
 
 

Graduate School 
Master of Science in 

Finance 
Master Degree Project No.2010:135 

Supervisor: Charles Nadeau and Joakim Westerlund 
 

 
 
 

 
 

  
 
 
 
 
 
 

Dynamic Hedge Rations on Currency Futures 
 

 
 
 

Bartosz Czekierda and Wei Zhang 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 



 2 

Abstract 

In the globalized economy many businesses are exposed to the foreign exchange risk in their daily 

trading activities. Exchange traded futures contracts are one of the instruments that are designed 

specifically to hedge such risk. Over the years researchers and practitioners have been interested in 

designing the optimal hedge ratio as a number of contracts that should be purchased in order to 

minimize the variance of the hedged portfolio. Early methods of calculating that ratio assumed time 

invariant variance covariance structure between spot and futures prices resulting in static ratios. 

However this assumption has been challenged and models that allow for dynamic evolution of 

variances and covariances gained on popularity. The purpose of this paper is to investigate the 

performance of the dynamic hedge ratio strategy on EUR/SEK and USD/SEK designed with bivariate 

error correction GARCH model with diagonal BEKK parameterization. Also we compare this strategy 

with other most commonly used hedging schemes such as static OLS and naïve hedging. Using daily 

observations spanning over almost 8 years we found that despite the theoretical feasibility of the 

bivariate GARCH it fails to outperform static regression based hedges both in and out of sample.  
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1. Introduction 

Foreign exchange risk is one of the basic risks that economical agents face when dealing with 

international transactions. Modern risk management techniques provide many different 

ways of hedging such a risk. One of them is hedging with exchange traded futures contracts. 

Such contract specifies the price at which a financial asset such as foreign currency can be 

bought or sold at the specified future time. Trading in futures markets on foreign currencies 

began in 1972 on the Chicago Mercantile Exchange and since then they have become 

increasingly popular among investors.  

The basic principle of hedging with currency futures is very simple. Assume that Swedish 

investor will receive a payment in Euro in six months. Since he does not know what the 

prevailing exchange rate will be in six months he is exposed to the exchange rate risk. He can 

remove that risk by buying currency futures which will specify the price at which Euro will be 

sold in the future. In that way the investor is neutralizing his risk. The problem with this 

strategy is that it only works if the futures contract matures exactly at the date when the 

investor will receive his payment. Should the payment occur before the maturity of the 

contract the risk might not necessarily be neutralized. That is due to the fact that both spot 

and futures prices follow stochastic processes and thus fluctuate substantially prior to 

maturity. The risk associated with those fluctuations if often referred to as the basis risk. 

Because of the basis risk this simple strategy of covering the whole position in foreign 

currency with futures contracts might not be optimal. In his paper, Johnson (1960) 

developed a hedging model that has proved superior to the naïve hedging described in the 

example above. He introduced a term of minimum variance hedge ratio which is a number 

of futures contracts that should be purchased in relation to the spot position held that 

minimizes the variance of return of the hedged portfolio. Johnson (1960) worked under the 

assumption that the joint distribution of the spot and futures prices is time invariant which 

would imply a static hedge ratio. It also implies that we can estimate it using simple 

techniques such as Ordinary Least Squares (OLS). The time invariance assumption has been 

however challenged by other researchers ( see Bollerslev 1990; Kroner and Sultan 1991) who 

showed that as new information arrives to the market the shape of the distribution changes. 

If that is the case then the minimum variance hedge ratio would vary over time as the new 

information reaches the market. An additional problem with the proposed OLS methodology 
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is that it ignores the theoretical long run relationship (cointegration) between spot and 

futures prices. According to Brenner and Kroner (1993) this will result in a downward bias on 

the estimated hedge ratio. In presence of time varying return distribution and cointegration 

static models such as OLS could yield an inferior hedging performance. Korner and Sultan 

(1993) address those issues by applying a bivariate error correction Generalized 

Autoregressive Conditional Heteroskedasticity model (GARCH) thereby allowing the 

conditional variance covariance matrix to change over time. This model implies that 

minimum variance hedge ratio is updates as the new information arrives in the marketplace. 

It is therefore more accurate and has a potential of outperforming both naïve and static 

hedges.   

