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Abstract

This thesis contains three papers in the area of index theory and its ap-
plications in geometry and mathematical physics. These papers deal with the
problems of calculating the charge deficiency on the Landau levels and that
of finding explicit analytic formulas for mapping degrees of Hölder continuous
mappings.

Paper A deals with charge deficiencies on the Landau levels for non-interacting
particles in 2 under a constant magnetic field, or equivalently, one particle
moving in a constant magnetic field in even-dimensional Euclidian space. The
K-homology class that the charge of a Landau level defines is calculated in two
steps. The first step is to show that the charge deficiencies are the same on ev-
ery particular Landau level. The second step is to show that the lowest Landau
level, which is equivalent to the Fock space, defines the same class as the K-
homology class on the sphere defined by the Toeplitz operators in the Bergman
space of the unit ball.

Paper B and Paper C uses regularization of index formulas in cyclic cohomol-
ogy to produce analytic formulas for the degree of Hölder continuous mappings.
In Paper B Toeplitz operators and Henkin-Ramirez kernels are used to find an-
alytic formulas for the degree of a function f : ∂Ω→ Y , where Ω is a relatively
compact strictly pseudo-convex domain in a Stein manifold and Y is a compact
connected oriented manifold. In Paper C analytic formulas for Hölder continu-
ous mappings between general even-dimensional manifolds are produced using
a pseudo-differential operator associated with the signature operator.

Keywords: Index theory, cyclic cohomology, regularized index formulas,
Toeplitz operators, pseudo-differential operators, quantum Hall effect.

2000 Mathematics Subject Classification: 19KXX, 46L80, 19L64,
47N50, 58J40.
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Preface

The purpose of this thesis is to obtain the degree of Doctor for its author. The
work in this thesis is based on three papers written from material gathered by
the author under time spent as a PhD-student in Gothenburg and during visits
to the University of Copenhagen under the time period June 2007 to May 2011.
The thesis is divided up into two parts. The first part is an introduction with a
summary of the results. The second part of the thesis consists of the following
papers:

A. ”Index formulas and charge deficiencies on the Landau levels”, Journal of
Mathematical Physics 51 (2010).

B. ”Analytic formulas for topological degree of non-smooth mappings: the
odd-dimensional case”, submitted.

C. ”Analytic formulas for topological degree of non-smooth mappings: the
even-dimensional case”, submitted.

Only minor modifications on these papers have been made for this thesis.
These minor modifications include correcting typos and changing of notations
for a homogeneous notation throughout the thesis.

In addition to the above, there are four other papers by the author. These,
however, will not be included in the thesis:

* ”Projective pseudo-differential operators on infinite-dimensional Azumaya
bundles”, submitted.

* ”The Pimsner-Voiculescu sequence for coactions of compact Lie groups”,
to appear in Mathematica Scandinavica.

* ”A remark on twists and the notion of torsion-free discrete quantum groups”,
to appear in Algebras and Representation Theory.

* ”Equivariant extensions of ∗-algebras”, New York Journal of Mathematics
16 (2010), p. 369–385.
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Introductory remarks

”Where there is matter, there is geometry.”
Kepler

The starting point for index theory and K-theory was the Riemann-Roch
theorem which originates from Riemann and Roch in the 1850:s, see [73] and
[74]. The Riemann-Roch theorem relates an analytic quantity, the holomorphic
Euler characteristic, with a topological quantity associated with a surface. The
holomorphic Euler characteristic is the index of a twisted Dolbeault operator
on the Riemann surface. The generalizations were many and came in differ-
ent shapes. Hirzebruch made a generalization to complex manifolds allowing a
calculation of the holomorphic Euler characteristic in terms of topological quan-
tities in [52] and Grothendieck found the place for Riemann-Roch’s theorem in
the realm of algebraic geometry. Grothendieck’s formulation was made in terms
of his K-theory, a group of formal differences of locally free sheafs.

The ideas of Grothendieck were transformed by Atiyah, see [2], into topo-
logical K-theory and used in the proof of the Atiyah-Singer index theorem. The
Atiyah-Singer index theorem was a large step from the Riemann-Roch theorem
in that it gave an explicit method to calculate the index of any elliptic differ-
ential operator in terms of topological data from the manifold and the highest
order symbol of the differential operator. On a vague level the index theorem
related an analytic, or for that matter a global, invariant such as the Fredholm
index with a geometric or local invariant such as the topological index. More
generally, finding index formulas deals often with going from global to local or
from analytic to geometric.

Recall that a Fredholm operator is a closed operator with finite-dimensional
kernel and cokernel. The index of a Fredholm operator T is given by ind (T ) :=
dim ker T − dimker T ∗. An elliptic differential operator D between two smooth
vector bundles E1 and E2 over a closed smooth n-dimensional manifold X is
Fredholm. The principal symbol σ(D) is a morphism between the vector bundles
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E1 and E2 pulled back to the cotangent bundle and if D is elliptic this morphism
is an isomorphism outside a compact set. Thus the principal symbol defines a
compactly supported K-theory class [D] ∈ K0

c (T
∗X ), where π : T ∗X → X denotes

the cotangent bundle. With a K-theory class [D] one can associate its Chern
character ch[D] which is an even de Rham cohomology class. The Atiyah-Singer
index theorem states that

ind (D) =
∫

T ∗X
ch[D]∧π∗T d(X ), (1)

where T d(X ) denotes the Todd class of the complexified tangent bundle of X .
This index theorem, its generalizations and the ideas in and around K-theory
are central in this thesis.

As an example of how index theory has applications in classical geometric
situations, let us consider the problem of finding the number of holomorphic
sections of a holomorphic vector bundle E→ X on a compact complex manifold
X . With the vector bundle E there is an associated twisted Dolbeault operator
∂̄E from ∧ev T (0,1)X ⊗ E to ∧odd T (0,1)X ⊗ E. The twisted Dolbeault operator
is elliptic. The quantities involved in the Atiyah-Singer index theorem are of a
topological nature, so they can not reproduce H0(X , E) but the index theorem
tells something about the holomorphic Euler characteristic of E:

χ(X , E) :=
∑
(−1)k dim Hk(X , E).

Sometimes it is possible to find dim H0(X , E) from the Euler characteristic.
Since ker ∂̄E = Hev(X , E) and ker ∂̄ ∗E = Hodd(X , E), the holomorphic Euler charac-
teristic of E is the index of the Dolbeault operator. As is seen from equation (4.1)
in [7] we have that π∗ch[∂̄E] = ch[E]∧ T d(T ∗c X )−1, where T d(T ∗c X ) denotes the
Todd class of the complex cotangent bundle T ∗c X → X . Thus the Atiyah-Singer
index theorem and the identity T d(X ) = T d(TcX ⊕ T ∗c X ) = T d(TcX )∧ T d(T ∗c X )
implies the Hirzebruch-Riemann-Roch theorem:

χ(X , E) =
∫

X
ch[E]∧ T d(TcX ).

See more in Part 4 of [7].

In this thesis we deal with two problems that have their origin in mathe-
matical physics. The first problem we address in Paper A is that of finding a
topological invariant of a system of n particles moving in under the influ-
ence of a constant magnetic field known as that system’s charge deficiency. The
charge deficiency of a system is proportional to the system’s Hall conductance.
The problem of calculating the charge deficiency is an index problem for a class
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of Toeplitz operators with symbols in C(S2n−1) acting on a Hilbert space that
is given as higher excitations of the Fock space in n. As a special case we can
give index formulas for Toeplitz operators acting on the Fock space.

The second problem we adress in this thesis is that of finding analytic formu-
las for mapping degrees of non-smooth mappings. This question has been origi-
nally motivated by problems in non-linear partial differential equations starting
with work of Brezis and Nirenberg. One instance of such a problem is the
Ginzburg-Landau equation for a superconductor in some domain G ⊆ 2 who’s
solutions are pairs (A,Φ), where A is a gauge field and Φ a complex vector field
with |Φ| = 1 on ∂ G, that minimizes the Ginzburg-Landau functional, see more
in [21] and [24]. The behavior of the solutions can change drastically depending
on the degree of Φ|∂ G : ∂ G→ S1. What makes matters difficult is that the nat-
ural setting to define the partial differential equations in is when Φ ∈ H1(G, ).
Hence the function Φ|∂ G is in general not smooth but rather in the Sobolev space
H1/2(∂ G, S1) where ordinary degree theory breaks down.

With problems like these in mind Brezis and Nirenberg extended degree the-
ory to the setting of V MO-functions in [27]. However, the main argument in the
approach used in [27] is in terms of approximations by smooth mappings so it
only defines the degree in terms of abstract properties. What we will do is to
give integral formulas for degrees of Hölder continuous mappings with Hölder
order arbitrarily close to zero. The main technique that we use is the regular-
ization of index formulas in cyclic cohomology, a technique previously used in
[34], [48], [76] and [77]. The special case of a mapping f : ∂Ω→ Y , where Ω is
a strictly pseudo-convex domain, plays a very interesting role. In this case one
can express mapping degrees in terms of the index theory for Toeplitz opera-
tors and the quantities involved can be explicitly computed for some examples.
This is the setting of Paper B. We treat the general case in paper C by using
pseudo-differential operators. These types of results produce certain estimates
of mapping degrees.

The first part of the thesis consists of three introductory chapters to describe
the framework that we will be working in and the problem setting. The second
part consists of research papers. In the introductory part we introduce some
concepts relevant for the rest of the thesis. The introductory part is organized as
follows; in Chapter 1 we recall some definitions and properties of the basic tool
for dealing with index theory, K-theory and its dual homology theory, namely,
K-homology. Chapter 2 consists of some motivation from physics stemming
from the quantum Hall effect, placing this physical problem in the context of
index theory. Chapter 3 is devoted to a short introduction to index theory
and generalizations of the Atiyah-Singer index theorem and Boutet de Monvel’s
index theorem for Toeplitz operators.





Chapter 1

K-theory and K-homology

”Algebra is the offer made by the devil to the mathematician. The devil says:
–I will give you this powerful machine, it will answer any question you like.
All you need to do is give me your soul: give up geometry and you will have

this marvellous machine.”
Atiyah

In this chapter we recall the basics of K-theory and K-homology, the homo-
logical toolbox for dealing with index problems. Both theories can be formulated
in many different ways and we refer the reader to [2], [13], [14], [22], [29], [37],
[39], [51] and [58] for a more thorough presentation. In the first section we
will review the even part of these theories, the even K-theory consists of vector
bundles and the even K-homology can be thought of as elliptic differential op-
erators on the space. The second section consists of a short introduction to the
odd part; the odd K-theory consists of matrix valued symbols and elements of
the odd K-homology are the equivalence classes of Toeplitz quantizations of the
space.

1.1 Even K-theory

The even K-theory of a topological space X is a topological invariant of X whose
elements are equivalence classes of vector bundles over X . The set of isomor-
phism classes of vector bundles over X forms an abelian monoid under the direct
sum. Following [2], the even K-theory K0(X ) of a compact Hausdorff space X
is defined as the Grothendieck group of the abelian monoid of isomorphism
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8 1.1. Even K-theory

classes of vector bundles over X . That is, K0(X ) is the abelian group of formal
differences of vector bundles over the topological space X .

Since the pullback of vector bundles is functorial up to an isomorphism and
additive, K0(X ) depends contravariantly on the compact Hausdorff space X so
one can define K0(X ) for arbitrary locally compact Hausdorff spaces X as the
kernel of the mapping induced by the inclusion mapping {∞}→ X̂ of the infinite
point in the Alexandroff compactification X̂ of X . Because of the functoriality
of the Alexandroff compactifiation, K-theory depends contravariantly on X with
respect to proper mappings. The tensor product of vector bundles defines a cup
product K0(X )× K0(X )→ K0(X ).

The Serre-Swan theorem establishes a one-to-one correspondence between
the isomorphism classes of vector bundles over a compact space X and projection
valued continuous functions p : X →+ , see [85]. Here+ denotes the C∗-algebra
of compact operators on some separable, infinite dimensional Hilbert space , .
This correspondence is given by associating with the projection p ∈ C(X )⊗+ the
vector bundle E→ X whose C(X )-module of sections is C(X , E) = pC(X ,, ). Any
projection in+ is of finite rank, so E has finite-dimensional fibers. Following the
Serre-Swan theorem, an equivalent approach to K-theory is to use equivalence
classes of projections p ∈ C(Y )⊗+ . The K-theory is denoted by K0(C(Y )). To
read more about K-theory, see [2] and [22].

To give an example of how to associate a projection-valued function with a
vector bundle, consider the tautological line bundle L → Pn. We define the
function v : Pn → n+1 in complex homogeneous coordinates [Z0, Z1, . . . , Zn]
by

v(Z0, Z1, . . . , Zn) :=
1#

|Z0|2 + |Z1|2 + · · ·+ |Zn|2
(Z0, Z1, . . . , Zn).

The fiber of the tautological line bundle over a point of the form [Z0, Z1, . . . , Zn]
in homogeneous coordinates is the line spanned by the vector (Z0, Z1, . . . , Zn), or
for that matter we can span the fiber by v(Z0, Z1, . . . , Zn). Thus the projection-
valued function pL : Pn→ Mn+1( ) associated with the tautological line bundle
is given by

pL(Z0, Z1, . . . , Zn)w = 〈v(Z0, Z1, . . . , Zn), w〉v(Z0, Z1, . . . , Zn), w ∈ n+1.

In the matrix form the projection pL has the form

pL(Z0, Z1, . . . , Zn) =
1

|Z0|2 + · · ·+ |Zn|2




|Z0|2 Z0Z1 · · · · · · Z0Zn

Z1Z0
. . . |Z1|2 · · · Z1Zn

...
. . .

...
ZnZ0 · · · ZnZn−1 |Zn|2




.

A rather straight-forward calculation gives that the 2-form tr n+1(pLdpLdpL)
coincides with the Fubini-Study metric on Pn. This is not a coincidence; if
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X is a smooth manifold and p ∈ MN (C∞(X )) is a self-adjoint projection, the
associated vector bundle is a smooth Riemannian bundle in the metric induced
from the embedding pC∞(X , N )⊆ C∞(X , N ). The curvature of the associated
Levi-Civita connection is the matrix valued form pdpdp, see equation (8.33) in
[44].

The formulation of K-theory in terms of projections can be defined for any
algebra / as equivalence classes of projections p ∈/ ⊗+ , see Definition 5.5.1
of [22]. In particular, if X is non-compact, one can define K-theory with compact
supports, K0

c (X ), as the K-theory of Cc(X ). In fact, K-theory is very stable, so,
under mild assumptions, dense embeddings induce isomorphisms on K-theory.
A sufficient assumption is that the dense embedding is isoradial. A morphism of
bornological algebras is called isoradial if it preserves spectral radius of bounded
subsets, see Definition 2.21 and Definition 2.48 of [37]. By Lemma 2.50 of [37] a
dense isoradial embedding / ⊆ A preserves invertibility, i.e. a ∈/ is invertible
in A if and only if a is invertible in / . Under these assumption K0(/ ) is
isomorphic to K0(A) via the embedding mapping, see Theorem 2.60 of [37]. For
instance, Cc(X ) is a dense isoradial subalgebra of C0(X ). Therefore there are
natural isomorphisms K0

c (X )
∼= K0(C0(X ))∼= K0(X ).

One can think of K-homology as the homology theory dual to K-theory. This
duality is the first instance of a Kasparov product which in this case comes from
the index pairing. The Kasparov product is a fundamental tool in constructing
a bivariant homology theory for operator algebras, see more in [22] and [58].

The first step in abstracting a homology theory from index theory was
made in Atiyah’s definition of analytic K-homology, see [3]. The motivation
for Atiyah’s definition of analytic K-homology comes from the case of an elliptic
differential operator D between two vector bundles E1 → E2 over the compact
manifold X . More generally, one can consider a pseudo-differential operator.
If we have a smooth vector bundle E → X with associated projection valued
function pE ∈ MN (C∞(X )) we can define the twisted operator

DE := (1⊗ pE)(D⊗ 1)(1⊗ pE) : C∞(X , E1 ⊗ E)→ C∞(X , E2 ⊗ E).

Consider the association E 1→ ind (DE). The number ind (DE) clearly only de-
pends on the isomorphism class of E and is additive under direct sums of vector
bundles. Therefore we may conclude that any elliptic differential operator D
induces a group homomorphism indD : K0(X )→ . This is actually the model
case of a K-homology class on a manifold.

To formalize the construction, we change setting to bounded operators on
Hilbert spaces and replace the elliptic differential operator by an abstract el-
liptic operator. We define the graded Hilbert space , := L2(X , E1 ⊕ E2) =
L2(X , E1)⊕ L2(X , E2) with grading induced from this decomposition. With the
elliptic operator D we associate the zero order elliptic pseudo-differential oper-
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ator F := D̃(1+ D̃2)−1/2, where D̃ is the odd operator on E1 ⊕ E2 defined by

D̃ :=
*

0 D
D∗ 0

+
. (1.1)

Since D is elliptic, F is an odd self-adjoint bounded operator and since D is of
positive order, F2 − 1 = −(1+ D̃2)−1 is a pseudo-differential operator of nega-
tive order, therefore a compact operator. Furthermore, the point-wise action
on the vector bundles defines an even representation π : C(X ) → 2(, ). If
a ∈ C∞(X ), then [F,π(a)] is a negative order pseudo-differential operator and
therefore [F,π(a)] ∈ + (, ) for any continuous a. The last property of F is
called pseudo-locality with respect to π.

More generally, if X is a compact Hausdorff space, a pair (π, F) consisting of
a graded representation π : C(X )→2(, ) and a pseudo-local, odd, self-adjoint
operator F with F2 − 1 ∈ + (, ) is called an analytic K-cycle, or, sometimes
an even Fredholm module. The operator F was in [3] called an abstract elliptic
operator on X . The analytic K-cycle is called degenerate if F2 = 1 and [F,π(a)] =
0 for all a ∈ A. The quotient of the semigroup of homotopy classes of analytic
K-cycles by the degenerate K-cycles forms an abelian group under the direct sum
operation; it is called the analytic K-homology of X and is denoted by K0(X ),
or K0(C(X )) to denote its dependence on the C∗-algebra C(X ). The analytic
K-homology K0(A) for a general unital C∗-algebra A is constructed in the same
way as for C(X ), see Definition 8.1.1 of [51].

Before we describe the pairing of the analytic K-homology with the even
K-theory, let us make an interlude with some theory of the Fredholm index.
For proofs of the statements we refer the reader to section 1.4 of [66]. As was
previously mentioned, the index of a Fredholm operator T is defined as

ind (T ) = dimker T − dim ker T ∗.

The index of Fredholm operators is very stable in the sense that if K is compact
then ind (T + K) = ind (T ). Furthermore the index is homotopy invariant, so if
(Tt)t∈[0,1] is a norm continuous path of Fredholm operators, ind (T1) = ind (T0).
Also if T and T ′ are Fredholm then

ind (T T ′) = ind (T ⊕ T ′) = ind (T ) + ind (T ′). (1.2)

The first equality follows from the homotopy invariance of the index, since T T ′⊕
1 ∼h T ⊕ T ′, and the second is a straight-forward calculation. By Atkinson’s
theorem an operator T ∈2(, ) is Fredholm if and only if the class of T in the
Calkin algebra 4 (, ) :=2(, )/+ (, ) is an invertible element. Therefore the
index induces a group homomorphism

,ind :4 (, )−1→ .
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In fact, this homomorphism indexes the connected components of the topological
group 4 (, )−1.

The analytic K-homology forms a generalized homology theory and pairs
with the even K-theory via the index pairing. This relation is described in
Proposition 8.7.2 of [51]. Let us concretize this index pairing for a C∗-algebra A.
We can represent a K-homology class x ∈ K0(A) by an analytic K-cycle (π, F).
Since F is assumed to be odd and π to be even, we can decompose

F =
*

0 F+
F− 0

+
and π=
*
π+ 0
0 π−

+
. (1.3)

Any element [p] ∈ K0(A) can be represented by a projection p ∈ MN (A) :=
A⊗MN ( ) for some large matrix algebra MN ( ). Let us use the notation

p+ := (π+ ⊗ id)(p) and p− := (π− ⊗ id)(p),

which are operators on ,+ ⊗ N respectively ,− ⊗ N . We also define the
Hilbert spaces , p

+ := p+(,+ ⊗ N ) and , p
− := p−(,− ⊗ N ). The operator

p−F+p+ :, p
+ →,

p
−

is Fredholm since F commutes with π(A) up to compact operators so Atkinson’s
theorem implies that p+F−p− : , p

− → ,
p
+ is an inverse to p−F+p+ modulo

compact operators. Therefore we may define the bilinear pairing K0(A)×K0(A)→
by

([p], x) 1→ ind (p−F+p+), (1.4)

which is well defined due to the stability and homotopy invariance of the index.

In general, this pairing is very hard to calculate and this is what index theory
is about. The Atiyah-Singer index theorem describes this pairing for the case
when A is the algebra of continuous functions on a closed manifold explicitly in
terms of de Rham cohomology of the manifold. The problem in general is to
find a concrete realization of the index pairing in terms of some ”local”homology
theory.

For a topological space X , Baum-Douglas, p. 154 of [14], defined the index
problem as the problem of representing an analytic K-homology class on X by
a geometric K-homology class, i.e. the representative of the K-homology class
defined as the push-forward of the Dirac operator on a vector bundle E over a
spinc manifold M . Then the Atiyah-Singer index theorem will produce a local
index formula by pulling back to M . It is impossible in practice to solve or even
to define the index problem for general C∗-algebras, compare with [54], one
rather needs to look at dense isoradial subalgebras which admit well behaving
homology theories. But there is no free lunch, the rigidity of C∗-algebras is lost.
In theory, as mentioned above, the index pairing is a Kasparov product and is
described by KK-theory.
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1.2 Odd K-theory

So far we have only discussed the even K-homology and the even K-theory. The
odd versions can be defined in many ways, for example, using Clifford algebras
or the suspension functor, but the way we choose is a more straight-forward one
that fits better with index theory. The odd K-theory forms a useful homological
tool for dealing with symbols of Toeplitz or pseudo-differential operators. We
will use the notation Ã for the unitalization of a C∗-algebra A, see section 1.2
of [66]. In the setting where A = C0(X ) the unitalization can be described as
Ã= C(X̂ ) where X̂ is the Alexandroff compactification of X .

The group GLN (A) is defined as consisting of invertible matrices in Ã⊗MN ( )
and GL∞(A) := lim−→GLN (A), where we embed GLN (A)→ GLN+1(A) by x 1→ x ⊕ 1.
The group GL∞(A) becomes a topological group in the inductive limit topology.
We denote the identity component of GL∞(A) by GL∞(A)0 which by standard
theory is a normal subgroup. The odd K-theory is defined as in Definition 8.1.1
of [22] as

K1(A) := GL∞(A)/GL∞(A)0.

So the invariant K1(A) is a group of equivalence classes of invertible matrices
over Ã, the equivalence relation involves stable homotopy. The class of a matrix
u ∈ GLN (A) in K1(A) is denoted by [u]. By Proposition 8.1.3 of [22] the group
K1(A) is abelian so the odd K-theory can be viewed as a covariant functor on
the category of C∗-algebras to the category of abelian groups. This statement
follows from that if u, v ∈ GLN (A) for some large N then

[u] + [v] = [uv] = [u⊕ v] = [v ⊕ u] in K1(A).

This situation is to be compared with the properties of the index in equa-
tion (1.2). The odd K-theory can be calculated from the even K-theory by
K1(A) ∼= K0(C0( )⊗ A) by Theorem 8.2.2 of [22]. If we try to define higher K-
theory groups Ki(A) := K0(C0( i)⊗ A), the Bott periodicity implies that there
is a natural isomorphism Ki+2(A) ∼= Ki(A), see Theorem 9.2.1 of [22]. Thus
odd and even K-theory contains all information that topological K-theory sees,
contrasting the situation in algebraic K-theory.

As it was mentioned previously, K-theory is merely half-exact. This defi-
ciency of exactness is exactly what gives rise to index theory. So, let 0→ I →
A→ A/I → 0 be a short exact sequence of C∗-algebras. With the short exact se-
quence there is an associated mapping ∂ : K1(A/I)→ K0(I), known as the index
mapping.

The index mapping can be constructed rather explicitly. This construction
can be found in Definition 8.3.1 of [22]. Represent a class x ∈ K1(A/I) by the
matrix u ∈ GLN (A/I). Since u is invertible, there is an inverse v ∈ GLN (A/I) to
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u. Let U , V ∈ MN (A) be pre-images of u respectively v. We define the matrix

W :=
*
(1− UV )U + U UV − 1

1− UV V

+
∈ M2N (A).

Observe that 1−UV, 1−V U ∈ MN (I) since the image of V in the quotient is the
inverse of the image of U . Thus the image of W under the quotient mapping is
u⊕ v. Furthermore, W ∈ GL2N (A) since an inverse is given by

W−1 :=
*

V 1− V U
UV − 1 (1− UV )U + U

+
.

The index mapping of x is defined by

∂ x := [W−1(pN ⊕ 0)W]− [pN ⊕ 0] ∈ K0(I) (1.5)

where pN ∈ MN (A) denotes the identity. That ∂ x is well defined follows from
that w commutes with pN up to an element of I . Furthermore, the element ∂ x
does not depend on our particular choice W ∈ GL2N (A) that lifts u ⊕ v. The
index mapping is clearly additive since ∂ ([u]+[u′]) = ∂ [u⊕u′] and we can lift
u⊕u′⊕(u⊕u′)−1 by means of lifts of u⊕u−1 and u′⊕(u′)−1. For future reference
we observe that

W−1(pN ⊕ 0)W =
*−(1− UV )2 + 1 U(1− V U)2

(1− V U)V (1− V U)2

+
. (1.6)

The index mapping is natural with respect to short exact sequences. By
Theorem 9.3.1 of [22], the index mapping makes the following diagram exact
under the Bott periodicity:

K0(I) −−−−→ K0(A) −−−−→ K0(A/I)-
/

K1(A/I) ←−−−− K1(A) ←−−−− K1(I)

. (1.7)

To show some calculations of K-theory groups let us find the K-groups of the
n-sphere Sn and its cosphere bundle. To calculate K∗(Sn) we fix a point ∞∈ Sn

and define the ∗-homomorphism C(Sn)→ as the point evaluation in∞. Since
Sn \ {∞}∼= n we have a short exact sequence of C∗-algebras

0→ C0( n)→ C(Sn)→ → 0.

Considering the associated six-term exact sequence we have the following dia-
gram:

K0( n) −−−−→ K0(Sn) −−−−→-
/

0 ←−−−− K1(Sn) ←−−−− K1( n)

.
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By the Bott periodicity Ki( n) is when i − n is even and 0 when i − n is
odd. Furthermore, since there is a splitting to C(Sn)→ , which simply maps a
constant to a constant function, it follows that the index mapping is 0. Therefore
K∗(Sn) = ⊕ with two of the summands being of even grading if n is even
and one summand of each parity if n is odd. Using that the Chern character
is an isomorphism of rings it follows that K∗(Sn)∼= [x]/x2 as rings where x is
a formal variable of degree n whose Chern character is the volume form on Sn.
For an explicit construction of the class x in K-theory see below in Paper B for
n odd and Paper C for n even.

To calculate the K-groups of S∗Sn we perform a similar trick. We let π :
S∗Sn → Sn denote the projection. There are diffeomorphisms π−1(Sn \ {∞}) ∼=

n×Sn−1 and π−1(∞)∼= Sn−1. So there is a short exact sequence of C∗-algebras
0→ C0( n×Sn−1)→ C(S∗Sn)→ C(Sn−1)→ 0. Taking the K-theory of this short
exact sequence gives

Kn(Sn−1) −−−−→ K0(S∗Sn) −−−−→ K0(Sn−1)-
/

K1(Sn−1) ←−−−− K1(S∗Sn) ←−−−− Kn+1(Sn−1)

.

The index mappings happens to be 0 also in this case, so

K∗(S∗Sn) = K∗(Sn−1)⊕ Kn+∗(Sn−1) = 2 ⊕ 2. (1.8)

As an example of how we can use the index mapping on K-theory, let us con-
sider Toeplitz operators. Assume that Ω is a strictly pseudo-convex domain in
some complex manifold with smooth compact boundary, in complex dimension
2 we also assume that Ω is relatively compact. We denote the Hardy space by
H2(∂Ω), the closed subspace of L2(∂Ω) consisting of functions with a holomor-
phic extension to Ω. More generally, if Ω is a strictly pseudo-convex domain in
some complex space such that there are no singularities on ∂Ω, one can con-
sider the Hilbert space of functions in L2(∂Ω) with a holomorphic extension in
a neighborhood of ∂Ω. Let P : L2(∂Ω) → H2(∂Ω) denote the orthogonal pro-
jection, P is called the Szegö projection of ∂Ω. The operator P is pseudo-local
with respect to the pointwise action of C(∂Ω) on L2(∂Ω).

A Toeplitz operator with symbol u ∈ C(∂Ω) is an operator of the form
T = PuP + K on H2(∂Ω), where K ∈ + (H2(∂Ω)). The C∗-algebra 6 generated
by all Toeplitz operators contains the ideal of compact operators. Since P is
pseudo-local and PuP ∈ + (H2(∂Ω)) if and only if u = 0, the symbol mapping
PuP + K 1→ u is a ∗-homomorphism whose kernel is + (H2(∂Ω)). Therefore, the
symbol mapping induces an isomorphism 6 /+ ∼= C(∂Ω). We can hence fit the
symbol mapping into a short exact sequence of C∗-algebras

0→+ →6 → C(∂Ω)→ 0.
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Observe that these properties and Atkinson’s theorem imply that if we have a
matrix-valued symbol u ∈ MN (C(∂Ω)), the associated Toeplitz operator acting
on the vector-valued Hardy space PuP ∈ 2(H2(∂Ω)⊗ N ) is Fredholm if and
only if u ∈ GLN (C(∂Ω)).

The associated index mapping ∂ : K1(C(∂Ω))→ K0(+ ) = does in fact map
a class [u] to the index of the Toeplitz operator

PuP : H2(∂Ω)⊗ N → H2(∂Ω)⊗ N

whenever we can represent [u] ∈ K1(C(∂Ω)) by u ∈ GLN (C(∂Ω)). The property
that the index mapping produces the index is correct in general for semi-split
short exact sequences 0 → + → E → A → 0 whenever the ∗-monomorphism
+ → E is non-degenerate. This is the motivation for the name index map-
ping. The index mapping in fact maps the K-theory class of a symbol u ∈
GLN (C(∂Ω)) to the index of PuP, which can be seen from the following reason-
ing. The operator PuP is Fredholm so by Fredholm theory there is an operator
R ∈ 2(H2(∂Ω)⊗ N ) such that 1− PuPR = P0 and 1− RPuP = P1, where P0
and P1 denotes the orthogonal projections onto the finite-dimensional spaces
coker PuP respectively ker PuP. In fact, since the class of R in the Calkin alge-
bra is an inverse of the class of PuP, the operator R is a Toeplitz operator with
symbol u−1. Hence the invertible operator

T̃ :=
*

PuP P0
P1 R

+

provides a lift of u⊕u−1. Furthermore, a direct calculation using (1.5) and (1.6)
gives that

∂ [u] =
0

T̃−1
*

1 0
0 0

+
T̃
1
−
0*

1 0
0 0

+1
= [P1]− [P0] ∈ K0(+ ), (1.9)

which under the isomorphism K0(+ )∼= corresponds to the index of PuP.
The index formula of Boutet de Monvel from [23] enables us to calculate

this index in terms of de Rham cohomology in the case when u is smooth. If
u : ∂Ω→ GLN ( ) is smooth, we define the Chern character of the class [u] as
the closed differential form

ch[u] :=
∞∑

j=1

( j − 1)!
(2πi) j(2 j − 1)!

tr(u−1du)2 j−1.

