the system manager
has to contact sales representative in case of
misunderstandings.
Although the system manager influences the feature mainly in
the early phase and the feasibility phase, the architect
influences the feature throughout the entire project. The
architect mainly interacts with system manager during the

feasibility phase. In this phase, the architect tries to find out if
the feature can be implemented and how the feature will affect
the whole architecture of the system. During the execution
phase, the architect supports the designer with guidelines on
how to implement the feature according with the architecture.
He also answers questions the designer may have during the
implementation. Architect’s work depends on the complexity
of the feature and the way the current feature influences the
other parts of the whole system. In case of uncertainty he has
to contact other architects or team members from other groups
to map the dependencies and to transfer the knowledge to the
right people.
The main role of the designer in the development process is to
implement the feature in terms of actual code. Designer can
start implementation as soon as the requirements are clear
enough (this may happen during either feasibility or execution
phases) and therefore late requirements directly impede his
work. He also depends on function testers’ and system tester’s
work, as some of the test results might cause rewriting the
program code.
As some of the team members’ progress is tightly linked to the
code or complete functioning feature, designer’s delay directly
impacts the whole feature. System tester for instance is not
able to start his testing procedures without having the feature
itself or function tester cannot execute tests without actual
code. However good collaboration between function testers
and designer allows running test cases in parallel with
designers work and give a feedback (trouble reports)
immediately after faults have been discovered.

B. Development process and phases
Streamline development process has been adopted by the
development unit at Ericsson for a number of reasons.

“…main reasons are… improving time to market, more
efficient research and development, shorter time to
commitment, allowing development setup to be more flexible,
possibility to change priorities and plans at any time … to
develop the right things…” (Interviewee)

For the team, feature development starts after the “Go”
decision has been made. They start with conducting
feasibility analysis of the feature. After the analysis,
“Commit” decision has to be made and the execution phase
begins, which has a number of milestones and checkpoints.
When the feature is ready it is delivered to the latest system
version (LSV). After that the team continues with final tests
for the feature and ready to take over a new project.
Each team member is having different input on each phase of
the development process, as explained in the previous section.
Specific documents have to be created and milestones to be

11

met. Activities on each phase are highly linked to the results
from previous stages; therefore any delays could cause even
greater delays on the next phase.

Team leader has the main workload during the beginning and
closer to the end of the project. On the middle stages of the
project the work mostly consists of checking the progress and
the fulfillment of all the milestones and solving problems
which could arise within the team. Creating a feasible time
plan and setting up the right goals by the team leader at the
beginning will only ensure the success of the project.
System manager after the early phase where requirements
have been created follows the execution process by doing
reviews on each check point and helping team members to
understand the feature in case of uncertainties.

“… Efficiency in work is highly depended on the requirements
clarity and frequency of changes in the requirements which on
its hand affects the performance of the project in general…”
(Interviewee)

Operational architect is highly involved on all the phases of
the development process particularly for those features which
affects the current architecture of the whole system or
depended on it. In the early phases he contributes by helping
the team.

“… Helping to understand the scale of the feature, feasibility,
requirements specification and suggesting the ways of most
efficient implementations of the feature… “(Interviewee)

During the execution phase the architect works closely with
designers in order to help with design decisions which should
be in accordance with current architecture. For the architect it
is a challenge to follow the dependencies on different teams
work and to analyze the consequences which will affect the
whole architecture after the feature is included in latest system
version (LSV).
Function tester is mostly involved in the execution phase when
he works in close cooperation with designer.