The purpose of this paper is to evaluate the performance of the time varying minimum 

variance hedge ratios on futures written on two exchange rates USD/SEK and EUR/SEK. In 

order to model the conditional variance covariance matrix we will employ the bivariate error 

correction GARCH methodology with the diagonal BEKK parametrization of Engle and Kroner 

(1995). To evaluate the performance of the dynamic hedging we will construct different 

hedge portfolios using four different strategies: unhedged portfolio, naively hedged 

portfolio, OLS portfolio and the dynamic bivariate GARCH portfolio. We will compare the 

hedging strategies in terms of variance reduction when compared to the unhedged portfolio. 

As we are looking at exchange rates that are rarely investigated by researchers we are 

hoping to contribute to the existing literature by giving an empirical summary of the most 

common hedging schemes. Additional contribution is the test of the diagonal BEKK 

specification which is not often used to calculate the minimum variance hedge ratios.  

This paper is divided into 8 sections. In section 2 we review the available literature relating 

to the minimum variance hedging with currency futures. Afterwards we comprehensively 

discuss the theory of hedging with futures and show derivations of the static and dynamic 

minimum hedge ratios. Next section gives the description of the methodology used in this 

study. In section 5 the data and preliminary results are described followed by the empirical 

results in section 6. Section 7 deals with comparing hedging performance and we conclude 

with a discussion of results in section 8.   
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2. Literature Review 

Over the years there has been substantial number of research about methods of calculating 

and the performance of the minimum variance hedge ratio on futures written on a variety of 

assets including indices, commodities and foreign exchange. Hill and Schneeweis (1982) 

compute the static OLS hedge ratios on five foreign exchanges: British Pound, Swiss Frank, 

German Mark, Canadian Dollar and Japanese Yen1. They found a substantial performance 

improvement compared to unhedged portfolios. A year later Grammatikos and Saunders 

(1983) investigated the same currencies but looked more closely at the stability of the OLS 

hedge ratios. Authors found that there is considerable time variation in covariances and 

variances in all currencies except the Canadian Dollar. With the advancements in the field of 

theoretical econometrics researchers started to look more closely at the dynamic structure 

of the variance covariance matrix. Particularly Autoregressive conditional Heteroskedasticity 

model (ARCH) of Engel (1982) and its extension to GARCH by Bollerslev (1986) provided tools 

necessary to deal with the issue of time varying variance covariance structure.  

Bollerslev (1990) successfully showed that major exchange rates can be modeled with a 

multivariate GARCH model. Kroner and Sultan (1993) investigate again the five currencies 

that were in center of attention in studies mentioned earlier but this time they employ the 

bivariate error correction GARCH model for the computation of the minimum variance 

hedge ratios. The authors show that by applying this model the hedger can reduce the 

variance of the portfolio compared to the traditional OLS hedge for all currencies with an 

exception of the British Pound.  Gagnon, Lypny and McCrudy (1998) examine the usefulness 

of the multivariate GARCH models to hedge two currency portfolios one of German Marks 

and Swiss Francs and second of German Marks and Japanesee Yen. By applying a trivariate 

GARCH they conclude that there is a substantial gain in hedgers’ utility compared with 

traditional hedging methods. Harris, Shen and Stoja (2007) in their paper examine various 

hedging schemes on USD/EUR, USD/GBP and USD/JPY. Their results are show that dynamic 

hedging outperforms marginally unconditional OLS hedges for Euro and Pound while OLS 

hedge seem to be superior for the Japanese Yen. 

                                                           
1
 All foreign exchange rates were in relation to USD 
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The methodology of calculating the dynamic minimum variance hedge ratios has been 

obviously widely applied on other financial assets. Baillie and Myers (1991) examine the 

performance of bivariate GARCH on six different commodities. The results seem to wave in 

favor of using the dynamic hedging schemes although the as with currencies the scope of 

reduction varies from commodity to commodity. Brooks, Henry and Persand (2002) examine 

the performance of the dynamic hedgers on the FTSE 100 futures and again find a significant 

improvement over traditional schemes.   

3. Futures prices and Minimum Variance Hedge Ratio 

A future contract is an agreement to buy or sell underlying asset at the specified price and 

specified time in the future. Futures contracts are highly standardized and traded on 

exchanges. Let  F0 and So denote the natural logarithm of futures and spot price of currency 

at time 0 respectively. Then the relationship between futures and spot price is usually 

written as 

                                                                 
Trr feSF

)(

00


                                                                       (1) 

Where r and rf are the risk free interest rate home and abroad respectively and T is time to 

maturity of the contract. This relationship is derived from a non arbitrage condition and is 

subject to certain assumptions such as no transaction costs, constant tax rate and possibility 

of borrowing and lending at the same risk free interest rate. If the above expression didn't 

hold a market participant could lock in an arbitrage profit.  