The de Rham class of ch[u] is in fact independent of the choice of representative
for [u] (for a proof of this see for instance section 1.8 of [91]). The Boutet de
Monvel index formula states that

ind (PuP) =−
∫

∂Ω
ch[u]∧ T d(Ω).
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Let us consider another example of a short exact sequence. Assume that X
is a compact manifold. Let Ψ(X ) denote the C∗-algebra generated by the zero
order classical pseudo-differential operators on X . The C∗-algebra Ψ(X ) contains
the C∗-algebra generated by the negative order pseudo-differential operators on
X , which is the algebra of compact operators on L2(X ). Therefore the principal
symbol mapping defines a short exact sequence

0→+ → Ψ(X )→ C(S∗X )→ 0,

and the index mapping K1(C(S∗X )) → coincides with the index of pseudo-
differential operators which on smooth symbols can be calculated by the Atiyah-
Singer index theorem. Compare this example with Section 2.8(b) of [51]. As
shown in Theorem 5.2 of [47], if X is real analytic, S∗X can be considered as
the boundary of a strictly pseudo-convex Grauert tube and a pseudo-differential
operator is thus a Toeplitz operator. In [14] the more general statement that
the pseudo-differential extension on a manifold is the extension of C(S∗X ) as-
sociated with the spinc-Dirac operator on S∗X was proven. The manifold S∗X
has a canonical spinc-structure induced from the almost complex structure on
T ∗X . Therefore, pseudo-differential operators are really Toeplitz operators in
disguise, as it is expressed in [14]. For manifolds that are not real analytic,
pseudo-differential operators are Toeplitz operators with respect to an almost
complex manifold rather than a complex structure.

Before we move on to the definition of the odd analytic K-homology, let
us digest on the theory of Toeplitz operators with abstract symbol. Assume
that A is a unital C∗-algebra, π : A→2(, ) a unital representation and P an
orthogonal pseudo-local projection with respect to π. We will call an operator of
the form Pπ(a)P the Toeplitz operator with symbol a. Because of the similarity
with pseudo-differential operators, a pair (π, P) of this form is sometimes called
a Toeplitz quantization. Since P is pseudo-local, Atkinson’s theorem implies
that Pπ(a)P is a Fredholm operator on P, whenever a is invertible. Let 6
denote the C∗-algebra generated by all these Toeplitz operators and the compact
operators on P, . Under the further assumption that Pπ(a)P ∈ + if and only
if a = 0 the symbol mapping Pπ(a)P 1→ a is well defined. We obtain the short
exact sequence of C∗-algebras

0→+ →6 → A→ 0. (1.10)

So a pair (π, P) like above defines an index mapping K1(A)→ as in equation
(1.9). Pairs like this will form the odd analytic K-homology.

The definition of odd K-homology is quite similar to the even case. An
odd analytic K-cycle of a C∗-algebra A is again a pair (π, F) consisting of a
representation π : A→2(, ) and an operator F ∈2(, ) such that F2− 1 and
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F ∗−F are compact and F is pseudo-local in the sense that [F,π(a)] is a compact
operator for all a ∈ A. As in the even case, a cycle (π, F) is called degenerate
if F2 − 1 = F ∗ − F = [F,π(a)] = 0. The quotient of set of homotopy classes
of odd analytic K-cycles by the degenerate cycles form an abelian group under
the direct sum operation; it is denoted by K1(A) and is called the odd analytic
K-homology of A. Sometimes, we will use the notation K1(X ) for the group
K1(C(X )) to indicate the dependence on the topological space. The difference in
definitions between the odd and even analytic K-homology lies in the grading,
this changes the cycles drastically. For instance, if one considers an even K-cycle
as an odd by just forgetting the grading then its class in odd K-homology is 0.

Such a pair (π, P) defining the short exact sequence (1.10) determines the
odd analytic K-cycle (, , 2P + 1). In fact, short exact sequences like the one in
equation (1.10) have many similarities with K-homology and KK-theory. This
relation is described by the theory of extensions, see more in section 16.3 of [22].

The index pairing K1(A)×K1(A)→ between the odd K-theory and the odd
K-homology is much like the index of a Toeplitz operator. This index pairing is
described in Proposition 8.7.1 of [51]. If we represent an element x ∈ K1(A) by
an extension 0→ + → Ex → A→ 0, the six term exact sequence (1.7) defines
the index mapping ind x : K1(A)→ , and for u ∈ K1(A) the index pairing is given
by

(u, x) 1→ ind x(u).

To be a bit more precise, if (π, F) is an odd analytic K-cycle representing x such
that F2 = 1 we define the projection PF := (F + 1)/2. The condition F2 = 1
is not restrictive since any odd K-homology class can be represented by such a
cycle, see Lemma 8.3.5 of [51] or below in Paper C. For an odd K-theory class
represented by the matrix u ∈ GLN (A), the abstract Toeplitz operator

PFπ(u)PF : PF, ⊗ N → PF, ⊗ N

is Fredholm if u is invertible because of Atkinson’s theorem. The index pair-
ing of x with an odd K-theory class u is given by the index ind (PFπ(u)PF ). In
general, there is no obvious way to calculate the index pairing. But in con-
crete applications there is the tool of cyclic cohomology that we recall below in
Chapter 3.





Chapter 2

Magnetism and K-theory

”Not everything that can be counted counts, and not everything that counts can
be counted.”

Einstein

One of the most concrete applications of K-theory and index theory is in
mathematical physics, for systems containing a magnetic field. In this section
we will give a brief review of the quantum Hall effect. To motivate the nature
of charge as a K-theoretic object, consider a real life example of a closed four
manifold M and a magnetic field F on M . The magnetic field is given as the
curvature of a connection ∇ on a vector bundle E → M . Thus F = ∇2 is a
section of ∧2T ∗M ⊗ End(E). The magnetic field should minimize the energy of
the system due to Fermat’s principle, thus the connection should minimize the
Yang-Mills functional:

Y M(∇) :=
1

2g2

∫

M
tr(F ∧ ∗F) + θ

8π2

∫

M
tr(F ∧ F)

The first term is a dynamic term whose Euler-Lagrange equation is known as
the Yang-Mills equation. The second term is the charge of F and its variation
is given by ∇F , so it is locally constant and a topological invariant due to the
Bianchi identity. In fact the second term is given by θ

2

∫
M

ch(E) ∈ θ
2

, the
integral of the Chern character of E which by the Atiyah-Singer index theorem
is the Euler characteristic of E. Thus all information about the charge of a
magnetic field on the bundle E is given by the K-theory class [E] ∈ K0(M).
Therefore, the K-theory class of a vector bundle is the topological invariant
classifying its charge.

19
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Figure 2.1: The classical Hall effect in electromagnetism.

2.1 Quantum Hall effect

The quantum Hall effect was discovered 1980 by von Klitzing, Dorda and Dr.
Pepper who were investigating the scattering of electrons in the interface of two
thin layers of silicon and silicon oxide, see [57]. Von Klitzing was awarded the
Nobel prize in physics 1985 for the discovery of the quantum Hall effect. This
effect is of interest to us because of a rather intrinsic relation with index theory
due to an argument of Laughlin.

The name quantum Hall effect originates from the similarity with the clas-
sical counterpart in electromagnetism. The Hall effect in electromagnetism was
discovered by Hall in 1879 and occurs when a constant magnetic field goes per-
pendicularly through a flat conductor in which a current flows which induce
a current perpendicular to the original current, see Figure 2.1. The induced
current is called the Hall current. If the strength of the magnetic field is given
by B, the conductor is of width d and the current is I the Hall current can be
expressed as IH = RH ·B · I/d where RH denotes the Hall coefficient which can be
calculated from the formula RH = −1/ne and e denotes the charge of an electron
and n is the charge carrier density.

The quantum Hall effect works in a similar fashion as the classical Hall ef-
fect except the unexpected phenomena that the Hall coefficient RH quantizes
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Figure 2.2: The integer quantum Hall effect.

and can only take certain values. The number σ := 1/RH is called the Hall
conductance and σ = νe2/h where ν is called the filling factor and h denotes
Planck’s constant. In certain geometries, for a more thorough presentation see
[60], the filling factor is quantized to integer values, see Figure 2.2. This effect is
called the integer quantum Hall effect (IQHE). The measurements of the IQHE
is extremely accurate, up to parts in 105, see [57]. The theoretical explanation
for this accuracy is due to Laughlin’s gauge argument. The gauge argument
together with results of Avron-Seiler-Simon relates the IQHE to index theory of
Toeplitz operators.

A much more complicated situation can occur when ν is quantized to frac-
tional values, which is called the fractional quantum Hall effect (FQHE). The
simple heuristic explanation for this is that a complicated sample can contain
many type of composite fermions, see [20] and [67], and the filling factor is
an average over the different composite particles. The FQHE is not as well
understood as IQHE and some theories are still rather speculative.

Laughlin’s ”gauge argument”, for which we refer the reader to [59] and [60],
reduces the IQHE to considering the case of a pure sample, with no impurities.
So the situation can be seen in figure 2.3 where the current through a periodic
sample and the magnetic field makes one particle ”jump” from one side of the
sample to the other. The number of jumping particles will be the relative



22 2.1. Quantum Hall effect

Figure 2.3: An electron jumping over the periodic rod.

index of the projection onto the state space before (respectively after) the gauge
transformation, for the definition of a relative index see below in equation (3.5).
The exactness of the IQHE is described by Laughlin in [60] as:

“The quantum Hall effect does not measure any quantum of sur-
face charge density, because there is no such quantum. It measures
instead the number of electrons transferred in a thought experiment.
It measures e. That is why it is so accurate.”

The ideas of Laughlin were put onto firm mathematical ground by Bellis-
sard, see [15] and [16] or [34] for a survey of Bellissard’s results. Bellissard used
Connes’ framework of non-commutative geometry and showed that Kubo’s for-
mula, which physicists use to calculate the Hall conductance, defines a cyclic
cohomology class on a non-commutative Brillouin zone and the Hall conduc-
tance was simply an integral pairing with K-theory.

There is a profound relation between the IQHE and index theory. Even
though the gauge argument was not stated as an index problem by Laughlin,
the view on Laughlin’s ideas as an operator index was further developed in [11].
In the paper [11], the idea that the Hall conductance can be calculated as a
”jump” in Laughlin’s thought experiment was given mathematical meaning. Let
U be the unitary operator implementing the gauge transformation in Laughlin’s
thought experiment and let P denote the projection onto the subspace with
energy below the Fermi energy, which we assume to lie in a spectral gap. If
it is the case that P commutes with U up to a compact operator the relative
index of P to U∗PU , i.e. the number of particles after applying U relative to the
number of particles before, is finite and equals the index of the Toeplitz operator
PU P. In a pure sample the system is modeled by the Landau Hamiltonian which
describes the energy of particles moving in a constant magnetic field.
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2.2 Hall conductance

Below, in Paper A, we consider the case of n types of non-interacting particles.
This is described by the Landau hamiltonian in n, an elliptic second order
operator with discrete spectrum and lowest level being the Fock space. Its
eigenspaces are called Landau levels. We use the notation8 ' for the ':th Landau
level and P' denotes the corresponding orthogonal projection. We show that the
projection P' commutes up to compact operators with continuous functions that
have radial limits. A Toeplitz operator whose symbol has compact support is
shown to be compact so we obtain an odd K-homology class on S2n−1 for each
Landau level.

The charge deficiency of such a projection is defined to be the K-homology
class [P'] ∈ K1(S2n−1). Originally, the charge deficiency of a projection P was de-
fined in [12] in dimension n= 1 to be the integer ind (PuP), where u ∈ C(S1, S1),
defined as u(z) = z, generates K1(S1). Because of the universal coefficient the-
orem for KK-theory of [75], the class [P] ∈ K1(S1) is determined by the integer
ind (PuP). Thus we can equally well speak of the charge deficiency as the more
geometrically significant K-homology class that the projection defines.

For higher dimensions, the group K1(S2n−1) is again free of rank 1, this fol-
lows from the calculation K1(S2n−1) = above and the universal coefficient
theorem. To calculate the K-homology class that a Landau level defines, it is
really sufficient to calculate one integer, namely the index of a Toeplitz oper-
ator with a K-theoretically non-trivial symbol. This integer will be the charge
deficiency of [12] for higher dimensions. The calculation of the charge deficiency
immediately gives the Hall conductance of the system. We obtain the following
index theorem:

Theorem 1. If a : n→ MN ( ) has a smooth radial limit function a∂ : S2n−1→
GLN ( ), the index of P'a|8 '⊗ N can be expressed as

ind (P'a|8 '⊗ N ) =
−('+ n− 1)!
'!(2n− 1)!(2πi)n

∫

S2n−1

tr((a−1
∂ da∂ )2n−1).

The charge deficiency [P'] ∈ K1(S2n−1) may be expressed in terms of the Bergman
projection PB on the unit ball, the generator of K1(S2n−1), as

[P'] =
('+ n− 1)!
'!(n− 1)!

[PB]. (2.1)

For a symbol a whose radial limit a∂ is not smooth, but merely Hölder
continuous, we can use the techniques of Paper B to write down explicit index
formulas for the operator P'aP'. The explicit index formula can be found in
equation (3.15) below. This fact is due to (2.1) which implies that the Toeplitz
quantization of the Landau levels is equivalent to a multiple of the Bergman
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quantization on the ball which in turn is equivalent to the quantization on the
Szegö space of the sphere. On the latter quantization the techniques of Paper
B can be applied directly to Hölder continuous symbols.

An interesting corollary of this index theorem is an index theorem for the
Fock space. It has quite recently come to the author’s attention that the index
theorem for Toeplitz operators on the Fock space was already proven in [31].
Recall that the Fock space 9 ( n) is the Hilbert space of holomorphic functions
in L2( n, e−|z|

2/2). Multiplication by e−|z|
2/4 gives an isomorphism 9 ( n) ∼=8 0

that commutes with the Cb( n)-action. If we let P9 : L2( n, e−|z|
2/2)→9 ( n)

denote the orthogonal projection, then the Theorem above, or Corollary 1 of
[31], implies that [P9 ] = [PB] in K1(S2n−1).

Figure 2.4: The absolute value of some states in the first Landau level.

The case of interacting particles is rather complicated and is expected to
be an explanation for the fractional quantum Hall effect (FQHE). The FQHE
occurs in more complicated materials, for instance it has been shown to occur
in graphene [88]. Stormer, Laughlin and Tsui were awarded the Nobel prize in
physics 1998 for work on the FQHE. See [84] for a nice review of the subject.

We will not discuss the FQHE in that much detail but just mention that
there is some work going on, trying to explain the FQHE as an index. The
FQHE has been verified by Karlhede and Soursa [55] as a topological effect, in
fact a kind of average. Being a topological effect, it is to be expected that it is
an index. Marcolli and Mathai proposed a model for the FQHE in [61] and [62]
based on a 2-dimensional hyperbolic geometry. They worked on an orbifold and
the fractional effect came from cuspidal points. Surprisingly their model made
the prediction that the the fractional Hall conductance always is bounded from
below by 1/42, a statement that has yet to be experimentally verified.

An interesting problem to study further is if there is some more general the-
ory for topological invariants associated with the spectral projection of Schrödinger
operators. The problem has been studied from a more spectral theoretic ap-
proach in [63] and [81]. The general formulation of the question is that if HE
is the Laplacian associated to a connection on a vector bundle E → M , is it
possible to find some non-trivial topological characteristics associated with the
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spectral projections of HE?
The theorem above from Paper A implies that this question has a positive

answer even for a compact subset of the spectrum of a Schrödinger operator on
the trivial bundle over a euclidian space. This indicates both that the answers
can be very interesting and that it is a hard problem. In the general setting there
is a problem already on operator level since the spectrum of a differential oper-
ator on a non-compact manifold does not need to have spectral gaps. Another
problem is geometric and can be seen from the euclidian case, all topological
properties of the spectral projections might not be seen inside the manifold but
rather on a compactification.





Chapter 3

Index formulas

”Think globally, act locally.”
Lennon

As we have seen above, it is of interest to calculate the index pairing. It
can be calculated in applications if one knows some additional structure, but
there is no general solution for how to calculate the index pairing. Some formu-
las hold in a rather general setting but are in reality much harder to calculate.
To quote Erdös: ”Problems worthy of attack prove their worth by fighting back.”
The earliest example of an index theorem was of course the Fredholm alternative
theorem from 1903, see [42], stating that the index of a compact perturbation of
the identity operator is a Fredholm operator of index 0. The first index theorem
that related the index with some geometric properties came two decades later in
[68], where the index of a singular integral operator on S1 was calculated as the
symbol’s winding number. It was in this paper that the term index was coined.

In the setting of pseudo-differential operators, or more generally Toeplitz
operators, there are some further geometric structures allowing for index the-
orems such as Boutet de Monvel’s index theorem and the Atiyah-Singer index
theorem. Let 6 denote the C∗-algebra closure of the algebra of classical pseudo-
differential operators on a manifold M or the C∗-algebra of Toeplitz operators
on the boundary ∂Ω of a strictly pseudo-convex domain Ω. The C∗-algebra 6
contains the ideal of compact operators and the quotient 6 /+ is the commu-
tative C∗-algebra C(X ), where X is the cotangent sphere of M in the case of
pseudo-differential operators and ∂Ω in the case of Toeplitz operators. While
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28 3.1. Atiyah-Singer’s index theorem

the Fredholm property and the index are determined by the image in the Calkin
algebra, an operator T ∈ 6 is Fredholm if and only if the symbol σ(T ) is invert-
ible and the index of T ought to be calculatable from the continuous function
σ(T ). The question of how to perform this calculation was posed by Gel’fand
[43].

Only years after Gel’fand’s question, Atiyah and Singer announced their cel-
ebrated index theorem in [4]–[9], opening for generalizations in many directions.
The first statement of the Atiyah-Singer index theorem holds for an elliptic
differential operator between smooth vector bundles with smooth symbol on a
smooth closed manifold. There has been a considerable work done since the first
statement to loosen every restriction, some of them where successful and some
problems remain.

In this thesis we mainly focus on generalizations of Atiyah-Singer type in-
dex theorems that loosens the regularity conditions on the symbols to Hölder
continuity. In Paper B we loosen the regularity condition on the symbols of
Toeplitz operators on the boundary of a strictly pseudo-convex domain in a
Stein manifold. We obtain analytic index formulas and apply them to calcula-
tions of mapping degree. We will also loosen the regularity on the vector bundle
in the calculation of the index pairing (1.4) in Paper C. We obtain analytic
index formulas for classical zero order pseudo-differential operators twisted by
a Hölder continuous vector bundle. Again we apply this index formula to the
problem of calculating degrees of non-smooth mappings.

3.1 Atiyah-Singer’s index theorem

The first proof of the Atiyah-Singer index theorem was by means of a rather
topological approach using K-theory in [5]. There has appeared a large variety
of proofs since, using for instance heat kernel methods, E-theory or groupoids.
Below we sketch the argument of the K-theoretical proof of the index theorem
from [5] and how this produces the index formula (1) in de Rham cohomology.
The full proof of this cohomological form can be found in [7]. In the end of this
section we will also recall the proof of Hirzebruch’s signature theorem using the
Atiyah-Singer index theorem.

Assume that X is a closed manifold and let π : T ∗X → X denote the cotangent
bundle. An elliptic pseudo-differential operator D on X between two vector
bundles E1 and E2 has a symbol σ(D) ∈ C∞(T ∗X , Hom(π∗E1,π∗E2)) that takes
values in the bundle of invertible morphisms π∗E1 → π∗E2 outside a compact
subset of T ∗X . So there is an associated difference class [D] ∈ K0

c (T
∗X ). While

D is elliptic the Fredholm index ind (D) is well defined and due to homotopy
invariance of the index it does in fact only depend on [D]. The symbol mapping
is a surjection, at least on K-theory, so the analytic index [D] 1→ ind (D) defines
a mapping inda : K0

c (T
∗X )→ .
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On the other hand if we choose a smooth embedding X → N we obtain a
smooth embedding i : T ∗X → 2N that defines a push-forward i! : K0

c (T
∗X ) →

K0
c (

2N ). The push-forward is well defined since T ∗X and 2N have canonical
spinc-structures. Using the Bott periodicity K0

c (
2N ) ∼= K0(pt) = , we obtain

a mapping K0
c (T
∗X )→ . The topological index indt is defined as i! and can be

shown to be independent of the choice of i. In particular, since the push-forward
is functorial, the Riemann-Roch theorem for push-forwards implies that

indt[D] =
∫

2N

ch(i![D])∧π∗T d( N ) =

=
∫

2N

i∗(ch[D]∧π∗T d(X )) =
∫

T ∗X
ch[D]∧π∗T d(X ).

For a more detailed description see [7].
The K-theoretical version of the Atiyah-Singer index theorem states that for

any manifold X , inda = indt . The main idea in the proof in [5] consists in us-
ing the concept of an index mapping. An index mapping is a natural mapping
indX : K0

c (T
∗X ) → with respect to push-forward, normalized in such a way

that ind n coincides with Bott periodicity. The proof in [5] is completed by
proving the three statements that the topological index mapping is an index
mapping, the analytic index mapping is an index mapping and finally that an
index mapping is unique. This statement is of topological nature since it also
holds for abstract elliptic operators on topological manifolds, see [87].

As an example of an application of the Atiyah-Singer index theorem, let us
consider a standard example of a differential operator; the signature operator on
a closed 2n-dimensional manifold X taken from section 6 of [7]. We will use the
signature operator for deriving degree formulas for Hölder continuous functions
between even-dimensional manifolds in Paper C. Equip X with a Riemannian
metric. The Hodge grading τ is an involution on the exterior algebra of the
complexified cotangent bundle

∧∗(T ∗X ⊗ )→ X defined on a p-form ω by

τω = ip(p−1)+n ∗ω,

where ∗ denotes the Hodge duality. That τ is an involution follows from that
∗2ω = (−1)pω. We let E+ denote the sub-bundle of

∧∗(T ∗X ⊗ ) consisting
of even vectors with respect to the Hodge grading and E− the sub-bundle of
odd vectors with respect to the Hodge grading. The operator τ anti-commutes
with the Hodge-de Rham operator d+ d∗ so D = d+ d∗ is a well defined oper-
ator from E+ to E−. The symbol σ(D) ∈ C∞(T ∗X ,π∗Hom(E+, E−)) is given by
σ(D)(x ,ξ) = ξ∧+ξ¬ in orthonormal coordinates. As is calculated in section 6
of [7] cohomology class ch[D] is mapped to 2nπ∗(L(T X ) ∧ T d(X )−1) under the
Thom isomorphism, here L is the genus associated with the function x/2

tanh(x/2) .
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The operator D̃ associated with D as in equation (1.1) is an odd self-adjoint
first-order differential operator on the graded vector bundle E+⊕ E−. The oper-
ator D̃ coincides with the usual Hodge-de Rham operator on

∧∗(T ∗X ⊗ )→ X .
By Hodge’s theorem there is a graded isomorphism

ker D̃ ∼= H∗dR(X ) = H+dR(X )⊕ H−dR(X ).

Note that the grading we are using on H∗dR(X ) is that induced from τ. Define the
τ-invariant linear space Hk := Hn+k

dR (X )⊕Hn−k
dR (X ) and the operator εk := 1⊕(−1)

on Hk. It is straight-forward to verify that τεk+εkτ= 0 when k > 0 and therefore

dim(Hk ∩ H+dR(X )) = dim(Hk ∩ H−dR(X )), k > 0.

Hence, the index of the signature operator is given by

ind (D) = dim (Hn
dR(X )∩ H+dR(X ))− dim (Hn

dR(X )∩ H−dR(X )).

But Hodge’s theorem implies that we can represent elements of H∗dR(X ) by har-
monic forms so we have that ker D̃ ∼=

4
H+dR(X , )⊕ H−dR(X , )

5
⊗ . Let us

denote

H+ := Hn
dR(X , )∩ H+dR(X , ) and H− := Hn

dR(X , )∩ H−dR(X , ).

In this notation, the index of D can be written as

ind (D) = dim H+ − dim H−,

This later quantity is in fact the signature of the integral pairing on the real
vector space Hn

dR(X , ). The integral pairing is the bilinear mapping defined by

(α,β) :=
∫

X
α∧ β ,

and its signature sign(X ) is known as the signature of X . Thus we come to
the well-known conclusion that ind (D) = sign(X ). The Atiyah-Singer theorem
implies Hirzebruch’s signature formula

sign(X ) = 2n

∫

X
L(T X ).

In particular, if E → X is a real Riemannian vector bundle and we set H(E) :=
Hn

dR(X , E), the Atiyah-Singer index theorem for the twisted signature operator
on
∧∗(T ∗X ⊗ )⊗ E implies that

sign(H(E)×H(E)→ ) = 2n

∫

X
L(T X )∧ ch[E ⊗ ].
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3.2 Cyclic homology

There are some rather general index formulas, even though they are in gen-
eral quite hard to make useful. We will start with reviewing the most general
formula, the Calderon index formula, which was the starting point for Connes’
index formula in cyclic cohomology. Due to the non-degeneracy of the index
pairing, abstract isomorphisms reduce the index formula of Connes to the man-
ageable index formula of Atiyah-Singer in the special case of pseudo-differential
operators and the index formula of Boutet de Monvel in the case of Toeplitz
operators.

Let T : , → , be a bounded linear operator. We observe that if T has
finite-dimensional kernel, then T is Fredholm if and only if the vector space
quotient , /T, is finite-dimensional. A Fredholm operator is closed so the
vector space, /T, ∼= ker T ∗ is of finite dimension if T is Fredholm. Conversely,
if , /T, is of finite dimension, let us say N -dimensional, then there is a linear
mapping Y : N → , such that T ⊕ Y : , ⊕ N → , is surjective and the
open mapping theorem implies that T is closed since , is of finite codimension
in , ⊕ N . Therefore T is closed and ker T ∗ ∼=, /T, is of finite dimension.

Henceforth, we assume that T is Fredholm and let PT and P ′T denote the
orthogonal projections onto the kernel of T respectively the cokernel of T . The
simplest form of an index formula for T is that ind (T ) = tr(PT ) − tr(P ′T ). In
general it is very hard to find PT and P ′T but it is in applications possible to
find good approximations. We will call an operator T0 ∈ 2(, ) such that
1 − T T0, 1 − T0T ∈ + (, ) a parametrix for T . If T is a pseudo-differential
operator, a parametrix in the usual sense will also be a parametrix in this
abstract operator setting. There is in fact a parametrix T0 such that 1−T T0 = P ′T
and 1− T0T = PT . In this case we have that

ind (T ) = tr(1− T0T )k − tr(1− T T0)k (3.1)

for any positive integer k. The content of the Calderon index formula is that
(3.1) holds for any parametrix T0 such that 1− T0T, 1− T T0 ∈ 8 q(, ) where
q ≤ k. Here8 q(, ) denotes the dense ideal in+ (, ) of Schatten class operators
of order q. Let us shortly recall the proof of this formula from [39]. If R0 is a
parametrix for T with 1− TR0, 1− R0T ∈ 8 1(, ) then R0 − T0 ∈ 8 1(, ) since
the classes of R0 and T0 in the algebra 2(, )/8 1(, ) are both multiplicative
inverses to the class of T . The trace is cyclic so the statement holds for q = 1.
In general, if R0 is a parametrix for T with 1− TR0, 1− R0T ∈ 8 q(, ) we set

R :=
k∑

j=0

(1− R0T ) jR0. (3.2)

In this case 1− RT = (1− R0T )k ∈ 8 1(, ) and similarly 1− TR = (1− TR0)k ∈
8 1(, ) which imply that (3.1) holds for any summable parametrix.



32 3.2. Cyclic homology

Suppose that , =,+⊕,− is a graded Hilbert space, F is an odd operator
satisfying that F2 = 1 and p is an even projection such that [F, p] is Schatten
class for some q > 1. We will use the standard notation str for the supertrace,
that is str(K) = tr(γK) where γ denotes the grading. Just as in the index pairing
we consider the operator p+F+p− : p−,− → p+,+. Observe that

[F, p] =
*

0 F+p− − p+F+
F−p+ − p−F− 0

+
.

Since [F, p] is compact, being in the Schatten class, p+F+p− is Fredholm and
using the assumption [F, p] ∈ 8 q(, ) the Calderon index formula implies that

ind (p+F+p− : p−,− → p+,+) = (−1)k str, (p[F, p]2k), (3.3)

when 2k ≥ q. The last equality is due to Connes and is proved purely alge-
braically, see Proposition 4 in Chapter IV.1.γ of [34]. This situation allows
for calculations of the index pairing between the even K-theory and the even
K-homology if we can represent the K-homology class by an analytic K-cycle
(π, F) and the K-theory class by a p such that [F,π(p)] is in the Schatten class.

The analogous setting in the odd case is an operator of the form PU P where
P is an orthogonal projection and U is an invertible operator such that [P, U]
is Schatten class of some order q. The operator PU P is Fredholm because
the commutator [P, U] is compact, so PU−1P is a parametrix to PU P. The
assumption [P, U] ∈ 8 q(, ) and the Calderon index formula imply that

ind (PU P : P, → P, ) = tr, (U−1 [P, U][P, U−1] · · · [P, U−1][P, U]︸ ︷︷ ︸
2k+1 factors

), (3.4)

when 2k+1≥ q. Observe that [P, U−1] =−U−1[P, U]U−1 so the right-hand side
is well defined. The formula (3.4) is closely related to the formula from [12]
for the relative index of two projections. The relative dimension between two
projections P,Q ∈2(, ) satisfying that P −Q ∈ + (, ) is defined as

ind (P ,Q) := dim(ker(1− (P −Q)))− dim(ker(1+ (P −Q))). (3.5)

Since P−Q is compact, the operators 1±(P−Q) are Fredholm and therefore the
right-hand side is well defined. If P −Q is in some Schatten class, ind (P ,Q) =
tr(P −Q)2k+1 whenever the right-hand side is finite by Proposition 2.2 of [12].
Furthermore, if Q = U∗PU then ind (P,Q) = ind (PU P) by Proposition 2.4 of [12].