“…The main idea for function tester is to find situations which
were not thought of by designers or other team members…”
(Interviewee)

Streamline development allows working on the tests in
parallel with the designer. That helps to increase the
productivity of the function tester; however there are other
factors which might slowdown the process, i.e. new testing
framework which is more time consuming in relation to the
execution of the test cases. As well as synchronizing different

branches usually cause in delays due to differences in
implementation approach.
Designers similar to function testers have the main workload
during the execution phase. Apart from coding, a lot of
documentation has to be created to explain/support the code.
This documentation is mostly used by designers themselves or
by function testers. According to the designer the efficiency of
the work is mostly depended on the size, complexity of the
feature and previous experience with projects in similar area.
One of the typical problems is to understand the requirements
of the feature which is completely new.
System testers are mostly involved in the beginning of the
project (analysis of the feature and requirements) and closer to
the end of the project when the feature is ready and system
tests can be run. According to the system tester delays are
seldom occur during the tests, but one of the reasons for
delays could be due to updates of the testing tool to be used
for a specific feature.

C. Lean principles
According to all the team members lean principles are
reflected during the entire development cycle of the feature.
They have positive impact on the development process in
general and on the team work performance in particular. All
team members agree that cross-functional teams allow
immediate feedback from all the parties involved in the
development process.

“…having all the team members close to each other is good as
it speeds up the information exchange in the team…”
(Interviewee)

Collaboration and communication between the stakeholders
improved significantly comparing to the previous
development process.
The shortage of particular resources within the team might
lead to problems which were not feasible while using
“waterfall” approach. According to one of the interviewees in
some cases there is a tendency to move function tests to the
design tests. This is potentially a negative move as designers
will have to test their own code and might miss some faults.
Scaling the processes to fit different projects it is essential in
lean development. This allows reducing “waste” and focus
only on those activities which a necessary for specific
projects.

“… Adopting the process to smaller features is the area which
still can be improved… ” (Interviewee)

12

However delays might arise in cases when some documents
such as test analysis or test specification have to be approved
by the line manager. As there is only one line manager who is
responsible for doing it.
All the interviewees expressed a need to reduce on external
meetings as they are causing delays by disturbing the
implementation process since sometimes it is difficult to get
on track of where they stopped before the meeting.
Usually the problems which arise during the project are
reported to the management in the “conclusion exercises”.
However not all of the aspects are considered by the
management hence looping up to the next projects.

D. Reflection on Streamline software development
According to the interviewees, adaptation of streamline
development process has positively influenced the time
required for releasing new features at the development unit.
The team particularly seems to be in fond of activities which
are carried out together by all the members, such as morning
standup meetings, reviews, test analysis, etc.

As for the team leader, streamline development allows to
understand the goals and activities in a better way, since it
encourages communication and sharing knowledge among the
team members.
“… Streamline process has a very good support for
communication (information exchange) among the team
members and among teams… it also allows having a better
structure on how to work, how to share the work and it
increases possibility of learning new things which is essential
for improving teams’ performance…” (Interviewee)

One interesting thing put forward during interviews was, the
idea of dividing the requirements into packages and then later
assign them to cross functional teams was good. Team
members do not get stuck with a batch of requirements to
work on, and according to one of the interviewee it was noted
that having short projects is a good way to handle customer
changes since the changes affect only specific feature and not
the entire project.

V. DISCUSSION

This chapter is analyzing the findings which were gathered
during the previous stages of the research. It brings forward
the bottlenecks which were revealed when analyzing related
theories, results of company’s presentations and interviews.
As the main purpose of the research is to identify possible
bottlenecks in the development life cycle of the feature, this
chapter is categorizing such bottlenecks and presents it not as
problems, rather as challenges for the team and management.