Futures on currencies are widely used to manage the exchange risk exposure. If the hedged 

instrument matches the underlying of the contract and hedger wants to close his position at 

the maturity date of the contract then a simple hedge strategy is to buy contracts covering 

the entire position in foreign currency (naive hedge). In practice however it is rarely the case 

that the hedger can close his position when contract matures. If a hedge has to be closed 

prior to maturity of the contract the hedger is exposed to a so-called basis risk. Basis (bt) at 

time t is defined as 

                                                                       ttt FSb                                                                       (2) 
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When closing the position prior to maturity the hedger is not sure whether he will get the 

contracted price and the basis represents his payoff at that time. In the presence of basis risk 

the simple hedging strategy covering whole exposure might not be optimal. Instead the 

hedger who is only interested in reducing his risk would like to make sure that the basis risk 

is as small as possible. In other words the desired position will have as small variance as 

possible.  

Following Brooks, Henry, Persand (2002) we define St = St - St-1 and Ft = Ft - Ft-1. Then at 

time t-1 the expected return (basis) at time t can be rewritten as 

                                                       )()()( 1111 ttttttt FESERE                                            (3) 

The is referred to as the hedge ratio and in naive hedging this ratio equals to 1. The 

variance of this expected return is 

                                                              tSFttFttStR hhhh ,1

2

,

2

1

2

,

2

, 2                                                (4) 

Similarly to Brooks, Henry, Persand (2002) we will assume that hedger has two moment 

utility function expressed as 

                                                            2

,1

2

,1 )()),(( tRtttRtt hREhREU                                           (5) 

In this utility function is the risk aversion coefficient. Having expressions for both variance 

of return and hedgers utility we can specify the maximization problem as 

           )2()()()),((max ,1

2

,

2

1

2

,111

2

,1 tSFttFttSttttttRtt hhhFESEhREU             (6) 

The hedger wishes to maximize his utility which is solely derived from the return on the 

hedged position and variance of that return. We solve the maximization problem with 

respect to tIn order to achieve it however we need an assumption that futures prices are 

martingales i.e. we assume that 0)(1  tt FE . The assumption about futures prices being 

martingales is consistent with a random walk theory which states that the best prediction of 

tomorrow’s price is the price today. The hedge ratio that maximizes hedger’s utility is                                                                                               

                                                                   
2

,
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tF

tSF

t
h

h


                                                                        (7) 
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The minimum variance hedge ratio is a covariance of spot and futures prices divided by the 

variance of futures prices. The payoff from the position at time t can be calculated as follows 

                                                                   tttt FSR  *                                                                (8) 

4. Methodology 

In this section we will describe the methodology employed in this study of minimum 

variance hedge ratios. We will compare four different hedging strategies; no hedge, the 

naïve hedge ratio, the OLS hedge ratio and the bivariate GARCH hedge ratio. In so doing we 

divide the sample into two parts. In-sample analysis will be used for hedge ratio estimation 

and 85% of the data set will be used to achieve that. Final 15% of the data will be saved in 

order to perform out-of-sample analysis which will evaluate the performance of the hedge.  

The software package used in this thesis is EViews 6.0. 

4.1 No hedge and naïve hedging 

Unhedged and naively hedged portfolios are straightforward to compute. For the no hedge 

scenario we simply assume zero hedge ratio in equation 8. The naïve hedge corresponds to 

the hedge ratio equal to unity in the equation 8.   

4.2 OLS 

Following Johnson (1960) we set up a framework for calculating static hedge. The simplest 

way of estimating the minimum variance hedge ratio is by using OLS regression. By doing so 

we are implicitly assuming that variances and covariances are time invariant. This means 

that we can drop the time index in equation 7. An additional shortcoming of that model is 

that we are ignoring the possible long run relationship between spot and futures prices. The 

model we are going to estimate is 

                                                                   ttt FS                                                             (9) 

Coefficient  is the estimated minimum variance hedge ratio. Since the ratio is static in 

nature the same  will be used for in-sample and out-of-sample analysis. 
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4.3 Multivariate GARCH 

To capture the dynamics of the variance-covariance matrix in the estimation of hedge ratio 

we employ bivariate GARCH model. Since the spot and futures prices seem to be 

cointegrated there exists a long term relationship between those prices. To capture that fact 

the mean equation in the bivariate GARCH setting will be modeled with Vector Error 

Correction Model (VECM) according to the specification below 

                                                                 

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In this model a vector of futures and spot returns Y is regressed upon a constant , 

previous lags and t-1 , which is the error correction term. The residuals from the VECM 

specification will be saved and used for the modeling of conditional variance covariance 

matrix. 