The index formulas (3.3) and (3.4) can be used to describe the index pairing.
The correct setting for this is to consider dense isoradial ∗-subalgebras / ⊆ A,
so K∗(/ ) ∼= K∗(A) via the embedding. Furthermore, we want to represent our
K-homology classes by analytic K-cycles (π, F) such that

F2 − 1, F ∗ − F ∈ 8 q(, ) and [F,π(a)] ∈ 8 q(, ) ∀a ∈/ .
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Such an analytic K-cycle (π, F) is called a q-summable Fredholm module over/ .
There are many regularity notions on a Fredholm module, such as θ -summability
and analagous notions over general semifinite von Neumann algebras, see Chap-
ter IV of [34]. We will focus on the simplest case of q-summability.

It is in general unclear whether a K-homology class can be represented by
a K-cycle that is q-summable over a dense subalgebra. For instance, for a q-
summable unbounded Fredholm module to exist over A there must be a tracial
state on A by [33]. However, for a q-summable Fredholm module over a dense
isoradial subalgebra the isomorphism K∗(/ ) = K∗(A) allows us to calculate the
index pairing between K∗(A) and such an analytic K-cycle. The classical setting
of this construction is that / = C∞(X ) and the analytic K-cycle comes from
some elliptic pseudo-differential operator, in this case any q > dim(X ) will make
the associated Fredholm module q-summable. The corresponding index formula
reduces to a calculation in de Rham cohomology via the Chern character of the
symbol. In this geometric setting, the q-summability condition is much weaker
than most smoothness conditions and often requires less regularity.

With a q-summable Fredholm module (π, F) and k ≥ q we can associate
a linear functional cck(π, F) on /⊗k+1 where we require k to have the same
parity as (π, F). Here we use choose the projective tensor product. Following
Definition 3 of Chapter IV.1 of [34] we define the linear functional cck(π, F) as

cck(π, F)(a0, a1, . . . , ak) :=

:
ckstr, (a0[F, a1][F, a1] · · · [F, ak]) k even,
cktr, (a0[F, a1][F, a2] · · · [F, ak]) k odd.

(3.6)

The constants ck are introduced as a certain dimensional normalization which
play a certain role that will be explained below in equation (3.13). The constants
ck are defined as

ck :=

;
(−1)k(k−1)/2
4

k
2

5
! k even,

(−1)k(k−1)/2>2i2kΓ
4

k
2
+ 1
5

k odd.
(3.7)

With the index formulas (3.3), (3.4) and (3.6) in mind we define a ”Chern
character” by constructing chk : {p ∈ M∞(/ ) : p2 = p} → /⊗k+1 for k even
respectively chk : GL∞(/ )→/⊗k+1 for k odd as follows

chk[p] := dktrM∞( )

4
p⊗M∞( )k+1
5

, (3.8)

chk[u] := dktrM∞( )

<4
(u−1 − 1)⊗M∞( ) (u− 1)

5⊗M∞( )(k+1)/2=
. (3.9)

Here dk := (−1)k(k−1)/2c−1
k . In this formalism we can calculate the index pairing

x ◦ [π, F] = cck(π, F)(chk(x)) (3.10)

whenever (π, F) is q-summable over / . The element chk(x) ∈ /⊗k+1 depends
a priori on the choice of representative for x ∈ K∗(/ ). To solve this problem
and set the stage for index formulas, Connes introduced cyclic homology.
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We will recall Connes’ original definition of cyclic homology following Chap-
ter III of [34]. The construction above of the Chern character and the Chern-
Connes character (3.8) and (3.9) fits directly into this formulation of the cyclic
theories. After that we will give the definition of cyclic homology in terms of the
universal differential algebra following [36]. In this formulation one can rather
easily define the periodicity operator, a vital tool in the regularization of index
formulas that leads to unusual index formulas.

We will let/ denote a unital topological algebra and as above we denote the
projective tensor product by ⊗. The Hochschild differential b :/⊗k →/⊗k−1

is defined by

b(x0 ⊗ x1 ⊗ · · ·⊗ xk ⊗ xk+1) := (−1)k+1 xk+1 x0 ⊗ x1 ⊗ · · ·⊗ xk+

+
k∑

j=0

(−1) j x0 ⊗ · · ·⊗ x j−1 ⊗ x j x j+1 ⊗ x j+2 ⊗ · · ·⊗ xk+1.

The cyclic permutation operator λ :/⊗k→/⊗k is defined as

λ(x0 ⊗ x1 ⊗ ·⊗ xk) = (−1)k xk ⊗ x0 ⊗ · · ·⊗ xk−1.

We define a complex of -vector spaces Cλ∗ (/ ) by

Cλk (/ ) :=/⊗k+1/(1−λ)/⊗k+1,

with differential given by b. The homology of the complex Cλ∗ (/ ) is called the
cyclic homology of/ and will be denoted by HC∗(/ ). A cycle in Ck

λ(/ ) will be
called a cyclic k-cycle. It can be verified that for any representative of x and any
k of the right parity, the element chk(x) defines a cyclic k-cycle. As it is shown
in [32], the Chern character chk : K0(/ )→ HCk(/ ) and chk : K1(/ )→ HCk(/ )
are well defined whenever k is of right parity.

The complex Ck
λ(/ ) is defined as the space of continuous linear functionals

µ on /⊗k+1 such that µ◦λ = µ. The Hochschild coboundary operator µ 1→ µ◦ b
makes C∗λ(/ ) into a complex. The cohomology of the complex C∗λ(/ ) will be de-
noted by HC∗(/ ) and is called the cyclic cohomology of / . For a q-summable
Fredholm module (π, F) the linear functional cck(π, F) is a well defined cyclic
k-cocycle for any k > q.

Let us return to the abstract K-theory setting for dealing with index problems
for abstract Toeplitz operators. So we assume that (π, F) is an odd analytic K-
cycle (π, F) on the C∗-algebra A. We will also make the assumptions that F2 = 1
and that there is a dense isoradial subalgebra / ⊆ A for which (π, F) is finitely
summable. If u ∈ GLN (/ ) we do on the one hand have the index formula
(3.10) for PFπ(u)PF but on the other hand the index coming from the abstract
formula (1.9). These coincide, not merely because they both are equal to the
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same index, but because of the relations between the Calderon index formula
(3.1) and the form of the index mapping in (1.5). We can by equation (1.5) and
(1.6) represent the class ∂ [u] ∈ K0(+ ) by the formal difference
0−(PF − PF uPF R)2 + 1 PF uPF (PF − RPF uPF )2

(PF − RPF uPF )R (PF − RPF uPF )2

1
−
0

1 0
0 0

1
,

where R is constructed from PF u−1PF as in equation (3.2) for some large k. Since
the isomorphism K0(+ )∼= is defined from the trace, the class ∂ [u] is mapped
to the integer

tr(∂ [u]) = tr
**−(PF − PF uPF R)2 + 1 PF uPF (PF − RPF uPF )2

(PF − RPF uPF )R (PF − RPF uPF )2

+
−
*

1 0
0 0

++
=

= tr(PF − PF u−1PF uPF )2k − tr(PF − PF uPF u−1PF )2k = cck(π, F)(chk(u)).

By a result of Connes-Cuntz [35] any cyclic cocycle arise as the Connes-Chern
character of a summable semi-finite Fredholm module, so the algebra of bounded
operators is replaced by an arbitrary semi-finite von Neumann algebra and the
summability is defined with respect to a trace in the von Neumann algebra.
Even though cyclic homology and cyclic cohomology are algebraically defined,
these theories really consists of analytic structures. In general, cyclic homology
behaves badly if we take / ⊆ A too big since most cohomology theories behave
badly on C∗-algebras. It is due to cohomological reasons that one needs to look
at dense subalgebras. See more in [54].

On the other hand, on manifolds there is a standard example of a cyclic
cocycle. Any closed k-form ω on an n-dimensional manifold X defines a cyclic
n− k-cocycle >ω on C∞(X ) by

>ω( f0, f1, . . . , fn−k) :=
∫

X
f0d f1 ∧ · · ·d fn−k ∧ω. (3.11)

Motivated by this example, cyclic cohomology can be viewed as an algebraic
generalization of de Rham homology. The main difference lies in that the di-
mension defines a grading on the de Rham theories, while the dimension defines
a filtration on the cyclic theories. This difference can be explained by a theorem
of Connes [34] stating that if X is a compact manifold, there is an isomorphism

HCk(C∞(X ))∼= Zk(X )⊕
⊕

j>0

HdR
k−2 j(X ), (3.12)

where Zk(X ) denotes the space of closed k-currents on X . A similar statement
also holds for cyclic homology and de Rham cohomology. The isomorphism is
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constructed via a certain modification of the association ω 1→ >ω in equation
(3.11). Without going into details about the modification, let us mention that
it is exactly what makes cyclic homology filtered rather than graded. This fits
well with a description of cyclic homology in terms of a differential algebra.

Let us first recall the notion of the universal differential algebra. We let /̃
denote the unitalization of / . We define Ω1/ := /̃ ⊗/ and d : / → Ω1/
by da := 1⊗ a, so any element of Ω1/ is of the form (a0 +λ)da1. Let us equip
Ω1/ with the / -bimodule structure

x((a0 +λ)da1)y := (xa0 +λx)d(a1 y)− (xa0a1 +λxa1)dy

The derivation d : / → Ω1/ is universal in the sense that any other / -
bimodule @ and derivation ∇ : / → @ must be of the form ∇ = ρd for a
bimodule morphism ρ : Ω1/ → @ . We also define

Ωk/ := Ω1/ ⊗/ · · ·⊗/ Ω1/ .

Observe that as a vector space, Ωk/ = /̃ ⊗/⊗k. The universal differential
algebra of / is given by Ω∗/ := ⊕k∈ Ωk/ .

The cyclic homology of an algebra can be constructed from its universal
differential algebra. We set

Dn(/ ) :=
⊕

k∈
Ωn−2k/ ,

with the convention Ω−k/ = 0 for all k > 0. Projection onto the first n − 2
coordinates defines an operator S̃ : Dn(/ ) → Dn−1(/ ). The operator S̃ will
induce the periodicity operator on cyclic homology. The cyclic homology of /
is by Proposition 2.14 of [36] isomorphic to the homology of the complex

· · · B−b−−→ Dn(/ ) B−b−−→ Dn−1(/ ) B−b−−→ · · · B−b−−→ D1(/ ) B−b−−→ D0(/ )→ 0,

where b is the Hochschild differential defined as a linear mapping Dn(/ ) →
Dn−1(/ ) using the linear decomposition Dn(/ ) =⊕k/̃ ⊗/ n−2k and B is defined
as a cyclic symmetrization of d : Dn(/ ) → Dn+1(/ ) composed with S̃. The
operator S̃ commutes with the differential B−b and therefore induces an operator
S : HCn(/ ) → HCn−2(/ ) and dually an operator S : HCn(/ ) → HCn+2(/ ).
The normalization in equation (3.7) is choosen so that

Schk = chk−2 and Scck = cck+2. (3.13)

The periodic cyclic (co-)homology HP∗(/ ) is a /2 -graded (co-)homology
theory defined as the projective (inductive) limit of the cyclic (co-)homology
using the periodicity operator. Since the Chern character commutes with S
by equation (3.13), the Chern character induces a natural transformation ch :
K∗(/ )→ HP∗(/ ).
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3.3 Hölder continuous symbols

One of the interesting applications of the periodicity operator is constructing
index formulas in the case when there is no classical differential geometry or
when the regularity of data is insufficient. This procedure is inspired by Propo-
sition 3 in Chapter III.2.α of [34] where the cyclic 1-cocycle on C∞(S1) defined
by

µ( f0 ⊗ f1) :=
1

2πi

∫

S1

f0d f1, (3.14)

is regularized and extended to the algebra of Hölder continuous functions. This
idea was later used in [76] and [77] to regularize index formulas for operator-
valued pseudo-differential operators and in [48] to extend the Mickelsson-Faddeev
cocycle from the loop group to a fractional loop group.

Let us start by describing how to regularize the cyclic cocycle (3.14). The
Cauchy operator F ∈2(L2(S1)) is defined form the principal value integral

F f (z) =
1
πi

∫

S1

f (w)dw
z − w

.

By evaluating F on the orthonormal basis ek(z) := (2π)−1zk of L2(S1) we obtain
Fek = sign(k)ek in the convention sign(0) = 1. The cyclic cocycle Sµ is coho-
mologous to cc3(π, F), where π : C∞(S1)→2(L2(S1)) is defined via point-wise
multiplication. The Toeplitz quantization associated with this odd Fredholm
module is the ordinary Toeplitz quantization of S1 on the Hardy space. This
fact follows from that the Hardy space, consisting of functions in L2(S1) with a
holomorphic extension to the interior of S1, is spanned by {ek}k≥0 which implies
that (F + 1)/2 is the Szegö projection onto the Hardy space. Since the odd
Chern character is an isomorphism, it is sufficient to verify this statement on
the cyclic 3-cycle

(z−1 − 1)⊗ (z − 1)⊗ (z−1 − 1)⊗ (z − 1) ∈ C∞((S1)4).

A straight-forward integral estimate shows that cc2k+1(π, F) is in the image
of HC2k+1(Cα(S1)) → HC2k+1(C∞(S1)) whenever α(2k + 1) > 1. In particular,
using the index formula (3.4) we obtain that if T is a Toeplitz operator on S1 with
symbol u Hölder continuous symbol of exponent α and k satisfies α(2k+1)> 1
then ind (T ) =−deg(u) so

deg(u) =− 1
(2πi)2k

∫
u(z0)−1 u(z1)− u(z0)

z1 − z0

u(z2)−1 − u(z1)−1

z2 − z1
· · · u(z0)− u(z2k)

z0 − z2k
dz,

where we set dz := dz0 . . . dz2k, see Proposition 3 in Chapter III.2.α of [34].
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In general, the problem that we addressed in the beginning of this chapter,
to express the index of a pseudo-differential or a Toeplitz operator when the
symbol is not smooth enough and when the underlying space is non-smooth can
be dealt with by using the Connes-Chern character of some suitable Fredholm
module. The cyclic cocycle that we want to regularize is defined from the de
Rham cohomology class T d(X ) under the isomorphism (3.12). Just as it was
done above for S1 we will use the kitchen door by constructing the index pair-
ing first and use the Connes-Chern character to construct a regularizing cyclic
cohomology class.

In Paper B we will study Toeplitz operators on the Hardy space of the bound-
ary ∂Ω of a strictly pseudo-convex domain Ω in an n-dimensional Stein manifold
and generalize the index formula of Connes for Hölder continuous symbols to the
higher-dimensional setting. As mentioned above, this problem is motivated by
non-linear partial differential equations and degree theory for V MO-mappings
developed by Brezis-Nirenberg [27]. The degree theory for V MO-mappings is
based upon the fact that continuous functions are dense in the space of V MO-
functions. By the result of Brezis-Nirenberg the degree of a continuous mapping
is continuous in the V MO-topology so the degree of a V MO-mapping can be
defined by means of continuity. Using Boutet de Monvel’s index formula for
Toeplitz operators with smooth symbol we provide an explicit formula for the
degree of a Hölder continuous function in Theorem B.4.4.

The reason that we consider domains in Stein manifolds is that we can use a
certain projection approximating the Szegö projection P∂Ω of ∂Ω, known as the
Henkin-Ramirez projection, a non-orthogonal projection onto the Hardy space
that differs from the Szegö projection by a Schatten class operator. We will
denote the Henkin-Ramirez projection by PHR. To prove that the Toeplitz oper-
ators with Hölder continuous symbols stem from a finitely summable Fredholm
module we will use a theorem by Russo, see [80], giving a sufficient condition
for the finite summability of an integral operator in the terms of its integral ker-
nel. The integral kernel of the Henkin-Ramirez projection is well studied and
using some known integral estimates for this integral kernel and Russo’s theo-
rem we show that the Henkin-Ramirez projection commutes up to q-summable
operators with Hölder continuous functions of exponent α for any q > 2n/α.
Therefore, the Toeplitz operators on the Hardy space defines a q-summable odd
Fredholm module over the Hölder continuous functions Cα(∂Ω) of exponent α
for any q > 2n/α. Therefore there is a well defined associated Connes-Chern
character on the algebra of Hölder continuous functions. In particular, we derive
the following index formula:

Theorem 2. Suppose that Ω is a relatively compact strictly pseudo-convex do-
main with smooth boundary in a Stein manifold of complex dimension n. Denote
the corresponding Henkin-Ramirez kernel by H∂Ω and the Szegö kernel by C∂Ω.



39 3.3. Hölder continuous symbols

If a : ∂Ω→ GLN is Hölder continuous of exponent α, then for 2k+1> 2n/α the
index formulas hold

ind (P∂Ωπ(a)P∂Ω) =−
∫

∂Ω2k+1

tr




2k∏

j=0

(1− a(zj−1)−1a(zj))H∂Ω(zj−1, zj)


dV =

= ind (PHRπ(a)PHR) =−
∫

∂Ω2k+1

tr




2k∏

j=0

(1− a(zj−1)−1a(zj))C∂Ω(zj−1, zj)


dV,

where the integrals converge absolutely.

As an example of this index theorem, consider a Toeplitz operator Ta on S2n−1

with Hölder continuous symbol a : S2n−1→ GLN ( ). Since S2n−1 is convex, the
Henkin-Ramirez projection coincides with the Szegö projection. The calculation
can be found in Theorem IV.3.4 of [71]. The integral kernel is

HS2n−1(z, w) = CS2n−1(z, w) = cn(1− zw̄)−n,

where cn = (n− 1)!/(2πi)n. Therefore, we have the explicit index formula for
Toeplitz operators on the sphere with Hölder continuous symbols:

ind (Ta) =
((n− 1)!)2k+1

(2πi)n(2k+1)

∫

(S2n−1)2k+1

tr




2k∏

j=0

1− a(zj−1)a(zj)−1

(1− zj−1z̄ j)n


dV (3.15)

Let us make a remark on the choice of symbols being Hölder continuous. The
proof of Theorem 2 goes through word by word if we replace the Hölder contin-
uous functions by bounded functions f satisfying a kind of integral continuity
depending on one more parameter r. The formulas and restrictions become
slightly more complicated with more parameters. The restriction we must put
on f is that ∫

∂Ω

A∫

∂Ω

| f (z)− f (w)|r
d(z, w)αr dV∂Ω

Bq/r
dV∂Ω <∞, (3.16)

where d denotes the Euclidean metric or more generally the Koranyi metric on
∂Ω. The Koranyi metric is the pseudo-metric on ∂Ω associated with the contact
structure. It is closely related to the Szegö kernel and very directly related to
certain estimates of the integral kernel of the Henkin-Ramirez projection, see
for instance Proposition 3.1 of [71] or in section B.2 below. Equation (3.16) is
equivalent to the condition that

Jd
α ( f ) : (z, w) 1→ | f (z)− f (w)|/d(z, w)α

is in the mixed LP -space L(r,q)(∂Ω×∂Ω). If f satisfies (3.16) for some parameters
α, q, r such that

α ∈]0, 1], r, q > 2n/α and rq/(rq− r − q)< 2n/(2n−α), (3.17)
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then [PHR, f ] ∈ 8 q(L2(∂Ω)). This commutation relation is the necessary tool
for producing the index formulas of Theorem 2. Denote the space of bounded
functions satisfying (3.16) with d being the Euclidean metric by F euc(∂Ω,α, q, r)
and analogously with F kor(∂Ω,α, q, r). These function spaces become Banach
spaces in the norm f 1→ ‖ f ‖L∞ + ‖Jd

α ( f )‖L(r,q) , with the corresponding choices of
d. Since the Koranyi metric bounds the Euclidean metric on small distances
there is a bounded embedding

F euc(∂Ω,α, q, r)⊆ F kor(∂Ω,α, q, r).

A straight-forward estimate shows that there is a bounded embedding

F euc(∂Ω,α, q, r)⊆ V MO(∂Ω)

if αrq ≥ n(r + q). The Gagliardo characterization of Sobolev spaces, see [26],
implies that whenever 0< s < 1 and 1< p <∞ then

W s,p(∂Ω) = F euc
*
∂Ω,

2n− 1
q

+ s, q, q
+

.

The spaces F euc(∂Ω,α, q, r) do not give any new type of degree formulas for
Sobolev spaces. Set s = (2n− 1)/q−α; then (3.17) is true if

q2/(q2 − 2q)< 2n/(2n−α) ⇐⇒ sq > 2n+ 1.

This means that for any parameters s, q making the degree formula well defined,
the Sobolev embedding implies that W s,q(∂Ω) ⊆ Cα(∂Ω). It is not clear how
much more exotic functions can occur for r D= q and how low regularity the space
F kor(∂Ω,α, q, r) admits. An interesting question that deserve some attention is
how does the structure of the spaces F kor(∂Ω,α, q, r) look? Are there any em-
beddings into standard spaces for r D= q?

As mentioned previously, pseudo-differential operators are Toeplitz opera-
tors in disguise. To illustrate the scheme of representing the pseudo-differential
quantization by a Toeplitz quantization we consider the case of a sphere and
calculate explicit integral kernels for the associated Toeplitz quantization. It
is sufficient to calculate the Henkin-Ramirez kernel of the cosphere bundle of a
sphere Sn in the Riemannian metric induced from the embedding Sn ⊆ n+1.
For µ ∈ [0, 1[ we define the analytic subvariety Zµ ⊆ n+1 as the zero set of the
polynomial z · z−µ, where · denotes the bilinear product in n+1. If µ > 0, the
variety Zµ is smooth but Z0 has an isolated singularity in z = 0. We consider
the strictly pseudo-convex domain Ωµ := B2n+2(2−µ, 0)∩ Zµ ⊆ Zµ. Observe that

S∗Sn = {(x , y) ∈ n+1 × n+1 : |x |= |y |= 1, x · y = 0}.
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If we set z = x + i y
#

1−µ, then z · z = |x |2 − |y|2(1− µ) + 2i x · y = µ. This
construction defines a diffeomorphism S∗Sn ∼= ∂Ωµ for all µ ∈]0,1[. When µ= 0,
the corresponding mapping defines a diffeomorphism away from the singularity.
Observe that the calculation (1.8) implies that there is a graded isomorphism
K∗(∂Ωµ)∼= 2 ⊕ 2 for any µ ∈ [0,1[.

We are now going to calculate the Henkin-Ramirez kernel for µ ∈ [0, 1[ using
the method of [1]. We will denote the Henkin-Ramirez kernel of ∂Ωµ by PµHR.
If we partial integrate the example in equation 6.2 of [1] we obtain that PµHR is
defined on f ∈ L2(∂Ω) by

PµHR f (z) =
∫

∂Ωµ

f (w) · γ(w)¬
A

h(z, w)∧ w̄ · dw ∧ (dw̄ · dw)n−1

(2πi)n(2−µ− zw̄)n

B
,

where γ is a (1,0)-vector field that is smooth, except in w = 0 when µ = 0,
satisfying that γ(w)¬(2z · dz) = 2πi and h is a Hefer form with respect to
f (w)− f (z). In our case we may take

γ(w) =
πi
|w|2 w̄ · ∂

∂ w
and h(z, w) = (w + z) · (dw̄ + dz̄).

After some calculations we come to the identity for the scalar kernel H∂Ωµ :

H∂Ωµ(z, w)dV∂Ωµ =
(n− 2)!
∑n+1

j,k,l=1(wj + zj)w̄kw̄l ∗ (dwl ∧ dw̄k ∧ dwl)

(2πi)n−1(2−µ)2(2−µ− z · w̄)n . (3.18)

Using Guillemin’s theorem, Theorem 5.2 of [47], the pseudo-differential quan-
tization of Sn is equivalent to the Szegö quantization on ∂Ωµ for µ > 0 since
T ∗Sn ∼= Ωµ. As a corollary of the construction (3.18) we obtain an explicit
splitting T0 : C∞(S∗X )→ Ψcl(Sn) of the pseudo-differential extension:

0→ Ψ−1
cl (S

n)→ Ψ0
cl(S

n)
σ−→ C∞(S∗Sn)→ 0,

that extends to a completely positive mapping T : C(S∗Sn) → Ψ(S∗Sn), where
Ψ(S∗Sn) denote the C∗-algebra generated by the classical zero order pseudo-
differential operators on Sn.

Another observation is that the formalism for integral representations of [1]
should allow one to generalize the index theorem for Hölder continuous symbols
from Stein manifolds to Stein varieties as long as there are no singularities on
∂Ω. This is the setting in which Boutet de Monvel’s index formula for Toeplitz
operators works in its full generality. When there are singularities on ∂Ω, prob-
lems arise already on an analytic level even for smooth functions.

We perform a similar calculation as Theorem 2 in Paper C for pseudo-
differential operators twisted by Hölder continuous vector bundles. We do
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this by showing that any zero order pseudo-differential operator on a closed
n-dimensional manifold X defines a q-summable even Fredholm module over the
Hölder continuous functions Cα(X ) of exponent α for any q > n/α. The method
of proof is just as in the the proof of Theorem 2 based upon Russo’s theorem.
Using the Connes-Chern formula we obtain analytic formulas for the index pair-
ing between elliptic pseudo-differential operators with Hölder continuous vector
bundles.

The initial motivation for these calculations was to find an explicit degree
for Hölder continuous mappings. Theorem 2 can only be used to derive degree
formulas for Hölder continuous mappings under the topological and analytical
requirement that the domain is the boundary of a strictly pseudo-convex domain.
If we want to calculate the mapping degree of a function f : X → Y we can in fact
restrict our attention to manifolds of a specified dimension parity, since we can
always replace f by f × idS1 : X ×S1→ Y ×S1 without changing the degree. The
idea for finding a general formula is to restrict to even-dimensional manifolds
and combine the Atiyah-Singer index formula with the q-summable Fredholm
that an elliptic pseudo-differential operator defines on the Hölder continuous
functions.

To be more precise, if A is an elliptic pseudo-differential operator and E→ X
is a smooth vector bundle, the Atiyah-Singer index theorem implies that

ind (AE) =
∫

T ∗X
ch[A]∧π∗ch[E]∧π∗T d(X ).

If we can make the right-hand side well defined for Hölder continuous bundles
we can take a smooth line bundle L→ Y and consider the index of A twisted with
the Hölder continuous bundle f ∗L → X . By the remarks above we can make
everything well-defined by only considering zero order operators A. Naturality
of the Chern character implies that

ind (Af ∗ L) =
∫

X
ch[A]∧π∗ f ∗ch[L]∧π∗T d(X ).

If we can construct L such that ch[L] = 1 + dVY , we do in fact arise at the
conclusion that

ind (Af ∗ L) =
∫

X
ch[A]∧π∗ f ∗(1+ dVY )∧π∗T d(X ) = ch0[A]deg( f ) + ind (A).

This construction can be done for even-dimensional manifolds, see more in The-
orem C.3.2. The left-hand side of can be calculated by means of cyclic cohomol-
ogy. We perform this scheme in Paper C by taking A := D(1+ D2)−1/2, where D
denotes the signature operator on X discussed in section 3.1. The main result
of Paper C is that:
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Theorem 3. Suppose that X and Y are smooth connected closed 2n-dimensional
manifolds and f : X → Y is Hölder continuous of exponent α. When k > n/α
the following integral formula holds:

deg( f ) = 2−n〈cck(π̃, F̃D), f ∗([LY ]− 1)〉2k =

= −2−nsign(X ) + 2−n(−1)k
∫

X 2k

f̃k(x1, . . . , x2k)dVX 2k

where (π̃, F̃D) is the even analytic K-cycle associated with the signature operator
as in Theorem C.4.2, LY → Y is the line bundle described in Theorem C.2.2 and
f̃k is the integrable function defined explicitly from the function f as below in
the equation (C.20).

One of the more direct applications of Theorem 2 and Theorem 3 are Hölder
norm estimates of mapping degrees. We will let

| f |α := sup
x D=y

| f (x)− f (y)|
|x − y|α .

First of all, Theorem 3 implies the general estimate

|deg( f )|≤ |sign(X )|+ c2k
X ,Y | f |2k

α ,

for f : X → Y Hölder continuous mapping of exponent larger than n/2k between
n-dimensional manifolds. Secondly, the multiplicative nature of the index (1.2)
and Theorem 2 implies that if f , g : ∂Ω→ Y are two Hölder continuous mapping
of exponent larger than n/k and Ω is a strictly pseudo-convex domain in an n-
dimensional Stein manifold then

|deg( f )− deg(g)|≤ c2k+1
Ω,Y

4
‖g‖C(∂Ω,Y )| f − g|α + |g|α‖ f − g‖C(∂Ω,Y )

52k+1
.
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Paper A

Index formulas and charge
deficiencies on the Landau
levels

Abstract

The notion of charge deficiency from Avron-Seiler-Simon [12] is studied from
the view of K-theory of operator algebras and is applied to the Landau levels
in 2n. We calculate the charge deficiencies at higher Landau levels in 2n by
means of an Atiyah-Singer type index theorem.
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PAPER A. INDEX FORMULAS AND CHARGE DEFICIENCIES ON THE

LANDAU LEVELS

Introduction

The paper is a study of the charge deficiencies at the Landau levels in 2n.
The Landau levels are the eigenspaces of the Landau Hamiltonian which is the
energy operator for a quantum particle moving in 2n under the influence of a
constant magnetic field of full rank.

In [12], the notion of charge deficiency was introduced as a measure of how
much does a flux tube change a fermionic system in 2. The setting of [12]
is a quantum system where the Fermi energy is in a gap and the question is
what happens when the system is taken trough a non-trivial cycle. Letting P
denote the projection onto the state space and U the unitary transformation
representing the cycle, the projection Q onto the new state space after it had
been taken through a cycle can be expressed as Q = U PU∗. The relative index
ind (Q, P) is defined as an infinite dimensional analogue of dimQ− dim P and is
well defined whenever Q− P is a compact operator. The condition that Q− P
is compact is equivalent to that [P, U] is compact. In the setting of [12] the
relative index represents the change in the number of fermions that U produces.
In [12] the following formula was proven:

ind (Q, P) = ind (PU P).

For sufficiently nice systems in 2 one can choose the particular unitary
given by multiplication by the bounded function U := z/|z|. The condition on
the system that is needed is that P commutes with U up to a compact operator.
The charge deficiency of a projection P in the sense of [12] is then defined using
U as

c(P) := ind (PU P).