1. Task switching

Streamline development encourages management
commitment, for example regular meetings with the cross
function teams or close contact and co-location with
management during the process implementation. This can be
both beneficial and can create some drawbacks. Lean
philosophy describes this way of working as reducing the gap
between the team and the management; it also encourages
greater involvement of the entire organization in the
production of software and in the process implementation
(Shalloway, 2010). On the other hand, during the data
collection it was mentioned by almost all the interviewees
that, there are too many external meetings which sometimes
results in delays throughout the whole process. In this case the
team members have to leave whatever they are doing to attend
the meeting. One of the interviewee noted that “…you can be
concentrating on some work, than you leave for a meeting,
and when you come back it is difficult to catch up on what you
were doing…” This could be a possible bottleneck in the
development life cycle of a feature, described in lean
philosophy as task switching. Gathering thoughts and getting
into the flow of new task requires time and decreasing
developers’ efficiency (DeMarcoand). Therefore task
switching in lean considered as a waste. Since meetings
require task switching and interrupt the development process,
those which considered unnecessary by the team members can
be linked to waste in lean philosophy. The more unexpected
and unwanted meetings are held during the feasibility and/or
execution phases in the program execution stage the more
waste is created in the whole development process. Waste in
turn is a potential bottleneck that impedes development of a
feature and creates delays.
Possible solution mentioned by one of the interviewees, was
instead of the whole team attending the meeting, it is enough
to have just one or two team members to participate in it and
later spread the information within the team. Therefore finding
the right balance between the meetings is a great challenge for
both: management who organizes it and team members who
have to participate in it.
It is also important to note that not all meetings require task
switching. Team’s internal meetings, for example everyday’s
stand up meetings are much welcome by all the team
members. It is during the internal meetings where the team
members get to know each other’s progress and have a chance
of informing others about the problems that might have
occurred in their work. This way of working allows the team
to share knowledge and delay commitments since possible
problems are identified as soon as they arise and therefore
reduce the possibility of delaying the project.
Task switching affects all the stages of the feature

13

development cycle, as it does not matter what the team
members were doing, any distraction could influence the
performance and the efficiency of work.

2. Documentation

Documentation in this case has two ways of influencing the
feature development cycle. On one hand it makes the
development process easier to understand and the product
easier to maintain, which can be linked to one of the principles
in lean philosophy – knowledge sharing. On the other hand
unnecessary documentation (documents which are not during
the process or created for future reference) can be addressed as
waste in lean principles.
The results which are described in the previous chapter show
an example of how the documentation can improve the
performance of some team members. Cross functional teams
in streamline development assume having all the core
competences within the team. However there is a role which is
distributed over two or more teams, which is - operational
architect. One of the tasks for operational architect is to
provide the team with high level guide lines for the feature
development process. The fact that architect should provide
support for more than one team and the fact that there is no
written architectural description (guidelines) available for the
team, potentially could cause delays in the process. In case if
the architect is not around and some of the team members
require architect’s support to continue the work or to make a
decision, the person will have to wait as there are no
documents where it is possible to refer to and get the answer.
As it was previously mentioned streamline development
process provides freedom for the development teams and in
terms of architecture, it provides only guidelines on how to
develop a feature. Supporting such freedom with
documentation might improve the knowledge sharing and as a
result influence the development life cycle of the feature in a
positive way.
The other side of creating documentation is the fact that it is
time consuming. In case if such documentation is not used by
the team members contradicts with one of the lean principles –
eliminating waste. Finding the right balance between the
documentation available for the management and
documentation created for the team is another challenge for
the management which probably requires more attention.

3. Lessons learned (Evaluation considerations)

One of the lean principles which was mentioned previously in
the research is perfection of the process, which is done via
constant improvements. One of the conditions required to
improve the development life cycle of the feature is to have
the input from previous cycles.

According to the data from result section of this report, in the
end of each program execution stage (this is where the feature
is delivered), team members create a report where suggestions
to the management are made on how to improve the
development process for the next iterations. One of the
reasons for that is to have team’s opinion on the activities
which are done and share the good experience among other
teams. This supports the process improvement throughout the
whole organization, by adopting one of the core lean
principles such as knowledge sharing, which in this case
drives forward another lean principle – perfection of the
process.
However, according to the data in the result section, some of
the evaluations are not always considered by the management
and therefore the team continues to work on the next feature
having the same problems unsolved. This could result into a
bottleneck during the next feature implementation if the team
happens to find the same problems faced in the previous cycle.
Considering and implementing all the evaluation results is a
great challenge for the management as it requires in-depth
analysis of all the requests made by teams and consequences
of such requests.