The variance equation can be written as a bivariate GARCH model with the following 

specification 
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This specification was first developed by Bollerslev, Engle and Wooldridge (1988). Using this 

model we can describe the evolution of variance of spot and futures prices. In this model Ht 

is the 2 x 2 conditional variance covariance matrix at time t which is a function of a 3 x 1 

constant vector C0, a 2 x 1 error term vector t-1 and a 2 x 2 conditional variance covariance 

matrix at time t-1. The multivariate GARCH models are traditionally estimated using the 

maximum likelihood method. The necessary assumption for this model is that the error term 

t given the information set t-1 is approximately normally distributed with mean 0 and 

variance covariance matrix Ht. According to Brooks (2008) one of the biggest shortcomings 

of that model is the number of the parameters that need to be estimated. In this bivariate 

setting we would need to obtain estimates of 21 parameters in total. Moreover the 

conditional variance covariance matrix should be positive semi definite which according to 

Brooks (2008) might not be the case if a non linear optimization procedure as in multivariate 

GARCH is used.  

One of the solutions to the problems described above is using so called BEKK 

parameterization developed by Engle and Kroner (1995). The variance equation in the BEKK 

model has the following form 
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This model requires estimation of only 11 parameters and ensures that the variance 

covariance matrix is always positive definite. The semi positives of variance covariance 

matrix will ensure that the numbers on the leading diagonal (variances) will be positive and 

that the matrix will be symmetrical. In this paper we will use the diagonal BEKK specification 

which is supplied in the software package. Restricting matrices A and B to be diagonal 

further reduces number of parameters to 7. From this model we will extract the conditional 

variance covariance matrix. Particularly we will be interested in covariance between spot 

and future prices and the variance of future prices. The hedge ratio will be computed 

according to equation 7.  
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4.4 Evaluating Hedge Performance 

In order to evaluate the performance of the hedge we will compare our four different 

hedging strategies. The benchmark scenario in which the spot position is left unhedged 

corresponds to the 0 hedge ratio. Second, we will compute a naïve hedge strategy which 

comprises of equal position in spot and futures markets (1 hedge ratio). Third strategy 

presented will be a static hedge ratio calculated using OLS methodology. Finally we will 

evaluate the performance of dynamic hedge ratio computed using the bivariate GARCH. The 

evaluation will be done in-sample and out-of-sample. For the most practical purposes 

however the out-of-sample analysis is much more important since it tests the model in a real 

market situation. Out-of-sample estimation will be done by using last 15% of the data set 

spanning from 1/01/2007 to 17/03/2008. The payoff of the position will be calculated on the 

daily basis according to the equation 8 

Evaluating OLS results is straightforward since we calculate static hedge ratio once and use it 

on the rest of the sample. In order to evaluate the performance of the dynamic hedge ratio 

we must make a conditional variance covariance matrix forecast from the diagonal BEKK 

model. We used software supplied modeling tool in order to get a forecast of BEKK residuals 

first. This was done using the Bootstrap methodology provided by the software package 

which generates innovations by randomly drawing residuals from the sample period. Once 

we have residuals generated we can forecast the movements of variances and covariances in 

the last 15% of the data set. This is done by solving equation 12 using the estimated 

parameters of the diagonal BEKK model and residuals obtained from the mean equation.  

Next the variance of this return will be calculated and finally the reduction in variance 

compared to the unhedged position. The reduction in variance can be expressed as 

                                                      
unhedgedR

hedgedRunhedgedR

h

hh
reduction

,

,, 
                                                   (14) 

5. Data and preliminary results 

In this paper we use 2033 daily observations of spot and future prices of USD/SEK and 

EUR/SEK exchange rate. The time period covered spans from June 1 2000 to March 17 2008. 