The viewpoint we will have in this paper is that the charge deficiency is a
K-homology class. This viewpoint lies in line with the view on D-brane charges
in string theory, see more in [28], [72]. In the case studied in [12] the charge
deficiency is realized as an odd K-homology class on the circle S1. The unitary
U define a representation of C(S1) and using the fact that P commutes with
U up to a compact operator we get a K-homology class. Let us denote this
K-homology class by [P] and by u we will denote the generator of C(S1). In
this notation, the charge deficiency is given by c(P) = [u]◦[P] ∈ KK( , )∼= ,
the Kasparov product between [P] ∈ K1(C(S1)) and [u] ∈ K1(C(S1)). Thus the
charge deficiency is the image of [P] under the isomorphism

K1(C(S1)) = KK1(C(S1), )∼= Hom(K1(C(S1)), K0( ))∼= ,

where the first isomorphism is the natural mapping coming from the Universal
Coefficient Theorem for KK-theory and the second isomorphism comes from
choosing [u] as a generator for K1(C(S1)). So a better picture is that the K-
homology class [P] ∈ K1(C(S1)) is the charge deficiency of P.
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The system we will consider in this paper consists of a particle moving in
2n under the influence of a constant magnetic field B of full rank. If we choose

a linear vector potential A satisfying dA = B the Hamiltonian of this system is
given by

HA := (−i∇− A)2,

This Landau Hamiltonian should be viewed as a densely defined operator in
the Hilbert space L2( 2n). Taking E(HA) = C∞c (

2n), the operator HA becomes
essentially self-adjoint, see more in [64]. Due to the identification 2n = n we
will use the complex structure and we will assume that B = i

2

∑
dzj ∧ dz̄ j .

The Landau Hamiltonian has a discrete spectrum with eigenvalues Λ' =
2'+ n for ' ∈ and the eigenspaces 8 ' are infinite dimensional. Let

P' : L2( 2n)→8 '

denote the orthogonal projection to the ':th eigenspace. Our point of view on
the charge deficiencies for the Landau levels is that they are K-homology classes
of the sphere S2n−1. For a bounded continuous function a : 2n → MN ( ) we
define the continuous function ar ∈ C(S2n−1) as

ar(v) := a(rv).

We let AN be the subalgebra of Cb( 2n)⊗ MN ( ) such that ar converges uni-
formly in v to a continuous function a∂ on S2n−1. The mapping a 1→ a∂ defines
a ∗-homomorphism AN → C(S2n−1)⊗ MN ( ). The projection P' commutes up
to a compact operator with a ∈ AN (see below in Theorem A.2.2) and

P'a|8 '⊗ N :8 ' ⊗ N →8 ' ⊗ N

is Fredholm if and only if a∂ is invertible (see Proposition A.2.6). Now we may
present the main theorem of this paper:

Theorem 4. If a∂ is smooth and invertible, the index of P'a|8 '⊗ N can be
expressed as

ind (P'a|8 '⊗ N ) =
−('+ n− 1)!
'!(2n− 1)!(2πi)n

∫

S2n−1

tr((a−1
∂ da∂ )2n−1).

The charge deficiency [P'] ∈ K1(C(S2n−1)) may be expressed in terms of the
Bergman projection PB on the unit ball in n as

[P'] =
('+ n− 1)!
'!(n− 1)!

[PB].
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A.1 Particular Landau levels

The spectral theory of the Landau Hamiltonian is well known and we will review
it briefly. See more in [79]. We will let ϕ := |z|

2

4
and assume that the magnetic

field B is of the form B = i∂ ∂̄ ϕ. Here ∂ is the complex linear part of the exterior
differential d. Define the annihilation operators as

qj := 2
∂

∂ z̄ j
+ zj for j = 1, . . . , n.

The adjoints are given by the creation operators q∗j := −2 ∂
∂ zj
+ z̄ j . The annihi-

lation and creation operators satisfy the following formulas:

[qj , qi] = [q∗j , q∗i ] = 0, [qi , q∗j ] = 2δi j and HA =
n∑

j=1

q∗j q j + n=
n∑

j=1

qjq
∗
j − n.

Here we view HA as a densely defined operator in L2( n). Thus the lowest
eigenvalue is n with corresponding eigenspace 80 = e−ϕ9 ( n) where 9 ( n) :=
L2( n, e−2ϕ) ∩ F ( n) denotes the Fock space. Here F ( n) denotes the space
of holomorphic functions in n. In one complex dimension there is only one
creation operator q∗ and the eigenspaces are given by 8k = (q∗)k80. Using
multi-index notation, for = (k1, . . . , kn) ∈ n we define q := qk1

1 · · ·qkn
n and

8 := q∗ 80 =8k1
⊗8k2

⊗ · · ·⊗8kn
.

We will call this space for the particular Landau level of height . Using that
qj and q∗j define a representation of the Heisenberg algebra in n dimension we
obtain the eigenvalues of HA as Λ' = 2'+ n with the corresponding eigenspaces

8 ' :=
⊕

| |='
8 =
⊕

| |='
8k1
⊗8k2

⊗ · · ·⊗8kn
.

The ':th eigenspace 8 ' is called the Landau level of height '. Since the Hamil-
tonian commutes with the representation of SU(n) on n, its eigenspaces are
SU(n)-invariant. Also the orthogonal projections P' : L2( n)→8 ' are invariant
under the SU(n)-action.

Recall that the vacuum subspace 80 ⊆ L2( n) has a reproducing kernel
induced by the reproducing kernel on the Fock space. The reproducing kernel
of 9 ( n) is given by K(z, w) = e

w·z̄
4 . So the reproducing kernel of 80 is given by

K0(z, w) := e
1
4
(w·z̄−|z|2−|w|2).
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This expression for the reproducing kernel implies that the orthogonal projection
P0 : L2( n)→80 is given by

P0 f (z) =
∫

n

f (w)K0(z, w)dV.

By [78] the orthogonal projection P : L2( n)→8 onto the particular Landau
level of height is also an integral operator with kernel

K (z, w) = e
1
4
(w·z̄−|z|2−|w|2)

n∏

j=1

Lkj

*
1
2
|zj − wj |2
+

. (A.1)

Here Lk is the Laguerre polynomial of order k. Notice that the projections P
are not SU(n)-invariant in general.

A.2 Toeplitz operators on the Landau levels

We want to study topological properties of the particular Landau levels using
Toeplitz operators. The symbols will be taken from a suitable subalgebra of
Cb( n), the bounded functions on n. The standard notation 2(, ) will be
used for the bounded operators on a separable Hilbert space, and the compact
operators will be denoted by + (, ). We will let π : Cb( n) → 2(L2( n))
denote the representation given by pointwise multiplication. This is clearly an
SU(n)-equivariant mapping. Define the linear mapping T : Cb( n)→ 2(8 )
by T (a) := P π(a)|8 .

Lemma A.2.1. If a ∈ C0( n) then T (a) ∈ + (8 ) for all ∈ n.

The proof of this lemma is analogous to the proof for the same statement
for Toeplitz operators on a pseudoconvex domain from [89].

Proof. It is sufficient to prove the claim for a ∈ Cc( n), since T is continu-
ous and Cc( n) ⊆ C0( n) is dense. Define the compact set K := supp (a). Let
R : 8 → L2( n) denote the operator given by multiplication by χK , the char-
acteristic function of K. We have T (a) = P π(a)R so the Lemma holds if R
is compact. That R is compact follows from Cauchy estimates of holomorphic
functions on a compact set.

Define the SU(n)-invariant C∗-subalgebra A⊆ Cb( n) as consisting of func-
tions a such that a(rv) converges uniformly in v as r → ∞ to a continuous
function a∂ : S2n−1 → when r → ∞. Thus we obtain a surjective SU(n)-
equivariant ∗-homomorphism π∂ : A→ C(S2n−1) given by

π∂ (a)(v) := lim
r→∞

a(rv).
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The mapping π∂ satisfies kerπ∂ = C0( n). We will henceforth consider T as a
mapping from A to 2(8 ).

If we let B2n denote the open unit ball in n, another view on A is as the
image of the SU(n)-equivariant ∗-monomorphism C(B2n) → Cb(B2n) ∼= Cb( n)
where the last isomorphism comes from an SU(n)-equivariant homeomorphism
B2n
∼= n.

Theorem A.2.2. The projection P satisfies [P ,π(a)] ∈ + (L2( n)) for all
a ∈ A. Therefore the ∗-linear mapping T : A→2(8 ) satisfies

T (ab)− T (a)T (b) ∈ + (8 ).

The proof is based on a similar result from [19] where the Fock space was
used to define a Toeplitz quantization of a certain subalgebra of L∞( n). The
case of the Fock space is more or less the same as the case = 0 for Landau
quantization. To prove the Theorem we need a lemma similar to part (iv) of
Theorem 5 of [19]. Using the isomorphism A ∼= C(B2n) we define the dense
subalgebra A1 ⊆ A as the inverse image of the Lipschitz continuous functions in
C(B2n).

Lemma A.2.3. For a ∈ A1 then for any ε > 0 we may write a = gε + hε where
hε ∈ C0( n) and gε ∈ A satisfies

|gε(z)− gε(w)|≤ ε|z − w| ∀z, w ∈ n. (A.2)

Proof. Let C denote the Lipschitz constant of π∂ (a). Take an ε > 0 and let χε
be a Lipshitz continuous SU(n)-invariant cutoff such that χε(z) = 0 for |z| ≤ R
and χε(z) = 0 for |z| ≥ 2R where R = R(ε, C) is to be defined later. To shorten
notation, define a∂ := π∂ (a). Let

gε(z) := χε(z) · a∂ (z/|z|)

and hε := a− gε. Clearly hε ∈ C0( n) and gε ∈ A so what remains to be proven
is that R can be chosen in such a way that gε satisfies equation (A.2).

We have elementary estimates
DDDD

z
|z| −

w
|w|

DDDD≤
|z − w|
|z| +
DDDD

w
|z| −

w
|w|

DDDD≤ 2
|z − w|
|w| .

Thus for z, w D= 0 the function a∂ satisfies
DDDDa∂
*

z
|z|

+
− a∂

*
w
|w|

+DDDD≤
2C
|w| |z − w|.

The function χε has Lipschitz coefficient 1/R so if we take R > 2C/ε then gε
satisfies equation (A.2).
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Let 4 (L2( n)) := 2(L2( n))/+ (L2( n)) denote the Calkin algebra and q
the quotient mapping.

Proof of Theorem A.2.2. Since Lipschitz continuous functions are dense in A
we may assume that a ∈ A1, so by Lemma A.2.3 we can for any ε > 0 write
a = gε + hε. In this case we have for f ∈ L2( n)

[P ,π(gε)] f (z) =
∫
(gε(z)− gε(w))K (z, w) f (w)dw.

Define the operator

B f (z) :=
∫
|z − w|K (z, w) f (w)dw.

By equation (A.1) we have that for some C the integral kernel of B is bounded
by

|z − w||K (z, w)|≤ C |z − w|| |+1e−
1
8
|z−w|2 .

Therefore the kernel of B is dominated by the kernel of a bounded convolution
operator and ‖B‖<∞. The estimate (A.2) for gε implies that

‖[P ,π(gε)]‖ ≤ ε‖B‖.

Using that [P ,π(gε)] = [P ,π(a)]modulo compact operators, by Lemma A.2.1,
we have the inequality

‖q([P , a])‖4 (L2( n)) ≤ ε‖B‖ ∀ε > 0.

Therefore q([P , a]) = 0 and [P , a] is compact.

Theorem A.2.2 implies that the mapping β̃ := q ◦ T : A→4 (8 ) is a well
defined ∗-homomorphism. Define the C∗-algebra

6̃ := {a⊕ x ∈ A⊕2(8 ) : β̃ (a) = q(x)}.

This C∗-algebra contains + as an ideal via the embedding k 1→ 0⊕ k and we
obtain a short exact sequence

0→+ → 6̃ → A→ 0. (A.3)

Lemma A.2.4. Let ( p)Np=1 ⊆ n be a finite collection of distinct n-tuples of
integers. Then the mapping

AG a 1→ q






N∑

p=1

P
p


π(a)



N∑

p=1

P
p




 ∈ 4




N⊕

p=1

8
p
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coincides with the mapping

AG a 1→ ⊕N
p=1β̃ p

(a) ∈ 4




N⊕

p=1

8
p


 .

Proof. The Lemma follows if we show that P π(a)P ′ ∈ + (L2( n)) for D= ′.
But Theorem A.2.2 implies that P π(a)(1− P ) ∈ + (L2( n)). So the Lemma
follows from

P π(a)P ′ = P π(a)(1− P )P ′ .

In particular we can look at the collection of all :s such that | | = '. We
will define the SU(n)-equivariant mapping β̃' : A→4 (8 ') as

a 1→ ⊕| |='β̃ (a).

Just as for the particular Landau levels we define

6̃ ' := {a⊕ x ∈ A⊕2(8 ') : β̃'(a) = q(x)}.

The projection mapping 6̃ '→ A given by a⊕x 1→ a defines an SU(n)-equivariant
extension

0→+ → 6̃ '→ A→ 0.

Lemma A.2.5. The kernel of β̃' is C0( n).

Proof. Lemma A.2.1 implies that C0( n)⊆ ker β̃'. To prove the reverse inclusion
we observe that the mapping β̃' is a unital SU(n)-equivariant ∗-homomorphism.
Since β̃' is equivariant, the ideal ker β̃' ⊆ A is SU(n)-invariant. The inclu-
sion C0( n) ⊆ ker β̃ implies that there is an equivariant surjection C(S2n−1)→
A/ker β̃' which must be an isomorphism since C(S2n−1) is SU(n)-simple and β̃'
is unital. It follows that ker β̃' = C0( n).

It is interesting that although the statement of Lemma A.2.5 sounds alge-
braic, it is really the analytic statement that T'(a) is compact if and only if a
vanishes at infinity. And this is proven with algebraic methods!

Proposition A.2.6. If u ∈ A⊗ MN ( ), the operator T'(u) is Fredholm if and
only if π∂ (u) is invertible.

Proof. By Atkinson’s Theorem T'(u) is Fredholm if and only if β̃'(u) is invertible.
Lemma A.2.5 implies that kerπ∂ = ker β̃' so β̃'(u) is invertible if and only if
π∂ (u) is invertible.
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A.3 Pulling symbols back from S2n−1

To put the Toeplitz operators on a Landau level in a suitable homological pic-
ture, we must pass from A to C(S2n−1). This is a consequence of the circumstance
that A is homotopy equivalent to , so A does not contain any relevant topo-
logical information. With Lemma A.2.5 in mind we define the Toeplitz algebra
6 for C(S2n−1) as if β̃ were injective. So let λ : C(S2n−1)→2(L2( n)) denote
the ∗-representation defined by

λ(a) f (z) = a
*

z
|z|

+
f (z). (A.4)

Take χ0 ∈ C∞( ) to be a smooth function such that χ0(x) = 0 for |x | ≤ 1 and
1−χ0 ∈ C∞c ( ). We define the cut-off χ(z) := χ0(|z|) and the operator

P̃ := P χ . (A.5)

For the operator P̃ , q(P̃ ) is a projection by Lemma A.2.1. We let 6 be the
C∗-algebra generated by P̃ λ(C(S2n−1))P̃∗.

Theorem A.3.1. For any , ′ ∈ n there exists a unitary

Q , ′ :8 ′ →8

such that Ad(Q , ′) : 6 → 6 ′ is an isomorphism satisfying

q(P̃ ′λ(a)P̃∗′) = q ◦ Ad(Q , ′)(P̃ λ(a)P̃∗). (A.6)

Furthermore, for any ∈ n, the representation of 6 on 8 given by the
inclusion 6 ⊆2(8 ) is irreducible and has the cyclic vector ξ defined by

ξ (z) := q∗ (e−|z|
2/4).

Up to normalization the cyclic vectors satisfy

Q , ′ξ ′ = ξ .

Proof. Let us start with observing that for any a, b ∈ C(S2n−1) we have

P̃ λ(ab)P̃∗ − P̃ λ(a)P̃∗P λ(b)P̃∗ ∈ + .

So if 6 acts irreducibly on 8 , then + ⊆ 6 .
First we will construct a cyclic vector for the 6 -action on 8 and use the

cyclic vector in 80 to show that 60 acts irreducibly on 80. Then we will show
that for such that 6 acts irreducibly on 8 and 1 ≤ j ≤ n there is an
isomorphism 6 ∼= 6 +ej

induced by a unitary intertwining the 6 -action on L
with the 6 +ej

-action on 8 +ej
.
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Consider the elements ξ , ∈ 8 for ∈ n defined by

ξ , (z) := q∗ (z e−|z|
2/4).

The elements ξ , form an orthogonal basis for 8 . As in the statement of the
theorem, we define ξ := ξ0, . For a ∈ C(S2n−1) we have

〈ξ , , P̃ aP̃∗ξ 〉= 〈ξ , ,χ2aξ 〉=
∫

n

q̄∗ (z̄ e−|z|
2/4)q∗ (e−|z|

2/4)χ2(z)a
*

z
|z|

+
dV =
∫

S2n−1

p (z̄)a(z)dS,

for some polynomials p of degree at most 2| |+ | |. It follows that 6 ξ span
8 and therefore 6 ξ =8 . Thus ξ is a cyclic vector for the 6 -action.

By standard theory 60 acts irreducibly on 80 if and only if there are no
non-zero ξ′0,ξ′′0 ∈ 80 such that ξ0 = ξ′0 + ξ

′′
0 and 60ξ

′
0 ⊥ 60ξ

′′
0 . Assume that for

some ξ′0 ∈ 80 we have 60ξ
′
0 ⊥ 60(ξ0−ξ′0). The orthogonality condition implies

that 〈P̃0aP̃∗0 (ξ0 − ξ′0),ξ′0〉 = 0 for all a ∈ C(S2n−1) and P0 is self-adjoint so this
relation is equivalent to 〈χ2aξ0,ξ′0〉 = 〈χ2aξ′0,ξ′0〉 for all a ∈ C(S2n−1). There
exist a holomorphic function f0 such that ξ′0(z) = f0(z)e−|z|

2/4 and the equation
〈χ2aξ0,ξ′0〉= 〈χ2aξ′0,ξ′0〉 implies
∫

n

f0(z)e−|z|
2/2χ2(z)a
*

z
|z|

+
dV =
∫

n

| f0(z)|2e−|z|
2/2χ2(z)a
*

z
|z|

+
dV.

Hence f0 must be real, and since it is holomorphic it must be constant. Thus
ξ′0 is in the linear span of ξ0 and ξ0 defines a pure state. Since the 60-action
on 80 has a pure state, it is irreducible.

Assume that 6 acts irreducibly on 8 . Consider the polar decomposition of
the unbounded operator qj on L2( n), that is q∗j = EjQ j where Q j is a coisometry
and Ej is a positive unbounded operator that is strictly positive on the image of
Q j . Clearly Ej is diagonal on the energy levels and

Ej =
⊕
′∈ n

E
k′j P ′ .

We define the ∗-homomorphism ρ j : 6 +ej
→ 2(8 ) by ρ j(T ) := Q∗j TQ j |8 .

Since Q j is a coisometry this is clearly a ∗-monomorphism. It follows from the
fact that q∗j | :8 →8 +ej

is an isomorphism, that Q j | :8 →8 +ej
is unitary,

so ρ j is unital. If a ∈ C∞(S2n−1) then for some non-zero constant c we have

ρ j(P̃ +ej
λ(a)P̃∗+ej

) = cqj P̃ +ej
λ(a)P̃∗+ej

q∗j |8 =

= cP

F
∂

∂ z̄ j
,χ2λ(a)

G
P +ej

q∗j |8 + P̃ λ(a)P̃∗ ∈ 6 ,
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because Theorem A.2.2 implies P bP +ej
∈ + (L2( n)) for b ∈ A and by the

induction assumption + ⊆ 6 . So we obtain a ∗-monomorphism ρ j : 6 +ej
→

6 . However, we have cyclic vectors ξ and ξ +ej
for 6 respectively 6 +ej

. For
these vectors, Q jξ is a multiple of ξ +ej

so

8 +ej
= 6 +ej

ξ +ej

Q∗j−→ 6 ξ .

Therefore ρ j is surjective and an isomorphism. We conclude that 6 is inde-
pendent of and the representations on 8 are irreducible since ξ0 is pure and
the 6 -actions are all equivalent.

In [30] a weaker, but more explicit, statement was proven in complex dimen-
sion 1. Lemma 9.2 of [30] gives an explicit expression of Q∗k,0Tk(a)Qk,0 if a ∈ A
is smooth as

Q∗k,0Tk(a)Qk,0 = T0(Ek(a)),

where Ek := id+
∑k

j=1 dj,k∆ j , for some explicit constants dj,k and ∆ is the Lapla-
cian on .

For i = 1, . . . , n we let zi : S2n−1 → denote the coordinate functions of the
embedding S2n−1 ⊆ n. Clearly zi ∈ C(S2n−1).

Corollary A.3.2. The operators P λ(zi)P together with + generate 6 as a
C∗-algebra.

Proof. Let U denote the C∗-algebra generated by P λ(zi)P and + . The C∗-
algebra 6 is the C∗-algebra generated by the linear space P λ(C(S2n−1))P
because P λ(a)P −P̃ λ(a)P̃∗ ∈ + . So it is sufficient to prove P λ(C(S2n−1))P ⊆
U . Given a function a ∈ C(S2n−1) the Stone-Weierstrass theorem implies that
there is a sequence of polynomials Rj = Rj(z, z̄) such that Rj → a in C(S2n−1).
The functions Rj are polynomials so it follows that

P λ(Rj)P − Rj(P λ(z)P , P λ(z∗)P ) ∈ +

and P λ(Rj)P ∈ U . Finally ‖P λ(Rj)P − P λ(a)P ‖2(8 ) ≤ ‖Rj − a‖C(S2n−1)
which implies P λ(a)P ∈ U .

Corollary A.3.3. The mapping β : C(S2n−1) → 4 (8 ) induced from β̃ is
injective, so if u ∈ A⊗ MN ( ) the operator T (u) is Fredholm if and only if
π∂ (u) is invertible.

Proof. Due to equation (A.6) in Theorem A.3.1, the Corollary follows from
Lemma A.2.5. The proof of the second statement of the Corollary is proven in
the same fashion as Proposition A.2.6.
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From the fact that the mapping β is injective it follows that the symbol
mapping P̃ λ(a)P̃∗ 1→ a gives a well defined surjection σ : 6 → C(S2n−1).
Clearly the kernel of σ is non-zero and kerσ ⊆ + , so by Theorem A.3.1
kerσ =+ . Therefore we can construct the exact sequence

0→+ →6 σ−→ C(S2n−1)→ 0. (A.7)

A completely positive splitting of the symbol mapping σ : 6 → C(S2n−1) is
given by a 1→ P̃ λ(a)P̃∗.

The exact sequence (A.7) defines an extension class [6 ] ∈ Ex t(C(S2n−1)).
Since C(S2n−1) is a nuclear C∗-algebra there is an isomorphism Ex t(C(S2n−1))∼=
K1(C(S2n−1)) and we can describe the K-homology class of [6 ] explicitly by a
Fredholm module as follows; we let λ : C(S2n−1)→2(L2( n)) be as in equation
(A.4) and define the operator

F =
(1+ P̃ )

2

where P̃ is as in equation (A.5). Clearly, (L2( n),λ, F ) defines a Fredholm
module which represents the image of [6 ] in K1(C(S2n−1)).

Corollary A.3.4. The class [6 ] ∈ Ex t(C(S2n−1)) is independent of .

Proof. The extension 6 is equivalent to 6 ′ since it follows from equation (A.6)
that the following diagram with exact rows commute

0 −−−−→ + −−−−→ 6 ′ −−−−→ C(S2n−1) −−−−→ 0/Ad(Q , ′ )
/Ad(Q , ′ )

HHH
0 −−−−→ + −−−−→ 6 −−−−→ C(S2n−1) −−−−→ 0

.

So we know that [6 ] is independent of , this implies that the index of
T (u) for u ∈ Mn ⊗ A is independent of . But how do we calculate it? The
index theorem that allows the calculation involves studying how the coordinate
functions on S2n−1 act on the monomial base of 80. We will first review some
theory of Toeplitz operators on the Bergman space and then study what hap-
pens in complex dimension 1 and 2.

The Bergman space on the unit ball B2n ⊆ n is defined as A2(B2n) :=
L2(B2n) ∩ F (B2n), that is; holomorphic functions on B2n which are square in-
tegrable. The Bergman space is a closed subspace of L2(B2n) and we will denote
the orthogonal projection L2(B2n)→ A2(B2n) by PB.
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The Bergman projection defines a K-homology class [PB] ∈ K1(C(S2n−1)) in
the same fashion as for the Landau projections. That is, for a ∈ C(B2n) the
operator [PB, a] ∈ 2(L2(B2n)) is compact. The reason that we can use PB to
define a K-homology class for S2n−1 instead of B2n is analogously to above that
PBa|A2(B2n) is compact if and only if a ∈ C0(B2n), see more in [89]. Thus PBa|A2(B2n)
is Fredholm if and only if a|S2n−1 is invertible.

Furthermore, PBaPB is compact if and only if a ∈ C0(B2n). So [PB] is a well
defined K-homology class in K1(C(S2n−1)). By [23] the following index formula
holds for the Toeplitz operator PBa|A2(B2n) if the symbol a∂ := a|S2n−1 is smooth:

ind (PBa|A2(B2n)) =
−(n− 1)!

(2n− 1)!(2πi)n

∫

S2n−1

tr((a−1
∂ da∂ )2n−1). (A.8)

This formula was also proven in [46] by an elegant use of the Atiyah-Singer
index theorem.

We will by 6 n denote the C∗-algebra generated by PBC(B2n)PB in2(A2(B2n)).
The K-homology class [PB] ∈ K1(C(S2n−1)) can be represented by the extension
class [6 n] ∈ Ex t(C(S2n−1)) defined by means of the short exact sequence

0→+ →6 n σ
n

−→ C(S2n−1)→ 0. (A.9)

A.4 The special cases and 2

In this section we will study the special cases of complex dimension 1 and 2.
Dimension 1 has been studied previously in [12] and provides a simpler picture
than in higher dimensions. In the 1-dimensional case we have that K1(C(S1))∼=
and we can take the coordinate function z : S1→ to be a generator. So when
we want to determine the class [6k] we only need to calculate the index of
Pkλ(z)Pk where λ is as in equation (A.4). We recall the following Proposition
from [12]:

Proposition A.4.1 (Proposition 7.3 from [12]). For any k ∈ we have that

ind (Pkλ(z)Pk) =−1.

The method used in [12] to prove this Proposition was to show that in a
suitable basis Pkλ(z)Pk was up to some coefficients a unilateral shift. In higher
dimension the proof is based on similar ideas.

Theorem A.4.2. For n = 1 there is an isomorphism 6k
∼= 6 1 making [6k] =

[6 1] ∈ K1(C(S1)).

Proof. By Proposition 7.3 of [12]

[u] ◦ [6k] = ind (Pkλ(u)Pk) =−wind (u) = [u] ◦ [6 1] (A.10)
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for an invertible function u ∈ C(S1). Here wind (u) denotes the winding number
of u which is defined for smooth u as

wind (u) :=
1

2πi

∫

S1

u−1du

and defines an isomorphism K1(C(S1))→ . By the Universal Coefficient The-
orem for KK-theory (see Theorem 4.2 of [75]) the mapping

K1(C(S1))→ Hom(K1(C(S1)), )

is an isomorphism so equation (A.10) implies that [6k] = [6 1].
By Theorem 13 of [38], the short exact sequence 0→+ →6k → C(S1)→ 0

is characterized by an isometry or coisometry v such that vv∗ − 1 and v∗v − 1
are compact and 6k is generated by v. Then z 1→ v defines a splitting and the
symbol mapping 6k→ C(S1) is just v 1→ z. By equation (A.10), 1− vv∗ is a rank
one projection, so the theorem follows.

Also in dimension 2 we can find a generator for the odd K-theory. As gener-
ator for K1(C(S3)) ∼= we can take the diffeomorphism u : S3 → SU(2) defined
as

u(z1, z2) :=
*

z1 z2
−z̄2 z̄1

+
.

Proposition A.4.3. The extension class [6 2] generates K1(C(S3)) and [u]
generates K1(C(S3)).

Proof. Recalling that PB denotes the Bergman projection we will start by cal-
culating the index of the Toeplitz operator PBuPB : A2(B4)⊗ 2 → A2(B4)⊗ 2.
Using the index theorem by Boutet de Monvel ([23]) reviewed above in equation
(A.8), the following index formula holds for smooth u:

ind (PBuPB) =−
1

3!(2πi)2

∫

S3

tr((u∗du)3). (A.11)

A straight-forward calculation gives that

tr((u∗du)3) = 3(z1dz̄1 − z̄1dz1)∧ dz2 ∧ dz̄2 + 3(z2dz̄2 − z̄2dz2)∧ dz1 ∧ dz̄1.

Invoking Stokes Theorem on equation (A.11) gives that

− 1
3!(2πi)2

∫

S3

tr((u∗du)3) =
1

48 · vol(B4)

∫

B4

dtr((u∗du)3) =

=
1

4 · vol(B4)

∫

B4

dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 = −
1

vol(B4)

∫

B4

dV =− 1
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This equation shows that

[u] ◦ [6 2] = ind (PBuPB) =−1. (A.12)

Consider the split-exact sequence 0→ C0( 3)→ C(S3)→ → 0 where the
mapping C(S3)→ is point evaluation. Since the sequence splits, and K1( ) =
K1( ) = 0 the embedding C0( 3) → C(S3) induces isomorphisms K1(C(S3)) ∼=
K1(C0( 3)) = and K1(C(S3)) ∼= K1(C0( 3)) = . So the Kasparov product
K1(C(S3))×K1(C(S3))→ is just a pairing × → , and since [u]◦[6 2] =−1
it follows that [6 2] generates K1(C(S3)) and [u] generates K1(C(S3)).

Theorem A.4.4. For any ∈ 2 we have

ind (P λ(u)P ) =−1. (A.13)

Therefore [6 2] = [6 ].

Proof. If equation (A.13) holds, [6 2] = [6 ] follows directly from equation
(A.12) using the Universal Coefficient Theorem for KK-theory (see Theorem 4.2
of [75]). This is a consequence of the fact that the natural mapping

K1(C(S3))→ Hom(K1(C(S3)), )

is an isomorphism. The injectivity of this mapping implies that if [u] ◦ [6 2] =
[u] ◦ [6 ] for a generator [u] then [6 2] = [6 ].

To prove equation (A.13) we take = 0, since Corollary A.3.4 implies that
the integer ind (P λ(u)P ) is independent of . We claim that P0λ(u)P0 is an
injective operator and the cokernel of P0λ(u)P0 is spanned by the 2-valued
function z 1→ e−|z|

2/4 ⊕ 0. This statement will prove the theorem.
To prove that P0λ(u)P0 is injective, assume f ∈ ker(P0λ(u)P0). Define the

functions
ξ (z) := z e−|z|

2/4

for ∈ 2. The functions ξ form an orthogonal basis for 80 by Theorem
1.63 of [40]. Expand the function f in an L2-convergent series

f =
∑

∈ 2

c ξ ,

where c = c(1) ⊕ c(2) ∈ 2. Since f ∈ ker(P0λ(u)P0) we have the following
orthogonality condition

0= 〈ξ ′ ⊕ 0,λ(u) f 〉=
∑∫

2

A
c(1)

z̄
′
z +e1

|z| + c(2)
z̄

′
z +e2

|z|

B
e|z|

2/2dV =
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=
∑

t , ′

∫

S3

4
c(1)z̄

′
z +e1 + c(2)z̄

′
z +e2
5

dS,

for some coefficients t , ′ , for a detailed calculation of t , ′ see below in Propo-
sition A.5.1. Using that the functions ξ are orthogonal we obtain that there
exists a C > 0 such that

c(1)−e1
= −C c(2)−e2

. (A.14)

On the other hand, we have

0= 〈0⊕ ξ ′
,λ(u) f 〉=
∑∫

2

A
−c(1)

z̄
′+e2z
|z| + c(2)

z̄
′+e1z
|z|

B
e|z|

2/2dV =

=
∑

t , ′

∫

S3

4
−c(1)z̄

′+e2z + c(2)z̄
′+e1z
5

dS.