4. Communication chain

Requirements elicitation is one of the most influential steps of
development with regards to eventual success of a program.
Problems introduced during requirements elicitation are the
most expensive if not detected quickly, since later corrections
require the most rework and waste in form of defects (Walton,
1999; Poppendieck & Poppendieck 2003).
In the development unit observed in this research, system
manager pre-studies the feature and analyzes the requirements
in order to present it to the team in the most efficient way.
Management is the intermediate party between customer and
system manager in the elicitation of requirements. Some
interviewees suggested that the lack of direct contact between
the system management and the customers can encumber the
process of specifying requirements for the feature. According
to interviewees, level of details is varying depending on
representatives between customer and system manager. Some
management representatives are able to transfer the idea and
required functionality from the customers in sufficiently
detailed and technical way, but some are not.
In case system management experiences problems with level
of details of information transferred by management,
intermediate party or the customer has to be contacted back.
Long communication chain between customers and system
management introduces handoffs of information. In turn
handoffs among functions can cause delays and increasing
risks of information being misunderstood (Walton, 1999).
Conveyance of information might cause a loss of knowledge,

14

as great amount of data remains with its carrier and never get
handed off to others (Poppendieck & Poppendieck 2003). The
longer the communication channel is, the higher are the
chances to miss some of the details, which could be essential.
Allowing direct communication of system manager with the
customer could eliminate time and recourses consuming non-
value-added-action in form of handoffs, therefore waste
(Larman & Vodde 2009).

5. Feature context

According to the result section, some of the interviewees
mentioned the absence of knowledge about what the feature is
intended to be used for and in what context. Depending on
these factors various architecture solutions supporting
appropriate non-functional attributes can be proposed.
Implementation also requires understanding of usage scope.
With regard to this, feature can be coded in the most efficient
way, using the most appropriate technologies.
Potentially, in order to implement what is needed developer
can start guessing what the feature is intended to be used for.
While delivering maximum value to the customer is the core
philosophy of lean, guessing can prevent team from fulfilling
this principle (Hurwitz & Demacopoulos 2009; Lean
aerospace). In this way feature implementation can be
technically correct, however suboptimal.
On the other hand developers can start searching for this kind
of information by asking customer. As was already noted,
customer reply can cause waiting. This method can potentially
introduce waste and impede the development process,
therefore should be avoided.
Customer involvement to the process can prevent this kind of
complications. Hibbs (2009) in the book “The Art of Lean
Software Development” highlights the importance of customer
participation in the development process. Customer’s
representative who has a clear understanding of the vision,
which has to be transferred to the team, could directly explain
the intends if participating more in the development process.
Since customer representatives participation in development
can increase development cost, short and often meetings with
representative are also suggested by Hibbs (Hibbs, 2009).

6. Process perception

Empowering the team is one of the core principles in lean
software development which is adopted by the development
unit. It allows the team to be more flexible in the development
process by choosing tactics and development methods which
are best suited for a specific case (Shalloway, 2010).
Streamline framework proposes high level description of the
processes which should be followed during the development
of the feature, while still leaving a space for the process

decisions on a detailed level. It is the team who knows in a
better way what is the best for them, therefore it is the team
which is responsible for the process (Shalloway, 2010).
During the interviews respondents were asked to describe the
lifecycle of a feature they work on. The purpose of this
question was to find out more about the process from the team
perspective. The results show that team members whose work
is not directly related to the management activities had
difficulties with answering it. Questions about the phases or
stages of the feature development process were also
challenging for the interviewees. This has made an impression
that not all the team members have a clear understanding of
the development process. This is most likely to occur since the
team investigated in the research is relatively new and team
members are new to their roles. Despite this fact, the lack of
common understanding of the process still indirectly
influences the work. Without having a clear knowledge about
the process, it is difficult to suggest improvements to it.
Therefore most of the activities which are done throughout the
development process assumed to be best and could not suggest
further improvements to be done. This is one of the challenges
faced by the management, dealing with which will make
improvements suggestions coming from teams even more
efficient and constructive.