Futures contracts on the USD/SEK and EUR/SEK employed in this study trade on the 
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Intercontinental Exchange in New York (former New York Board of Trade). The maturity 

dates are March, June, September and December. Each contract starts trading one year prior 

to maturity. In this study we use the continuous series of futures prices computed by the 

DataStream Advance. Figure 1 presents the evolution of daily spot and futures prices over 

the study period.  
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Figure 1. Evolution of Spot and Futures prices on EUR/SEK and USD/SEK 

 

Both spot and futures prices of EUR/SEK exchange rate experienced a sharp increase from 

2000 up until middle of 2001. In the rest of the sample the price of the currency stabilized; it 

shows no apparent trend and its evolution resembles a mean reverting process. On the 

other hand, spot and futures prices of USD/SEK clearly follow a downward deterministic 

trend through the whole sample.  The summary statistics for the natural logarithms of spot 

and futures prices on both exchange rates are presented in Table 1.  

Both spot and future prices of EUR/SEK are leptokurtotic which means that they have a 

positive kurtosis. Kurtosis measures peekness of the distribution so a distrubition with a 
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positive kurtosis will put more probability around the mean than a normal distribution 

would. Moreover, the EUR/SEK exchange rate in both spot and futures prices has a negative 

skew. Negative skew implies that the mass of the distribution is shifted to the right 

compared with normal distribution. 

 

 

Variable  

EUR/SEK Spot (S) 

EUR/SEK Futures (F) 

USD/SEK Spot (S) 

USD/SEKFutures (F) 

Mean 

2,214238 

2,214160 

2,092099 

2,091353 

Variance 

0,000752 

0,000756 

0,024872 

0,025313 

Skewness 

-1,490389 

-1,570975 

0,384610 

0,386229 

Kurtosis 

6,458388 

6,682682 

1,888522 

1,886641 

Table 1. Summary Statistics 

 

In that case more probability is put on values greater than the mean compared with the 

normal distribution. Spot and futures prices of USD/SEK are also leptokurtotic but have a 

positive skew.  

We are also interested in whether the spot and futures prices on both exchange rates are 

stationary or not. The notion of stationarity is an important one in time series econometrics 

particularly if we want to work with OLS regression models. According to Brooks (2008) using 

non-stationary series in regression analysis might lead to spurious results, which means that 

the model might find a strong relationship between variables when there actually is none. 

The effects of the news (error term) is also different for stationary and non-stationary 

processes. If a series is stationary the effect of the shock gradually dies out while if series is 

non-stationary the effect of the same shock is permanent. Finally, the statistical inference 

for non-stationary series might not be valid. In Table 2 we report the results of Augmented 

Dickey Fuller (ADF) test which is a standard test for series stationarity. 

Under the null hypothesis the series contains unit root and is therefore non-stationary. The 

number of lags used in the test is determined by the Akaike Information Criterion. To test 

EUR/SEK we use ADF test without a deterministic trend since except the period between 

2000 and mid 2001 the series did not seem to follow any apparent trend (see Figure 1). 
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USD/SEK on the other hand clearly follows a descending trend and therefore we use ADF 

test with trend. 

 

  

EUR/SEK Spot (S) 

EUR/SEK Futures (F) 

USD/SEK Spot (S) 

USD/SEK Futures (F) 

Test Statistic 

0,90037 

P-value 

0,90190 

0,90060 

Lags 

7 

3 

2 

0 

0,89209 

-2,51130 

-2,54067 

0,32260 

0,30830 

Table 2.Augmented Dickey Fuller Test 

The results imply that both spot and futures prices of EUR/SEK and UDS/SEK are non- 

stationary. According to Brooks, Henry, Persand (2002) this result is to be expected and it is 

consistent with weak form efficiency of the spot and futures market. For econometric 

analysis non-stationarity implies that we will work on the first differences (returns) rather on 

level data when calculating the minimum variance hedge ratios.  