Again using orthogonality of the functions ξ we obtain that there is a C ′ > 0
such that

c(1)+e2
= C ′ c(2)+e1

. (A.15)

Equation (A.14) implies c(1) = 0 for m2 = 0. For m2 > 0 equation (A.14) implies

c(1) = −C +e1
c(2)−e2+e1

.

Then equation (A.15) for − e2 gives

c(1)
I

1+
C +e1

C ′ −e2

J
= 0.

So c(1) = 0 for all . Equation (A.14) implies c(2) = 0 for all . Thus f = 0
and ker(P0λ(u)P0) = 0.

The second statement, that the cokernel of P0λ(u)P0 is spanned by the 2-
valued function

z 1→ e−|z|
2/4 ⊕ 0,

is proven analogously. There is a natural isomorphism

coker P0λ(u)P0
∼= (im P0λ(u)P0)⊥ = ker P0λ(u∗)P0.

Analogously to the reasoning above, for g ∈ ker P0λ(u∗)P0 we expand the func-
tion g in an L2-convergent series

g =
∑

∈ 2

d ξ ,
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where d = d(1) ⊕ d(2) ∈ 2. After taking scalar product by ξ ′ , for some
D , D′ > 0 we obtain the following conditions on the coefficients:

d(1)+e1
= D d(2)−e2

and (A.16)

d(1)+e2
= −D′ d(2)−e1

. (A.17)

The second of these equations implies d(1) = 0 for m1 = 0 and m2 > 0. Also, the
first of these equations implies d(1) = 0 for m2 = 0 and m1 > 0. For m1, m2 > 0,
putting in − e1 in the first equation, gives

d(1) = D −e1
d(2)−e1−e2

.

Finally, combining this relation with the second equation for − e2 we obtain

d(1)
I

1+
D −e1

D′ −e2

J
= 0 for m1, m2 > 0.

Therefore d(1) = 0 for all D= 0. The equations in (A.16) imply d(2) = 0 for all
. However, the function z 1→ e−|z|

2/4 ⊕ 0, corresponding to d(1)0 = 1, is in the
space ker(P0λ(u∗)P0) which completes the proof.

A.5 Index formula on the particular Landau lev-
els

In this section we will prove an index formula for the particular Landau levels.
On S2n−1 we have the complex coordinates z1, . . . , zn and we denote by Z1, . . . , Zn
the image of these coordinate functions under the representation λ which was
defined in equation (A.4). So Zi is the operator on L2( n) given by multipli-
cation by the almost everywhere defined function z 1→ zi

|z| . Consider the polar
decompositions

P0Zi P0 = Vi,0Si,0,

where Vi,0 are partial isometries and Si,0 > 0. An orthonormal basis for 80 is
given by

η (z) :=
z e−|z|

2/4

#
πn2| |+n !

,

see more in [40].

Proposition A.5.1. The operator Vi,0 is an isometry described by the equation

Vi,0η = η +ei
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and the operator Si,0 is diagonal in the basis η with eigenvalues given by

ληi, = Γ
*
| |+ n+

1
2

+ #mi + 1

(| |+ n)!
. (A.18)

Proof. For , ′ ∈ we have

〈η ′ , Ziη 〉=
∫

n

1

πn
#

2| + ′|+2n ! ′!

z̄
′
z +ei

|z| e−|z|
2/2dV =

=
1

πn
#

2| + ′|+2n ! ′!

∫ ∞

0

r | |+|
′|+n−1e−r2/2dr
∫

S2n−1

z̄
′
z +ei dS =

= δ ′, +ei

Γ
4
| |+ n+ 1

2

5

2πn !
#
( j + 1)

∫

S2n−1

z̄
′
z +ei dS =

= δ ′, +ei
Γ(| |+ n+

1
2
)

#
mi + 1

(| |+ n)!
.

It follows that Vi,0η = η +ei
and Si,0η = ληi, η , where ληi, is as in equation

(A.18).

On the other hand, we can, just as on 80, let Z̃1, . . . , Z̃n ∈2(L2(B2n)) be the
operators on L2(B2n) defined by the multiplication by the almost everywhere
defined function z 1→ zi

|z| . Consider the polar decompositions

PB Z̃i PB = Vi,BSi,B,

where again Vi,B are partial isometries and Si,B > 0. An orthonormal basis for
A2(B2n) is given by

µ (z) := π−n/2

K
(n+ | |)!

!
z .

Similar to the lowest Landau level, the partial isometries Vi,B are just shifts in
this basis:

Proposition A.5.2. The operator Vi,B is an isometry described by the equation

Vi,Bµ = µ +ei

and the operator Si,B is diagonal in the basis µ with eigenvalues given by

λµi, =

#
mi + 1
#

n+ | |+ 1
. (A.19)
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Proof. The proof is the analogous to that of Proposition A.5.1. For , ′ ∈
we have

〈µ ′ , Z̃iµ 〉=
∫

B2n

π−n

K
(n+ | |)!(n+ | ′|)!

! ′!
z̄

′
z +ei

|z| dV =

= π−n

K
(n+ | |)!(n+ | ′|)!

! ′!

∫ 1

0

r | |+|
′|+2n−1dr
∫

S2n−1

z̄
′
z +ei dS =

= δ ′, +ei

(n+ | |)!
#

n+ | |+ 1

(2| |+ 2n) !
#

mi + 1

∫

S2n−1

z̄
′
z +ei dS =

= δ ′, +ei

#
mi + 1
#

n+ | |+ 1
.

It follows that Vi,Bµ = µ +ei
and Si,Bµ = λµi, µ where the eigenvalues λµi,

are given in equation (A.19).

Lemma A.5.3. If a is a real number then
Γ(x + a)
Γ(x)

= xa + F (x−1+a) as x → +∞.

Proof. By Stirling’s formula

lnΓ(x) =
*

x − 1
2

+
ln x − x +

ln 2π
2
+ F (x−1).

After Taylor expanding lnΓ(x + a) around a = 0 we obtain that

lnΓ(x + a)− lnΓ(x) = a ln x + F (x−1).

Lemma A.5.4. With the unitary U : A2(B2n)→ 80 defined by µ 1→ η , the
operators Si,0 and Si,B satisfy

U∗Si,0U − Si,B ∈ + .

Proof. The operators U∗Si,0U and Si,B are both diagonal in the basis µ . So it
is sufficient to prove that |λη − λµ |→ 0. The proof of this statement is based
on the estimate from Lemma A.5.3. When | |→∞, Lemma A.5.3 implies

|λη −λµ |=

DDDDDD
Γ
4
| |+ n+ 1

2

5#
mi + 1

(| |+ n)!
−
#

mi + 1
#
| |+ n− 1

DDDDDD
=

=
#

mi + 1

DDDDD
Γ
4
(| |+ n+ 1)− 1

2

5

Γ (| |+ n+ 1)
− (| |+ n− 1)−1/2

DDDDD= F (| |
−1).
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Therefore we have that U∗Si,0U − Si,B ∈ 8 n+(A2(B2n)), the n:th Dixmier ideal.
In particular U∗Si,0U − Si,B is compact.

Theorem A.5.5. The unitary U induces an isomorphism Ad(U) : 60
∼−→ 6 n

such that
σn ◦ Ad(U) = σ0.

where σn and σ0 are the symbol mappings.

Proof. Lemma A.5.4 and the Propositions A.5.1 and A.5.2 imply

U∗(P0Zi P0)U = PB Z̃i PB + Ki , (A.20)

for some compact operators Ki . Since 6 n contains the compact operators,
U∗(P0Zi P0)U ∈ 6 n. Corollary A.3.2 therefore implies U∗60U ⊆ 6 n. Theo-
rem A.3.1 states that 60 acts irreducibly on 80, so U∗60U acts irreducibly on
A2(B2n). Therefore + ⊆ U∗60U and PB Z̃i PB ∈ U∗60U . The operators PB Z̃i PB
together with + generate 6 n so U∗60U ⊇ 6 n. The relation σn ◦ Ad(U) = σ0
holds since by equation (A.20) it holds on the generators of C(S2n−1).

Corollary A.5.6. Let [6 n] ∈ Ex t(C(S2n−1)) denote the Toeplitz quantization
of the Bergman space defined in equation (A.9) and [6 ] ∈ Ex t(C(S2n−1)) the
Toeplitz quantization of the particular Landau level of height defined in equa-
tion (A.7). Then

[6 n] = [6 ].
So for u ∈ A⊗MN ( ) such that u∂ := π∂ (u) is invertible and smooth

ind (P u|8 ⊗ N ) =
−(n− 1)!

(2n− 1)!(2πi)n

∫

S2n−1

tr((u−1
∂ du∂ )2n−1). (A.21)

Proof. By Corollary A.3.4 the class [6 ] is independent of , so take = 0. In
this case Theorem A.5.5 implies that the unitary U makes the following diagram
commutative:

0 −−−−→ + −−−−→ 60
σ0−−−−→ C(S2n−1) −−−−→ 0/Ad(U)

/Ad(U)

HHH

0 −−−−→ + −−−−→ 6 n σn

−−−−→ C(S2n−1) −−−−→ 0

.

Therefore [6 n] = [60] = [6 ] and the index formula (A.21) follows from [46].
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Analytic formulas for
degree of non-smooth
mappings: the
odd-dimensional case

Abstract

The notion of topological degree is studied for mappings from the boundary of
a relatively compact strictly pseudo-convex domain in a Stein manifold into a
manifold in terms of index theory of Toeplitz operators on the Hardy space.
The index formalism of non-commutative geometry is used to derive analytic
integral formulas for the index of a Toeplitz operator with Hölder continuous
symbol. The index formula gives an analytic formula for the degree of a Hölder
continuous mapping from the boundary of a strictly pseudo-convex domain.
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PAPER B. ANALYTIC FORMULAS FOR DEGREE OF NON-SMOOTH

MAPPINGS: THE ODD-DIMENSIONAL CASE

Introduction

This paper is a study of analytic formulas for the degree of a mapping from the
boundary of a relatively compact strictly pseudo-convex domain in a Stein man-
ifold. The degree of a continuous mapping between two compact, connected,
oriented manifolds of the same dimension is abstractly defined in terms of homol-
ogy. If the function f is differentiable, an analytic formula can be derived using
Brouwer degree, see [69], or the more global picture of de Rham-cohomology.
For any form ω of top degree the form f ∗ω satisfies

∫

X
f ∗ω = deg f
∫

Y
ω.

Without differentiability conditions on f , there are no known analytic formulas
beyond the special case of a Hölder continuous mapping S1 → S1 which can
be found in Chapter 2.α of [34]. The degree of a Hölder continuous function
f : S1 → S1 of exponent α is expressed by an analytic formula by replacing de
Rham cohomology with the cyclic homology of the algebra of Hölder continuous
functions as

deg( f ) =
1

(2πi)2k

∫
f (z0)

f (z1)− f (z0)
z1 − z0

· · · f (z0)− f (z2k)
z0 − z2k

dz0 . . . dz2k, (B.1)

whenever α(2k + 1) > 1. Later, the same technique was used in [76] and [77]
in constructing index formulas for pseudo-differential operators with operator-
valued symbols. Our aim is to find new formulas for the degree in the multidi-
mensional setting by expressing the degree of a Hölder continuous function as
the index of a Toeplitz operator and using the approach of [34].

The motivation to calculate the degree of a non-smooth mapping comes from
non-linear σ-models in physics. For instance, the Skyrme model, describing self-
interacting mesons in terms of a field f : X → Y , see [10], only have a constant
solution if one does not pose a topological restriction and since the solutions
are rarely smooth, but rather in the Sobolev space W 1,d(X , Y ), one needs a
degree defined on non-continuous functions. In the paper [27], the notion of a
degree was extended as far as to VMO-mappings in terms of approximation by
continuous mappings. See also [25] for a study of the homotopy structure of
W 1,d(X , Y ).

The main idea that will be used in this paper is that the cohomological
information of a continuous mapping f : X → Y between odd dimensional man-
ifolds can be found in the induced mapping f ∗ : K1(X ) → K1(Y ) using the
Chern character. The analytic formula will be obtained by using index theory
of Toeplitz operators. The index theory of Toeplitz operators is a well studied
subject for many classes of symbols, see for instance [14], [23], [34] and [46]. If
X = ∂Ω, where Ω is a strictly pseudo-convex domain in a complex manifold, and
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f : ∂Ω→ Y is a smooth mapping the idea can be expressed by the commutative
diagram:

K1(Y )
f ∗−−−−→ K1(∂Ω)

ind−−−−→/chY

/ch∂Ω

/

Hodd
dR (Y )

f ∗−−−−→ Hodd
dR (∂Ω)

χ∂Ω−−−−→

(B.2)

where the mapping ind : K1(∂Ω) → denotes the index mapping defined in
terms of suitable Toeplitz operators on ∂Ω and

χ∂Ω(x) := −
∫

∂Ω
x ∧ T d(Ω).

The left part of the diagram (B.2) is commutative by naturality of the Chern
character and the right part of the diagram is commutative by the Boutet de
Monvel index formula.

The K-theory is a topological invariant and the picture of the index mapping
as a mapping from a local homology theory via Chern characters can be applied
to more general classes of functions than the smooth functions. The homology
theory present through out all the index theory is cyclic homology. For a Hölder
continuous mapping f : ∂Ω→ Y of exponent α and Ω being a relatively compact
strictly pseudo-convex domain in a Stein manifold the analogy of the diagram
(B.2) is

K1(C∞(Y ))
f ∗−−−−→ K1(Cα(∂Ω))

ind−−−−→/chY

/ch∂Ω

/

HCodd(C∞(Y ))
f ∗−−−−→ HCodd(Cα(∂Ω))

χ̃∂Ω−−−−→

(B.3)

where the mapping χ̃∂Ω : HCodd(Cα(∂Ω)) → is a cyclic cocycle on Cα(∂Ω)
defined as the Connes-Chern character of the Toeplitz operators on ∂Ω, see
more in [32] and [34]. The condition on Ω to lie in a Stein manifold ensures that
the cyclic cocycle χ̃∂Ω can be defined on Hölder continuous functions, see below
in Theorem B.4.2. The right-hand side of the diagram (B.3) is commutative by
Connes’ index formula, see Proposition 4 of Chapter IV.1 of [34]. The dimension
in which the Chern character will take values depends on the Hölder exponent
α. More explicitly, the cocycle χ̃∂Ω can be chosen as a cyclic 2k+ 1-cocycle for
any 2k+ 1> 2n/α.

The index of a Toeplitz operator Tu on the vector valued Hardy space
H2(∂Ω)⊗ N with smooth symbol u : ∂Ω→ GLN ( ) can be calculated using the
Boutet de Monvel index formula as ind Tu = −

∫
∂Ω ch∂Ω[u] if the Chern charac-

ter ch∂Ω[u] only contains a top degree term. In particular, if g : Y → GLN ( )
satisfies that all terms, except for the top-degree term, in ch∂Ω[g] are exact
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and f : ∂Ω → Y is smooth we can consider the matrix symbol g ◦ f on ∂Ω.
Naturality of the Chern character implies the identity

deg f
∫

Y
chY [g] =−ind Tg◦ f

where Tg◦ f is a Toeplitz operator on H2(∂Ω)⊗ N with symbol g ◦ f . This result
extends to Hölder continuous functions in the sense that if we choose g which
also satisfies the condition

∫
Y

chY [g] = 1 we obtain the analytic degree formula:

deg f = χ̃∂Ω(ch∂Ω[g ◦ f ]).

A drawback of our approach is that it only applies to boundaries of strictly
pseudo-convex domains in Stein manifolds. We discuss this drawback at the end
of the fourth, and final, section of this paper. The author intends to return to
this question in a future paper and address the problem for even-dimensional
manifolds.

The paper is organized as follows; in the first section we reformulate the de-
gree as an index calculation using the Chern character from odd K-theory to de
Rham cohomology. This result is not remarkable in itself, since the Chern char-
acter is an isomorphism after tensoring with the complex numbers. However, the
constructions are explicit and allows us to obtain explicit expressions for a gen-
erator of the de Rham cohomology. We will use the complex spin representation
of 2n to construct a smooth function u : S2n−1→ SU(2n−1) such that the Chern
character of u is a multiple of the volume element on S2n−1. The function u will
then be used to construct a smooth mapping g̃ : Y → GL2n−1( ) for arbitrary
odd-dimensional manifold Y whose Chern character coincide with (−1)ndVY
where dVY is a normalized volume form on Y , see Theorem B.1.6. Thus we obtain
for any continuous function f : ∂Ω→ Y the formula deg f = (−1)n+1ind Tg◦ f , as
is proved in Theorem B.2.1.

In the second section we will review the theory of Toeplitz operators on
the boundary of a strictly pseudo-convex domain. The material in this section
is based on [23], [34], [41], [46], [50] and [71]. We will recall the basics from
[41], [50] and [71] of integral representations of holomorphic functions on Stein
manifolds and the non-orthogonal Henkin-Ramirez projection. We will continue
the section by recalling some known results about index formulas and how a
certain Schatten class condition can be used to obtain index formulas. The
focus will be on the index formula of Connes, see Proposition 4 in Chapter
IV.1 of [34], involving cyclic cohomology and how the periodicity operator S
in cyclic cohomology can be used to extend cyclic cocycles to larger algebras.
In our case the periodicity operator is used to extend a cyclic cocycle on the
algebra C∞(∂Ω) to a cyclic cocycle on Cα(∂Ω). We will also review a theorem
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of Russo, see [80], which gives a sufficient condition for an integral operator to
be of Schatten class.

The third section is devoted to proving that the Szegö projection P∂Ω :
L2(∂Ω) → H2(∂Ω) satisfies the property that for any p > 2n/α the commu-
tator [P∂Ω, a] is a Schatten class operator of order p for any Hölder continuous
functions a on ∂Ω of exponent α. The statement about the commutator [P∂Ω, a]
can be reformulated as the corresponding big Hankel operator with symbol a
being of Schatten class. We will in fact not look at the Szegö projection, but
rather at the non-orthogonal Henkin-Ramirez projection PHR mentioned above.
The projection PHR has a particular behavior making the estimates easier and
an application of Russo’s Theorem implies that PHR − P∂Ω is Schatten class of
order p > 2n, see Lemma B.3.6.

In the fourth section we will present the index formula and the degree formula
for Hölder continuous functions. Thus if we let C∂Ω denote the Szegö kernel and
dV the volume form on ∂Ω we obtain the following index formula for u invertible
and Hölder continuous on ∂Ω:

ind Tu = −
∫

∂Ω2k+1

tr

I
2k∏

i=0

(1− u(zi)−1u(zi+1))C∂Ω(zi , zi+1)

J
dV

for any 2k+ 1> 2n/α. Here we identify z2k+1 with z0. Using the index formula
for mapping degree we finally obtain the following analytic formula for the degree
of a Hölder continuous mapping from ∂Ω to a connected, compact, orientable,
Riemannian manifold Y . If f : ∂Ω → Y is a Hölder continuous function of
exponent α, the degree of f can be calculated for 2k + 1 > 2n/α from the
formula:

deg( f ) = (−1)n
∫

∂Ω2k+1

f̃ (z0, z1, . . . , z2k)
2k∏

j=0

C∂Ω(zj−1, zj)dV

where f̃ : ∂Ω2k+1 → is a function explicitly expressed from f , see more in
equation (B.25).

B.1 The volume form as a Chern character

In order to represent the mapping degree as an index we look for a matrix symbol
whose Chern character is cohomologous to the volume form dVY on Y . We will
start by considering the case of a 2n − 1-dimensional sphere and construct a
mapping into the Lie group SU(2n−1) using the complex spin representation
of Spin( 2n). In the complex spin representation a vector in S2n−1 defines a
unitary matrix, this construction produces a matrix symbol on odd-dimensional
spheres such that its Chern character spans H2n−1

dR (S2n−1). The matrix symbol



72 B.1. The volume form as a Chern character

on S2n−1 generalizes to an arbitrary connected, compact, oriented manifold Y of
dimension 2n− 1 such that its Chern character coincides with (−1)ndVY .

Let V denote a real vector space of dimension 2n with a non-degenerate inner
product g. We take a complex structure J on V which is compatible with the
metric and extend the mapping J to a complex linear mapping on V := V⊗ .
Since J2 = −1 we can decompose V := V 1,0 ⊕ V 0,1 into two eigenspaces of J
corresponding to the eigenvalues ±i. If we extend g to a complex bilinear form
g on V and using the isomorphism l(V, g)∼= Cl(V , g ), we can identify the
complexified Clifford algebra of V with the complex algebra generated by 2n
symbols e1,+, . . . , en,+, e1,−, . . . , en,− satisfying the relations

{ej,+, ek,+}= {ej,−, ek,−}= 0 and {ej,+, ek,−}= −2δ jk,

where {·, ·} denotes anti-commutator. The complex algebra l(V, g) becomes a
∗-algebra in the ∗-operation e∗j,+ := −ej,−.

The space SV := ∧∗V 1,0 becomes a complex Hilbert space equipped with the
sesquilinear form induced from g and J . The vector space SV will be given
the orientation from the lexicographic order on the basis ei1 ∧ ei2 ∧ . . . ∧ eik for
i1 < i2 < . . .< ik. Define c : V → End(SV ) by

c(v).w :=
>

2v ∧ w, for v ∈ V 1,0 and

c(v′).w := −
>

2v′¬w for v′ ∈ V 0,1.

The linear mapping c satisfies

c(v∗) = c(v)∗ and c(w)c(v) + c(v)c(w) =−2g(w, v)

so by the universal property of the Clifford algebra l(V, g) we can extend c
to a ∗-representation ϕ : l(V )→ End (SV ). The space SV is a 2n-dimensional
Hilbert space which we equip with a grading as follows

SV = S+V ⊕ S−V := ∧evenV 1,0 ⊕∧odd V 1,0.

Consider the subalgebra l(V )+ consisting of an even number of generators.
The representation ϕ restricts to a representation l(V )+ → End (S+V ) and

l(V )+ → End (S−V ). We define the 2n−1-dimensional oriented Hilbert space
En := S+ n when n is even and En := S− n when n is odd. The representation

l( n)+ → End (En) will be denoted by ϕ+. For a vector v ∈ n we can use
the fact that n ⊗ ∼= n ⊕ n and define

v+ := ϕ+(v ⊕ 0) ∈ End (En) and v− := ϕ+(0⊕ v) ∈ End (En).

We will now define a symbol calculus for S2n−1. We choose the standard
embedding S2n−1 ⊆ n by taking coordinates zi : S2n−1 → satisfying |z1|2 +
|z2|2 · · ·+ |zn|2 = 1. Define the smooth mapping u : S2n−1→ l( 2n)+ by

u(z) :=
1
2
(e1,+ + e1,−)(z+ + z̄−). (B.4)
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Proposition B.1.1. The mapping u satisfies

u(z)∗u(z) = u(z)u(z)∗ = 1

so u : S2n−1→ SU(2n−1)⊆ End (En) is well defined.

The proof of this proposition is a straight-forward calculation using the re-
lations in the Clifford algebra l(V, g). Observe that if n = 2 the mapping u is
a diffeomorphism since we can choose 1 and e1 ∧ e2 as a basis for S+V and in this
basis

u(z1, z2) =
*−z1 −z̄2

z2 −z̄1

+

For any N we can consider the subgroup SU(N − 1) ⊆ SU(N) of elements
of the form 1⊕ x . Denoting by e1 the first basis vector in N , we can define
a mapping q : SU(N) → S2N−1 by q(v) := ve1. A straight-forward calculation
shows that q factors over the quotient SU(N)/SU(N − 1) and induces a diffeo-
morphism SU(N)/SU(N −1)∼= S2N−1. The function u is in a sense a splitting to
q:

Proposition B.1.2. If ι : S2n−1→ S2n−1 is defined by

ι(z1, z2, . . . zn) :=

:
(−z1, z2, . . . zn, 0, . . . , 0) for n even
(−z̄1, z2, . . . zn, 0, . . . , 0) for n odd

and q : SU(2n−1)→ S2n−1 is the mapping constructed above, the following identity
is satisfied

q ◦ u= ι.

Proof. We will start with the case when n is even. The first n basis vectors of
S+V are 1, e1 ∧ e2, e1 ∧ e3, . . . , e1 ∧ en and

q(u(z)) = u(z)1= −z1 + z2e1 ∧ e2 + z3e1 ∧ e3 + · · ·+ zne1 ∧ en.

If n is odd, the first basis vectors of S−V are e1, e2, . . . , en. Therefore we have the
equality

q(u(z)) = u(z)e1 = −z̄1e1 + z2e2 + · · · znen.

Consider α+ := ϕ+(dz ⊕ 0) and α− := ϕ+(0⊕ dz̄) as elements in T ∗S2n−1 ⊗
End (En). For an element = (k1, . . . , k2l−1) ∈ {+,−}2l−1 we define α :=
αk1
αk2
· · ·αk2l−1

∈ ∧2l+1T ∗S2n−1 ⊗ End (En). Define the set Γ+l as the set of ∈
{+,−}2l−1 such that the number of + in is l. Similarly Γ−l is defined as the set
of ∈ {+,−}2l−1 such that the number of − in is l. The number of elements
in Γ±l can be calculated as

|Γ+l |= |Γ−l |=
*

2l − 1
l − 1

+
=
(2l − 1)!
l!(l − 1)!

.
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Lemma B.1.3. For any ∈ {+,−}2l−1 we have the equalities

tr(z+α ) =





0 if /∈ Γ−l

(−1)n2n−1l!
∑

m1,m2,...ml
zm1

dz̄m1

∧l
j=2 dzmj

∧ dz̄mj
if ∈ Γ−l

tr(z̄−α ) =





0 if /∈ Γ+n

(−1)n+12n−1l!
∑

m1,m2...,ml
z̄m1

dzm1

∧l
j=2 dzmj

∧ dz̄mj
if ∈ Γ+l

Here tr denotes the matrix trace in End (En).

The proof is a straight-forward, but rather lengthy, calculation using the
relations in the Clifford algebra, so we omit the proof. We will use the notation
dV for the normalized volume measure on S2n−1:

dV =
(n− 1)!

2πn

2n∑

k=1

(−1)k−1 xkdx1 ∧ · · ·∧ dxk−1 ∧ dxk+1 ∧ · · ·∧ dx2n = (B.5)

=
(n− 1)!
2(2πi)n

n∑

k=1

z̄kdzk ∧ j D=k (dzj ∧ dz̄ j)− zkdz̄k ∧ j D=k (dzj ∧ dz̄ j). (B.6)

That dV is normalized follows from that the 2n−1-form ω on S2n−1, defined by

ω =
2n∑

k=1

(−1)k−1 xkdx1 ∧ · · ·∧ dxk−1 ∧ dxk+1 ∧ · · ·∧ dx2n,

satisfies that, if we change to spherical coordinates, the form r2n−1dr∧ω coincide
with the volume form on n. Since

∫
e−|z|

2
dm= π, where m denotes Lebesgue

measure, Fubini’s Theorem implies that
∫

n e−|z|
2
dm= πn and

πn =
∫

n

e−|z|
2
dm=
∫ ∞

0

e−r2
r2n−1dr
∫

S2n−1

ω =
(n− 1)!

2

∫

S2n−1

ω.

Recall that if g : Y → GLN ( ) is a smooth mapping, the Chern character of
g is an element of the odd de Rham cohomology Hodd

dR (Y ) defined as

ch[g] =
∞∑

k=0

(k− 1)!
(2πi)k(2k− 1)!

tr(g−1dg)2k−1.

See more in Chapter 1.8 in [91]. We will denote the 2k − 1-degree term by
ch2k−1[g]. The cohomology class of ch[g] only depends on the homotopy class
of g so the Chern character induces a group homomorphism ch : K1(C∞(Y ))→
Hodd

dR (Y ).
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Lemma B.1.4. The mapping u defined in (B.4) satisfies

ch[u] = (−1)ndV.

Proof. Since the odd de Rham cohomology of S2n−1 is spanned by the volume
form it will be sufficient to show that ch2n−1[u] = (−1)ndV . First we observe the
identity u∗du= −du∗u, which follows from Proposition B.1.1. This fact implies

(u∗du)2n−1 = (−1)n−1u∗ du du∗ · · · du∗ du︸ ︷︷ ︸
2n−1 factors

.

Our second observation is

u∗du= −1
2
(z + z̄)(dz + dz̄) and du∗ du= −1

2
(dz + dz̄)(dz + dz̄).

Therefore
(u∗du)2n−1 = − 1

2n (z + z̄)(dz + dz̄)2n−1.

Because of Lemma B.1.3 we have the equalities

tr((z + z̄)(dz + dz̄)2n−1) =
∑

∈Γ+n

tr(z̄α ) +
∑

∈Γ−n

tr(zα ) =

=
∑

∈Γ+n

(−1)n+12n−1(n− 1)!n!
n∑

k=1

z̄kdzk ∧ j D=k (dzj ∧ dz̄ j)+

+
∑

∈Γ−n

(−1)n2n−1(n− 1)!n!
n∑

k=1

zkdz̄k ∧ j D=k (dzj ∧ dz̄ j) =

= (−1)n+12n−1(2n−1)!
n∑

k=1

4
z̄kdzk ∧ j D=k (dzj ∧ dz̄ j)− zkdz̄k ∧ j D=k (dzj ∧ dz̄ j)

5
=

=
(−1)n+12n(2πi)n(2n− 1)!

(n− 1)!
dV.

Finally, adding all results together we come to the conclusion of the Lemma:

tr(u∗du)2n−1 = − 1
2n tr((z + z̄)(dz + dz̄)2n−1) = (−1)n

(2πi)n(2n− 1)!
(n− 1)!

dV.

To generalize the construction of u to an arbitrary manifold we need to cut
down u at ”infinity”. We define the smooth function ξ0 : [0,∞)→ as

ξ0(x) :=

;
e−

4
x2 , x > 0

0, x = 0
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and the smooth function ξ : S2n−1→ n by

ξ(z) := ξ0(|1−ℜ(z1)|)z +
O
ξ0(|1−ℜ(z1)|)− 1, 0,0, . . . , 0

P
.

