
Errata for Index theory in geometry and physics

The projection pT in Chapter C .2 does not extend to S2n, and if it did it would be
trivializable since H2(S2n,Z) = 0. In effect the projection pY is not well defined.
This fact renders Lemma C .2.1 and Theorem C .2.2 false. By extension, the formu-
las of Theorem 3 in the introduction, Theorem C .3.2, Chapter C .5 and Chapter
C .6 are false in their current form and must be modified as is now described. All
references are to Paper C .

The problem is mended by considering the Bott class β ∈ K0(R2n). The Bott
element will be used to define a virtual rank zero bundle on a coordinate neighbor-
hood in Y and extend this to a virtual bundle on Y . The Bott element β ∈ K0(R2n)
is represented by the difference class (∧ev
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are considered as trivial vector bundles on R2n and c :R2n→ Hom(∧ev
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is constructed by letting c(x) ∈ Hom(∧ev
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n) be the operator defined from
the complex spin representation and Clifford multiplication by the vector x ∈R2n.
Since c(x) is invertible for x 6= 0, with inverse c(x)∗/|x |2, this difference class is
well defined. See more in Chapter 2.7 of [1]. By Proposition 2.7.2 of [1], the ele-
ment β generates K0(R2n). Since K0(R2n) = ker(K0(S2n)→ K0({∞}), the inclusion
R

2n ⊆ S2n induces an injection K0(R2n)→ K0(S2n), and K0(S2n) is generated by the
Bott class and the trivial line bundle. Furthermore, the Bott class, as an element
of K0(S2n), does indeed satisfy that

chS2nβ = dVS2n .

The problem with this construction of the Bott element is that it does not fit di-
rectly into the definition of the Chern character in cyclic cohomology used in Paper
C . We will now construct a projection-valued function p0 : R2n → End(∧∗

C
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n) =
M2n(C) of rank 2n−1 that extends to a projection-valued function pT on S2n such
that β = [pT ]− 2n−1[1] in K0(S2n). Let us identify the complex Clifford algebra
Cl(R2n) with End(∧∗

C
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n) using the complex spin representation. Define p0 as:

p0(x) :=
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1+ |x |2
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|x |2 c(x)
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�

∈ End(∧odd
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n ⊕∧ev
C
C

n).

While

p0(x)−
�

1 0
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1 c(x)
c(x)∗ 1
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= O (|x |−1) as |x | →∞,

the function p0 extends over infinity to a function pT ∈ C1(S2n, M2n(C)). Let E0→
R

2n denote the vector bundle associated with p0 using the Serre-Swan theorem.
One has that

E0 = {(x , v1, v2) ∈R2n × (∧odd
C
C

n ⊕∧ev
C
C

n) : v1 = c(x)v2}.

The vector bundle E0 is trivializable via the isomorphism

id⊕ c :R2n ×∧ev
C
C

n→ E0, (x , v) 7→ (x , c(x)v, v). (1)



We define the morphism of vector bundles

c0 : E0→R
2n ×∧odd

C
C

n, (x , v1, v2) 7→ (x , v1). (2)

The morphism c0 is an isomorphism outside the origin, with inverse (x , v1) 7→
(x , v, |x |−2c(x)∗v).

Proposition 2.1. Under the isomorphism K0(S2n)∼= K0(C(S2n)) the Bott element
β is mapped to [pT ]− 2n−1[1], and therefore

∫

S2n chS2n[pT ] = 1.

Proof. The formal difference class [pT ]− 2n−1[1] ∈ K0(C1(S2n)) is of virtual rank
0, so it is in the image of the injection K0(R2n) → K0(C(S2n)). The element
[pT ]− 2n−1[1] clearly comes from the formal difference [E0]− 2n−1[1] which in
turn is defined as the difference class (E0,∧odd

C
C

n, c0) ∈ K0(R2n), where c0 is the
bundle morphism of equation (2). The latter is isomorphic to the Bott class
via the isomorphism id ⊕ c defined in equation (1). It follows that chS2n[pT ] =
2n−1 + chS2nβ = 2n−1 + dVS2n .

In the general case, let Y be a compact, connected, orientable manifold of
dimension 2n and U an open subset of Y with a diffeomorphism U ∼= B2n. This
diffeomorphism defines a projection valued Lipschitz function pY : Y → M2n(C) as
is described in Paper C and the following theorem is proved by the same method
as in Paper C but instead using Lemma 2.1 as stated above.

Theorem 2.2. If Y is a compact connected orientable manifold of even dimension
and dVY denotes the normalized volume form on Y , then the projection pY satisfies

ch[pY ] = 2n−1 + dVY ,

in H even
dR (Y ). Thus, if f : X → Y is a smooth mapping, then

deg( f ) =

∫

X

f ∗ch[pY ]

We will use the notation 〈·, ·〉 for the scalar product in R2n. For an orthogonal
basis e1, e2, . . . , e2n of R2n the Clifford algebra Cl(R2n) has a basis consisting of
multiples e j1 · · · e jl for 1 ≤ j1 < . . . < jl ≤ 2n. By the universal property of the
Clifford algebras, any element u in the complex tensor algebra of R2n defines an
element ũ ∈ Cl(R2n). For a tensor u we let [u]2n be the number such that the
projection of ũ onto e1e2 · · · e2n is [u]2ne1e2 · · · e2n. If u = (u1, . . . , uk) ∈ (R2n)×k

and 1 ≤ j1, . . . , jl ≤ k we will also use the notation [u| j1, . . . jl]2n for [u0]2n where
u0 ∈ (R2n)⊗k−l is defined as the tensor product of all the u j :s except for j ∈ { jp}lp=1.
For any element v ∈Cl(R2n) it holds that

tr∧ev
C
Cn(v)− tr∧odd

C
Cn(v) = (−2i)n[v]2n.