EUR/SEK 

No. of CE(s) Eigenvalue Trace Statistic Critical Value (0.05) Prob 

None 0,07582 160,72240 12,32090 0,00010 

At most 1 0,00041 0,82372 4,12991 0,41990 

USD/SEK 

No. of CE(s) Eigenvalue Trace Statistic Critical Value (0.05) Prob 

None 0,04601 95,52529 15,49471 0,00000 

At most 1 4,1E-08 0,00008 3,84147 0,99360 

Table 3 .Johansen’s Cointegration Test 

We also check whether there exists a long-run cointegrating relationship between spot and 

futures prices of currencies. It is of particular interest because as we mentioned in the 

introductory part the existence of such relationship might undermine the validity of the OLS 

approach. Table 3 present results of the most commonly used test for cointergration, 

Johansen cointegration test. 
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The null hypothesis in the Johansen’s test is that there are r cointegrating equations. If the 

null hypothesis is rejected the null is modified and we test whether there are r+1 

cointegrating equations. The procedure is repeated until the right number of cointegrating 

equations is found. According to the test spot and futures prices of both EUR/SEK and 

USD/SEK have a one cointergrating equation. This means that there exists a long-run 

relationship between those two prices and we should take this into account when 

calculating the minimum variance hedge ratio.  

6. Empirical Results 

In this section we will present the empirical estimates of minimum variance hedge ratios and 

evaluate their performance. We start with discussing in sample estimates of both OLS and 

bivariate GARCH hedge ratios. The section will conclude with evaluating out of sample model 

performance and comparing it to benchmark cases of unhedged and naively hedged 

portfolios.  

6.1 OLS  

We estimate the minimum variance hedge ratio using OLS according to the equation 8 and 

report the estimates in table 4.  

Currency 

EUR/SEK 

USD/SEK 

Hedge Ratio 

0,334832 

0,281163 

Standard Error 

0,023633 

0,023213 

p-value 

0,0000 

0,0000 

Table 4 .Minimum Variance Hedge Ratios OLS Estimates 

The minimum variance hedge ratios estimated using the OLS are static. This means that once 

estimated the hedger uses this ratio of futures to spot during the entire hedging period. As 

we can see from regression outputs the OLS hedge ratio for EUR/SEK is about 0,334832 

while for USD/SEK it is 0,281163. Clearly the OLS implies much smaller position in the futures 

market compared with naïve hedging.  The scatter plots of the spot and futures prices for 

the OLS regressions can be seen in Apendix A.  
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6.2 Multivariate GARCH 

To obtain the estimates for dynamic minimum variance hedge ratio we start with modeling 

the mean equation using VECM model as specified by 9. According to BIC information 

criterion the optimal lag length is eight in both cases. The estimation output is presented in 

the appendix A. The residuals after VECM are then saved and multivariate GARCH 

specification (equation 12) is estimated. The coefficient estimates are presented in the 

Appendix B. In order to get an estimate for the dynamic minimum variance hedge ratio we 

need to extract conditional covariance and variance of futures prices. This is done by solving 

equation 12 using residuals from the VECM model estimated earlier and coefficients of the 

diagonal BEKK. Figure 2 presents the dynamic evolution of covariance between spot and 

futures prices and variance of futures. Clearly both covariance and variance futures prices 

varied substantially during the study period2.  
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Figure 2. Evolution of covariance between spot and futures prices and variance of futures prices. 

                                                           
2 Variance of the spot prices also exhibit a time varying patter however it is not presented here since it is not a part of the hedge ratio 
equation.  
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In order to examine the effectives of the bivariate GARCH hedging strategy we need a 

forecast of conditional variance covariance matrix which is obtained as described in section 

4. Appendix C presents the innovations generated with bootstrapping. Having the predicted 

residuals we solve equation 12 for the conditional variance covariance matrix using 

coefficients that were estimated on the first 85% of the data set. In Figure 2 the series 

behind the black vertical line are the forecasted values of covariance and futures variance.  

Having the conditional variance covariance matrix extracted from the model we can now 

compute the dynamic hedge ratio according to the equation 7. Figure 3 presents the 

dynamics of the minimum variance hedge ratio computed with the bivariate GARCH. For 

comparision we have also included the static OLS hedge ratio in the figure.  
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Figure 3. In sample dynamics of the M-GARCH Minimum Variance Hedge Ratio.  Horizontal black line represents 

OLS hedge ratio.  

From the inspection of Figure 3 we can clearly see that the bivariate GARCH hedge ratio on 

both currencies varies substantially across the sample. For EUR/SEK the dynamic hedge ratio 

ranges from 0,01 to 0,74 while for the USD/SEK the ratio takes values between 0,09 and 

0,81. This implies that the hedger would sometimes have a portfolio close to the unhedged 

position and sometimes close to the naively hedged portfolio. This variability of the hedge 

ratio was to be expected as we have already seen in Figure 2 that both covariances and 

variances changed substantially during the whole sample period.  