By standard methods it can be proved that for any natural number k and any
vector fields X1, X2, . . . Xl on S2n−1 the function ξ satisfies

|ξ(z)− (−1,0, . . . , 0)|= F (|1−ℜ(z1)|k) and (B.7)

|X1X2 · · ·Xlξ(z)|= F (|1−ℜ(z1)|k) as z→ (1, 0, . . . , 0). (B.8)

Furthermore, the length of ξ(z) is given by

|ξ(z)|2 = 2(ℜ(z1) + 1)(ξ0(|1−ℜ(z1)|)2 − ξ0(|1−ℜ(z1)|)) + 1

so |ξ(z)|> 0 for all z ∈ S2n−1.
Using the function ξ we define the smooth function ũ : S2n−1 → GL2n−1( )

by

ũ(z) :=
1
2
(e1,+ + e1,−)(ξ(z)+ + ξ(z)−).

The function ũ is well defined since

ũ(z)∗ũ(z) = |ξ(z)|2 > 0.

Observe that we may express ũ in terms of u as

ũ(z) = ξ0(|1−ℜ(z1)|)(u(z)− 1) + 1.

If we choose a diffeomorphism τ : B2n−1
∼= S2n−1 \ {(1,0, . . . , 0)} the equation

(B.7) and (B.8) implies that the function τ∗ũ can be considered as a smooth
function B2n−1 → GL2n−1( ) such that τ∗ũ− 1 vanishes to infinite order at the
boundary of B2n−1. The particular choice of τ as the inverse of the stereographic
projection

τ(y) :=
<

2|y |2 − 1,2
#

1− |y|2 y
=

will give a function τ∗ũ of the form

τ∗ũ(y) = e−
1

(1−|y|2)2 (u(τ(y))− 1) + 1=

=
e−

1
(1−|y|2)2

2
(e1,+ + e1,−)(τ(y)+ +τ(y)−) + 1− e−

1
(1−|y |2)2 .

Lemma B.1.5. There is a homotopy of smooth functions S2n−1 → GL2n−1( )
between ũ and u. Therefore ch[ũ]− ch[u] is an exact form.
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Proof. We can take the homotopy w : S2n−1 × [0,1]→ GL2n−1( ) as

w(z, t) = ξt(|1−ℜ(z1)|)(u(z)− 1) + 1,

where
ξt(x) := e−

4(1−t)
x2 .

Clearly, w : S2n−1 × [0, 1]→ GL2n−1( ) is a smooth function and w(z, 0) = ũ(z)
and w(z, 1) = u(z).

In the general case, let Y be a compact, connected, orientable manifold of
odd dimension 2n−1. If we take an open subset U of Y with coordinates (xi)2n−1

i=1
such that

U = {x :
2n−1∑

i=1

|xi(x)|2 < 1},

the coordinates define a diffeomorphism ν : U ∼= B2n−1. We can define the
functions g, g̃ : Y → GL2n−1( ) by

g(x) :=

:
u(τν(x)) for x ∈ U
1 for x /∈ U

(B.9)

g̃(x) :=

:
ũ(τν(x)) for x ∈ U
1 for x /∈ U

(B.10)

If we let ν̃ : Y → S2n−1 be the Lipschitz continuous function defined by

ν̃(x) =

:
τ(ν(x)) for x ∈ U
(1,0, . . . , 0) for x /∈ U

(B.11)

the functions g̃ and g can be expressed as g = ν̃∗u and g̃ = ν̃∗ũ. The function
g̃ is smooth and the function g is Lipschitz continuous.

Theorem B.1.6. Denoting the normalized volume form on Y by dVY , the func-
tion g̃ satisfies

ch[ g̃] = (−1)ndVY ,

in Hodd
dR (Y ). Thus, if f : X → Y is a smooth mapping

deg( f ) = (−1)n
∫

X
f ∗ch[ g̃]
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Proof. By Lemma B.1.5 and Lemma B.1.4 we have the identities
∫

Y
ch[ g̃] =
∫

U
ch2n−1[ g̃] =
∫

U
ν̃∗ch2n−1[ũ] =

=
∫

S2n−1

ch2n−1[ũ] =
∫

S2n−1

ch2n−1[u] = (−1)n.

Therefore we have the identity ch2n−1[ g̃] = (−1)ndVY . Since ch[ g̃]−ch2n−1[ g̃] is
an exact form on U and vanishes to infinite order at ∂ U the Theorem follows.

B.2 Toeplitz operators and their index theory

In this section we will give the basics of integral representations of holomorphic
functions and the Henkin-Ramirez integral representation, we will more or less
pick out the facts of [41], [50] and [71] relevant for our purposes. After that we
will review the theory of Toeplitz operators on the Hardy space on the boundary
of a strictly pseudo-convex domain. We will let M denote a Stein manifold
and we will assume that Ω ⊆ M is a relatively compact, strictly pseudo-convex
domain with smooth boundary.

Consider the Hilbert space L2(∂Ω), in some Riemannian metric on ∂Ω.
We will use the notation H2(∂Ω) for the Hardy space, that is defined as the
space of functions in L2(∂Ω) with holomorphic extensions to Ω. The subspace
H2(∂Ω) ⊆ L2(∂Ω) is a closed subspace so there exists a unique orthogonal pro-
jection P∂Ω : L2(∂Ω) → H2(∂Ω) called the Szegö projection. We will consider
the Henkin-Ramirez projection, see [49], [70] and the generalization in [50] to
Stein manifolds, which we will denote by PHR : L2(∂Ω)→ H2(∂Ω) and call the
HR-projection. The HR-projection is not necessarily orthogonal but is often
possible to calculate explicitly, see [71], and easier to estimate. We will briefly
review its construction in the case M = n following Chapter VII of [71]. The
construction of the HR-projection on a general Stein manifold is somewhat more
complicated, but the same estimates hold so we refer the reader to the construc-
tion in [50].

The kernel of the HR-projection should be thought of as the first terms in a
Taylor expansion of the Szegö kernel. This idea is explained in [56]. The HR-
kernel contains the most singular part of the Szegö kernel and the HR-kernel
can be very explicitly estimated at its singularities. This is our reason to use
the HR-projection instead of the Szegö projection. If Ω is defined by the strictly
pluri-subharmonic function ρ a function Φ = Φ(w, z) is defined as the smooth
global extension of the Levi polynomial

F(w, z) :=
n∑

j=1

∂ ρ

∂ wj
(w)(wj − zj)−

1
2

n∑

j,k=1

∂ 2ρ

∂ wj∂ wk
(w)(wj − zj)(wk − zk)
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from the diagonal in Ω×Ω to the whole of Ω×Ω, see more in Chapter V.1.1 and
Chapter VII.5.1 of [71]. If we take c > 0 such that ∂ ∂̄ ρ ≥ c there is an ε > 0
such that

2ℜΦ(w, z)≥ ρ(w)−ρ(z) + c|z − w|2, for |z − w|< ε, (B.12)

see more in equation 1.6, Chapter V.1.1 of [71]. By Lemma 1.5 of Chapter VII
of [71] the function Φ satisfies the following estimate

∫

∂Ω

dV (w)
|Φ(w, z)|n+β ! 1 (B.13)

where dV denotes the volume measure on ∂Ω if β < 0 and a similar estimate
with the roles of z and w interchanged. Here we used the standard notation
a ! b for the statement that there exists a constant C > 0 such that a ≤ C b.

By Theorem 3.6, Chapter VII of [71] we can associate with Φ a function H∂Ω
in Ω×Ω holomorphic in its second variable such that if g ∈ L1(Ω) is holomorphic
it has the integral representation:

g(z) =
∫

∂Ω
H∂Ω(w, z)g(w)dV (w).

For the function H∂Ω the estimate

|H∂Ω(z, w)|! |Φ(w, z)|−n, (B.14)

holds in ∂Ω× ∂Ω, see more in Proposition 3.1, Chapter VII of [71]. Since Φ
satisfies the estimate (B.12) where c is the infimum of ∂ ∂̄ ρ the construction of
a HR-projection does give an L2-bounded projection for strictly pseudo-convex
domains. If Ω is weakly pseudo-convex the situation is more problematic and
not that well understood partly due to problems estimating solutions to the
∂̄ -equation in weakly pseudo-convex domains. By Proposition 3.8 of Chapter
VII.3.1 in [71] the kernel H∂Ω satisfies the estimate

|H∂Ω(z, w)− H∂Ω(w, z)|! |Φ(z, w)|−n+1/2. (B.15)

The estimate (B.15) will be crucial when proving that P∂Ω− PHR is in the Schat-
ten class. The kernel H∂Ω determines a bounded operator PHR on L2(∂Ω) by
Theorem 3.6 of Chapter V I I .3 in [71]. Since the range of PHR is contained in
H2(∂Ω) and g = PHR g for any g ∈ H2(∂Ω) it follows that PHR : L2(∂Ω)→ H2(∂Ω)
is a projection.

We will now present some facts about Toeplitz operators on the Hardy space
of a relatively compact strictly pseudo-convex domain Ω in a complex manifold
M . Our operators are associated with the Szegö projection since the theory
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becomes somewhat more complicated when a non-orthogonal projection is in-
volved. For any dimension N we denote by C(∂Ω, MN ( )) the C∗-algebra of con-
tinuous functions ∂Ω→ MN ( ), the algebra of complex N×N -matrices. The al-
gebra C(∂Ω, MN ( )) has a representation π : C(∂Ω, MN ( ))→2(L2(∂Ω)⊗ N )
which is given by pointwise multiplication. We define the linear mapping

T : C(∂Ω, MN ( ))→2(H2(∂Ω)⊗ N ), a 1→ P∂Ωπ(a)P∂Ω.

Here we identify P∂Ω with the projection L2(∂Ω) ⊗ N → H2(∂Ω) ⊗ N . An
operator of the form T (a) is called a Toeplitz operator on ∂Ω. Toeplitz operators
are well studied, see for instance [23], [34], [46] and [76]. The representation
π satisfies [P∂Ω,π(a)] ∈ + (L2(∂Ω) ⊗ N ) for any a ∈ C(∂Ω, MN ( )), see for
instance [23] or Theorem B.3.1 below. Here we use the symbol + to denote
the algebra of compact operators. The fact that P∂Ω commutes with continuous
functions up to a compact operator implies the property

T (ab)− T (a)T (b) ∈ + (H2(∂Ω)⊗ N ). (B.16)

Furthermore, T (a) is compact if and only if a = 0. Let us denote the Calkin
algebra 2(, )/+ (, ) by 4 (, ) and the quotient mapping 2(, ) → 4 (, )
by q. Equation (B.16) implies that the mapping

β := q ◦ T : C(∂Ω, MN ( ))→4 (H2(∂Ω)⊗ N )

is an injective ∗-homomorphism.
By the Boutet de Monvel index formula, from [23], if the symbol a is in-

vertible and smooth the index of the Toeplitz operator T (a) has the analytic
expression:

ind (T (a)) =−
∫

∂Ω
ch[a]∧ T d(Ω), (B.17)

see more in Theorem 1 in [23], and the remarks thereafter. The mapping a 1→
ind (T (a)), defined on functions a : ∂Ω → GLN ( ) is homotopy invariant, so
it extends to a mapping ind : K1(C∞(∂Ω)) → . Here K1(C∞(∂Ω)) denotes
the odd K-theory of the Frechet algebra C∞(∂Ω) which is defined as homotopy
classes of invertible matrices with coefficients in C∞(∂Ω), see more in [22].

Theorem B.2.1. Suppose that Ω ⊆ M is a relatively compact strictly pseudo-
convex bounded domain with smooth boundary, Y is a compact, orientable mani-
fold of dimension 2n−1 and g : Y → GL2n−1( ) is the mapping defined in (B.10).
If f : ∂Ω→ Y is a continuous function, then

deg( f ) = (−1)n+1ind (P∂Ωπ(g ◦ f )P∂Ω). (B.18)



81 B.2. Toeplitz operators and their index theory

Proof. If we assume that f is smooth, the index formula of Boutet de Monvel,
see above in equation (B.17), implies that the index of P∂Ωπ(g ◦ f )P∂Ω satisfies

ind (P∂Ωπ(g◦ f )P∂Ω) =−
∫

∂Ω
f ∗ch[ g̃]∧T d(Ω) =−

∫

∂Ω
f ∗ch[ g̃] = (−1)n+1 deg( f ),

where the first equality follows from g and g̃ being homotopic, see Lemma B.1.5,
and the last two equalities follows from Theorem B.1.6. The general case follows
from the fact that both hand sides of (B.18) is homotopy invariant.

Theorem B.2.1 does in some cases hold with even looser regularity conditions
on f . Since both sides of the equation (B.18) are homotopy invariants the The-
orem holds for any class of functions which are homotopic to smooth functions
in such sense that both sides in (B.18) are well defined and depend continuously
on the function. For instance, if Ω is a bounded symmetric domain we may take
f : ∂Ω→ Y to be in the V MO-class. It follows from [17] that if w : ∂Ω→ GLN
has vanishing mean oscillation and Ω is a bounded symmetric domain, the oper-
ator P∂ΩwP∂Ω is Fredholm. By [27] the degree of a V MO-function is well defined
and depends continuously on f without any restriction on the geometry. To be
more precise, there is a one-parameter family ( ft)t∈(0,1) ⊆ C(∂Ω, Y ) such that
ft → f in V MO when t → 0 and deg( f ) is defined as deg( ft) for t small enough.
Since the index of a Fredholm operator is homotopy invariant the degree of a
function f : ∂Ω→ Y in V MO satisfies

deg f = (−1)n+1ind (P∂Ωπ(g ◦ ft)P∂Ω) = (−1)n+1ind (P∂Ωπ(g ◦ f )P∂Ω).

Our next task will be calculating the index of Toeplitz operators with non-
smooth symbol. For p ≥ 1, let 8 p(, ) ⊆ 2(, ) denote the ideal of Schatten
class operators on a separable Hilbert space , , so T ∈ 8 p(, ) if and only if
tr((T ∗T )p/2) <∞. An exact description of integral operators belonging to this
class exists only for p = 2. However, for p > 2 there exists a convenient sufficient
condition on the kernel, found in [80]. We will return to this subject a little later.
Suppose that π : / → 2(, ) is a representation of a -algebra / and P is
a projection such that [P,π(a)] ∈ 8 p(, ) for all a ∈ / and P − P∗ ∈ 8 p(, ).
Atkinson’s Theorem implies that if a is invertible, Pπ(a)P is Fredholm. The
operator F := 2P − 1 has the properties

F2 = 1 and F − F ∗, [F,π(a)] ∈ 8 p(, ). (B.19)

If π and F satisfy the conditions in equation (B.19) the pair (π, F) is called a
p-summable odd Fredholm module. If the pair (π, F) satisfies the requirement in
equation (B.19) but with8 p(, ) replaced by+ (, ) the pair (π, F) is a bounded
odd Fredholm module. For a more thorough presentation of Fredholm modules,
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e.g. Chapter VII and VIII of [22]. Since our focus is on Toeplitz operators we
will call (π, P) a Toeplitz pair if (π, 2P − 1) is a bounded odd Fredholm module
and (π, P) is said to be p-summable if (π, 2P − 1) is.

The condition that L := P∗ − P ∈ 8 p(, ) can be interpreted in terms of
the orthogonal projection P̃ to the Hilbert space P, . Using that P̃ P = P and
P P̃ = P̃ we obtain the identity

P̃ L = P̃ P∗ − P̃ P = P̃ − P. (B.20)

Thus the condition P∗−P ∈ 8 p(, ) is equivalent to the property P̃−P ∈ 8 p(, ).
A Toeplitz pair (π, P) over a topological algebra / defines a mapping a 1→

ind (Pπ(a)P) on the invertible elements of/⊗MN ( ) for any N . Since the index
is homotopy invariant, the association a 1→ ind (Pπ(a)P) induces the mapping
ind : K1(/ )→ , where K1(/ ) denotes the odd K-theory of / , see [22].

A. Connes placed the index theory for p-summable Toeplitz pairs in a suit-
able homological picture using cyclic homology in [32]. We will consider Connes’
original definition of cyclic cohomology which simplifies the construction of the
Chern-Connes character. The notation /⊗k will be used for the k-th tensor
power of / . The Hochschild differential b :/⊗k→/⊗k−1 is defined as

b(x0 ⊗ x1 ⊗ · · ·⊗ xk ⊗ xk+1) := (−1)k+1 xk+1 x0 ⊗ x1 ⊗ · · ·⊗ xk+

+
k∑

j=0

(−1) j x0 ⊗ · · ·⊗ x j−1 ⊗ x j x j+1 ⊗ x j+2 ⊗ · · ·⊗ xk+1.

The cyclic permutation operator λ :/⊗k→/⊗k is defined by

λ(x0 ⊗ x1 ⊗ ·⊗ xk) = (−1)k xk ⊗ x0 ⊗ · · ·⊗ xk−1.

The complex Ck
λ(/ ) is defined as the space of continuous linear functionals µ on

/⊗k+1 such that µ◦λ = µ. The Hochschild coboundary operator µ 1→ µ◦b makes
C∗λ(/ ) into a complex. The cohomology of the complex C∗λ(/ ) will be denoted
by HC∗(/ ) and is called the cyclic cohomology of / . There is a filtration
on cyclic cohomology coming from a linear mapping S : HCk(/ )→ HCk+2(/ )
which is called the periodicity operator. For a definition of the periodicity
operator, see [34].

The additive pairing between HC2k+1(/ ) and the odd K-theory K1(/ ) is
defined by

〈µ, u〉2k+1 := d2k+1 (µ⊗ tr)


(u

−1 − 1)⊗ (u− 1)⊗ · · ·⊗ (u−1 − 1)⊗ (u− 1)︸ ︷︷ ︸
2k+2 factors
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where we choose the same normalization constant dk as in Proposition 3 of
Chapter III.3 of [34]:

d2k+1 :=
2−(2k+1)

>
2i
Γ
*

2k+ 3
2

+−1

.

The choice of normalization implies that for a cohomology class in HC2k+1(/ )
represented by the cyclic cocycle µ, the pairing satisfies

〈Sµ, u〉2k+3 = 〈µ, u〉2k+1,

see Proposition 3 in Chapter III.3 of [34]. Following Definition 3 of Chapter
IV.1 of [34] we define the Connes-Chern character of a p-summable Toeplitz
pair as the cyclic cocycle:

cc2k+1(π, P)(a0, a1, . . . , a2k+1) := c2k+1tr(π(a0)[P,π(a1)] · · · [P,π(a2k+1)]),

for 2k+ 1≥ p where

c2k+1 := −
>

2i22k+1Γ
*

2k+ 3
2

+
.

This choice of normalization constant implies that

Scc2k+1(π, P) = cc2k+3(π, P),

by Proposition 2 in Chapter IV.1 of [34].

Theorem B.2.2 (Proposition 4 of Chapter IV.1 of [34]). If (π, P) is a p-
summable Toeplitz pair over / , 2k+ 1 ≥ p and a is invertible in / ⊗ MN ( )
the index of Pπ(a)P : P, ⊗ N → P, ⊗ N may be expressed as

ind (Pπ(a)P) = 〈cc2k+1(π, P), a〉2k+1 =

= −tr
4
π(a−1)[P,π(a)][P,π(a−1)] · · · [P,π(a−1)][P,π(a)]

5
=

= −tr(P −π(a−1)Pπ(a))2k+1.

The role of the periodicity operator S in the context of index theory is to
extend index formulas to larger algebras. Suppose that µ is a cyclic k-cocycle on
an algebra/ which is a dense ∗-subalgebra of a C∗-algebra A. As is explained in
[34] for functions on S1 and in [77] for operator valued symbols, a representative
for the cyclic k + 2m-cohomology class that Smµ defines can be extended to
a cyclic cocycle on a larger ∗-subalgebra / ⊆ / ′ ⊆ A. When µ is the cyclic
cocycle f0 ⊗ f1 1→

∫
f0d f1 on C∞(S1), the 2m+ 1-cocycle Smµ is cohomologous

to a cocycle that extends to Cα(S1) whenever α(2m+ 1) > 1 by Proposition 3



84 B.2. Toeplitz operators and their index theory

in Chapter III2.α of [34] and a formula for that representative is given above in
(B.1). Cyclic cocycles of the form µ = cc(π, P) appear in index theory and the
periodicity operator can be used to extend index formulas to larger algebras.

The index formula of Theorem B.2.2 holds for Toeplitz operators under a
Schatten class condition and to deal with this condition we will need the follow-
ing theorem of Russo [80] to give a sufficient condition on an integral operator
for it to be Schatten class. Let X denote a σ-finite measure space. As in
[18], for numbers 1 ≤ p, q <∞, the mixed (p, q)-norm of a measurable function
k : X × X → is defined by

‖k‖p,q :=



∫

X

A∫

X
|k(x , y)|pdx

B q
p

dy




1
q

.

We denote the space of measurable functions k : X × X → with finite mixed
(p, q)-norm by L(p,q)(X × X ). By Theorem 4.1 of [18] the space L(p,q)(X × X )
becomes a Banach space in the mixed (p, q)-norm which is reflexive if 1< p, q <
∞.

The hermitian conjugate of the function k is defined by k∗(x , y) := k(y, x).
Clearly, if a bounded operator K has integral kernel k, the hermitian conjugate
K∗ has integral kernel k∗.

Theorem B.2.3 (Theorem 1 in [80]). Suppose that K : L2(X ) → L2(X ) is a
bounded operator given by an integral kernel k. If 2< p <∞ then

‖K‖8 p(L2(X )) ≤ (‖k‖p′,p‖k∗‖p′,p)1/2, (B.21)

where p′ = p/(p− 1).

In the statement of the Theorem in [80], the assumption k ∈ L2(X × X ) is
made. This assumption implies that K is Hilbert-Schmidt and K ∈ 8 p(L2(X ))
for all p > 2 so for our purposes it is not interesting. But since L2-kernels are
dense in L(p,q), the non-commutative Fatou lemma, see Theorem 2.7d of [82],
implies (B.21) for any k for which the right-hand side of (B.21) is finite. Using
Theorem B.2.3, we obtain the following formula for the trace of the product of
integral operators:

Theorem B.2.4. Suppose that Kj : L2(X )→ L2(X ) are operators with integral
kernels kj for j = 1, . . . , m such that ‖kj‖p′,p,‖k∗j ‖p′,p < ∞ for certain p > 2.
Then for m ≥ p the operator K1K2 · · ·Km is a trace class operator and we have
the trace formula

tr(K1K2 · · ·Km) =
∫

X m




m∏

j=1

kj(x j , x j+1)


dx1dx2 · · ·dxm,

where we identify xm+1 with x1.
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Proof. The case p = m= 2 follows if for any k1, k2 ∈ L2(X ×X ) we have the trace
formula

tr(K L∗) =
∫

X×X
k(x , y)l(x , y)dxdy.

Consider the sesquilinear form on 8 2(L2(X )) defined by

(K , L) := tr(K L∗)−
∫

k(x , y)l(x , y)dxdy.

Since tr(K∗K) =
∫

X×X
|k(x , y)|2dxdy the sesquilinear form satisfies (K , K) = 0

and the polarization identity implies (K , L) = 0 for any K , L ∈ 8 2(L2(X )).
If the operators Kj : L2(X )→ L2(X ) are Hilbert-Schmidt, or equivalently they

satisfy kj ∈ L2(X × X ), we may take K = K1 and L∗ = K2K3 · · ·Km so the case
p = m = 2 implies that the operators K1, K2, . . . , Km satisfy the statement of the
Theorem. In the general case, the Theorem follows from the non-commutative
Fatou lemma, see Theorem 2.7d of [82], since 8 2 is dense in 8 p for p > 2.

B.3 The Toeplitz pair on the Hardy space

As explained in section 2, for the representation π : C(∂Ω)→2(L2(∂Ω)) and
the Szegö projection P∂Ω the commutator [P∂Ω,π(a)] is compact for any con-
tinuous a. Thus (π, P∂Ω) is a Toeplitz pair over C(∂Ω). To enable the use of
the index theory of [34] we will show that the Toeplitz pair (π, P∂Ω) restricted
to the subalgebra of Hölder continuous functions Cα(∂Ω) ⊆ C(∂Ω) becomes
p-summable. These results will give us analytic degree formulas for Hölder
continuous mappings.

Theorem B.3.1. If Ω is a relatively compact strictly pseudo-convex domain in
a Stein manifold of complex dimension n and P denotes either PHR or P∂Ω the
operator [P,π(a)] belongs to 8 p(L2(∂Ω)) for a ∈ Cα(∂Ω) and for all p > 2n/α.

The proof will be based on Theorem B.2.3. We will start our proof of The-
orem B.3.1 by some elementary estimates. We define the measurable function
kα : ∂Ω× ∂Ω→ by

kα(z, w) :=
|z − w|α
|Φ(w, z)|n .

Lemma B.3.2. The function kα satisfies

kα(z, w)! |Φ(w, z)|−(n− α2 )

for |z − w|< ε.
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Proof. By (B.12) we have the estimate

|z − w|α ! |Φ(w, z)|α/2.

From this estimate the Lemma follows.

We will use the notation dV for the volume measure on ∂Ω.

Lemma B.3.3. The function kα satisfies
∫

∂Ω
|kα(z, w)|p′dV (z)! 1

∫

∂Ω
|kα(z, w)|p′dV (w)! 1

whenever
(2n−α)p′ < 2n.

Proof. We will only prove the first of the estimates in the Lemma. The proof
of the second estimate goes analogously. Using (B.12) for Φ, we obtain

∫

∂Ω
|kα(z, w)|p′dV (z)!

∫

B(r,w)
|kα(z, w)|p′dV (z),

since the function Φ satisfies |Φ(w, z)| > r2 outside the ball B(r, w) of radius r
around w. By Lemma B.3.2 we can estimate the kernel pointwise by Φ so (B.13)
implies
∫

B(r,w)
|kα(z, w)|p′dV (z)!

∫

B(r,w)
|Φ(w, z)|−p′(n− α

2
)dV (z)! 1

if (n− α
2
)p′ < n.

Lemma B.3.4. The function kα satisfies ‖kα‖p′,p < ∞ and ‖k∗α‖p′,p < ∞ for
p > 2n/α.

Proof. By the first estimate in Lemma B.3.3 we can estimate the mixed norms
of kα as

‖kα‖pp′,p ! 1,

whenever (2n−α)p′ < 2n. The statement (2n−α)p′ < 2n is equivalent to

1
p
= 1− 1

p′
<
α

2n

which is equivalent to p > 2n/α. Similarly, the second estimate in Lemma B.3.3
implies ‖k∗α‖p′,p <∞ under the same condition on p.
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Lemma B.3.5. Suppose that a ∈ Cα(∂Ω) and let κa denote the integral kernel
of [PHR,π(a)]. The kernel κa satisfies

|κa(z, w)|≤ |a|α|kα(z, w)|. (B.22)

Proof. The integral kernel of [PHR,π(a)] is given by

κa(z, w) = (a(z)− a(w))H∂Ω(w, z).

Since a is Hölder continuous and H∂Ω satisfies equation (B.14) the estimate
(B.22) follows.

Lemma B.3.6. The HR-projection PHR satisfies PHR − P∗HR ∈ 8 q(L2(∂Ω)) for
any q > 2n. Therefore PHR − P∂Ω ∈ 8 q(L2(∂Ω)) for any q > 2n.

Proof. Let us denote the kernel of the operator PHR − P∗HR by b. By (B.15)
we have the pointwise estimate |b(z, w)| ! |Φ(w, z)|−n+1/2. Applying Lemma
B.3.4 with α = 0 and p′ such that (n− 1/2)q′ = np′ we obtain the inequality
‖b‖q′,q <∞ for any q > 2n. The fact that PHR − P∂Ω ∈ 8 q(L2(∂Ω)) follows now
from (B.20).

Proof of Theorem B.3.1. By Lemma B.3.5 the integral kernel κa of [PHR,π(a)]
satisfies |κa|≤ |a|αkα. Theorem B.2.3 implies the estimate

‖[PHR,π(a)]‖8 p(L2(∂Ω)) ≤ |a|α(‖kα‖p′,p‖k∗α‖p′,p)1/2.

By Lemma B.3.4, ‖kα‖p′,p,‖k∗α‖p′,p <∞ for p > 2n/α so [PHR,π(a)] ∈ 8 p(L2(∂Ω))
for p > 2n/α. By Lemma B.3.6, PHR − P∂Ω ∈ 8 p(L2(∂Ω)), so

[PΩ,π(a)] = [PHR,π(a)] + [PΩ − PHR,π(a)] ∈ 8 p(L2(∂Ω))

for p > 2n/α and the proof of the Theorem is complete.

B.4 The index- and degree formula

We may now combine our results on summability of the Toeplitz pairs (PHR,π)
and (P∂Ω,π) into index theorems and degree formulas. The index formula will
be proved using the index formula of Connes, see Theorem B.2.2.

Theorem B.4.1. Suppose that Ω is a relatively compact strictly pseudo-convex
domain with smooth boundary in a Stein manifold of complex dimension n and
denote the corresponding HR-kernel by H∂Ω and the Szegö kernel by C∂Ω. If
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a : ∂Ω→ GLN is Hölder continuous with exponent α, then for 2k+1> 2n/α the
index formulas hold

ind (P∂Ωπ(a)P∂Ω) = ind (PHRπ(a)PHR) =

= −
∫

∂Ω2k+1

tr




2k∏

j=0

(1− a(zj−1)−1a(zj))H∂Ω(zj−1, zj)


dV = (B.23)

= −
∫

∂Ω2k+1

tr




2k∏

j=0

(1− a(zj−1)−1a(zj))C∂Ω(zj−1, zj)


dV, (B.24)

where the integrals in (B.23) and (B.24) converge.

Proof. By Theorem B.2.2 we have

ind (P∂Ωπ(a)P∂Ω) =−tr(P∂Ω −π(a−1)P∂Ωπ(a))2k+1

and by Theorem B.2.4 the trace has the form

−tr(P∂Ω −π(a−1)P∂Ωπ(a))2k+1 =

= −
∫

∂Ω2k+1

tr




2k∏

j=0

(1− a(zj−1)−1a(zj))C∂Ω(zj−1, zj)


dV.

Similarly, the index for PHRπ(a)PHR is calculated. The Theorem follows from
the identity ind (P∂Ωπ(a)P∂Ω) = ind (PHRπ(a)PHR) since Lemma B.3.6 implies
that P∂Ωπ(a)P∂Ω − PHRπ(a)PHR is compact.

Theorem B.4.1 has an interpretation in terms of cyclic cohomology. Define
the cyclic 2n− 1-cocycle χ∂Ω on C∞(∂Ω) by

χ∂Ω :=
n∑

k=0

Skωk,

where ωk denotes the cyclic 2n−2k−1-cocycle given by the Todd class T dk(Ω)
in degree 2k as

ωk(a0, a1, . . . , a2n−2k−1) :=
∫

∂Ω
a0da1 ∧ da2 ∧ · · ·∧ da2n−2k−1 ∧ T dk(Ω).