7. Competence

In streamline development feature teams are organized as
cross function teams with all the core competencies i.e.
design, testing and management as explained in the SD
section. This competence is used in development of the feature
in the program execution state. The teams have full
responsibility of the project during the program execution
state. In this, SD gives the teams more responsibility as well as
freedom in their activities to make decisions as recognized by
Poppendieck (2003). This way of working creates an
opportunity to share knowledge in the team and also the
feedback loop in the team is shortened since all people are
working together.

As means to check for core competence needed to develop a
feature, in the “activity and release planning loop” resources
are allocated to the feature, these may include tools, people
and learning. However findings indicate that, delays are likely
to occur due to lack of some competence in the team. One of
the facts which may result into lack of competence may be
attributed to the nature of the current volatile technological
environment. New tools emerge time to time implying that
people have to gain competence to operate them. An example
can be revealed in function testing where a new testing tool
TTCN was introduced; this caused a deduction on the number
of test cases produced in one week from five to one or two.

15

The deduction in test cases, make it clearly that lack of
competence in a team is a potential bottle in the development
life cycle of a feature. As means of curbing the situation since
streamline development there is continuous analysis and
knowledge creating activities, the company tries to introduce
courses on each new technology introduced; however adoption
is a process which needs time and people’s acceptance to the
change. This can be argued for from the technological
adaptation curve by Bohlen, et al. (1957), where some people
may take less time to adapt new technologies while others
may take longer time.

8. Feedback

The ability to exchange information in an efficient way
between the development teams and other stakeholders in the
development life cycle of the feature has a great impact on the
lead time. Much as the team has got the core competence to
develop the feature it still needs support and feedbacks from
external parties. For instance feedback from the product
activation team, the system owner, the line organizations and
standard organizations is crucial for the feature team.
According to the interviewees, getting information regarding
the architecture from outside the team can lead to waiting.
This kind of waiting creates a potential bottleneck in the
development life cycle. Another analogous example described
by interviewees are waiting for documentation approval from
management or waiting for customer’s feedbacks. These
problems of waiting and delays can further be explained using
lean philosophy.

 In lean waiting is considered as a waste, due to the fact that it
results into delays. Delays in turn prevent the customer from
getting a product quickly. The time between giving question
and getting an answer from any stakeholder is considered a
waste (Hibbs, 2009). For instance Shalloway (2010) defines
the time from asking customer a question until getting an
answer as a common delay in software development. On the
other hand, “If people are immediately available, there is no
delays and development continues at full speed” (Hibbs, et al.,
2009). Therefore waiting for documentation approval, waiting
for feedbacks and waiting for anything during development is
a bottleneck that can hinder the speed of the development
cycle.

VI. CONCLUSION

This research has explored the development life cycle of a
feature with the main purpose of identifying possible
bottlenecks that are hindering the development process. The

results presented here are after a case study with one of the
development unit at Ericsson AB.
Using lean principles as a theoretical base the following
bottlenecks were identified:

1. Task switching
Task switching, which is seen as a waste in lean
philosophy, has been mentioned by almost all the
interviewees in this study. It hinders the development
process in that team members lose focus when they
change between tasks.

2. Competence
When new things are introduced, there will be
members whose competences are affected, due to
lack of experience. For instance in this research it
was noted that time required for function testing
doubled after introducing a new testing tool.

3. Feedback
While feedback among team members is fast, outside
communication sometimes take long time. For
example, some of the documents have to be approved
by the management before the team can continue. In
case if there is only one person who can approve (or
give feedback) it can potentially result into delays.