To compute the out of sample forecasted hedge ratios we use the covariance and variance 

predicted by the diagonal BEKK model. Again the ratio is computed according to the 
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equation 7.In figure 4 we present the forecasted dynamic hedge ratios for both exchange 

rates.  
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Figure 4. Out of Sample dynamics of the M-GARCH Minimum Variance Hedge Ratio.  Horizontal black line 

represents OLS hedge ratio.  

The out-of-sample bivariate GARCH ratio also varies across prediction period. The EUR/SEK 

ratio takes values between 0,00 and 0,55 while USD/SEK ratio implies values between 0,14 

and 0,46.  

7. Hedging Performance 

The performance of the hedge is evaluated both in sample and out of sample. Table 5 

reports the results for in sample analysis covering period from June 1 2000 to January 1 

2007. All mean returns and variances are in values per annum. The benchmark unhedged  

EUR/SEK portfolio yields an average mean return of 1,736% with a variance of 0,000256. 

Constructing the simplest naïve hedge position reduces the return to -0, 088% and increases 

the variance of the portfolio by 23,23 %. Static OLS hedging performs better with a reduction 

in variance of 11,86% but the mean return is also reduced to 1,125%. The dynamic hedge 

strategy gives the hedger a reduction in variance of 10,43% and mean return of 1,429%. 

Based solely on this results it would seem that the hedger who whishes the smallest variance 

possible in his portfolio should choose the static hedging scheme.  

In case of USD/SEK the benchmark portfolio yields a negative mean return of 5,946% with a 

variance of 0, 00088. Similar to the Euro results the naïve hedging actually increases the 

portfolio variance by 30,24% but return is improved to -0,792%. Static hedging reduces the 
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variance by 8,48% and yields a mean return of -4,497%. The dynamic scheme performs 

similarly to the static one with variance reduction of -8,49% and mean return of -4,135%. 

Hence it would seem that there is an improvement in variance reduction by using the 

dynamic hedging. However, the improvement is marginal.  

  Dynamic Static  Naive Unhedged 

EUR/SEK 

Mean 0,01233 0,00971 -0,00076 0,01498 

Variance 0,00022 0,00021 0,00031 0,00024 

Reduction -10,43% -11,86% 23,23%  

USD/SEK 

Mean -0,03569 -0,03881 -0,00683 -0,05131 

Variance 0,00075 0,00075 0,00117 0,00081 

Reduction -8,49% -8,48% 30,24%  

Table 5 .Hedging Performance In-Sample 

 

  Dynamic Static  Naive Unhedged 

EUR/SEK 

Mean 0,03860 0,03126 -0,00291 0,04847 

Variance 0,00018 0,00018 0,00028 0,00019 

Reduction -0,85% -1,84% 33,43%  

USD/SEK 

Mean -0,09557 -0,09896 -0,01114 -0,13332 

Variance 0,00056 0,00055 0,00087 0,00059 

Reduction -4,43% -6,23% 32,18%  

Table 6 .Hedging Performance Out-of-Sample 

 

In Table 6 we report the results of out of sample analysis performed on dataset spanning 

from 1/01/2007 to 17/03/2008. The unhedged EUR/SEK portfolio yields the mean return of 

5,616% and variance of 0,0002. If the hedger chooses the naïve strategy he will again 

increase the variance of his portfolio by 33,43% and reduce the mean return to -0,337%. 

Static hedging performs better and reduces the variance by -1,84% with a mean return of 

3,623%. As in the in sample case the dynamic hedging scheme seem to underperform the 

static strategy yielding the reduction in variance by -0,85% and mean return of 4,472% 

Unhedged USD/SEK portfolio gives the hedger a mean return of -15,448% with a variance of 

0,000633. Should he choose to hedge naively he will increase return to -1,291% but also 

increase the variance by 32,18%. Static OLS scheme provides some improvement by 

reducing the variance by 6,23% but mean return is reduced to -11,467%. Finally the dynamic 
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strategy reduces the variance by 4,43% and yields mean return of -11,073%. Clearly in terms 

of variance reduction the out of sample OLS seem to provide superior results.  