Similarly to Proposition 13, Chapter III.3 of [34], we have the following:

Theorem B.4.2. The cyclic cocycle Smχ∂Ω defines the same cyclic cohomology
class on C∞(∂Ω) as

χ̃∂Ω(a0, a1, . . . , a2n+2m−1) :=

:=
∫

∂Ω2n+2m−1

tr


a0(z0)

2n+2m−1∏

j=1

(aj(zj)− aj(zj−1))C∂Ω(zj−1, zj)


dV,



89 B.4. The index- and degree formula

where we identify z2n+2m−1 = z0. Furthermore, the cyclic cocycle χ̃∂Ω extends to
a cyclic 2n+ 2m− 1-cocycle on Cα(∂Ω) if m> (2n(1−α) +α)/2α.

Returning to the degree calculations, to express the degree of a Hölder con-
tinuous function we will use Theorem B.2.1 and Theorem B.4.1. In order to
express the formulas in Theorem B.4.1 directly in terms of f we will need some
notations. Let 〈·, ·〉 denote the scalar product on n. The symmetric group on
m elements will be denoted by Sm. We will consider Sm as the group of bijec-
tions on the set {1, 2, . . . , m} and identify the element m+ 1 with 1 in the set
{1, 2, . . . , m}.

For 2l ≤ m we will define a function εl : Sm → {0,1,−1} which we will refer
to the order parity. If σ ∈ Sm satisfies that there is an i ∈ {σ(1),σ(2), . . .σ(2l−
1),σ(2l)} such that i+1, i−1 /∈ {σ(1),σ(2), . . .σ(2l −1),σ(2l)} we set εl(σ) =
0. If σ does not satisfy this condition the order parity of σ is set as (−1)k,
where k is the smallest number of transpositions needed to mapping the set
{σ(1),σ(2), . . .σ(2l − 1),σ(2l)}, with j identified with j + m, to a set of the
form { j1, j1 + 1, j2, j2 + 1, . . . , jl , jl + 1} where 1≤ j1 < j2 < · · ·< jl ≤ m.

Proposition B.4.3. The function u satisfies

tr

I
2k∏

i=0

(1− u(zi−1)∗u(zi))

J
=

=
2k+1∑

l=0

∑

σ∈S2(2k+1)

(−1)l2n−l−1εl(σ)〈zσ(1), zσ(2)〉〈zσ(3), zσ(4)〉 · · · 〈zσ(2l−1), zσ(2l)〉,

where we identify zm with zm+2k+1 for m= 0, 1, . . . , 2k.

Proof. The product in the lemma satisfies the equalities
2k−1∏

i=1

(1− u(zi−1)∗u(zi)) =
2k−1∏

i=1

*
1+

1
2
(zi−1,+ + z̄i−1,−)(zi,+ + z̄i,−)

+
=

=
2k−1∑

l=0

∑

i1<i2<...<il

2−l
l∏

j=1

<
(zij−1,+ + z̄i j−1,−)(zij ,+ + z̄i j ,−)

=
.

The Lemma follows from these equalities and degree reasons.

Let us choose an open subset U ⊆ Y such that there is a diffeomorphism
ν : U → B2n−1. Let ν̃ be as in equation (B.11) and define the function f̃ :
∂Ω2k+1→ by

f̃ (z0, z1, . . . , z2k) :=
∑

σ∈S2(2k−1)

2k−1∑

l=0

(−1)l2n−l−1εl(σ)
l∏

i=1

〈ν̃( f (zσ(2 j−1))), ν̃( f (zσ(2 j)))〉

(B.25)
where we identify zm with zm+2k+1.
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Theorem B.4.4. Suppose that Ω is a relatively compact strictly pseudo-convex
domain with smooth boundary in a Stein manifold of complex dimension n and
that Y is a connected, compact, orientable, Riemannian manifold of dimension
2n− 1. If f : ∂Ω→ Y is a Hölder continuous function of exponent α the degree
of f can be calculated by

deg( f ) =(−1)n〈χ̃∂Ω, g ◦ f 〉2k+1 =

=(−1)n
∫

∂Ω2k+1

f̃ (z0, z1, . . . , z2k)
2k∏

j=0

H∂Ω(zj−1, zj)dV =

=(−1)n
∫

∂Ω2k+1

f̃ (z0, z1, . . . , z2k)
2k∏

j=0

C∂Ω(zj−1, zj)dV

whenever 2k+ 1> 2n/α.

Proof. By Theorem B.2.1 and Theorem B.4.1 we have the equality

deg( f ) = (−1)n
∫

∂Ω2k+1

tr




2k∏

j=0

(1− g( f )(zj)∗g( f )(zj+1))H∂Ω(zj−1, zj)


dV.

Proposition B.4.3 implies

tr




2k∏

j=0

(1− g( f )(zj)∗g( f )(zj+1))


 = f̃ (z0, z1, . . . , z2k),

from which the Theorem follows.

Let us end this paper by a remark on the restriction in Theorem B.4.4 that
the domain of f must be the boundary of a strictly pseudo-convex domain in
a Stein manifold. The condition on a manifold M to be a a Stein manifold
of complex dimension n implies that M has the same homotopy type as an
n-dimensional CW -complex since the embedding theorem for Stein manifolds,
see for instance [45], implies that a Stein manifold of complex dimension n can
be embedded in 2n+1 and by Theorem 7.2 of [65] an n-dimensional complex
submanifold of complex Euclidean space has the same homotopy type as a CW -
complex of dimension n.

Conversely, if X is a real analytic manifold, then for any choice of metric
on X , the co-sphere bundle S∗X is diffeomorphic to the boundary of a strictly
pseudo-convex domain in a Stein manifold, see for instance Proposition 4.3
of [47] or Chapter V.5 of [45]. So the degree of f coincides with the map-
ping H2n−1

dR (S∗Y ) → H2n−1
dR (S∗X ) that f induces under the Thom isomorphism

Hn
dR(X )

∼= H2n−1(S∗X ). Thus the degree of a function f : X → Y can be ex-
pressed using our methods for any real analytic X .



Paper C

Analytic formulas for
degree of non-smooth
mappings: the
even-dimensional case

Abstract

Topological degrees of continuous mappings between manifolds of even dimen-
sion are studied in terms of index theory of pseudo-differential operators. The
index formalism of non-commutative geometry is used to derive analytic inte-
gral formulas for the index of a 0:th order pseudo-differential operator twisted
by a Hölder continuous vector bundle. The index formula gives an analytic for-
mula for the degree of a Hölder continuous mapping between even-dimensional
manifolds. The paper is an independent continuation of Paper B.
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PAPER C. ANALYTIC FORMULAS FOR DEGREE OF NON-SMOOTH

MAPPINGS: THE EVEN-DIMENSIONAL CASE

Introduction

This paper is an independent continuation of Paper B where the degree of
a mapping from the boundary of a strictly pseudo-convex domain was given
in terms of an explicit integral formula involving the Szegö kernel. In this
paper analytic formulas are given for general even-dimensional manifolds in
terms of the signature operator. The classical approach to mapping degree
is to define in an abstract way the degree of a continuous mapping between
two compact connected oriented manifolds of the same dimension in terms of
homology. If the function f is differentiable, an analytic formula for the degree
can be derived using Brouwer degree, see [69], or the more global picture of de
Rham cohomology. Without differentiability conditions on f , the only known
analytic degree formula beyond Paper B is a formula of Connes which only
holds in one dimension, see more in Chapter 2.α of [34]. Our aim is to find
another formula for the degree, that is valid for a Hölder continuous function,
by expressing the degree as the index of a pseudo-differential operator and using
the approach of [34] and Paper B.

Throughout the paper we will use the idea that the Chern character extracts
cohomological information of a continuous mapping f : X → Y between even
dimensional manifolds from the induced mapping f ∗ : K0(Y ) → K0(X ). The
K-theory is a topological invariant and the picture of the index mapping as a
pairing in a local homology theory via Chern characters in the Atiyah-Singer
index theorem can be applied to more general classes of functions than the
smooth functions. The homology theory present throughout all the index theory
is the cyclic homology. For a Hölder continuous mapping f : X → Y of exponent
α and an elliptic pseudo-differential operator A of order at least α, this idea can
be read out from the commutativity of the diagram:

K0(C∞(Y ))
f ∗−−−−→ K0(Cα(X ))

ind A−−−−→/chY

/chX

/

HCeven(C∞(Y ))
f ∗−−−−→ HCeven(Cα(X ))

µ̃A−−−−→

(C.1)

where the mapping µ̃A : HCeven(Cα(X ))→ is a cyclic cocycle on Cα(X ) defined
as the Connes-Chern character of the bounded K-homology class that A defines,
see more in [32] and [34]. The right-hand side of the diagram (C.1) is commu-
tative by Connes’ index formula, see Proposition 4 of Chapter IV.1 of [34]. The
dimension in which the Chern character will take values depends on the Hölder
exponent α. More explicitly, for 2n-dimensional manifolds, the cocycle µ̃A can
be chosen as a cyclic 2k-cocycle for any k > n/α.

To describe this idea more explicitely, when E→ X is a smooth vector bundle
defined by the smooth projection-valued function p : X → + , the index of the
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twisted pseudo-differential operator AE := p(A⊗id+ )p can be calculated in terms
of the de Rham cohomology using the Atiyah-Singer index formula as

ind AE =
∫

T ∗X
π∗ch[E]∧ ch[A]∧π∗T d(X ),

where T d(X ) denotes the Todd class of the complexified tangent bundle. In
particular, if E → Y is a line bundle on an even-dimensional manifold Y such
that ch[E] only contains a constant term and a top-degree term and f : X → Y
is smooth we can consider the line bundle f ∗E → X . Naturality of the Chern
character implies the identity

deg( f ) ch0[A]
∫

Y
chY [E] = ind Af ∗E − ind (A).

In Theorem C.2.2, we construct an explicit line bundle EY → Y satisfying the
above conditions together with the condition

∫
Y

chY [EY ] = 1. In the correct an-
alytic setting the above degree formula extends to Hölder continuous functions.
The analytic setting we choose in Theorem C.4.2 is to associate a Fredholm
module (π̃, F̃A) with an elliptic pseudo-differential operator A of order at least α.
The Fredholm module (π̃, F̃A) is q-summable over the algebra of Hölder contin-
uous functions Cα(X ), for any q > dim(X )/α. Thus the Connes-Chern character
µ̃A := cck(π̃, F̃A) is well defined for dimensions 2k > dim(X )/α. In Theorem B.4.4
we take A to be the signature operator and show that if f : X → Y is Hölder
continuous the following analytic degree formula holds:

deg( f ) = µ̃A(chX [ f ∗EY ])− sign(X ).

The drawback exhibited in Paper B, where the results were restricted to
boundaries of strictly pseudo-convex domains in Stein manifolds, is not present
in this paper. The restriction that X and Y must be even-dimensional does not
really pose a problem since when X and Y are odd-dimensional we can consider
the mapping f × id : X ×S1→ Y ×S1 instead which is a mapping between even-
dimensional manifolds and deg( f ) = deg( f × id). The drawback of the degree
formula in Theorem B.4.4 is that it is in general quite hard to calculate explicit
integral kernels for pseudo-differential operators.

C.1 K-theory and Connes’ index formula

To formulate the calculation of mapping degrees in a setting fitting with non-
smooth mappings, we need a framework for ”differential geometry” where there
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are no classical differentials. The framework we will use is Alain Connes’ non-
commutative geometry, see [32] and [34]. We will recall some basic concepts of
non-commutative geometry in this section.

The K-theory of a compact topological space Y is defined as the Grothendieck
group of the abelian semigroup of isomorphism classes of vector bundles under
direct sum. The Serre-Swan theorem states a one-to-one correspondence be-
tween the isomorphism classes of vector bundles over a compact space Y and
projection valued functions p : Y →+ , see [85]. Here + denotes the C∗-algebra
of compact operators on some separable, infinite dimensional Hilbert space. Fol-
lowing the Serre-Swan theorem, an equivalent approach to K-theory is to use
equivalence classes of projections p ∈ C(Y )⊗+ . The K-theory is denoted by
K0(C(Y )). To read more about K-theory, see [22]. The formulation of K-theory
in terms of projections can be defined for any algebra / as equivalence classes
of projections p ∈/ ⊗+ .

Clearly, the abelian group K0(/ ) depends covariantly on the algebra / so
K0 defines a functor. In particular, the functor K0 has many properties making
the K-theory of a C∗-algebra manageable to calculate, for instance; homotopy
invariance, half exactness and stability under tensoring by a matrix algebra.
Furthermore, a dense embedding of topological algebras / ′ 6→/ which is iso-
radial induces an isomorphism on K-theory, see more in [37]. For instance, if Y
is a compact manifold all of the embeddings C∞(Y )⊆ Cα(Y )⊆ C(Y ) induce iso-
morphisms on K-theory. Here Cα(Y ) denotes the algebra of Hölder continuous
functions of exponent α ∈]0,1]. The isomorphism K0(C(Y )) ∼= K0(C∞(Y )) en-
ables us to define the Chern character ch : K0(C(Y ))→ Heven

dR (Y ) by representing
a class [p] ∈ K0(C(Y )) by a smooth p : Y →+ and define

ch[p] :=
∞∑

j=0

1
(2π) j j!

tr(pdpdp) j .

We choose the trace as the fiberwise operator trace in ∧∗T ∗Y ⊗+ which is well
defined since a compact projection is of finite rank. The term in the sum of
degree 2 j is denoted by ch j[p].

However, we will need a Chern character defined on Hölder continuous pro-
jections. The homology theory fitting with index theory of more complicated
geometries than smooth functions on smooth manifolds is cyclic homology. We
will consider Connes’ original definition of cyclic homology which simplifies the
construction of the Chern character and the Chern-Connes character. We will
let/ denote a topological algebra and we will use the notation/⊗k for the k-th



95 C.1. K-theory and Connes’ index formula

tensor power of / . The Hochschild differential b :/⊗k→/⊗k−1 is defined by

b(x0 ⊗ x1 ⊗ · · ·⊗ xk ⊗ xk+1) := (−1)k+1 xk+1 x0 ⊗ x1 ⊗ · · ·⊗ xk+

+
k∑

j=0

(−1) j x0 ⊗ · · ·⊗ x j−1 ⊗ x j x j+1 ⊗ x j+2 ⊗ · · ·⊗ xk+1.

The cyclic permutation operator λ :/⊗k→/⊗k is defined as

λ(x0 ⊗ x1 ⊗ ·⊗ xk) = (−1)k xk ⊗ x0 ⊗ · · ·⊗ xk−1.

We define a complex of -vector spaces Cλ∗ (/ ) by

Cλk (/ ) :=/⊗k+1/(1−λ)/⊗k+1,

with differential given by b. The homology of the complex Cλ∗ (/ ) is called the
cyclic homology of / and will be denoted by HC∗(/ ). A cycle in Ck

λ(/ ) will
be called a cyclic k-cycle.

The complex Ck
λ(/ ) is defined as the space of continuous linear functionals

µ on /⊗k+1 such that µ ◦ λ = µ. The Hochschild coboundary operator µ 1→
µ ◦ b makes C∗λ(/ ) into a complex. The cohomology of the complex C∗λ(/ )
will be denoted by HC∗(/ ) and is called the cyclic cohomology of / . Cyclic
cohomology is an algebraic generalization of de Rham homology. The difference
lies in that the dimension defines a grading on the de Rham theories, while
the dimension defines a filtration on the cyclic theories. This difference can be
explained by a Theorem of Connes [34] stating that if X is a compact manifold,
there is an isomorphism

HCk(C∞(X ))∼= Zk(X )⊕
⊕

j>0

HdR
k−2 j(X ), (C.2)

where Zk(X ) denotes the space of closed k-currents on X . The filtration on cyclic
cohomology can be described by the linear mapping S : HCk(/ )→ HCk+2(/ )
called the periodicity operator. For a definition of the periodicity operator, see
[34].

The Chern character ch2k : K0(/ )→ HC2k(/ ) in degree 2k is defined as in
Proposition 3 of Chapter III.3 of [34] by

ch2k[p] := (k!)−1tr


p⊗ p⊗ · · ·⊗ p⊗ p︸ ︷︷ ︸

2k+1 factors


 . (C.3)

The additive pairing between HC2k(/ ) and the K-theory K0(/ ) is defined by

〈µ, x〉2k := µ.ch2k[x].
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The choice of normalization implies that for a cohomology class in HC2k(/ )
represented by the cyclic cocycle µ, the pairing satisfies

〈Sµ, x〉2k+2 = 〈µ, x〉2k,

see Proposition 3 in Chapter III.3 of [34].
The homology theory dual to K-theory is K-homology. Analytic K-homology

is described by Fredholm modules, a theory fitting well with index theory and
cyclic cohomology. For q ≥ 1, let 8 q(, )⊆2(, ) denote the ideal of Schatten
class operators on a separable Hilbert space , , so T ∈ 8 q(, ) if and only if
tr((T ∗T )q/2)<∞. For q D= 2 there is no exact description for an integral operator
to belong to the Schatten class of order q. However, for q > 2 there exists a
convenient sufficient condition on the kernel, found in [80]. We will return to
this subject a little later.

A graded Hilbert space is a Hilbert space , equipped with an involutive
mapping γ, that is, γ2 = 1. While γ is an involution, we can decompose , =
,+ ⊕ ,−, where ,± = ker(γ ∓ 1). An operator T on , is called even if
T,± ⊆ ,± and odd if T,± ⊆ ,∓. Suppose that , is a graded Hilbert space
and π : / → 2(, ) is an even representation of a trivially graded -algebra
/ . If F ∈2(, ) is an odd operator such that

F2 = 1, F = F ∗ and [F,π(a)] ∈ 8 q(, ) ∀a ∈/ , (C.4)

the pair (π, F) is called a q-summable even Fredholm module. The conditions
F2 = 1 and F = F ∗ simplifies many calculations, but in practice it is sufficient if
they hold modulo q-summable operators. If we decompose the graded Hilbert
space , =,+⊕,− into its even and odd part, the odd operator F decomposes
as:

F =
*

0 F+
F− 0

+

where F+ : ,− → ,+ and F− : ,+ → ,−. Similarly we can decompose π =
π+ ⊕ π− where π± : / → 2(,±) are representations. The first and second
condition in (C.4) are equivalent to the conditions F+ = F−1

− = F ∗− and the
commutator condition is equivalent to

F−π+(a)−π−(a)F− ∈ 8 q(,+,,−) and F+π−(a)−π+(a)F+ ∈ 8 q(,−,,+).

If the pair (π, F) satisfies the requirement in equation (C.4) but with 8 q(, )
replaced by + (, ) the pair (π, F) is a bounded even Fredholm module. The set
of homotopy classes of bounded even Fredholm modules forms an abelian group
under direct sum called the even analytic K-homology of / and is denoted by
K0(/ ). For a more thorough presentation of Fredholm modules, e.g. Chapter
VII and VIII of [22].
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Following Definition 3 of Chapter IV.1 of [34] we define the Connes-Chern
character cc2k(π, F) of a q-summable even Fredholm module (π, F) for 2k ≥ q
as the cyclic 2k-cocycle:

cc2k(π, F)(a0, a1, . . . , a2k) := (−1)kk! str(π(a0)[F,π(a1)] · · · [F,π(a2k)]),

where str(T ) := tr(γT ) for T ∈ 8 1(, ) and γ denotes the grading on , . This
choice of normalization leads to Scc2k(π, F) = cc2k+2(π, F), see Proposition 2 of
Chapter IV.1 of [34].

If (π, F) is a bounded Fredholm module over / we can define the index
mapping indF : K0(/ )→ as

indF[p] := ind ((π+ ⊗ id)(p)F+(π− ⊗ id)(p)),

where we represent [p] by a finite-dimensional projection p ∈/ ⊗+ ( N ) and
we consider (π+ ⊗ id)(p)F+(π− ⊗ id)(p) as an operator

(π+⊗id)(p)F+(π−⊗id)(p) : (π−⊗id)(p)
4
,− ⊗ N
5
→ (π+⊗id)(p)

4
,+ ⊗ N
5

.

The association [p] × (π, F) 1→ indF (p) is homotopy invariant and defines a
bilinear pairing K0(/ )× K0(/ ) → which is non-degenerate after tensoring
with , see more in [22]. To simplify the notation, we suppress the dimension
N and identify (π, F) with the Fredholm module (π⊗ id+ ( N ), F ⊗ id N ).

Theorem C.1.1 (Proposition 4 of Chapter IV.1 of [34]). If (π, F) is a q-
summable even Fredholm module and 2k ≥ q the index mapping indF can be
calculated as

indF[p] = 〈cck(π, F), p〉k.

In Theorem C.1.1, the conditions (C.4) on the Fredholm module (π, F) re-
quires some caution. If for instance, we remove the condition F2 D= 1 one
can choose F such that ind (F+) D= 0. On the other hand if we require π to
be unital, we have that ind (F+) = indF (1) but 〈cck(π, F), 1〉k = 0, therefore
ind (F+) D= 〈cck(π, F), 1〉k.

In the context of index theory, the periodicity operator S plays the role
of extending index formulas such as that in Theorem C.1.1 to larger algebras.
Suppose that µ is a cyclic k-cocycle on an algebra /0 which is a dense ∗-
subalgebra of a C∗-algebra / . The cyclic k + 2m-cocycle Smµ can sometimes
be extended by continuity to a cyclic cocycle on a larger ∗-subalgebra /0 ⊆
/ ′ ⊆ / . In Paper B the properties of Smµ were studied for Ω being a strictly
pseudo-convex domain in a Stein manifold of complex dimension n and µ being
the cyclic 2n− 1-cocycle on /0 = C∞(∂Ω) defined by

µ :=
n∑

k=0

Skωk,
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where ωk denotes the cyclic 2n−2k−1-cocycle given by the Todd class T dk(Ω)
in degree 2k as

ωk(a0, a1, . . . , a2n−2k−1) :=
∫

∂Ω
a0da1 ∧ da2 ∧ · · ·∧ da2n−2k−1 ∧ T dk(Ω).

It was proved in Paper B that the cyclic cocycle Smµ defines the same cyclic
cohomology class on C∞(∂Ω) as

µ̃(a0, a1, . . . , a2n+2m−1) := (C.5)

:=
∫

∂Ω2n+2m−1

tr


a0(z0)

2n+2m−1∏

j=1

(aj(zj)− aj(zj−1))K∂Ω(zj−1, zj)


dV,

where K∂Ω denotes the Szegö kernel or the Henkin-Ramirez kernel. The cyclic co-
cycle µ̃ is the odd Connes-Chern character of the Toeplitz operators on the Hardy
space and µ̃ extends to a cyclic cocycle on the algebra of Hölder continuous func-
tions on ∂Ω. We will later on use a cyclic cocycle of the form µ = cc2k(π, F)
and the periodicity operator to extend a formulation of the Atiyah-Singer index
theorem to pseudo-differential operators twisted by a Hölder continuous vector
bundle.

The index formula of Theorem C.1.1 holds for q-summable Fredholm mod-
ules and to deal with the q-summability of pseudo-differential operators we will
need the following theorem of Russo [80] to give a sufficient condition for an
integral operator to be Schatten class. Following [18], when X is a σ-finite mea-
sure space and 1≤ p, q <∞, the mixed (p, q)-norm of a function k : X × X →
is defined by

‖k‖p,q :=



∫

X

A∫

X
|k(x , y)|pdx

B q
p

dy




1
q

.

The space of measurable functions with finite mixed (p, q)-norm is denoted by
L(p,q)(X × X ). By Theorem 4.1 of [18] the space L(p,q)(X × X ) becomes a Banach
space in the mixed (p, q)-norm which is reflexive if 1 < p, q <∞. If a bounded
operator K has integral kernel k, the hermitian conjugate K∗ has integral kernel
k∗(x , y) := k(y, x).

Theorem C.1.2 (Theorem 1 in [80]). Suppose that K : L2(X ) → L2(X ) is a
bounded operator given by an integral kernel k. If 2< q <∞

‖K‖8 q(L2(X )) ≤ (‖k‖q′,q‖k∗‖q′,q)1/2, (C.6)

where q′ = q/(q− 1).
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In the statement of the Theorem in [80], the completely unnecessary assump-
tion k ∈ L2(X × X ) is made. For the discussion on how to remove the condition
k ∈ L2(X × X ) and the proof of the next Theorem, we refer to Paper B.

Theorem C.1.3. Suppose that Kj : L2(X )→ L2(X ) are operators with integral
kernels kj for j = 1, . . . , m such that ‖kj‖q′,q,‖k∗j ‖q′,q < ∞ for certain q > 2.
Whenever m ≥ q the operator K1K2 · · ·Km is a trace class operator and we have
the trace formula

tr(K1K2 · · ·Km) =
∫

X m




m∏

j=1

kj(x j , x j+1)


dx1dx2 · · ·dxm,

where we identify xm+1 with x1.

C.2 The projection with Chern character being
the volume form

In order to obtain a formulation of the degree as an index, we start by construct-
ing a line bundle EY over an arbitrary even dimensional manifold Y such that
the only non-constant term in ch[EY ] is of top degree. The idea is to use the
tautological line bundle over S2 and the fact that S2n is the smashed products of
n copies of S2 to define a line bundle over S2n for arbitrary n. Under the diffeo-
morphism S2 ∼= P1 , the projective complex line, we take the complex coordinate
z on S2 corresponding to one of the affine charts. In the z-chart the tautological
line bundle is defined by the projection valued function p0 : → M2( ) which
is given as

p0(z) :=
1

1+ |z|2
*|z|2 z

z̄ 1

+
.

If we define v : → 2 by v(z) := 1>
1+|z|2

(z, 1) then for w ∈ 2 we have that

p0(z)w = 〈w, v(z)〉v(z). (C.7)

It follows that the function p0 satisfies p2
0 = p∗0 = p0, so p0 is a hermitian

projection. Let us denote by ω the Fubini-Study metric on S2, so

ω :=
idz ∧ dz̄
(1+ |z|2)2 .

A straight-forward calulation shows that

ch[p0] = 1+
ω

2π
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In higher dimensions we define pT : n→ M2n( ) by

pT (z1, z2, . . . , zn) := p0(z1)⊗ p0(z2)⊗ . . .⊗ p0(zn). (C.8)

Let us use the notation

pj(z1, z2, . . . , zn) := 1⊗ · · ·⊗ 1⊗ p0(zj)⊗ . . .⊗ 1 . . .⊗ 1,

with p0(zj) in the j:th position. It follows that

ch[pT ] = ch[p1p2 · · · pn] =
∑

I⊆{1,2,...,n}
(2π)−|I |
∧

j∈I

ω j , (C.9)

where ω j denotes the Fubini-Study metric depending on the j:th variable zj .

Lemma C.2.1. The projection pT extends to a projection valued C1-function
on S2n such that

ch[pT ] = 1+ dVS2n

in Heven
dR (S

2n).

Proof. Since Heven
dR (S

2n) is spanned by the constant function and the volume
form, it is sufficient to show that ch0[pT ] = 1 and chn[pT ] = dVS2n . The function
pT takes values as a rank-one projection, therefore ch0[pT ] = 1. That chn[pT ] =
dVS2n follows from the following calculation
∫

S2n

chk[pT ] = (2π)−n

∫

n

n∧

j=1

ω j =

= 2n(2π)−n

∫

n

n∏

j=1

dV (zj)
(1+ |zj |2)2

=

A∫
2rdr
(1+ r2)2

Bn
= 1.

In the general case, let Y be a compact connected orientable manifold of
dimension 2n. If we take an open subset U of Y with coordinates (xi)2n

i=1 such
that

U = {x :
2n∑

i=1

|xi(x)|2 < 1},

the coordinates define a diffeomorphism ν : U ∼= B2n. Let us also choose a
diffeomorphism τ : B2n

∼= n. We can define the projection valued functions
pY : Y → M2n( ) by

pY (x) :=

:
pT (τν(x)) for x ∈ U
pT (∞) for x /∈ U

(C.10)



101 C.2. The projection with Chern character being the volume form

If we let ν̃ : Y → S2n be the Lipschitz continuous function defined by

ν̃(x) =

:
τ(ν(x)) for x ∈ U
∞ for x /∈ U

(C.11)

the C1-function pY can be expressed as pY = ν̃∗pT .

Theorem C.2.2. If Y is a compact connected orientable manifold of even di-
mension and dVY denotes the normalized volume form on Y , the projection pY
satisfies

ch[pY ] = 1+ dVY ,

in Heven
dR (Y ). Thus, if f : X → Y is a smooth mapping

deg( f ) =
∫

X
f ∗ch[pY ]

Proof. By Lemma C.2.1 we have the identities
∫

Y
ch[pY ] =
∫

U
chn[pY ] =
∫

U
ν̃∗chn[pT ] =
∫

S2n

chk[pT ] = 1.

Therefore we have the identity chn[p] = dVY . Since ch[pY ] = 1+ chn[pY ] up to
an exact form on U and vanishes to first order at ∂ U the Theorem follows.

Later on we will also need the Chern character of pY in cyclic homology as
is defined in (C.3).

Lemma C.2.3. The Chern character of pY is given by ν̃∗ch[pT ] and the Chern
character of pT in cyclic homology is given by the formula

ch[pT ](z0, z1, . . . , z2k) = (k!)−1tr 2n

I
2k∏

l=0

pT (zl)

J
=

= (k!)−1
n∏

j=1

2k∏

l=1

1+ z̄ j,l z j,l+1

1+ |zj,l |2
,

where we identify zj,2k+1 = zj,0.

Proof. We may write the Chern character of pT as the product of traces de-
pending only on the j:th coordinate using (C.8). However, (C.7) implies that

tr 2

I
2k∏

l=0

p0(zj,l)

J
=

2k∏

l=0

〈v(zj,l), v(zj,l+1)〉=
2k∏

l=0

1+ z̄ j,l z j,l+1

1+ |zj,l |2
.
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C.3 Index theory for pseudo-differential opera-
tors

The index of an elliptic pseudo-differential operator can be expressed in terms
of local formulas depending on the symbol via the Atiyah-Singer index theorem.
In this section we will use elliptic pseudo-differential operators and the Atiyah-
Singer index theorem to give an index formula for the degree of a continuous
mapping. The theory of pseudo-differential operators can be found in [53] and
for an introduction to the Atiyah-Singer index theorem we refer the reader to
the survey article [4].

The Atiyah-Singer index theorem, see Theorem 1 of [4], states that the index
of an elliptic pseudo-differential operator A on the compact manifold X without
boundary can be calculated using de Rham cohomology as:

ind (A) =
∫

T ∗X
ch[A]∧π∗T d(X ),

where ch[A] is the Chern character of A and T d(X ) is the Todd class of the
complexified tangent bundle of X . Since the Chern character is a ring homo-
morphism we have the following lemma:

Lemma C.3.1. For a smooth projection valued function p : X → + and a
pseudo-differential operator A, the Chern character of the pseudo-differential
operator Ap := p(A⊗ id)p is given by ch[Ap] = ch[A]∧π∗ch[p].