4. Evaluations considerations
In the end of each project the team gives an
evaluation report for the management on suggesting
improvements for future projects. However some
interviewees mentioned that not all of the suggestions
are considered, as a result the team continues to work,
having the same problems unsolved, which might
cause delays.

5. Communication chain
Having a long hierarchy chain between teams,
management and customers can lead to loss of
information, for example communication between the
system manager and a customer includes a product
manager who sometimes might miss some details of
the requirements.

6. Feature context
Complete understanding of the usage of the feature
can affect the speed of the development process.
Developing the feature and not knowing its exact
usage in the whole system increases the chances of
misunderstandings the requirements.

7. Process perception
Lean philosophy encourages full understanding of the
process. Not having a clear understanding or enough
knowledge about the process in which the
development unit works makes it difficult to suggest
improvements.

16

8. Documentation
Documentation makes the development process
easier to understand and the product easier to
maintain, which can be linked to one of the principles
in lean philosophy – knowledge sharing. An example
could be the architecture description, which is
supposed to provide only high level guidelines for the
team to implement the feature. Having no document
where to refer in case of uncertainty might cause a
delay. As there is only one architect for two or more
teams, sometimes it is impossible to get the
immediate feedback or suggestion for solving the
problem.

The bottlenecks identified here in this research can be taken as
challenges which need to be addressed not only to the
development unit in question but also other organization
working with feature development. Addressing them and
looking for possible solutions can be beneficial in that it may
result into a decrease in lead time and also improve the end to
end flow.

ACKNOWLEDGMENT

The author would like to thank Ericsson AB for having given
us the opportunity to carry out this research. Special thanks are
due to all Ericsson employees at the development unit
involved in this study. Our special and dearest thanks go to our
academic supervisor Helena Holmström Olsson from IT
University of Gothenburg for her constructive feedback,
meetings and support. We greatly appreciate your effort and
valuable time you have put to this study.

REFERENCES

Abrahamsson. P, Salo. O, Ronkainen. J, Warsta. J. (2002). Agile Software
Development Method. VTT Technical Research Centre, Finland.

Baundin, M., 2004. Lean Logistics: The Nuts and Bolts of Delivering
Materials and Goods. New York: Productivity Press

Berry, R., 2003. Trends, challenges and opportunities for performance
engineering with modern business software. IEE Proc.-Softw.

Boyce C., Neale P., (2006). Conducting in-depth interviews: A Guide for
Designing and Conducting In-Depth Interviews for Evaluation Input.
Pathfinder International

DeMarcoand Listet, Peopleuare,63.

Dube, L., Pare, G. (2003). Rigor in Information Systems Positivist Case
Research: Current Practices,
Trends, and Recommendations. MIS Quarterly, 27 (4), page 597.

Everett, W., Keene, S., Nikora, A., 1998. Applying Software Reliability
Engineering in the 1990s. IEEE Transactions on reliability

Genuchten van Michiel (2007). The Impact of Software Growth on the
Electronics Industry: Eindhoven University of Technology/NXP Software

Harvey, D., 2004, Lean, Agile, “The Software Value Stream”

Harter., D.E., 2000. Effects of Process Maturity on Quality, Cycle Time, and
Effort in Software Product Development. Management Science, INFORMS

Heinrich, B (1984). In a patch of fireweed. Cambridge, MA: Harvard
University Press.

Hibbs, C., Jawett S., Sullivan M., 2009. The Art of Lean Software
Development. USA: O'reilly Media.