8. Conclusions and Discussion 

Based on our findings we conclude that dynamic hedging scheme presented in this paper for 

EUR/SEK provides improvement in variance reduction compared with unhedged and naively 

hedged portfolios both in and out of sample. However, it is strictly outperformed by the 

static OLS hedge also both in- and out-of-sample. For the second exchange rate USD/SEK  in 

sample dynamic hedging strictly outperforms unhedged position and naively hedged 

portfolio. It also marginally outperforms the static OLS hedge. However the out-of-sample 

results the put dynamic ratios to a disadvantage, and OLS seem to be a superior strategy.  

The results obtained in this paper are very interesting from the theoretical point of view, 

since it would seem that OLS which has a number of major methodological drawbacks 

performs better. Recall that OLS assumes time invariant variance covariance matrix, 

however previous research and the evidence presented earlier in the paper evidently 

undermines this assumption. Simple OLS also ignores the possibility of a cointegrating 

relationship between spot and futures prices. The bivariate GARCH procedure on the other 

hand provides solutions to all these problems. By construction, it models the time 

development of the variance covariance matrix and by allowing the mean equation to be 

modeled with a VECM specification it accounts for the long-term relationship between spot 

and futures prices. However despite all these merits the model failed to outperform OLS. 

One of the reasons for this result could be the bivariate GARCH specification used in this 

paper. Most of the studies quoted in the review used full BEKK specification according to the 

equation 12. In our setting we used a simplified diagonal version specified in equation 13 

which could result in loss of important information in the variance covariance matrix. 

Inclusion of more parameters into the model makes it however more difficult to estimate.  

Poor out-of-sample performance could be a result of keeping the BEKK coefficients constant 

throughout whole prediction period and misspecification of the forecasting algorithm. 

Harris, Shen and Stoja (2007) argue that forecasts generated by the multivariate GARCH 

models are systematically biased in a sense that forecasts they generate are on average 
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incorrect. On the other hand the in-sample performance of dynamic hedging also failed to 

outperform other strategies.  

Another explanation in more asset specific. As noted by Kroner and Sultan (1993) their 

dynamic hedging scheme on British Pound underperformed static strategies.  Also, Harris, 

Shen and Stoja (2007) could not improve hedging outcomes on Japanese Yen with help of 

bivariate models. Other researchers (e.g. Baillie and Myers (1991)) also found that the 

extend of dynamic hedging efficiency varies from asset to asset.  

For all the reasons stated above a further extension of the thesis could be to examine the 

performance of the full BEKK specification. It could also be interesting to pull together those 

exchange rates for which bivariate GARCH models proved inferior and compare them for 

common features in order to examine why certain assets fit the model better than others.  
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APPENDIX A - Scatterplots for OLS Hedge Ratio Estimates 
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Exhibit A1. Scatterplots for OLS hedge ratio estimation 
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APPENDIX B – VECM Estimation Results and Residual Histograms 
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Exhibit B1 EUR/SEK mean equation output 
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Exhibit B2 EUR/SEK mean equation residuals 
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USD/SEK MEAN EQUATION 











(0.00017) 05-1.46E 

(0.00010) 07-3.63E 
  

 















)19780.0(383833.2)33638.0(464411.0

)20547.0(137237.3)34942.0(407309.0
1  















)17745.0(757720.1)30177.0(405013.0

)19008.0(445583.2)32324.0(373410.0
2  















)15240.0(261800.1)25917.0(337553.0

)16828.0(832582.1)28617.0(334841.0
3  















)12470.0(830971.0)21207.0(240663.0

)14222.0(338378.1)24186.0(317975.0
4  















)09564.0(479826.0)16264.0(210470.0

)11382.0(892189.0)19356.0(257523.0
5  















)06638.0(226555.0)11288.0(147722.0

)08454.0(523188.0)14376.0(185398.0
6  















)03915.0(060242.0)06657.0(087603.0

)05517.0(243076.0)09383.0(127875.0
7  















)01642.0(009508.0)02793.0(050178.0

)02781.0(075011.0)04728.0(040359.0
8  











(0.21091) 4.085871-

(0.35867) 0.493610 
 

 

Exhibit B3 USD/SEK mean equation output 
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Exhibit B4 USD/SEK mean equation residuals 
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APPENDIX C – Bivariate GARCH variance equation coefficient estimates 

Variance Equation: 
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Exhibit C1 Variance equation estimation output 
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APPENDIX D – Actual and predicted (via Bootstrap) BEKK residuals for out of 

sample analysis 
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Exhibit D1 Actual and predicted mean equation residuals 

 

 

 

 

 

 