Later on, in Theorem C.4.5, the pseudo-differential operator will play a
different role compared to the role in the Atiyah-Singer theorem. In the Atiyah-
Singer theorem the elliptic pseudo-differential operator defines an element in
K-theory which pairs with the K-homology class whose Connes-Chern character
is the Todd class under the isomorphism (C.2) and gives an index. We will
use the elliptic pseudo-differential operator in the dual way as a K-homology
class that we pair with projections over C∞(X ) in terms of an index. The
heuristic explanation of this method is that K0(X ) is a ring and K∗c (T

∗X ) is a
K∗(X )-module. If A is an elliptic pseudo-differential operator, A defines both a
K-homology class on X and the symbol of A defines an element [A] ∈ K0

c (T
∗X ).

Furthermore, indA(x) = ind (x · [A]) for x ∈ K0(X ), where ind : K0
c (T
∗X )→ is

the index mapping of Atiyah-Singer. On the level of de Rham cohomology this
is exactly the content of Lemma C.3.1.

Theorem C.3.2. If f : X → Y is a smooth mapping between even-dimensional
manifolds, pY is as in (C.10) and A is an elliptic pseudo-differential operator on
X we have the following degree formula:

ch0[A]deg( f ) = ind (ApY ◦ f )− ind (A),
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where ch0[A] denotes the constant term in π∗ch[A]. If A is of order 0, the same
statement holds for continuous f .

Proof. By Lemma C.3.1, Theorem C.2.2 and the Atiyah-Singer index theorem
we have that

ind (ApY ◦ f ) =
∫

X
ch[ f ∗pY ]∧π∗ch[A]∧ T d(X ) =

=
∫

X
(1+ f ∗dVY )∧π∗ch[A]∧ T d(X ) =

= ch0[A]deg( f ) +
∫

X
π∗ch[A]∧ T d(X ) =

= ch0[A]deg( f ) + ind (A).

Since both ind (ApY ◦ f ) and deg( f ) are well defined homotopy invariants for con-
tinuous f when A is of order 0 the final statement of the Theorem follows.

To deal with analytic formulas for the mapping degree when f is not smooth
will require some more concrete information about Schatten class properties of
pseudo-differential operators.

Lemma C.3.3. A pseudo-differential operator b of order −1 satisfies b ∈
8 q(L2(X )) for any q > dim(X ).

Lemma C.3.3 is proved by using a rather standard technique for pseudo-
differential operators. In Theorem C.3.5, when we prove a similar result for
Hölder continuous functions we will need some heavier machinery. We include a
sketch of the proof of Lemma C.3.3 just to highlight the difference in methods.
Letting ∆X denote the second order Laplace-Beltrami operator, the operator
(1−∆X )1/2 b is of order 0 whenever b is of order −1. Thus b = (1−∆X )−1/2(1−
∆X )1/2 b and since (1 − ∆X )1/2 b is a bounded operator the Lemma follows if
(1−∆X )−1/2 is in the Schatten class for any q > dim(X ). This fact follows from
the fact that the k:th eigenvalue of the Laplacian behaves like −k2/dim(X ) as
k→∞, a statement that goes back to [90].

Lemma C.3.4. The pseudo-differential operator b of order 0 has an integral
kernel T ∈ C∞(X × X \ D) satisfying the estimate |T (x , y)| ! |x − y|−dim(X )−ε

almost everywhere for any ε > 0, here D denotes the diagonal in X × X .

Here we use the notation a ! b if there is a constant C > 0 such that a ≤ C b.
Observe that the estimate on T only holds for x D= y so the integral operator
defined by T must be realized as a principal value. We will not prove Lemma
C.3.4, but refer to Theorem 2.53 of [40].
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Theorem C.3.5. If F is a pseudo-differential operator of order 0 on a compact
manifold X without boundary and a ∈ Cα(X ), then the operator [F,π(a)] is
Schatten class of order q for any q >max(dim(X )/α, 2).

We will prove Theorem C.3.5 by two lemmas describing Schatten class prop-
erties of the commutator [F,π(a)] in terms of its local nature as in Theorem
C.1.2. The first of the two lemmas is a direct consequence of Theorem C.1.2:

Lemma C.3.6. Let n/2< β < n and suppose that T is an integral operator on
n whose integral kernel is bounded by |x − y|−β , for any χ ,χ ′ ∈ C∞c (

n) and
q >max(n/(n− β), 2) the operator χTχ ′ is q-summable.

Proof. First we observe that the condition β < n implies that the kernel is locally
integrable and the integral operator defined by T can be defined without taking
any principal values, so we may apply Russo’s theorem directly to χTχ ′. Let
us use the notation Kβ (x , y) := |x − y|−β . If T has an integral kernel bounded
by Kβ Theorem C.1.2 implies that for some large R> 0 and for q ≥ 2

‖χTχ ′‖8 q(L2(X )) ≤
4
‖χKβχ

′‖q′,q‖χ ′Kβχ‖q′,q
51/2 !

!



∫

B(0,R)

I∫

B(0,R)

dV (x)
|x − y|βq′

Jq/q′
dV (y)




1/q

<∞

if βq′ < n which is equivalent to q > n/(n− β).

Lemma C.3.7. Suppose that F is a properly supported pseudo-differential op-
erator of order 0 in n and a ∈ Cα( n) has compact support, then the operator
[F,π(a)] is Schatten class of order q for any q >max(n/α, 2).

Proof. Since F is a pseudo-differential operator of order 0, the operator F can by
Lemma C.3.4 be represented by an integral kernel which is pointwise bounded
by |x − y|−n−ε for some α > ε > 0. Thus the integral kernel of [F,π(a)] is
bounded by |a(x) − a(y)||x − y |−n−ε. It follows from the Hölder continuity
of a that the integral kernel of [F,π(a)] is pointwise bounded by the kernel
|x − y|−(n+ε−α). While F is properly supported and a has compact support,
we can take χ ,χ ′ ∈ C∞c (

n) such that χ[F,π(a)]χ ′ = [F,π(a)] and Lemma
C.3.6 implies that the operator χ[F,π(a)]χ ′ is Schatten class of order q for any
q >max(n/(α− ε), 2). Since ε is arbitrary the Lemma follows.

Theorem C.3.5 follows from Lemma C.3.7 since Theorem C.3.5 can be re-
duced to a local claim where Lemma C.3.7 applies.
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C.4 Index of a Hölder continuous twist

In this section we will combine Theorem C.1.1 with Theorem C.3.5 into index
formulas for certain elliptic pseudo-differential operators twisted by Hölder con-
tinuous vector bundles. If p : X → + ( N ) is a continuous projection-valued
function, we will use the notation Ep for the vector bundle over X corresponding
to p via Serre-Swan’s theorem.

When A is an elliptic differential operator from the vector bundle E to the
vector bundle E′, we want to consider the, possibly unbounded, operator Ap :=
p(A⊗ id N )p which is called the twist of A by p and acts between the vector
bundle E⊗ Ep and E′ ⊗ Ep. However, unless A is of order 0, we must assume that
p is smooth to ensure that Ap is a densely defined Fredholm operator. In the
case p is smooth, Lemma C.3.1 and the Atiyah-Singer index theorem implies
that

ind (Ap) =
∫

T ∗X
π∗ch[p]∧ ch[A]∧π∗T d(X ),

and we also have the identity

ind (Ap) = ind (p(A(1+ A∗A)−1/2 ⊗ id N )p), (C.12)

because 1+A∗A is strictly positive. The right-hand side of (C.12) is well defined
for continuous p and, as we will see, it can be calculated for Hölder continuous
projections by means of Theorem C.1.1 using a certain Fredholm module we
associate with A. To construct this Fredholm module, we start by defining the
odd, self-adjoint operator

Ã :=
*

0 A
A∗ 0

+

on L2(X , E ⊕ E′) which is graded by letting L2(X , E) be the even part and let
L2(X , E) be the odd part. We define the mapping

ϕ : → , u 1→ u(1+ u2)−1/2 and the operator FA := ϕ(Ã).

The operator FA is an odd, self-adjoint operator of order 0. However, the square
of the operator FA can be calculated as

F2
A = Ã2(1+ Ã2)−1 = 1− (1+ Ã2)−1 D= 1.

To mend the problem F2
A D= 1, we replace ϕ by the function ϕ̃ : → M4( )

defined as

ϕ̃(u) :=




ϕ(u) 0 0 i(1+ u2)−1/2

0 ϕ(u) −i(1+ u2)−1/2 0
0 i(1+ u2)−1/2 −ϕ(u) 0

−i(1+ u2)−1/2 0 0 −ϕ(u)


 .
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The function ϕ̃ satisfies ϕ̃(u)2 = 1. If we equip 4 with the grading from the
involution

γ 4 := 1⊕ (−1)⊕ 1⊕ (−1),

the operator F̃A := ϕ̃(Ã) is an odd, self adjoint operator on the graded tensor-
product 4 ⊗ L2(X , E ⊕ E′). To simplify notations we set @ := 4 ⊗ (E ⊕ E′).
The operator F̃A does satisfy that F̃2

A = 1. The operator F̃A can be written as a
matrix of operators as

F̃A :=




FA 0 0 i(1+ Ã2)−1/2

0 FA −i(1+ Ã2)−1/2 0
0 i(1+ Ã2)−1/2 −FA 0

−i(1+ Ã2)−1/2 0 0 −FA


 . (C.13)

Since pseudo-differential operators are only pseudo-local, we will use a parameter
t to extract the singular part of F̃A. Let A(t) denote the elliptic differential
operator defined from A dilated by the action of t > 0 on T ∗X . Set F̃(t) := F̃A(t).
Define W0 as the smooth pseudo-differential operator given by the orthogonal
finite-rank projection onto ker(Ã) and set W⊥0 := 1−W0. Observe that, since Ã
is elliptic, we have that W0 ∈ C∞(X , E ⊕ E′)⊗al g C∞(X , (E ⊕ E′)∗). We define

W :=




0 0 0 iW0
0 0 −iW0 0
0 iW0 0 0
−iW0 0 0 0


 .

Lemma C.4.1. If A is an elliptic differential operator of order at least n/p, the
operator valued function t 1→ F̃(t) satisfies

‖F̃(t)− F̃ −W‖8 p(L2(X )) = F (t−1) as t →∞,

where F̃ is the 0-homogeneous part of F̃A.

Proof. The operator F̃(t)− F̃ −W is a matrix consisting of terms of the form

a1 = i(1+ t2Ã2)−1/2 − iW0 = iW⊥0 (1+ t2Ã2)−1/2W⊥0 =

= i t−1W⊥0 Ã−1W⊥0 T1 and

a2 = Ã(t(1+ t2Ã2)−1/2 −W⊥0 |Ã|−1W⊥0 ) =

= Ã(t(1+ t2Ã2)−1/2 − |Ã|−1) = t−1W⊥0 |Ã|−1W⊥0 T2,

for some T1, T2 ∈ 2(L2(X )). Since both a1 and a2 are pseudo-differential oper-
ators of order lower than −n/p, it follows that their 8 p-norm behaves like t−1

as t →∞ and the Lemma follows.
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We let π : Cα(X )→2(L2(X , E⊕E′)) denote the even representation given by
pointwise multiplication. Define π̃ : Cα(X )→2(L2(X ,@ )) by letting π̃ := π⊕ 0
under the isomorphism L2(X ,@ )∼= 4 ⊗ L2(X , E ⊕ E′).

Theorem C.4.2. If A is an elliptic differential operator of strictly positive order
between two vector bundles E and E′ over X and q >max(dim(X )/α, 2), then the
pair (π̃, F̃A) is a q-summable even Fredholm module over Cα(X ).

Proof. The operator F̃A is an elliptic, self-adjoint pseudo-differential operator of
order 0 and F̃2

A = 1. Under the isomorphism L2(X ,@ ) ∼= 4 ⊗ L2(X , E ⊕ E′) the
decomposition (C.13) implies that

[F̃A, π̃(a)] =




[FA,π(a)] 0 0 −iπ(a)(1+ Ã2)−1/2

0 0 0 0
0 0 0 0

−i(1+ Ã2)−1/2π(a) 0 0 0


 . (C.14)

Since the order of A is strictly positive, these facts together with Theorem C.3.5
and Lemma C.3.3 imply that (π̃, F̃A) is a q-summable even Fredholm module for
any q >max(dim(X )/α, 2).

Let us represent the pseudo-differential operator F̃ by the integral kernel
K̃A which is a conormal distribution section of the big Hom-bundle Hom(@ ,@ ).
By (C.13), we can write K̃A = KA⊕ KA⊕ (−KA)⊕ (−KA) where KA is a conormal
distribution section of the big Hom-bundle Hom(E ⊕ E′, E ⊕ E′). Observe that
KA is defined by a smooth section C∞(X × X \ D,Hom(E ⊕ E′, E ⊕ E′)).

We will use the notation Γk for the subset of {1,2, 3,4}2k consisting of all
sequences (sl)2k

l=1 satisfying the conditions that s1 D= 4, s2k D= 3 and sl = 3 for
some l if and only if sl+1 = 4. These conditions are motivated by the form of
the commutator (C.14). Let w(I) denote the numeral of occurrences of 3 in I .
Take Γw

k ⊆ Γk as the subset of sequences with w(I) = w. To a sequence I ∈ Γk

we will associate the sequence Λ(I) = (il)2k
l=1 ∈ {1, 2, . . . 2k}2k defined by

il =

:
l, if sl = 1, 3
l + 1, if sl = 2,4

,

where we identify 2k+1 with 1. For a sequence I ∈ Γk we let ι(I) := (−1)
∑2k

l=1 il−l ·
iw(I). With a projection-valued function p : X → + and a sequence I ∈ Γk we
associate the function

Qp
I (x1, . . . , x2k) := tr 2n

I
p(x1)

2k∏

l=1

p(xil )

J
. (C.15)
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We also define

HA(x1, . . . , x2k) := strE⊕E′

I
2k∏

l=1

KA(xi , xi+1)

J
.

A straight-forward calculation implies the following lemma:

Lemma C.4.3. For any projection-valued function p : X →+ ( N ), the follow-
ing identity holds:

str(E⊕E′)⊗ N


p(x1)

2k∏

j=1

(p(x j+1)− p(x j))KA(x j , x j+1)


 =

=
∑

(sl )2k
l=1∈Γ0

k

ι(I)Qp
I (x1, . . . , x2k)HA(x1, . . . , x2k).

This Lemma describes the diagonal terms in the decomposition (C.14). To
describe the products with the off-diagonal terms, we need some notation for
the integral kernels. Set K1 = K2 = KA and K3 = K4 = W0. For I ∈ Γk we define
the integral kernel

HA,I (x1, . . . , x2k) := strE⊕E′

I
2k∏

l=1

Ksl
(xi , xi+1)

J
.

Lemma C.4.4. The function

(x1, . . . , x2k) 1→
∑

(sl )2k
l=1∈Γw

k

ι(I)Qp
I (x1, . . . , x2k)HA,I (x1, . . . , x2k) (C.16)

is absolutely integrable over X 2k for all w = 0, 1, . . . , k.

This Lemma is a direct consequence of Theorem C.3.5 and Theorem C.1.3
since the sum over Γw

k corresponds to the sum of the supertraces of the products
between p and 2(k− w) commutators between p and KA and 2w commutators
between p and W0. In fact, when w > 0 the integral of (C.16) will be the trace
of a finite rank operator. One can decompose the function (C.16) even further
by decomposing Γw

k into equivalence classes under the equivalence relation 1 ∼
2 and 3 ∼ 4, which again will be a decomposition into absolutely integrable
functions.

Theorem C.4.5. Suppose that A is an elliptic differential operator of strictly
positive order on the compact manifold X without boundary, acting from E to
E′. If p : X → + ( N ) is a projection valued, Hölder continuous function of
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exponent α and 2k− 1>max(dim(X )/α, 2), the following index formula holds:

ind (p(FA,+ ⊗ 1)p) = 〈cck(π̃, F̃A), p〉2k =

= (−1)k
∫

X 2k

str


p(x1)

2k∏

j=1

(p(x j+1)− p(x j))KA(x j , x j+1)


dVX 2k+

+ (−1)k
k∑

w=1

∫

X 2k

∑

(sl )2k
l=1∈Γw

k

ι(I)Qp
I (x1, . . . , x2k)HA,I (x1, . . . , x2k)dVX 2k

where the trace is taken over (E ⊕ E′)⊗ N and we identify x1 = x2k+1. All of
the integrals are absolutely convergent.

Observe that if the dimension of X is odd, ind (p(FA,+ ⊗ 1)p) = 0 for contin-
uous p since the Atiyah-Singer index theorem implies that it holds for smooth
projection-valued functions.

Proof. The first equality follows from Theorem C.1.1 and Theorem C.4.2 since

π̃(p)(F̃A,+ ⊗ 1)π̃(p) =
4
π(p)(FA,+ ⊗ 1)π(p)

5
⊕ 0.

Recall that, for any t > 0, the operator A(t) satisfies the same conditions as A
so by homotopy invariance of the Chern-Connes character and Lemma C.4.1,

〈cck(π̃, F̃A), p〉2k = 〈cck(π̃, F̃A(t)), p〉2k =

= (−1)kstrL2(X ,@⊗ N )

4
π̃(p)[F̃A(t), π̃(p)] · · · [F̃A(t), π̃(p)]

5
=

= (−1)kstrL2(X ,@⊗ N )

4
π̃(p)[F̃ +W, π̃(p)] · · · [F̃ +W, π̃(p)]

5
+ F (t−1).

Since p is Hölder continuous, (p(x j+1)− p(x j))KA(x j , x j+1) is locally integrable
and of finite mixed L(q

′,q)-norm by Theorem C.3.5. Let us set p̃ := π̃(p) and
K̃W

A := K̃A+W . Theorem C.1.2 and the calculations above imply the equality

strL2(X ,@⊗ N )

4
π̃(p)[F̃ +W, π̃(p)] · · · [F̃ +W, π̃(p)]

5
=

=
∫

X 2k

str


p̃(x1)

2k∏

j=1

4
p̃(x j+1)K̃W

A (x j , x j+1)− K̃W
A (x j , x j+1)p̃(x j)

5

dVX 2k

=
∫

X 2k

∑

(sl )2k
l=1∈Γk

ι(I)Qp
I (x1, . . . , x2k)HA,I (x1, . . . , x2k)dVX 2k .

While the term 〈cck(π̃, F̃A), p〉k is constant, the second identity stated in the
theorem follows from Lemma C.4.3 by letting t →∞.
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C.5 Degrees of Hölder continuous mappings

Returning now to the degree calculations, we will use Theorem C.4.5 for a
particular choice of pseudo-differential operator. Assume that X is a compact
Riemannian manifold of dimension 2n without boundary. The Hodge grading
on
∧∗ T ∗X ⊗ is defined by the involution τ defined on a p-form ω by

τω = ip(p−1)+n ∗ω,

where ∗ denotes the Hodge duality. Observe that if (ej)2n
j=1 is an oriented, or-

thonormal basis of the cotangent space, the operator τ can be written as

τ=
*

i
2

+n 2n∏

j=1

(ej ∧−ej¬). (C.17)

We let E+ denote the sub-bundle of
∧∗ T ∗X ⊗ consisting of even vectors with

respect to the Hodge grading and E− the sub-bundle of odd vectors with respect
to the Hodge grading. The operator τ anti-commutes with d+ d∗ so A= d+ d∗

is a well defined operator from E+ to E−. The operator A is called the signature
operator. Observe that Ã = d + d∗ as an operator on

∧∗ T ∗X ⊗ and Ã2 is
the Laplace-Beltrami operator on X . By Theorem C.4.2 the pair (π̃, F̃d+d∗) is a
q-summable Fredholm module over Cα(X ).

Assume that f : X → Y is a Hölder continuous function where Y is a 2n-
dimensional manifold. We can choose an open subset U ⊆ Y such that there is
a diffeomorphism ν : U → B2n. In fact, by the closed mapping lemma, since X
is compact and Y Hausdorff, the mapping f is open. Therefore, it is possible
to choose U such that there is an open set U0 ⊆ X satisfying U ⊆ f (U0) and E+
and E− are trivial over U0.

Taking ν̃ : Y → n as the Lipschitz continuous function defined in (C.11) we
can for k > n/α define the integrable function f̃k ∈ L1(X 2k) as:

f̃k(x1, . . . , x2k) := (C.18)

=
∑

I∈Γk

ι(I)QpT
I (ν̃ f (x1), . . . , ν̃ f (x2k))Hd+d∗,I (x1, . . . , x2k) = (C.19)

=
k∑

w=0

∑

I∈Γw
k

ι(I)Hd+d∗,I (x1, . . . , x2k)
n∏

j=1

2k∏

l=0

1+ f (xil ) j f (xil+1
) j

1+ | f (xil ) j |2
, (C.20)

where the second formula follows from Lemma C.2.3. The kernel Hd+d∗,I is
in general quite hard to find. In local coordinates, the operator Kd+d∗ will
be similar to a Riesz transform. The operator W0 is the projection onto the
finite-dimensional space of harmonic forms on X . We will demonstrate this by
calculating the kernels Hd+d∗,I explicitly on S2n in the next section.
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Theorem C.5.1. Suppose that X and Y are smooth compact connected mani-
folds without boundary of dimension 2n and f : X → Y is Hölder continuous of
exponent α. When k > n/α the following integral formula holds:

deg( f ) =−2−nsign(X ) + 2−n(−1)k
∫

X 2k

f̃k(x1, . . . , x2k)dVX 2k

where f̃k is as in (C.18)–(C.20).

Proof. While Fd+d∗ = (d+ d∗)(1+∆)−1/2, we have that

ind (Fd+d∗,+) = ind (d+ d∗) = sign(X ).

The operator d+ d∗ satisfies ch0[d+ d∗] = 2n L0(T ∗X ) = 2n, since the constant
term in the L-genus is 1. Therefore Theorem C.3.2 and Theorem C.4.5 implies
that

deg( f ) = 2−nind ((pY ◦ f ⊗ id)Fd+d∗,+(pY ◦ f ⊗ id))− 2−nind (Fd+d∗,+) =

= 2−n〈cck(π̃, F̃A), f ∗pY 〉2k − 2−nsign(X ) =

= 2−n(−1)k
∫

X 2k

f̃k(x1, . . . , x2k)dVX 2k − 2−nsign(X ).

A couple of remarks on the choice of A as the signature operator are in order.
This choice is rather superfluous since any pseudo-differential operator A of order
1 with ch0[A] D= 0 will give a degree formula similar to that in Theorem C.5.1. If
one can find an invertible A on X such that ch0[A] D= 0, the formula of Theorem
C.5.1 would be much simpler since f̃k will not contain any contributions from
Γk \Γ0

k.
The signature operator has been studied on Lipschitz manifolds, see [86],

which gives an analytic degree formula for Hölder continuous mappings between
even-dimensional Lipschitz manifolds. On Lipschitz manifolds, the Atiyah-
Singer theorem is replaced by Teleman’s index theorem from [87]. Of course,
there are some analytic difficulties in the proof of Theorem C.3.5 for Lipschitz
manifolds, that more or less manifests themselves on a notational level.

C.6 Example on S2n

Let us end this paper by writing down the integral kernels in the case of a
Hölder continuous function f : S2n → Y where Y is a compact, connected 2n-
dimensional manifold without boundary. We will compare the method of using
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pseudo-differential operators from Theorem C.5.1 with that of using Henkin-
Ramirez kernels from Paper B. The degree formula of Paper B is based on the
usage of the cocycle (C.5).

To apply Theorem C.5.1 the kernels Hd+d∗,I need to be calculated. Define
U0 : L2(S2n,
∧

T ∗S2n) → L2( 2n,
∧

T ∗ 2n) by pulling back along the mapping
λ : 2n→ S2n defined by

2n G x 1→
A
|x |2 − 1
|x |2 + 1

,
2x
|x |2 + 1

B
∈ S2n ⊆ 2n+1

and equipping 2n with the pull-back metric. Since the metric is positive definite
we can define the unitary mapping U : L2(S2n,

∧
T ∗S2n) → L2( 2n) ⊗ 22n

by
composing U0 with the unitary mapping L2( 2n,

∧
T ∗ 2n) → L2( 2n) ⊗ 22n

defined by the metric. Clearly, we have that UKd+d∗U∗ is a pseudo-differential
operator on 2n with symbol ξ 1→ i(ξ ∧ −ξ¬)/

>
2|ξ|, if we identify 22n

with∧
2n. For any a ∈ Cα(S2n) we have that UaU∗ = a ◦λ.

Let us find the integral kernel K1 of UKd+d∗U∗. Since the symbol of K1 is
a homogeneous function that commutes with the SU(2n)-action on

∧
2n, the

integral kernel K1 is given by

K1(x , y) = cn
(x − y)∧−(x − y)¬
>

2|x − y|2n+1

and the constant cn = (n− 1)!/πn is calculated in Chapter III in [83]. So the
operator defined by K1 is a matrix of Riesz transforms. While the harmonic
forms on S2n are spanned by the constant function and the volume form, the
kernel W0 is the constant projection

∧
T ∗S2n→ ⊕
∧2n T ∗S2n. So we can write

the kernel K3 of UW0U∗ as

K3(x , y) = g(x)g(y)(1+
2n∏

j=1

ej ∧ ej¬),

where g(x) := c′n(1 + |x |2)−n and c′n = 2nπnn!(n − 2)!/(2n + 1)!. Using these
expressions for K1 and K3 it follows from (C.17) that

Hd+d∗,I (x1, . . . , x2k) = str

I
2k∏

l=1

Ksl
(xl , xl+1)

J
= tr

I
τ

2k∏

l=1

Ksl
(xl , xl+1)

J
=

=
∑

σ∈S2(k−w)

n∑

m=0

insign(σ)Hσ,m,I (x1, . . . , x2k),
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when w(I) = w and where

Hσ,m,I (x1, . . ., x2k) := c2k−m
n

∏

sl D=1,2

g(xl)g(xl+1)
m∏

l=1,sl=1,2

〈ej , xσ(l) − xσ(l)+1〉
|xσ(l) − xσ(l)+1|2n+1 ·

·
k∏

l=m+1,sl=1,2

〈xσ(l) − xσ(l)+1, xσ(l+1) − xσ(l+1)+1〉
|xσ(l) − xσ(l)+1|2n+1|xσ(l+1) − xσ(l+1)+1|2n+1 .

By this notation we mean that an element σ in the symmetric group S2(k−w),
on 2(k − w) elements, acts on the indices l such that sl = 1, 2. Here we use
the notation 〈·, ·〉 for the scalar product. For a Hölder continuous function
f : S2n → Y we take an open set U ⊆ Y such that there is a diffeomorphism
ν : U → B2n and consider the Hölder continuous function f0 := ν̃ f λ : 2n→ S2n,
where ν̃ is as in equation (C.11). The signature of a sphere is 0 so Theorem
C.5.1 and (C.20) implies the following degree formula:

deg( f ) =

= (−1)k
k∑

w=0

∫

4nk

∑

I∈Γw
k

∑

σ∈S2(k−w)

n∑

m=0

insign(σ)c2k−m
n ι(I)·

·
n∏

j=1

2k∏

l=1

1+ f0(x j)il f0(x j)il+1

1+ | f0(x j)il |2
·

·
∏

sl D=1,2

g(xl)g(xl+1)
m∏

l=1,sl=1,2

〈ej , xσ(l) − xσ(l)+1〉
|xσ(l) − xσ(l)+1|2n+1 ·

·
k∏

l=m+1,sl=1,2

〈xσ(l) − xσ(l)+1, xσ(l+1) − xσ(l+1)+1〉
|xσ(l) − xσ(l)+1|2n+1|xσ(l+1) − xσ(l+1)+1|2n+1 dV 2nk ,

where f0(x)i denotes the i:th complex coordinate of f0(x) if f0(x) ∈ U and ∞ if
f0(x) /∈ U .

If we attempt using the degree formula of Paper B to a function f : S2n→ Y
we must in some way change the dimension. We will do so by finding a strictly
pseudo-convex domain Ω in n+1 such that ∂Ω = S2n × S1 and use the degree
formula of Paper B to calculate the degree of f × id : S2n×S1→ Y ×S1. To find
such domain Ω we define the function ρ ∈ C∞( n+1) as

ρ(z1, . . . , zn+1) := 4|1− z1z2|2 + |z|2 − 3.
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We let Ω := {z ∈ n+1 : ρ(z) < 0}. Clearly, ρ is strictly pluri-subharmonic in Ω
and dρ D= 0 on ∂Ω. Furthermore

ρ(z) = 4(1− 2ℜ(z1z2) + |z1z2|2) + |z|2 − 3.

So Ω is a relatively compact strictly pseudo-convex domain in n+1 with smooth
boundary. Writing down the function ρ in its real argument verifies that Ω ∼=
B2n+1 × S1 and ∂Ω ∼= S2n × S1.

Let us find the Henkin-Ramirez kernel HR of the boundary ∂Ω. In order to
do this we will use the Fornaess embedding theorem, see [41]. This approach
to construct the Henkin-Ramirez kernel goes as follows; if we find a proper,
holomorphic mapping from Ω into a convex domain, we obtain the holomorphic
support function of ∂Ω by pulling back the support function in the convex
domain. Define the holomorphic functionΨ : n+1→ n+2 by (z1, z2, . . . , zn+1) 1→
(2(1 − z1z2), z1, z2, . . . , zn+1). Clearly Ω is mapped in to the ball of radius 3,
3B2n+4, and Ω =Ψ−1(3B2n+4). Therefore Ω has the support function

a(z,ζ) := (Ψ(ζ)−Ψ(z)) ·Ψ(ζ) = ζ̄ · (ζ− z) + 4(ζ1ζ2 − z1z2)ζ1ζ2. (C.21)

Thus the integral kernel of the Henkin-Ramirez kernel for S2n × S1 is given by

HR(z,ζ)dVS2n×S1 =
1

(2πi)n
s ∧ (∂̄ζs)2(n−1)

a(z,ζ)n
,

where
s(z,ζ) = ∂ |ζ|2 + 2(1− ζ1ζ2)(z2dζ1 + ζ1dζ2).

Because of (C.21) the function a(z,ζ) is symmetric in the sense that for z,ζ ∈ ∂Ω
we have a(z,ζ) = a(ζ, z). However, the kernel HR is not symmetric as is seen
from the expression for s.

Concluding the case of a Hölder continuous function f : S2n → Y , we take
an open subset U ⊆ Y diffeomorphic to a ball and choose a diffemorphism
ν : U×(S1\{pt})→ B2n+1. If we let f1 : Sn×S1→ Sn+1 be the Hölder continuous
function constructed by extending ν( f × id) as in (C.11), Theorem B.4.4 implies
the degree formula

deg( f ) =
(−1)n

(2πi)2kn

∫

(S2n×S1)2k+1

∑

σ∈S2(2k−1)

2k−1∑

l=0

cl,σ

l∏

i=1

〈 f1(zσ(2i−1)), f1(zσ(2i))〉·

·
2k∏

j=0

s(zj , zj+1)∧ (∂̄zj+1
s(zj , zj+1))2(n−1)

a(zj , zj+1)n
,

where cl,σ = (−1)l2n−l−1εl(σ) and εl(σ) is the order parity of σ.
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