Holmström, O, H (n.d), Acting Agile in ‘Streamline Development.
Department of Applied IT, Gothenburg University, Sweden

Holweg, M., 2007. The genealogy of lean production. Journal of Operations
Management, 25 (2007) 420–437

Hurwitz, D., Demacopoulos, K., 2009. The Case for Lean IT. CA,
Transforming IT Management

IEEE Std. 829-1998, Standard for Software Test Documentation

Joseph A. Maxwell (2005). Qualitative Research Design: An Interactive
Approach, Second Edition. George Mason University, Sage Publication, Inc

Kanigel, R., 1999 The One Best Way: Frederick Winslow Taylor and the
Enigma of Efficiency, New York, Penguin Group

Kilpatrick, J. D., 2003. Lean Principles. Utah Manufacturing Extension
Partnership

Klein, H. K. and Michael D. Myers. 1999 A Set of Principles for Conducting
and Evaluating Interpretive Field Studies in Information Systems, MIS
Quarterly, Special Issue on Intensive Research.

Larman & Vodde, 2008, Scaling Lean & Agile Development: Successful
Large, Multisite & Offshore Products with Large-Scale Scrum, Addison-
Wesley, Ch.22

Liker, J., 2004. The Toyota Way: 14 Management Principles from the World's
Greatest Manufacturer. New York: McGraw-Hill

MacCormack A, Kemerer CF, Cusumano M, Crandall B. 2003. Trade-offs
between productivity and quality in selecting software development practices.
IEEE Software 20(5): 78–85.

Maskell, B., Baggaley, B., 2003. Practical Lean Accounting: A Proven
System for Measuring and Managingthe Lean Enterprices. New York:
Productivity Press

Merton, R. K., Fiske, M., Kendall, P.L. (1990). The focused interview: a
manual of process and procedures (2nd ed.) New York: Free Press

Mehta M , Anderson, D, Raffo. D, (2008) Providing value to customers in
software development through lean principles. John Wiley & Sons, Ltd.

Ohno, T., 1988, Toyota Production System:Beyond Large-Scale Production.
Translated by Productivity, Inc. New York: Productivity Press

Poppendieck, M., 2002, Principles of Lean Thinking, Poppendieck.LLC

17

Poppendieck. M., Poppendieck, T., (2003). Lean Software Development: An
Agile Toolkit. Addison-Wesley Professional

Robbins, S.P. Bergman, R. Stagg, L. & Coulter, M., 2003, Management, 3rd

ed. Sydney, Australia: Prentice

Shalloway. A, Beaver.G, Trott.J.R, (2010) Lean-Agile Software Development
Achieving Enterprise Agility. Addison-Wesley

Tomaszewski, P., Berander, P., and Damm, L. (2008). From Traditional to
Streamline Development – Opportunities and Challenges. Software Process
Improvement and Practice. 13 (2), 195-212.

Tolliday, S. & Zeitlin, J., 1987, The Automobile Industry and its Workers:
Between Fordism and Flexibility, New York: St.Martin's Press

Towill, D. ; Cardiff Univ., UK

Walsham, G. (1993). Interpreting Information Systems in Organizations.
Chichester: Wiley & Sons.

Walton, M., 1999, Strategies for Lean Product Development. Massachusetts
Institute of Technology.

Womack JP, Jones DT,Roos D. 1991 and 1990. TheMachine that Changed the
World. Harper Collins Publishing: New York.

Womack JP, Jones DT. 1996a. Beyond Toyota: How to root out waste and
pursue perfection.
Harvard Business Review. September 1, 1996.

Womack JP, Jones DT. 1996b. Lean Thinking: Banish Waste and Create
Wealth in Your Corporation. Simon and Schuster: New York.

Wu, S. ; Wee, H.M. ; Dept. of Ford Production Syst. of Mfg Div., Ford Lio
Ho Motor Co., Chungli, Taiwan

Yin, R. K. (2009). Case Study Research: Design and Methods (4th ed.).
Newbury Park: Sage Publications.

Zidel, T. G., A Lean Guide to Transforming Healthcare: How to Implement
Lean Principles in Hospitals, Medical Offices, Clinincs and Other Healthcare
Organizations. Milwaukee: ASQ Quality PressPublications