For the natural number l > 0 we define Γl
m ⊆ {1,2, . . . , 2m}l as the set of all

sequences h= (h j)2l
j=1 such that h j 6= p for any p ≤ j and h j 6= hp for any j 6= p. We

define εl : Γl
m→ {±1} by

εl(h) := (−1)l+
∑l

j=1 h j .
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Lemma 2.3. For x = (x1, x2, . . . x2m) ∈ (R2n)×2m we have that

tr∧ev
C
Cn
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∗c(x2l)
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= (−2)n−1in[x1 ⊗ x2 ⊗ · · · ⊗ x2m]2n+

+ (−2)n−1in
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�

x |1, h1, 2, h2, . . . , l, hl
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l
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〈xp, xhp
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+ 2n−1
∑

h∈Γm
m

εl(h)
m
∏

p=1

〈xp, xhp
〉.

Proof. Let us calculate these traces using the relations in the Clifford algebra:

tr∧ev
C
Cn

 

m
∏

l=1

c(x2l−1)
∗c(x2l)

!

=
1

2
tr∧ev
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c(x2l−1)
∗c(x2l)

!
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+
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2
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c(x2l)
∗c(x2l+1)

!

c(x2m)
∗c(x1)

!

+

+ (−2)n−1in[x1 ⊗ x2 ⊗ · · · ⊗ x2m]2n =

=
2m
∑

j=2

(−1) j〈x1, x j〉tr∧ev
C
Cn

�

Ûc(x1)∗c(x j)
�

+ (−2)n−1in[x1 ⊗ x2 ⊗ · · · ⊗ x2m]2n,

where Ûc(x1)∗c(x j) denotes
∏m−1

j=1 c(x l2 j−1
)∗c(x l2 j

), where (l j)
2m−2
j=1 is the sequence

1, 2, . . . , 2m with the occurences of 1 and j removed. The sign (−1) j comes from
the number of anti-commutations needed to anti-commute the first operator with
the j:th. Continuing in this fashion one arrives at the conclusion of the Lemma.

Lemma 2.4. The Chern character of pY is given by ν̃∗ch[pT ] and the Chern
character of pT in cyclic homology can be represented by a cyclic 2k-cycle that, in
the coordinates on R2n ⊆ S2n, is given by the formula

ch[pT ](x0, x1, . . . , x2k) =
1

k!
tr∧∗

C
Cn

 

2k
∏

l=0

p0(x l)

!

=

=
1

k!
∏2k

l=0(1+ |x l |2)

2k+1
∑

m=0

∑

0≤g1≤···≤gm≤2k

tr∧ev
C
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m
∏

l=0

c(x gl
)∗c(x gl+1)

!

,

where we identify x j+2k+2 = x j for j = 0,1, . . . 2k.

Proof. Define the function V :R2n→ Hom(∧ev
C
C

n,∧odd
C
C

n ⊕∧ev
C
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n) by

V (x)v :=
c(x)v⊕ v
p

|x |2 + 1
∈ ∧odd

C
C

n ⊕∧ev
C
C

n, v ∈ ∧ev
C
C

n.
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The vector V is defined so that p0(x) = V (x)V (x)∗. Furthermore, observe that
V (x)∗V (y) = c(x)∗c(y) + 1 ∈ End(∧ev

C
C

n). Therefore

1

k!
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V (x2k)
∗V (x0)

2k−1
∏
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V (x j)
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!
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c(x j)
∗c(x j+1) + 1
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!

=

=
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k!
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l=0(1+ |x l |2)

2k+1
∑
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0≤g1≤···≤gm≤2k

tr∧ev
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∏

l=0

c(x gl
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!

.

As a consequence, the correct formula for f̃k of equation (C .18) is given by

f̃k(x1, . . . , x2k) := (18)

= 21−n
∑

I∈Γk

ι(I)QpT
I (ν̃ f (x1), . . . , ν̃ f (x2k))Hd+d∗,I(x1, . . . , x2k) =

= 21−nk!
∑

I∈Γk

ι(I)ch[pT ](ν̃ f (x1), ν̃ f (x i1), . . . ν̃ f (x i2k
))Hd+d∗,I(x1, . . . , x2k),

where the last expression is calculated as in Lemma 2.4. The correct form of
Theorem C .5.1 is then given by:

Theorem 5.1. Suppose that X and Y are smooth, compact, connected manifolds
without boundary of dimension 2n and f : X → Y is Hölder continuous of exponent
α. When k > n/α the following integral formula holds:

deg( f ) =
1

2

�

(−1)k
∫

X 2k

f̃k(x1, . . . , x2k)dVX 2k − sign(X )

�

where f̃k is as in (18).
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